

FCC TEST REPORT (Part 15, Subpart C)

Applicant:	KYOCERA Corporation	
Address:	Yokohama Office 2-1-1 Kagahara,Tsuzuki-ku Yokohama-shi,Kanagawa,Japan	

Manufacturer or Supplier:	KYOCERA Corporation
Address:	Yokohama Office 2-1-1 Kagahara,Tsuzuki-ku Yokohama-shi,Kanagawa,Japan
Product:	Mobile Phone
Brand Name:	KYOCERA
Model Name:	EB1217
FCC ID:	JOYEB1217
Date of tests:	Oct. 21, 2024~Dec. 05, 2024

The tests have been carried out according to the requirements of the following standard:

FCC Part 15, Subpart C, Section 15.247

ANSI C63.10-2020

CONCLUSION: The submitted sample was found to COMPLY with the test requirement

Prepared by Hanwen Xu	Approved by Peibo Sun
Engineer / Mobile Department	Manager / Mobile Department
Lu Hannen	Simperbo
Date: Dec. 05, 2024	Date: Dec. 05, 2024

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/lems-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with un prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or CHaracteristics of the lot from whiCH a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such this expectation of the completeness of this report, the tests conducted and the correctness of the report contents.

TABLE OF CONTENTS

RELI	ELEASE CONTROL RECORD				
1.	SUMM	ARY OF TEST RESU	JLTS	6	
1.1	MEAS	SUREMENT UNCER	TAINTY	7	
2	GENE	RAL INFORMATION.		8	
2.2	GEN	ERAL DESCRIPTION	OF EUT	8	
2.3	DESC	CRIPTION OF TEST I	MODES	11	
	2.2.1	CONFIGURATION	OF SYSTEM UNDER TEST	12	
	2.2.2	TEST MODE APPL	ICABILITY AND TESTED CHANNEL DETAIL	12	
2.4	DUT	CYCLE OF TEST S	IGNAL	16	
2.5	GEN	ERAL DESCRIPTION	OF APPLIED STANDARDS	16	
2.6	DESC	CRIPTION OF SUPPO	ORT UNITS	17	
3	TEST	TYPES AND RESULT	rs	18	
3.1	CONI	DUCTED EMISSION	MEASUREMENT	18	
	3.1.1	LIMITS OF CONDU	ICTED EMISSION MEASUREMENT	18	
	3.1.2	TEST INSTRUMEN	TS	19	
	3.1.3	TEST PROCEDUR	ES	20	
	3.1.4	DEVIATION FROM	TEST STANDARD	20	
	3.1.5	TEST SETUP		21	
	3.1.6	EUT OPERATING (CONDITIONS	21	
	3.1.7	TEST RESULTS		22	
3.2	RADI	ATED EMISSION ME	ASUREMENT	24	
	3.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT				
	3.2.2 TEST INSTRUMENTS				
	3.2.3 TEST PROCEDURES				
	3.2.4 DEVIATION FROM TEST STANDARD				
	3.2.5 TEST SETUP				
	3.2.6	EUT OPERATING (CONDITIONS	28	
	3.2.7	TEST RESULTS		29	
3.3	6 DB	BANDWIDTH MEAS	UREMENT	113	
	3.3.1	LIMITS OF 6DB BA	NDWIDTH MEASUREMENT	113	
	3.3.2	TEST INSTRUMEN	TS	113	
	3.3.3 TEST PROCEDURE				
	3.3.4 DEVIATION FROM TEST STANDARD115				
	3.3.5 TEST SETUP115				
	3.3.6 EUT OPERATING CONDITIONS				
	3.3.7 TEST RESULTS115				
3.4	CONI	DUCTED OUTPUT P	OWER	116	
	-	ers High TeCHnology	Tower N, Innovation Center, 88 Zuyi Road, High-teCH District,	Tel: +86 (0557)	
(Sı	(Suzhou) Co., Ltd. Suzhou City, Anhui Province 368 1008				

Test Report No.	: PSU-QB	J2409140 ⁴	110RF06
I COL I COULL INO.		U <u>L</u> TUJ ITU	

VLN	3.4.1	LIMITS OF CONDUCTED OUTPUT POWER MEASUREMENT	116
	3.4.2	TEST SETUP	116
	3.4.3	TEST INSTRUMENTS	116
	3.4.4	TEST PROCEDURES	116
	3.4.5	DEVIATION FROM TEST STANDARD	116
	3.4.6	EUT OPERATING CONDITIONS	116
	3.4.7	TEST RESULTS	117
	3.4.7.1	MAXIMUM PEAK OUTPUT POWER	117
	3.4.7.2	AVERAGE OUTPUT POWER (FOR REFERENCE)	118
3.5	POW	ER SPECTRAL DENSITY MEASUREMENT	119
	3.5.1	LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT	119
	3.5.2	TEST SETUP	119
	3.5.3	TEST INSTRUMENTS	119
	3.5.4	TEST PROCEDURE	119
	3.5.5	DEVIATION FROM TEST STANDARD	119
	3.5.6	EUT OPERATING CONDITION	119
	3.5.7	TEST RESULTS	120
3.6	OUT	OF BAND EMISSION MEASUREMENT	121
	3.6.1	LIMITS OF OUT OF BAND EMISSION MEASUREMENT	121
	3.6.2	TEST SETUP	121
	3.6.3	TEST INSTRUMENTS	121
	3.6.4	TEST PROCEDURE	121
	3.6.5	DEVIATION FROM TEST STANDARD	122
	3.6.6	EUT OPERATING CONDITION	122
	3.6.7	TEST RESULTS	122
3.7	ANTE	NNA REQUIREMENTS	
	3.7.1	STANDARD APPLICABLE	123
	3.7.2	ANTENNA CONNECTED CONSTRUCTION	123
	3.7.3	ANTENNA GAIN	123
4	PHOTO	OGRAPHS OF THE TEST CONFIGURATION	124
5	MODIF	ICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT I	BY THE LAB
	125		
6	APPEN	IDIX A:2.4GWIFI	126
DT:	S BAND	WIDTH	126
	TEST F	RESULT	126
	TEST (GRAPHS	127
ОВ	W BAND	OWIDTH	133
	TEST F	RESULT	133
Ηι	ıarui 7laye	ers High TeCHnology Tower N, Innovation Center, 88 Zuyi Road, High-teCH District,	Tel: +86 (0557)

TEST GRAPHS	134
MAXIMUM CONDUCTED OUTPUT POWER	140
TEST RESULT	140
MAXIMUM POWER SPECTRAL DENSITY	142
TEST RESULT	142
TEST GRAPHS	143
BAND EDGE MEASUREMENTS	150
TEST RESULT	150
TEST GRAPHS	151
CONDUCTED SPURIOUS EMISSION	155
TEST RESULT	155
TEST GRAPHS	156
DUTY CYCLE	162
TEST RESULT	162
TEST GRAPHS	163
7 APPENDIX B:BLE	165
DTS BANDWIDTH	165
TEST RESULT	165
TEST GRAPHS	166
OCCUPIED CHANNEL BANDWIDTH	172
TEST RESULT	172
TEST GRAPHS	173
MAXIMUM CONDUCTED OUTPUT POWER	179
TEST RESULT	179
MAXIMUM POWER SPECTRAL DENSITY	180
TEST RESULT	180
TEST GRAPHS	181
BAND EDGE MEASUREMENTS	187
TEST RESULT	187
TEST GRAPHS	188
CONDUCTED SPURIOUS EMISSION	192
TEST RESULT	192
TEST GRAPHS	193
DUTY CYCLE	199
TEST RESULT	199
TEST GRAPHS	200

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
PSU-QBJ2409140110RF06	Original release	Dec. 05, 2024

1. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC PART 15, SUBPART C (SECTION 15.247)			
STANDARD SECTION	TEST TYPE AND LIMIT RE		TEST LAB*
15.207	AC Power Conducted Emission	C Power Conducted Emission Compliance	
15.205 15.209	Radiated Emissions Compliance A		Α
15.247(d)	Out of band Emission Measurement Compliance A		Α
15.247(a)(2)	6dB bandwidth Compliance A		Α
15.247(b)	Conducted Output power Compliance A		Α
15.247(e)	Power Spectral Density Compliance A		A
15.203	Antenna Requirement Compliance A		A

Note: Except RSE and AC Power Conducted Emission, other data please refer to Appendix B.

*Test Lab Information Reference

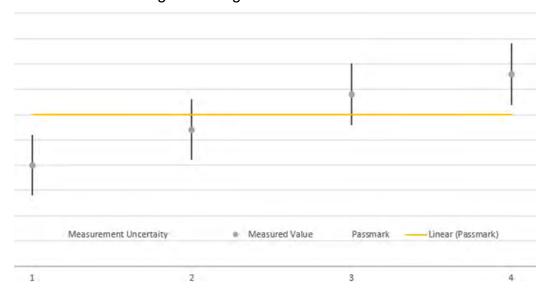
Lab A:

Huarui 7Layers High TeCHnology (Suzhou) Co., Ltd.

