

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202305-0271-19

Page: 1 of 25

Radio Test Report

FCC ID: 2AUDF-CG62X

Change II

Report No. TBR-C-202305-0271-19

Applicant Shenzhen ADDX Innovation Technology co., LTD.

Equipment Under Test (EUT)

EUT Name Smart Battery Camera

Model No. CG6

Series Model No. CG3A

Brand Name

Sample ID RW-C-202305-0271-11-1#&RW-C-202305-0271-11-2#

Receipt Date 2023-05-25

Test Date 2023-05-25 to 2023-06-09

Issue Date 2023-06-09

Standards FCC Part 15 Subpart C 15.247

Test Method ANSI C63.10: 2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Conclusions **PASS**

In the configuration tested, the EUT complied with the standards specified above.

Witness Engineer

Engineer Supervisor

LNAN SV foughai. **Engineer Manager**

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Report No.: TBR-C-202305-0271-19
Page: 2 of 25

Contents

COI	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	4
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	6
	1.6 Description of Test Software Setting	7
	1.7 Measurement Uncertainty	7
	1.8 Test Facility	8
2.	TEST SUMMARY	9
3.	TEST SOFTWARE	9
4.	TEST EQUIPMENT	
5.	CONDUCTED EMISSION	
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	
	5.5 EUT Operating Mode	
	5.6 Test Data	
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	14
	6.1 Test Standard and Limit	14
	6.2 Test Setup	15
	6.3 Test Procedure	16
	6.4 Deviation From Test Standard	16
	6.5 EUT Operating Mode	16
	6.6 Test Data	17
АТТ	FACHMENT A CONDUCTED EMISSION TEST DATA	18
ATT	FACHMENT BUNWANTED EMISSIONS DATA	22

Report No.: TBR-C-202305-0271-19
Page: 3 of 25

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202305-0271-19	Rev.01	Initial issue of report	2023-06-09
TOBY.			400
273			033
		TODAY	THE REAL PROPERTY.
TODY	4087		TO BY
		MODE MODE	
		TO 12	M BB
			TODA .
	mn33	TOWN TO	
			3

Page: 4 of 25

1. General Information about EUT

1.1 Client Information

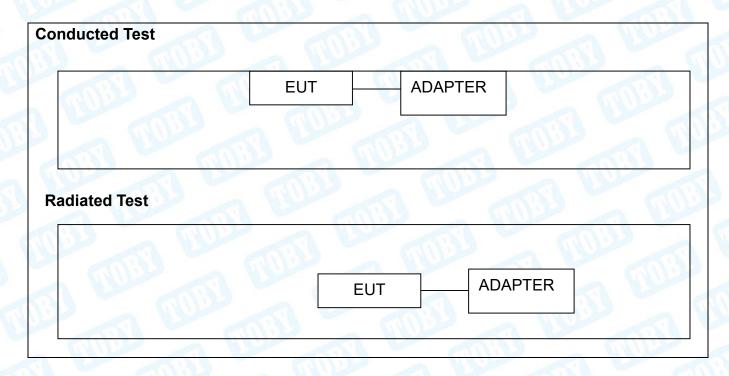
Applicant : Shenzhen ADDX Innovation Technology co., LTD.		
Address : NO. 2902, Building 9A-1. Shenzhen Bay Technology and Ecological Park, Nanshan District, Shenzhen, China		NO. 2902, Building 9A-1. Shenzhen Bay Technology and Ecological Park, Nanshan District, Shenzhen, China
Manufacturer : Shenzhen A		Shenzhen ADDX Innovation Technology co., LTD.
Address : NO. 2902, Building 9		NO. 2902, Building 9A-1. Shenzhen Bay Technology and Ecological Park, Nanshan District, Shenzhen, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Smart Battery Camera					
Models No.		CG6, CG3A	CG6, CG3A				
Model Different	•		All these models are identical in the same PCB, layout and electrical circuit, the only difference is appearance.				
		Operation Frequency:	Bluetooth 5.0(BLE): 2402MHz~2480MHz				
		Number of Channel:	Bluetooth 5.0(BLE): 40 channels				
Product		Antenna Gain:	0.5dBi PCB Antenna				
Description		Modulation Type:	GFSK				
		Bit Rate of Transmitter:	1Mbps				
Power Rating		Input: DC 5V DC 3.7V by 5000mAh 18.5Wh Rechargeable Li-ion battery (FXN) DC 3.7V by 5200mAh 19.24Wh Rechargeable Li-ion battery (PX)					
Software Version	:	V0.6.1					
Hardware Version		CG623B_C02_V2	CG623B_C02_V2				
Davasarla							

Remark:

- (1) The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant.