Lab Address:

Tower N, Innovation Center, 88 Zuyi Road, High-teCH District, Suzhou City, Anhui Province Accredited Test Lab Cert 6613.01

The FCC Site Registration No. is 434559; The Designation No. is CN1325.



1.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	UNCERTAINTY
AC Power Conducted emissions	±2.70dB
Radiated emissions (9KHz~30MHz)	±2.68dB
Radiated emissions (30MHz~1GHz)	±4.98dB
Radiated emissions (1GHz ~6GHz)	±4.70dB
Radiated emissions (6GHz ~18GHz)	±4.60dB
Radiated emissions (18GHz ~40GHz)	±4.12dB
Conducted emissions	±4.01dB
Occupied Channel Bandwidth	±43.58KHz
Conducted Output power	±2.06dB
Power Spectral Density	±0.85 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so-called shared risk principle.

GENERAL INFORMATION

2.2 GENERAL DESCRIPTION OF EUT

	I HOROL EUI		
PRODUCT*	Mobile Phone		
BRAND NAME*	KYOCERA		
MODEL NAME*	EB1217		
NOMINAL VOLTAGE*	3.91Vdc (Batte	ery)	
MODULATION *	BLE	GFSK	
MODULATION	2.4G WIFI	DSSS,OFDM	
	BT_LE: 0.125	Mbps /0.5 Mbps /1 Mbps/2 Mbps	
	802.11b: 11/5.5	5/2.0/1.0 Mbps	
TRANSMISSION RATE*	802.11g: 54/48	3/36/24/18/9/6 Mbps	
	802.11n(HT20)): up to 72.2 Mbps	
	802.11n(HT40)): up to 150 Mbps	
OPERATING	2402-2480MHz for BT-LE		
FREQUENCY	2412-2462MHz	z for 11b/g/n(HT20/40)	
MAX. OUTPUT POWER	BT-LE: 3.97mW (Maximum)		
MAX. GOTT OT TOWER	WLAN: 297.85mW (Maximum)		
ANTENNA GAIN*	BLE	-2.5dBi	
ANTENNA GAIN	2.4G WIFI	-2.5dBi	
ANTENNA TYPE*	BLE	IFA Antenna	
ANTENNA I II E	2.4G WIFI	IFA Antenna	
HW VERSION*	DVT2		
SW VERSION*	0.330SR		
I/O PORTS*	Refer to user's manual		
CABLE SUPPLIED*	N/A		

NOTE:

- 1. *Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information, Test Lab is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.
- 2. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

Huarui 7layers High TeCHnology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, High-teCH District, Suzhou City, Anhui Province

Tel: +86 (0557) 368 1008

The EUT incorporates a SISO function. Physically, the EUT provides one completed transmitter and one receiver.

MODULATION MODE	TX/RX FUNCTION
802.11b	1TX/1RX
802.11g	1TX/1RX
802.11n(HT20)	1TX/1RX
802.11n(HT40)	1TX/1RX
BT_LE(1MHz)	1TX/1RX
BT_LE(2MHz)	1TX/1RX
BT_LE(S2)	1TX/1RX
BT_LE(S8)	1TX/1RX

- 4. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.
- 5. Antenna gain and EUT conducted cable loss are provided by the customer, and the laboratory will record the results based on these items that involve these two parameters.
- 6. The detail differences from the Main manufacturer and Secondary manufacturer are as listed below:

Description	Main manufacturer	Secondary manufacturer	
LCM	ShenZhen LIDE	Wannian Lianchuang Display	
LCIVI	Communications Ltd.	Technology Co. , Ltd.	
Audio jook EDC	Shenzhen Xinyu Tengyue	Jiangxi Zhiboxin Technology	
Audio jack FPC	Electronics Co.,Ltd.	Limited Company	
MIC	AAC	Gettop	
Memory	Samsung	Biwin	
Radio frequency switch_DFN-6_0.4-	Innowave	Champhill	
4.2 GHz_SPDT_GPIO_patch	IIIIOwave	Champhill	

The above materials have only manufacturer differences, and the functions are the same. Other than these changes, other RF performance is the same and does not affect the RF results.

7. List of Accessory:

ACCESSORIES	BRAND	MODEL	SPECIFICATION	
CPU	MTK	MT6835T	N/A	
eMMC 1 (=ROM 1)	cameling	KM5P9001DM-	N/A	
elviivic i (-ROW I)	samsung	B424		

oMMC 2 (-POM 2)	biwin	BW2A2KZC02-	N/A
eMMC 2 (=ROM 2)	DIWITI	64G	
RAM 1	1		N/A
KAIVI I	samsun	B424	
RAM 2	la in coine	BW2A2KZC02-	N/A
RAIVI Z	biwin	64G	
Patton	KVOCEBA	544VDT152	Capacity : 3.91Vdc,
Battery	KYOCERA	5AAXBT152	4400mAh/17.3Wh

2.3 DESCRIPTION OF TEST MODES

11 Channels are provided for 802.11b, 802.11g and 802.11n20 (HT20):

			•
CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
1	2412 MHz	7	2442 MHz
2	2417 MHz	8	2447 MHz
3	2422 MHz	9	2452 MHz
4	2427 MHz	10	2457 MHz
5	2432 MHz	11	2462 MHz
6	2437 MHz		

7 channels are provided for 802.11n (HT40):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
3	2422 MHz	7	2442 MHz
4	2427 MHz	8	2447 MHz
5	2432 MHz	9	2452 MHz
6	2437 MHz		

40 channels are provided for BT-LE (GFSK):

CHANNEL	FREQ. (MHZ)	CHANNEL	FREQ. (MHZ)	CHANNEL	FREQ. (MHZ)	CHANNEL	FREQ. (MHZ)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

2.2.1 CONFIGURATION OF SYSTEM UNDER TEST

Please see section 4 photographs of the test configuration for reference.

2.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports.

The worst case was found when positioned on Y axis for radiated emission. Following test modes were selected for the final test, and the final worst case is marked in boldface and recorded in the report:

EUT CONFIGURE		APPLIC	ABLE TO		MODE		
MODE	RE<1G	RE≥1G	PLC	APCM	MODE		
-	V	V	√	√			

Where

RE<1G: Radiated Emission below 1GHz

RE≥1G: Radiated Emission above 1GHz

PLC: Power Line Conducted Emission

APCM: Antenna Port Conducted Measurement

NOTE: No need to concern of Conducted Emission due to the EUT is powered by battery.

RADIATED EMISSION TEST (BELOW 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity arCHitecture).

The following CHannel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11n20	1 to 11	6	OFDM	MCS0
BT-LE	0 to 39	19	GFSK	2.0

RADIATED EMISSION TEST (ABOVE 1GHz):

- ☑ Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity arCHitecture).
 - ☐ The following CHannel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11b	1 to 11	1, 6, 11	DSSS	1.0
802.11g	1 to 11	1, 6, 11	OFDM	6.0
802.11n20(HT20)	1 to 11	1, 6, 11	OFDM	MCS0
802.11n(HT40)	3 to 9	3,6,9	OFDM	MCS0
BT-LE	0 to 39	0,19, 39	GFSK	0.125&0.5&1.0
BT-LE	1 to 38	1,19, 38	GFSK	2.0

POWER LINE CONDUCTED EMISSION TEST

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity arCHitecture).
- The following CHannel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11n20	1 to 11	6	OFDM	MCS0

BANDEDGE MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity arCHitecture).

☐ The following CHannel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11b	1 to 11	1, 6, 11	DSSS	1.0
802.11g	1 to 11	1, 6, 11	OFDM	6.0
802.11n20(HT20)	1 to 11	1, 6, 11	OFDM	MCS0
802.11n(HT40)	3 to 9	3,6,9	OFDM	MCS0
BT-LE	0 to 39	0,19, 39	GFSK	0.125&0.5&1.0
BT-LE	1 to 38	1,19, 38	GFSK	2.0

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of eaCH mode, but only includes spectrum plot of worst value of eaCH mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity arCHitecture).

The following CHannel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11b	1 to 11	1, 6, 11	DSSS	1.0
802.11g	1 to 11	1, 6, 11	OFDM	6.0
802.11n20(HT20)	1 to 11	1, 6, 11	OFDM	MCS0
802.11n(HT40)	3 to 9	3,6,9	OFDM	MCS0
BT-LE	0 to 39	0,19, 39	GFSK	0.125&0.5&1.0
BT-LE	1 to 38	1,19, 38	GFSK	2.0

	TEST CONDITION							
APPLICABLE TO	ENVIRONMENTAL CONDITIONS	TEST VOLTAGE	TESTED BY					
RE<1G	23deg. C, 70%RH	DC 5V By Adapter	Hanwen Xu					
RE≥1G	23deg. C, 70%RH	DC 5V By Adapter	Hanwen Xu					
PLC	25deg. C, 52%RH	DC 5V By Adapter	Hanwen Xu					
АРСМ	25deg. C, 60%RH	DC 5V By Adapter	Hanwen Xu					

2.4 DUTY CYCLE OF TEST SIGNAL

Please Refer to Appendix B Of this test report..

2.5 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C, Section 15.247
KDB 558074 D01 DTS Meas Guidance v05r02

ANSI C63.10-2020

Note:

- 1. All test items have been performed and recorded as per the above standards.
- The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (Certification). The test report has been issued separately.

2.6 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Adapter	N/A	N/A	N/A	N/A
2	Earphone	N/A	N/A	N/A	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	USB Line: Unshielded, Detachable, 1.0m;

3 TEST TYPES AND RESULTS

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)		
	Quasi-peak	Average	
0.15 ~ 0.5	66 to 56	56 to 46	
0.5 ~ 5	56	46	
5 ~ 30	60	50	

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

3.1.2 TEST INSTRUMENTS

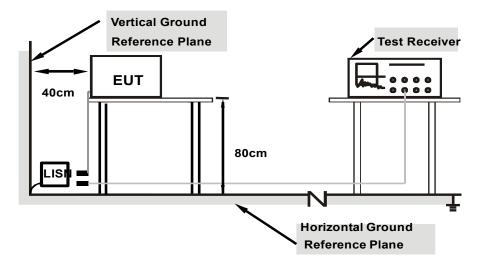
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.	
EMI Test Receiver	Rohde&Schwarz	ESR3	102749	Mar.28,24	Mar.27,26	
ELEKTRA test	Rohde&Schwarz		NIA	N1/A	N1/A	
software	RondeaSchwarz	ELEKTRA	NA	N/A	N/A	
LISN network	Rohde&Schwarz	ENV216	102640	Mar.28,24	Mar.27,26	
CABLE	Rohde&Schwarz	W61.01	N/A	Apr.27,24	Apr.26,25	
CABLE	Rohde&Schwarz	W601	N/A	Apr.27,24	Apr.26,25	

NOTE:

- 1. The test was performed in CE shielded room.
- 2. The calibration interval of the above test instruments is 12/24 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

3.1.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- Both lines of the power mains connected to the EUT were CHecked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searCHed. Emission levels under (Limit 20dB) was not recorded.


NOTE: All modes of operation were investigated and the worst-case emissions are reported.

3.1.4 DEVIATION FROM TEST STANDARD

No deviation.

3.1.5 TEST SETUP

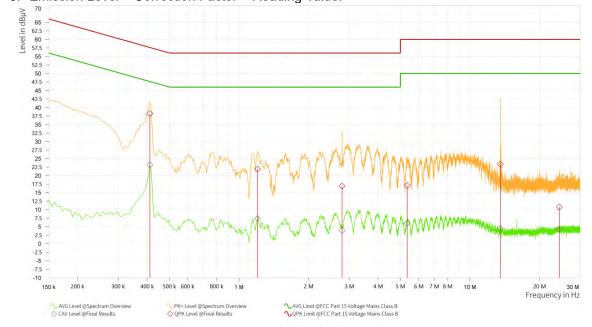
Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

For the actual test configuration, please refer to the attaCHed file (Test Setup Photo).

3.1.6 EUT OPERATING CONDITIONS

- a. Turned on the power and connected of all equipment.
- b. EUT was operated according to the type used was description in manufacturer's specifications or the User's Manual.

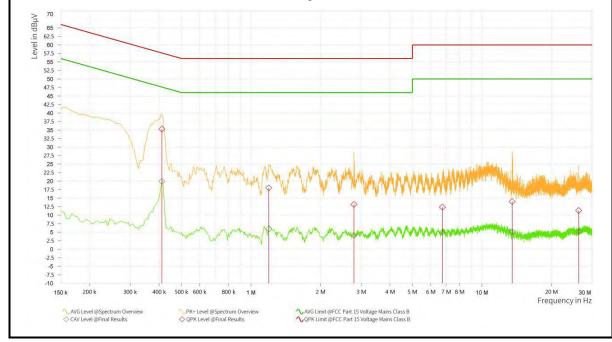

3.1.7 TEST RESULTS

CONDUCTED WORST-CASE DATA					
Frequency Range	150KHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz		
Input Power	120Vac, 60Hz	Environmental Conditions	26deg. C, 51%RH		
Tested By	Hanwen Xu				

Rg	Frequency [MHz]	QPK Level [dBµV]	QPK Limit [dBµV]	QPK Margin [dB]	CAV Level [dBµV]	CAV: AVG Limit [dBµV]	CAV Margin [dB]	Correction [dB]	Line	Meas. BW [kHz]
1	0.411	38.23	57.63	19.40	23.15	47.63	24.47	11.76	L1	9.000
1	1.203	21.92	56.00	34.08	7.40	46.00	38.60	11.75	L1	9.000
1	2.796	16.91	56.00	39.09	3.90	46.00	42.10	11.77	L1	9.000
1	5.352	17.08	60.00	42.92	6.04	50.00	43.96	11.79	L1	9.000
1	13.556	23.38	60.00	36.62	4.60	50.00	45.40	11.84	L1	9.000
1	24.392	10.76	60.00	49.24	4.26	50.00	45.74	11.89	L1	9.000

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Limit value -Emission level
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



Frequency Range	150KHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120Vac, 60Hz	Environmental Conditions	26deg. C, 51%RH
Tested By	Hanwen Xu		

Rg	Frequency [MHz]	QPK Level [dBµV]	QPK Limit [dBµV]	QPK Margin [dB]	CAV Level [dBµV]	CAV: AVG Limit [dBµV]	CAV Margin [dB]	Correction [dB]	Line	Meas. BW [kHz]
1	0.411	35.31	57.63	22.32	19.94	47.63	27.69	12.81	N	9.000
1	1.194	18.01	56.00	37.99	5.92	46.00	40.08	12.73	N	9.000
1	2.792	13.14	56.00	42.86	4.08	46.00	41.92	12.74	N	9.000
1	6.747	12.37	60.00	47.63	4.98	50.00	45.02	12.77	N	9.000
1	13.524	13.98	60.00	46.02	5.13	50.00	44.87	12.81	N	9.000
1	26.259	11.35	60.00	48.65	5.13	50.00	44.87	12.88	N	9.000

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Limit value Emission level
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Radiated emissions whiCH fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

3.2.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.	
Pre-Amplifier	R&S	SCU18F1	100815	Aug.29,24	Aug.28,26	
Pre-Amplifier	R&S	SCU08F1	101028	Jan.22,24	Jan.21,26	
Signal Generator	R&S	SMB100A	182185	Mar.29,24	Mar.28,26	
3m Fully-anechoic Chamber	TDK	9m*6m*6m	HRSW-SZ-EMC- 01Chamber	Nov.25,22	Nov.24,25	
3m Semi-anechoic Chamber	TDK	9m*6m*6m	HRSW-SZ-EMC- 02Chamber	Nov.25,22	Nov.24,25	
EMI TEST Receiver	R&S	ESW44	101973	Mar.28,24	Mar.27,26	
Bilog Antenna	SCHWARZBECK	VULB 9163	1264	Dec.26,23	Dec.25,25	
Horn Antenna	ETS-LINDGREN	3117	227836	Aug.21,24	Aug.20,26	
Horn Antenna (18GHz-40GHz)	Steatite Q-par Antennas	QMS 00880	23486	Jul.15,24	Jul.14,26	
Horn Antenna	Steatite Q-par Antennas	QMS 00208	23485	Aug.21,24	Aug.20,26	
Loop Antenna	SCHWARZ	HFH2-Z2/Z2E	100976	Feb.22,24	Feb.21,26	
WIDEBANDRADIO COMMUNICATION TESTER	R&S	CMW500	169399	Jun.19,24	Jun.18,26	
Test Software	ELEKTRA	ELEKTRA4.32	N/A	N/A	N/A	
Open Switch and Control Unit	R&S	OSP220	101964	N/A	N/A	
DC Source	HYELEC	HY3010B	551016	Aug.30,24	Aug.29,26	
Hygrothermograph	DELI	20210528	SZ014	Sep.05,24	Sep.04,26	
6DB attenuator	Tonscend Technology Co., Ltd	N/A	23062787	N/A	N/A	
PC	LENOVO	E14	HRSW0024	N/A	N/A	
TMC-	R&S	HF290-NMNM-	NI/A	NI/A	NI/A	
AMI18843A(CABLE)	INαS	7.00M	N/A	N/A	N/A	
TMC-		HF290-NMNM-	N/A	N/A	N/A	
AMI18843A(CABLE)	I (d)	4.00M	IN/ PA	N/ <i>P</i> \	IN/A	
CABLE	R&S	W13.02	N/A	Apr.27,24	Apr.26,25	
CABLE	R&S	W12.14	N/A	Apr.27,24	Apr.26,25	

NOTE:

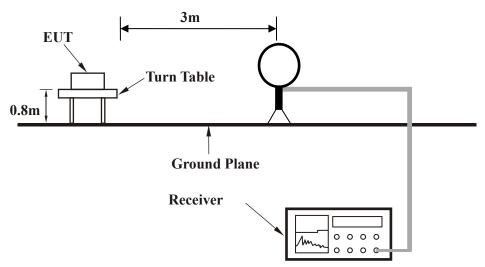
- 1. The calibration interval of the above test instruments is 12/ 24 / 36 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
- 2. The test was performed in 3m Chamber.
- 3. The FCC Site Registration No. is 434559; The Designation No. is CN1325.