Report No.: TBR-C-202305-0271-19 Page: 5 of 25

(4) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

1.3 Block Diagram Showing the Configuration of System Tested

Page: 6 of 25

1.4 Description of Support Units

Equipment Information									
Name Model FCC ID/SDOC Manufacturer Used " $$ "									
Adapter	100		HUAWEI	V					
Cable Information									
Number Shielded Type Ferrite Core Length Note									
Cable 1	Yes	NO	1.0M	Accessory					
	Note: The adapter provided by the laboratory.								

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test						
Final Test Mode Description						
Mode 1	TX Mode					
	For Radiated Test					
Final Test Mode Description						
Mode 2	TX 1Mbps Mode (Channel 00/19/39)					

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

BLE Mode: GFSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 7 of 25

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	400	SecureCRT.exe	
Frequency	2402MHz	2440MHz	2480MHz
BLE 1M	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	$\pm 3.50~\mathrm{dB}$ $\pm 3.10~\mathrm{dB}$
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 8 of 25

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Page: 9 of 25

2. Test Summary

Standard Section	Test Item	Test Sample(s)	Judgment	Remarl
FCC	100010011		J	
FCC 15.207(a)	Conducted Emission	RW-C-202305-0271-11-1#	PASS	N/A
FCC 15.209 & 15.247(d)	Radiated Unwanted Emissions	RW-C-202305-0271-11-1#	PASS	N/A
FCC 15.203	Antenna Requirement		N/A	N/A
FCC 15.247(a)(2)	6dB Bandwidth		N/A	N/A
	99% Occupied bandwidth		N/A	N/A
FCC 15.247(b)(3)	Peak Output Power and E.I.R.P	1	N/A	N/A
FCC 15.247(e)	Power Spectral Density		N/A	N/A
FCC 15.247(d)	Band Edge Measurements	1	N/A	N/A
FCC 15.207	Conducted Unwanted Emissions		N/A	N/A
FCC 15.247(d)	Emissions in Restricted Bands	1	N/A	N/A
	On Time and Duty Cycle		1	N/A

Note:

- (1) N/A is an abbreviation for Not Applicable.
- (2) This report is Class II change report for the original equipment have changed, the transmitter module itself has not changed. More information about the test data please refer to the original test report.
- (3) As there is no change regard RF transmitter portion and Antenna assembly, the change will not have effect on Radiated emission above 1GHz by judging for experience, thus testing is performed up to 1GHz only.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
Radiation Emission	EZ-EMC	EZ	FA-03A2RE+
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V3.2.22

Report No.: TBR-C-202305-0271-19 Page: 10 of 25

4. Test Equipment

Conducted Emission					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 23, 2022	Jun. 22, 2023
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jun. 23, 2022	Jun. 22, 2023
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 22, 2022	Jun. 21, 2023
LISN	Rohde & Schwarz	ENV216	101131	Jun. 22, 2022	Jun. 21, 2023
ISN	SCHWARZBECK	NTFM 8131	8131-193	Jun. 22, 2022	Jun. 21, 2023
ISN	SCHWARZBECK	CAT3 8158	cat3 5158-0094	Jun. 22, 2022	Jun. 21, 2023
ISN	SCHWARZBECK	NTFM5158	NTFM5158 0145	Jun. 22, 2022	Jun. 21, 2023
ISN	SCHWARZBECK	CAT 8158	cat5 8158-179	Jun. 22, 2022	Jun. 21, 2023
Radiation Emission	n Test (A Site)				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jun. 23, 2022	Jun. 22, 2023
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Feb. 27, 2022	Feb.26, 2024
Horn Antenna	ETS-LINDGREN	3117	00143207	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Feb. 26, 2022	Feb.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Feb. 26, 2022	Feb.25, 2024
Pre-amplifier	SONOMA	310N	185903	Feb. 23, 2023	Feb.22, 2024
Pre-amplifier	HP	8449B	3008A00849	Feb. 23, 2023	Feb.22, 2024
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep.01.2022	Aug. 31, 2023
Radiation Emission	n Test (B Site)				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep.01.2022	Aug. 31, 2023
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 23, 2023	Feb.22, 2024
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Jun. 26, 2022	Jun.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep.01.2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep.01.2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep.01.2022	Aug. 31, 2023