3.2.3 TEST PROCEDURES

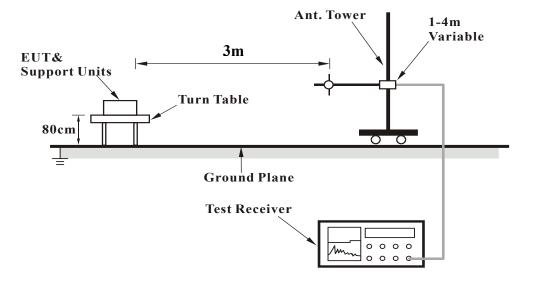
- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter CHamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whiCH was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For eaCH suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. During the test, eaCH emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average (Duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (10 log(1/duty cycle)).
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 5. All modes of operation were investigated and the worst-case emissions are reported.

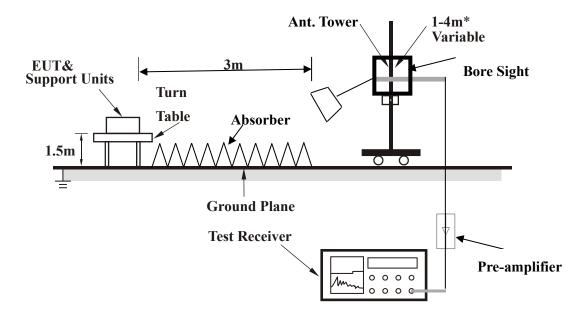

3.2.4 DEVIATION FROM TEST STANDARD

No deviation



3.2.5 TEST SETUP

<Frequency Range 9KHz~30MHz >



< Frequency Range 30MHz~1GHz >

<Frequency Range above 1GHz>

Note: Above 1G is a directional antenna

Depends on the EUT height and the antenna 3dB beamwidth both, refer to section 7.3 of CISPR 16-2-3.

For the actual test configuration, please refer to the attaCHed file (Test Setup Photo).

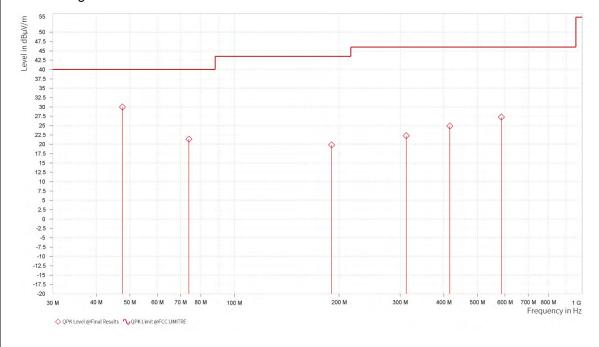
3.2.6 EUT OPERATING CONDITIONS

- a. Set the EUT under full load condition and placed them on a testing table.
- b. Set the transmitter part of EUT under transmission condition continuously at specific CHannel frequency.
- c. The necessary accessories enable the EUT in full functions.

3.2.7 TEST RESULTS

BELOW 1GHz WORST-CASE DATA

NOTE: The 9K~30MHz amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required in the report.

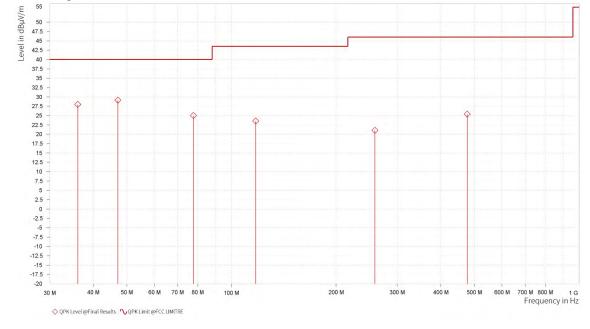

	802.11n(20MHz)	
CHANNEL	TX Channel 6	DETECTOR	Quasi Paak (QD)
FREQUENCY RANGE	30MHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

Rg	Frequency [MHz]	QPK Level [dBµV/m]	QPK Limit [dBµV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]
1	47.606	29.94	40.00	10.06	-3.58	H	1	1.00	120.000
1	73.893	21.37	40.00	18.63	-10.01	H	284.2	2.00	120.000
1	190.147	19.79	43.50	23.71	-6.15	н	284.2	2.00	120.000
1	311.979	22.29	46.00	23.71	-1.23	н	203.6	1.00	120.000
1	416.642	24.89	46.00	21.11	3.08	Н	0.9	2.00	120.000
1	585.471	27.26	46.00	18.74	2.73	H	0.9	2.00	120.000

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.

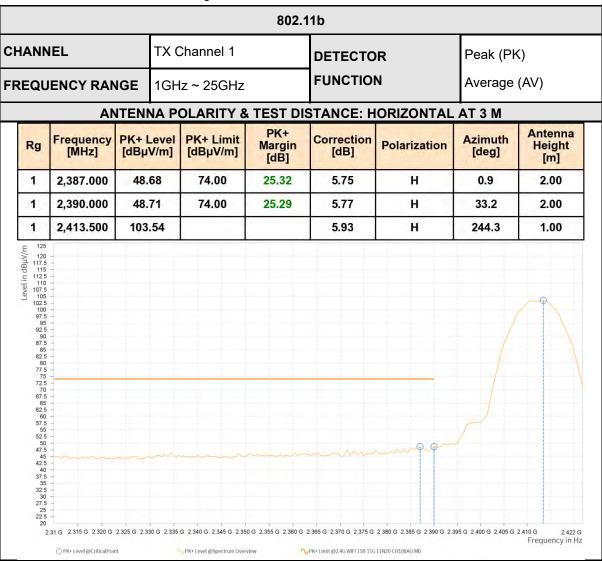

CHANNEL	TX Channel 6	DETECTOR	Ouesi Peek (OP)
FREQUENCY RANGE	30MHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

Rg	Frequency [MHz]	QPK Level [dBµV/m]	QPK Limit [dBµV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]
1	36.111	27.97	40.00	12.03	-7.85	٧	359.1	1.00	120.000
1	47.072	29.11	40.00	10.89	-4.60	٧	359	2.00	120.000
1	77.676	25.00	40.00	15.00	-11.44	٧	359.1	1.00	120.000
1	117.397	23.54	43.50	19.96	-6.50	٧	359	2.00	120.000
1	258.532	21.04	46.00	24.96	-3.12	V	151.5	2.00	120.000
1	476.443	25.38	46.00	20.62	2.46	V	4.9	1.00	120.000

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.



ABOVE 1GHz WORST-CASE DATA

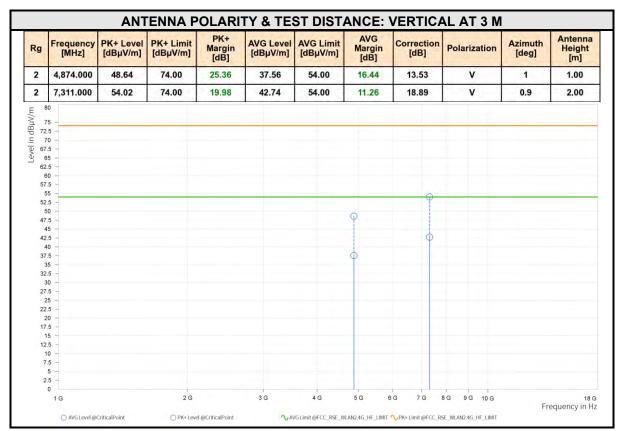
Note:

- 1. For radiated emissions testing, the full testing range of different modes have been scanned, only the worst case harmonic data is reported in the sheet.
- 2. All other emissions were greater than 20dB below the limit was not recorded

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,385.500	34.97	54.00	19.03	5.74	Н	36.8	2.00
1	2,390.000	34.23	54.00	19.77	5.77	Н	36.8	2.00
1	2,413.000	99.88			5.93	Н	241.9	1.00
125.5 17.5 17.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18								\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,356.000	46.20	74.00	27.80	5.60	V	0.9	2.00
1	2,390.000	44.43	74.00	29.57	5.77	٧	279.5	2.00
1	2,413.500	93.62			5.93	٧	279.5	2.00
12.0 12.0				9				

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,385.500	31.31	54.00	22.69	5.74	V	281.8	2.00
1	2,390.000	30.99	54.00	23.01	5.77	V	281.8	2.00
1	2,411.500	89.42			5.92	V	200.6	2.00
E 1/25 / 17.5 /								A A A


REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2412MHz: Fundamental frequency.

HAN	HANNEL			TX Channel 6			DETECT	OR	Р	Peak (PK)			
REQ	UENCY	RANGE	1GHz	1GHz ~ 25GHz			FUNCTIO	NC	А	Average (AV)			
	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M												
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Lii [dBµV/		n Correction	Polarizati	on Azimuth [deg]	Antenna Height [m]		
2	4,874.000	48.73	74.00	25.27	39.25	54.00	14.75	13.53	н	90.1	1.00		
2	7,311.000	53.94	74.00	20.06	42.56	54.00	11.44	18.89	н	0.9	2.00		
E/M 1975 1 1976	5						0	φ					
(1 G		2 G		3 G	4 G	5 G	6 G 7 G	8G 9G 1		18 C requency in H		

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2437MHz: Fundamental frequency.

ANI	NEL		TX (Channel 11		DETECTO	R	Peak (PK	<u>(</u>)
EQL	JENCY RAI	NGE	1GF	lz ~ 25GHz		FUNCTIO	N	Average ((AV)
	Al	NTENI	NA P	OLARITY 8	TEST DI	STANCE: H	ORIZONTAL	AT 3 M	
Rg	Frequency [MHz]	PK+ L [dBµ\		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,460.500	104.	81			5.83	Н	325.6	1.00
2	2,483.500	49.3	33	74.00	24.67	5.91	Н	355.7	2.00
2	2,488.000	50.7	77	74.00	23.23	5.94	н	325.6	1.00
95 92.5 90 87.5 85 80 77.5 72.5 72.5 65 62.5 55 55 54 42.5 42.5 42.5 42.5 32.5 32.5 32.5 32.5									
25 22.5 20	-								
2.4	452 G 2. OPK+ Level @CriticalPoir	458 G	2.462 G	2.466 G 2	470 G 2.474 G	G 2.478 G ↑PK+ Limit @2.4G WFI 11B 1	2.482 G 2.486 G	2.490 G 2.49	Frequency in

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,461.000	100.53			5.83	Н	325.6	1.00
2	2,483.500	37.70	54.00	16.30	5.91	Н	359.1	1.00
2	2,487.000	41.07	54.00	12.93	5.94	Н	355.8	2.00
97.5 95 92.5 90 87.5 85								
82.5 80 77.5 75.5 70.6 67.5 60.5 57.5 55.5 50.4 47.5 42.5 40.3 37.5 32.5 32.5 22.5 22.5 22.5								

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,460.500	90.25			5.83	V	1	2.00
2	2,483.500	44.49	74.00	29.51	5.91	V	281.8	2.00
2	2,487.500	45.95	74.00	28.05	5.94	٧	251.4	1.00
125 120 117.5 115 112.5 110 107.5 105 102.5 100 97.5 95 92.5								

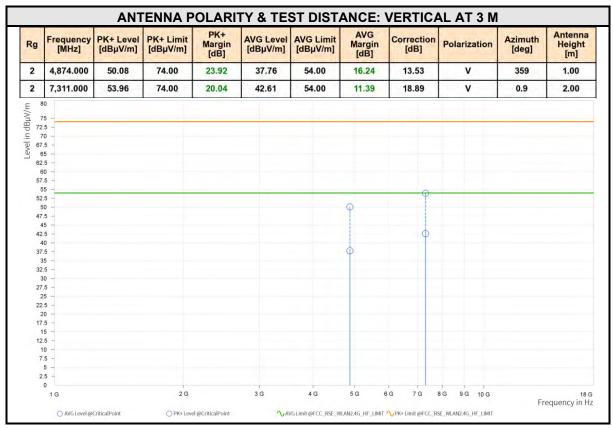
Rg Frequ	iency Hz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2 2,46	1.000	86.10			5.83	V	1.1	2.00
2 2,48	3.500	30.79	54.00	23.21	5.91	V	281.8	2.00
2 2,48	3.000	31.67	54.00	22.33	5.94	V	355.8	2.00
125 120 117.5 115 115 117.5								

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2462MHz: Fundamental frequency.

				802.	11g			
ANN	EL	TX	Channel 1		DETECTO	R	Peak (Pk	۲)
EQU	ENCY RAN	NGE 1G	Hz ~ 25GHz		FUNCTIO	N	Average	(AV)
	AN	NTENNA	POLARITY 8	TEST DI	STANCE: H	ORIZONTAL	AT 3 M	
Rg	Frequency [MHz]	PK+ Leve	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,388.000	69.45	74.00	4.55	5.76	н	359.1	1.00
1	2,390.000	69.36	74.00	4.64	5.77	н	359.1	1.00
1	2,409.000	104.13			5.90	Н	352.2	1.00
125 120 117.5 115 115 110 107.5 105 100								P
120 117.5 115 115 110 107.5 100 97.5 92.5 90 87.5 85 82.5 80 77.5								0
120 117.5 117.5 110 112.5 105 102.5 105 102.5 92.5 92.5 92.5 92.5 87.5 88.5 77.5 77.5 77.5								Φ
120 117.5 115 115 115 110 107.5 107.5 102.5 102.5 97.5 95 92.5 90 87.5 82.5 82.5 77.5 70 67.5 65.6 62.5								Q
170 117.5 1115 110.5 110.5 102.5 102.5 92.5 92.5 92.5 72.5 72.5 65 62.5 63.5 75.5 55.5								Φ
17.0 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5								Φ
1/\ 117.5 117.5 117.5 117.5 117.5 1107.5 1007.5 1007.5 100.5					· · · · · · · · · · · · · · · · · · ·			
JAN 120 117.5 117.5 117.5 110.					· · · · · · · · · · · · · · · · · · ·			
\textstyle								
120 117.5 11	7							Φ

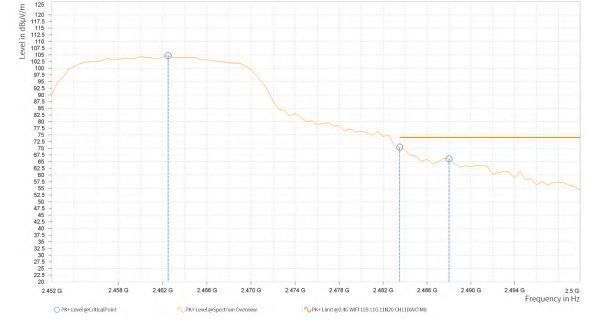
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M AVG Antenna Frequency AVG Level **AVG Limit** Correction **Azimuth** Polarization Rg Margin Height [MHz] [dBµV/m] [dBµV/m] [dB] [deg] [dB] [m] 1 2,389.500 44.62 54.00 9.38 5.77 Н 359 1.00 2,390.000 45.65 54.00 8.35 5.77 Н 359 1.00 1 1 2,407.000 92.04 5.89 Н 359 1.00 125 Level in dBµV/m 2,31 G 2,315 G 2,320 G 2,325 G 2,330 G 2,335 G 2,340 G 2,345 G 2,350 G 2,355 G 2,360 G 2,365 G 2,370 G 2,375 G 2,380 G 2,385 G 2,380 G 2,395 G 2,400 G 2,405 G 2,410 G 2,422 G Frequency in Hz O AVG Level @CriticalPoint √ AVG Limit @2.4G WIFI 11B 11G 11N20 CH1(XIAO MI)

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M PK+ Antenna Frequency [MHz] PK+ Level PK+ Limit Correction **Azimuth** Margin [dB] Height [m] Polarization Rg [dBµV/m] [dBµV/m] [dB] [deg] 58.09 74.00 5.76 V 87.7 1.00 1 2,388.000 15.91 1 74.00 ٧ 2,390.000 56.95 17.05 5.77 87.7 1.00 V 1 2,417.000 92.72 5.96 178.6 1.00 Level in dBµV/m 2.31 G 2.315 G 2.320 G 2.325 G 2.330 G 2.335 G 2.340 G 2.345 G 2.350 G 2.355 G 2.360 G 2.355 G 2.370 G 2.375 G 2.360 G 2.385 G 2.390 G 2.385 G 2.390 G 2.385 G 2.400 G 2.405 G 2.410 G Frequency in Hz ↑PK+ Limit @2.4G WIFI 11B 11G 11N20 CH1(XIAO MI) O PK+ Level @CriticalPoint


Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,389.500	35.64	54.00	18.36	5.77	V	272.3	2.00
1	2,390.000	36.48	54.00	17.52	5.77	٧	272.3	2.00
1	2,414.000	78.64			5.94	٧	272.3	2.00
95 92.5 90.87.5 85 82.5 80 77.5 72.5 70 67.5 60 57.5 55 52.5 50 47.5 40 37.5 42.5 40 37.5 32.5 32.5								

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2412MHz: Fundamental frequency.

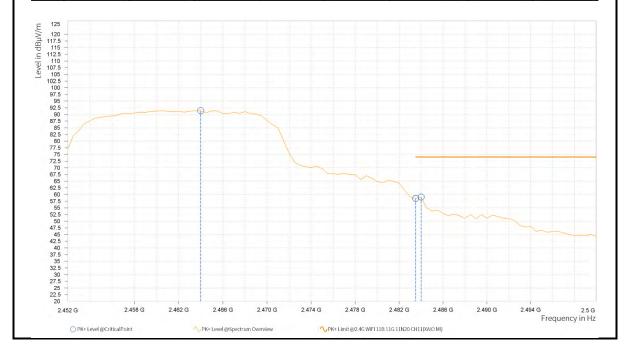
HAN	INEL		TX CI	hannel (6		DET	ЕСТО	R		Peal	k (PK)	
REC	UENCY	RANGE	1GHz	1GHz ~ 25GHz			FUNCTION				Average (AV)		
		ANTE	NNA PO	LARIT	Y & TEST	DIS1	ΓΑΝ	CE: H	ORIZON	TAL	AT 3	М	
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Lii [dBµV/		AVG Margin [dB]	Correction [dB]	Polari	zation	Azimuth [deg]	Antenna Height [m]
2	4,874.000	48.31	74.00	25.69	37.39	54.00)	16.61	13.53	-)		1.9	2.00
2	7,311.000	53.78	74.00	20.22	42.58	54.00)	11.42	18.89	,	1	1.9	2.00
E/N ^H 8P in least 1 i	6						(
	1 G		2 G		3 G	4 G		5 G	6G 7G	8G 9G	10 G	E.	18 C equency in H


- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 2437MHz: Fundamental frequency.

CHANNEL	TX Channel 11	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)
ANTENI	LA DOL ADITY O TEST DI	TANCE HODIZONTAL	A T O M

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,462.500	104.70			5.82	Н	348.1	1.00
2	2,483.500	70.46	74.00	3.54	5.91	Н	355.1	2.00
2	2,488.000	66.07	74.00	7.93	5.94	Н	359.1	1.00



ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M AVG Antenna Frequency AVG Level **AVG Limit** Correction **Azimuth** Polarization Rg Margin Height [MHz] [dBµV/m] [dBµV/m] [dB] [deg] [dB] [m] 2 2,460.500 92.14 5.83 H 348 1.00 2 2,483.500 46.79 54.00 7.21 5.91 Н 348 1.00 2 2,484.500 44.56 54.00 9.44 5.92 Н 348 1.00 125 Level in dBµV/m 2.494 G 2.5 G Frequency in Hz 2.458 G 2.462 G 2.466 G 2.470 G 2.474 G 2.478 G 2.482 G 2.486 G 2.490 G O AVG Level @CriticalPoint **♦** AVG Limit @2.4G WIFI 11B 11G 11N20 CH11(XAIO MI)

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,464.000	91.39			5.81	V	4.9	1.00
2	2,483.500	58.52	74.00	15.48	5.91	V	175	1.00
2	2,484.000	59.04	74.00	14.96	5.92	V	175	1.00

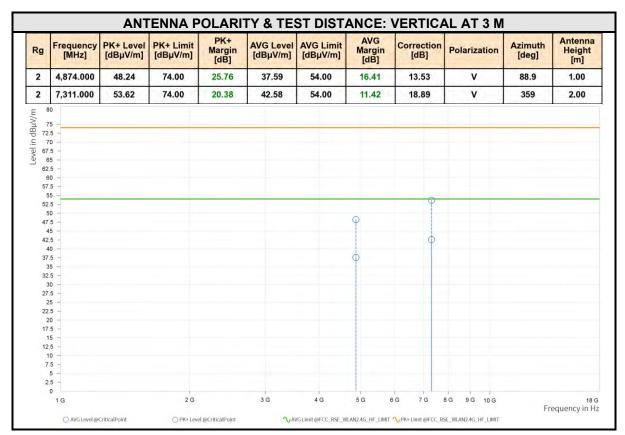
Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,463.000	79.67			5.82	V	5	1.00
2	2,483.500	36.79	54.00	17.21	5.91	V	173.8	1.00
2	2,485.000	34.47	54.00	19.53	5.92	٧	173.8	1.00
97.5 92.5 90.87.5 85.82.5 80.77.5 70.67.5 65.65 62.5 60.57.5 50.5 40.47.5 40.37.5		•						

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2462MHz: Fundamental frequency.

					802.11n (20MHz)			
HANI	NEL		TX (Channel 1		DETECTOR		Peak (PK)	
REQI	UENCY RA	NGE	1GF	lz ~ 25GHz		FUNCTION	N	Average ((AV)
	Α	NTENI	NA P	OLARITY &	TEST DI	STANCE: H	ORIZONTAL	AT 3 M	
Rg	Frequency [MHz]	PK+ L [dBµ\		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,389.500	69.	17	74.00	4.83	5.77	Н	22.6	2.00
1	2,390.000	70.4	45	74.00	3.55	5.77	Н	359	2.00
1	2,413.500	103.	19			5.93	Н	257.4	1.00
102.5									,
HOT.5							m		

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,389.500	44.30	54.00	9.70	5.77	Н	1	2.00
1	2,390.000	45.09	54.00	8.91	5.77	Н	7	2.00
1	2,413.500	90.59			5.93	н	253.9	1.00
125 125 117.5 127.								

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,389.500	60.19	74.00	13.81	5.77	V	279.5	2.00
1	2,390.000	60.37	74.00	13.63	5.77	V	279.5	2.00
1	2,415.000	92.79			5.94	٧	165.4	1.00
= 125 125 17.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12								


Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,388.500	35.13	54.00	18.87	5.76	V	278.3	2.00
1	2,390.000	37.09	54.00	16.91	5.77	V	278.3	2.00
1	2,406.000	78.51			5.88	V	278.3	2.00
= 125 120 120 1115 1115 1115 1105 1						2.380 G 2.385 G 2.390 G 2.3		2410G 2.42

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2412MHz: Fundamental frequency.

1AH	NNEL		TX C	hannel	6		DETECT	ГOR			Peal	(PK)	
REC	QUENCY	RANGE	IGH:	z ~ 25G	Hz	F	FUNCTI	ON			Average (AV)		
		ANTE	NNA PO	DLARIT'	Y & TEST	r dist	TANCE:	HOI	RIZON'	TAL	AT 3	М	
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Li		jin C	orrection [dB]	Polari	zation	Azimuth [deg]	Antenna Height [m]
2	4,874.000	48.47	74.00	25.53	37.55	54.00	16.4	5	13.53		н	2.1	2.00
2	7,311.000	54.74	74.00	19.26	42.71	54.00	11.2	9	18.89	-	н	0.9	2.00
7.	5						0		0				
	0 1 G		2 G		3 G	4 G	5 G	6 G	7 G	8G 90	3 10 G		18 (

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2437MHz: Fundamental frequency.

	IEL		IX	Channel 11		DETECTO	R	Peak (PK) Average (AV)		
EQU	ENCY RAI			lz ~ 25GHz		FUNCTION				
	Al	NTENN	IA P	OLARITY 8	TEST DI	STANCE: H	ORIZONTAL	AT 3 M		
Rg	Frequency [MHz]	PK+ L [dBµV	evel //m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
2	2,463.000	102.	88		1 10 11	5.82	Н	4.9	1.00	
2	2,483.500	69.6	4	74.00	4.36	5.91	Н	359.1	1.00	
2	2,484.500	70.0	1	74.00	3.99	5.92	Н	359.1	1.00	
102.5 - 100 - 97.5 - 95.5 - 92.5 - 90.8 - 85.5 - 82.5 - 80.7 - 75.5 - 72.5 - 70.5 - 65.5 - 62.5 - 60.5 - 30							PQ			
25 - 22.5 - 20	52 G 2.	458 G	2.462 G	2.466 G 2.	470 G 2.474 C	3 2.478 G	2.482 G 2.486 G	2.490 G 2.49	4 G 2.5	

2 2,460.500 90.46 5.83 H 339.4 1.00 2 2,483.500 44.58 54.00 9.42 5.91 H 339.4 1.00 2 2,484.000 43.78 54.00 10.22 5.92 H 339.4 1.00	Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2 2,484.000 43.78 54.00 10.22 5.92 H 339.4 1.00	2	2,460.500	90.46		1 10 10 10	5.83	Н	339.4	1.00
125 120 117.5 117.5 117.5 117.5 110.	2	2,483.500	44.58	54.00	9.42	5.91	Н	339.4	1.00
1175 1175 1175 1175 1176 1177 1170 1170 1170 1170 1170 1170	2	2,484.000	43.78	54.00	10.22	5.92	Н	339.4	1.00

2 2,464.000 90.92 5.81 V 20.6 2.00 2 2,483.500 56.30 74.00 17.70 5.91 V 20.6 2.00 2 2,484.000 52.19 74.00 21.81 5.92 V 253.8 1.00	Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2 2,484.000 52.19 74.00 21.81 5.92 V 253.8 1.00	2	2,464.000	90.92			5.81	٧	20.6	2.00
125 117.5	2	2,483.500	56.30	74.00	17.70	5.91	V	20.6	2.00
117.5 117.5	2	2,484.000	52.19	74.00	21.81	5.92	٧	253.8	1.00
2.452 G 2.458 G 2.462 G 2.466 G 2.470 G 2.474 G 2.478 G 2.482 G 2.486 G 2.490 G 2.494 G 2.5	102.5 95 97.5 90 97.5 90 97.5 90 97.5 90 97.5 90 97.5 85 85 85 85 97.5 90 97.5								

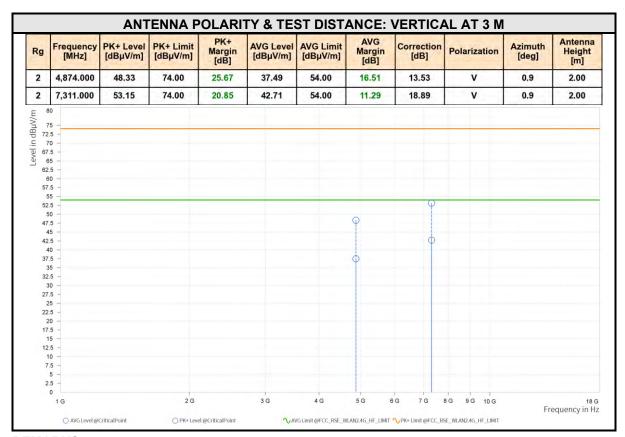
	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,463.000	79.17			5.82	V	14.1	2.00
2	2,483.500	33.56	54.00	20.44	5.91	V	182.2	1.00
2	2,484.000	33.16	54.00	20.84	5.92	٧	182.2	1.00
97.5 95.9 92.5 90.87.5 85.82.5 80.77.5 72.5 70.67.5 65.6		Φ						

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2462MHz: Fundamental frequency.

IAN	NEL		TX (Channel 3		DETECTO	R	Peak (PK)
EQI	JENCY RAI	NGE	1Gŀ	lz ∼ 25GHz		FUNCTION	N	Average ((AV)
	Al	NTEN	NA P	OLARITY &	TEST DI	STANCE: H	ORIZONTAL	AT 3 M	
Rg	Frequency [MHz]	PK+ L [dBµ\		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	2,388.000	67.9	96	74.00	6.04	5.76	Н	1	2.00
3	2,389.500	68.6	59	74.00	5.31	5.77	Н	359	2.00
3	2,424.500	102.	13			5.95	н	1	2.00
95 92.5	-								1
						mm	,	m	

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	2,389.500	47.18	54.00	6.82	5.77	Н	101	2.00
3	2,390.000	47.53	54.00	6.47	5.77	Н	17.8	2.00
3	2,424.000	87.96			5.95	н	1	2.00
125 125 125 125 125 125 125 125 125 125								P

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	2,388.500	57.72	74.00	16.28	5.76	V	83	1.00
3	2,389.500	58.01	74.00	15.99	5.77	V	83	1.00
3	2,420.500	89.72			5.95	٧	170.2	1.00
120 120 175.5 12							M	


Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	2,389.500	37.91	54.00	16.09	5.77	V	83	1.00
3	2,390.000	38.19	54.00	15.81	5.77	V	83	1.00
3	2,420.500	76.77			5.95	V	170.2	1.00
E 125 25 22.5.2								

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2412MHz: Fundamental frequency.

			Z ~ 25GI DLARITY PK+ Margin [dB]			AVG	ORIZON Correction		rage (AV	()
2 4,874.000 2 7,311.000 E //18p 72.5 - 70 - 65 - 65 - 65	PK+ Level [dBµV/m] 48.31	PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level	AVG Limi	AVG	H	TAL AT 3	M	r
2 4,874.000 2 7,311.000 E //18p 72.5 - 70 - 65 - 65 - 65	[dBµV/m] 48.31	[dBµV/m] 74.00	Margin [dB]				Correction			
2 7,311.000 80 75 - 75 - 75 - 75 - 70 - 7		A TASK NOT	25.69		[GDH VIII]	Margin [dB]	[dB]	Polarization	Azimuth [deg]	Antenna Height [m]
# 80	53.82	74.00		37.52	54.00	16.48	13.53	н	2	2.00
75 - 75 - 72.5 - 19 67.5 - 65 -		14.00	20.18	42.77	54.00	11.23	18.89	н	2	2.00
80						Φ	0			

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2437MHz: Fundamental frequency.

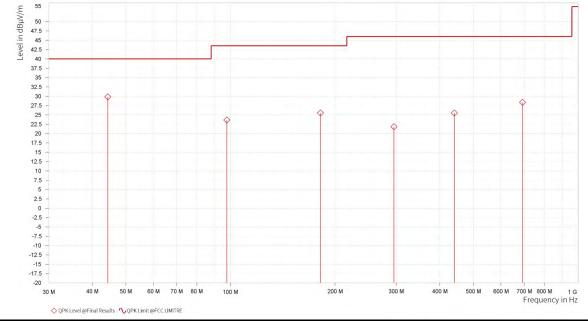
CHAN	NNEL		TX	Channel 9		DETECTOR		Peak (PK)	
FREC	UENCY RA	NGE	1GH	Hz ∼ 25GHz		FUNCTION		Average (AV	')
	Α	NTEN	NA P	OLARITY &	TEST DIS	STANCE: HO	RIZONTAL A	AT 3 M	
Rg	Frequency [MHz]	PK+ L [dBµV		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
4	2,450.000	99.9	0			5.89	Н	359	1.00
4	2,483.500	70.1	9	74.00	3.81	5.91	Н	343	1.00
4	2,491.000	70.5	4	74.00	3.46	5.96	Н	1	2.00
92.5 90 87.5 85.5 75.5 72.5 72.5 72.5 72.5 72.5 72.5 7								P A	
22.5 20 2.	432 G 2.435 G 2.4		45 G	2.450 G 2.455 G	2.460 G 2	.465 G 2.470 G	2.475 G 2.480 G	2.485 G 2.490 G	2.495 G 2. Frequency in

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M AVG Antenna Frequency AVG Level **AVG Limit** Correction Azimuth Polarization Rg Margin Height [MHz] [dBµV/m] [dBµV/m] [dB] [deg] [dB] [m] 4 2,449.000 88.75 5.90 Н 359.1 1.00 Н 346 4 2,483.500 46.52 54.00 7.48 5.91 1.00 4 2,485.000 45.83 54.00 8.17 5.92 H 359.1 1.00 Level in dBµV/m 2.495 G 2.5 G Frequency in H 2.432 G 2.435 G 2.440 G 2.445 G 2.450 G 2.455 G 2.460 G 2.465 G 2.470 G 2.475 G 2.480 G 2.485 G 2.490 G O AVG Level @CriticalPoint √ AVG Level @Spectrum Overview VAVG Limit @2.4G WIFI 11N40 CH9(XIAO MI)

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M PK+ Antenna PK+ Level **PK+ Limit** Correction **Azimuth** Frequency Margin [dB] Height [m] Polarization Rg [MHz] [dBµV/m] [dBµV/m] [dB] [deg] 86.17 5.92 V 262.2 1.00 4 2,438.000 ٧ 2,483.500 74.00 14.80 5.91 173.8 1.00 4 59.20 V 2,485.000 56.88 74.00 17.12 5.92 173.8 1.00 4 125 Level in dBµV/m 120 117.5 11 2.432 G 2.435 G 2.445 G 2.450 G 2.455 G 2.460 G 2.465 G 2.470 G 2.475 G 2.480 G 2.485 G Frequency in Hz O PK+ Level @CriticalPoint ↑ PK+ Level @Spectrum Overview NPK+ Limit @2.4G WIFI 11N40 CH9(XIAO MI)

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
4	2,449.500	75.58			5.89	V	100.1	2.00
4	2,483.500	37.60	54.00	16.40	5.91	٧	172.6	1.00
4	2,484.500	37.01	54.00	16.99	5.92	٧	172.6	1.00
E 125 / 125		40G 2445G	2450G 2455G	2460 G 2	.465 G 2.470 G	2475 G 2480 G	2485 G 2490 G	2.495 G 2:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2452MHz: Fundamental frequency.

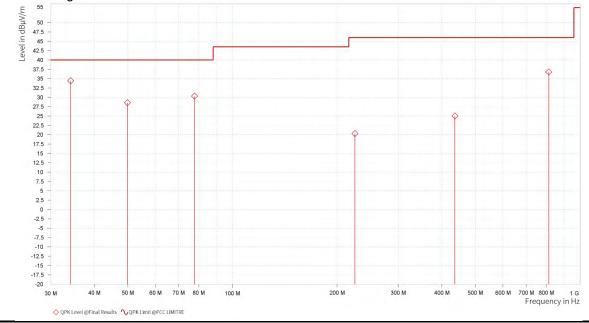

BELOW 1GHz WORST-CASE DATA

	вт	-LE_2M	
CHANNEL	TX Channel 19	0DETECTOR	Outrai Parak (OP)
FREQUENCY RANGE	30MHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

R	g Fr	requency [MHz]	QPK Level [dBµV/m]	QPK Limit [dBµV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]
1	14 3	44.356	29.80	40.00	10.20	-3.82	H	359.1	1.00	120.000
1		97.609	23.61	43.50	19.89	-6.35	Н	4.9	1.00	120.000
1		181.320	25.52	43.50	17.98	-7.51	Н	156.3	2.00	120.000
1	1	295.198	21.80	46.00	24.20	-1.20	н	203.7	1.00	120.000
1		440.650	25.51	46.00	20.49	3.31	Н	359.1	1.00	120.000
1	ju	691.928	28.34	46.00	17.66	3.76	Ĥ	359	2.00	120.000

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value Emission Level



CHANNEL	TX Channel 19	DETECTOR	Overi Book (OD)
FREQUENCY RANGE	30MHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

Rg	Frequency [MHz]	QPK Level [dBμV/m]	QPK Limit [dBµV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]
1	34.220	34.44	40.00	5.56	-8.35	٧	359	1.00	120.000
1	49.837	28.56	40.00	11.44	-4.53	٧	1	2.00	120.000
1	77.773	30.32	40.00	9.68	-11.43	٧	359	1.00	120.000
1	225.067	20.31	46.00	25.69	-4.64	٧	359	2.00	120.000
1	436.333	24.99	46.00	21.01	2.88	V	1 1	1.00	120.000
1	812.548	36.79	46.00	9.21	5.04	٧	1	1.00	120.000

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value Emission Level

ABOVE 1GHZ TEST DATA

Note:

- 1. For radiated emissions testing , the full testing range of different modes have been scanned , only the worst case harmonic data is reported in the sheet.
- 2. All other emissions were greater than 20dB below the limit was not recorded

					BT-LE	_1M				
IANI	NEL		TX (Channel 0		DETECTO	R	Peak (PK) Average (AV)		
EQL	JENCY RAI	NGE	1GF	lz ~ 25GHz		FUNCTIO	N			
	Al	NTENI	NA P	OLARITY &	TEST DI	STANCE: H	ORIZON [*]	TAL AT 3 M		
Rg	[WH2] [dbp			PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarizat	ion Azimuti [deg]	Antenna Height [m]	
5	2,387.500	45.	58	74.00	28.42	5.75	Н	318.5	1.00	
5	2,390.000	0.000 44.46 74.00 29.54 5.77 H		225.6	2.00					
5	2,402.500	99.	26			5.86	н	359	2.00	
100 97.5 92.5 90.87.5 85.8 82.5 80.0 77.5 72.5 72.5 65.6 62.5 55.5 50.0 47.5 42.5 40.3 37.5 32.5								ΦΦ.		
30 27.5 25 22.5										

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,384.000	30.73	54.00	23.27	5.73	Н	6.6	2.00
5	2,390.000	30.65	54.00	23.35	5.77	Н	355.8	2.00
5	2,402.000	93.30			5.85	Н	359	2.00
17.5 (1.7) 12.5 (

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,377.500	45.45	74.00	28.55	5.68	V	318.9	2.00
5	2,390.000	44.76	74.00	29.24	5.77	V	273.1	1.00
5	2,402.000	90.45			5.85	V	227.6	1.00
120 120 115 115 110 115 115 110 115 115 115 11	31 G 2315 G 2320					OG 2375 G 2380 G 238		2400 G 24

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,382.500	30.58	54.00	23.42	5.72	V	6.2	2.00
5	2,390.000	30.42	54.00	23.58	5.77	V	0.9	2.00
5	2,402.000	83.25			5.85	V	272.3	2.00
125 120 120 120 120 120 120 120 120 120 120	31 G 2315 G 2320					OG 2375 G 2380 G 238		2400 G 241

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value—Emission level.
- 3. 2402MHz: Fundamental frequency.

IAN	NEL		TX Ch	nannel ´	19	DETE			Peak (Ph	()			
REQ	UENCY	RANGE	1GHz	~ 25GI	Ηz	FUNC	TION		Average (AV)				
	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M												
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]		
2	4,880.000	48.41	74.00	25.59	37.48	54.00	16.52	13.54	н	271.1	2.00		
2	7,320.000	53.68	74.00	20.32	42.45	54.00	11.55	18.90	н	0.9	2.00		
	5						Φ	Φ					
2.	5 -					i	1						
	1 G		2 G		3 G	4 G	5 G	6G 7G	8G 9G 10G		18 G		

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value-Emission level.
- 3. 2440MHz: Fundamental frequency.

HANN	HANNEL			Channel 39		DETECTOR FUNCTION		Peak (PK)		
REQU	JENCY RAN	IGE	1GHz ~ 25GHz					Average (AV)		
	AN	ITENI	NA P	OLARITY 8	R TEST DI	STANCE: H	ORIZONT	AL AT 3 M		
Rg	Frequency [MHz]	PK+ L [dBµ		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarizatio	Azimuth [deg]	Antenna Height [m]	
6	2,479.750	98.	38			5.89	Н	359.1	1.00	
6	2,483.500	46.	28	74.00	27.72	5.91	Н	359.1	1.00	
6	2,484.750	52.	16	74.00	21.84	5.92	Н	4.9	1.00	
E/NTBP U 120 117.5 117.5 117.5 110.0 107.5 100.0 97.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5			P		₽					
20	475 G 2.47	'8 G 2	.480 G	2.482 G 2.48	4 G 2.486 G	2.488 G 2.490) G 2.492 G	2.494 G 2.496 G	2.498 G 2.5 Frequency in F	

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,480.000	92.87			5.89	Н	359	1.00
6	2,483.500	31.74	54.00	22.26	5.91	Н	359	1.00
6	2,492.000	31.46	54.00	22.54	5.97	Н	359	1.00
= 125 / 120.0 115	475 G 2.4	78 G 2480 G	2.482.G 2.484	G 2486 G	2.488 G 2.490	G 2492G 24	94 G 2496 G	2.488 G 2.5

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,479.500	87.82			5.89	V	218.5	2.00
6	2,483.500	45.32	74.00	28.68	5.91	V	292.6	2.00
6	2,490.000	58.09	74.00	15.91	5.96	V	292.6	2.00
125 125 120 120 120 120 120 120 120 120 120 120	475 G 24	778 G 2480 G	2.482G 2.48	1G 2486 G	2488 G 2490	G 2492G 2.4	94 G 2496 G	2.498 G 2.51

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,479.750	82.61			5.89	V	219.7	2.00
6	2,483.500	30.42	54.00	23.58	5.91	V	8.7	2.00
6	2,493.500	30.80	54.00	23.20	5.98	٧	214.5	1.00
125 125 125 125 125 125 125 125 125 125	475G 2.4	78 G 2.480 G	2.482 G 2.484	1G 2.488 G	2.488 G 2.490	G 2492 G 2.4	94 G 2496 G	2.498 G 2.5 Frequency in h

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value-Emission level.
- 3. 2480MHz: Fundamental frequency.