Report No.: TBR-C-202305-0271-19 Page: 11 of 25

Antenna Conducted I	Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jun. 23, 2022	Jun. 22, 2023
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
MXA Signal Analyzer	KEYSIGT	N9020B	MY60110172	Sep. 01, 2022	Aug. 31, 2023
MXA Signal Analyzer	Agilent	N9020A	MY47380425	Sep. 01, 2022	Aug. 31, 2023
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 01, 2022	Aug. 31, 2023
Analog Signal Generator	Agilent	N5181A	MY48180463	Sep. 01, 2022	Aug. 31, 2023
Vector Signal Generator	KEYSIGT	N5182B	MY59101429	Sep. 01, 2022	Aug. 31, 2023
Analog Signal Generator	KEYSIGHT	N5173B	MY61252685	Dec. 15, 2022	Dec. 14, 2023
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 01, 2022	Aug. 31, 2023
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 01, 2022	Aug. 31, 2023
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 01, 2022	Aug. 31, 2023
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 01, 2022	Aug. 31, 2023
RF Control Unit	Tonsced	JS0806-1	21C8060380	N/A	N/A
RF Control Unit	Tonsced	JS0806-2	21F8060439	Sep. 01, 2022	Aug. 31, 2023
Band Reject Filter Group	Tonsced	JS0806-F	21D8060414	Jun. 23, 2022	Jun. 22, 2023
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A
Wideband Radio Comunication Tester	Rohde & Schwarz	CMW500	144382	Sep. 01, 2022	Aug. 31, 2023
Universal Radio Communication Tester	Rohde&Schwarz	CMW500	168796	Jun. 23, 2022	Jun. 22, 2023
Temperature and Humidity Chamber	ZhengHang	ZH-QTH-1500	ZH2107264	Jun. 22, 2022	Jun. 21, 2023

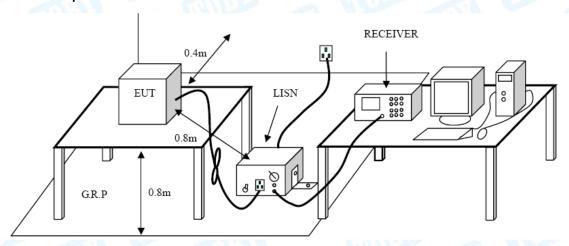
Page: 12 of 25

5. Conducted Emission

5.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 15.207


5.1.2 Test Limit

Evaguanov	Maximum RF Line	Voltage (dBμV)
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

- The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- ●Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- ●LISN at least 80 cm from nearest part of EUT chassis.
- The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

Page: 13 of 25

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A inside test report.

Page: 14 of 25

6. Radiated and Conducted Unwanted Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.247(d)

6.1.2 Test Limit

Genera	al field strength limits at frequencies	Below 30MHz
Frequency (MHz)	Field Strength (microvolt/meter)**	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30

Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

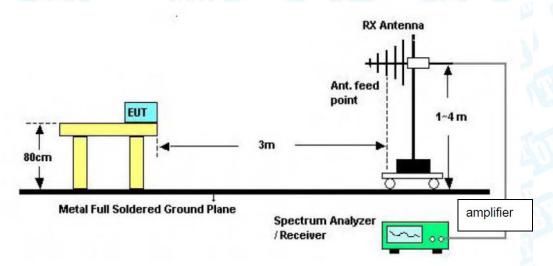
General field	strength limits at frequenci	es above 30 MHz
Frequency	Field strength	Measurement Distance
(MHz)	(μV/m at 3 m)	(meters)
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

General field strer	gth limits at frequencies	Above 1000MHz
Frequency	Distance of 3	m (dBuV/m)
(MHz)	Peak	Average
Above 1000	74	54

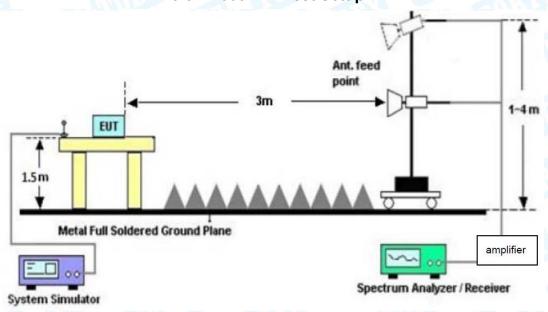
Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.


Page: 15 of 25

6.2 Test Setup


Radiated measurement

Below 30MHz Test Setup

Below 1000MHz Test Setup



Page: 16 of 25

Above 1GHz Test Setup Conducted measurement

6.3 Test Procedure

---Radiated measurement

- The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

6.4 Deviation From Test Standard

No deviation

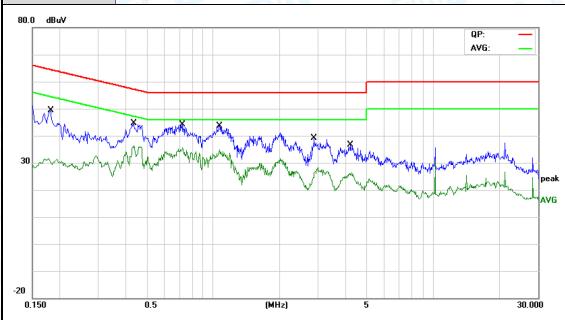
6.5 EUT Operating Mode

Please refer to the description of test mode.

Report No.: TBR-C-202305-0271-19 Page: 17 of 25

6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report.



Page: 18 of 25

Attachment A-- Conducted Emission Test Data

Temperature:	24.5℃	Relative Humidity:	45%	Alle
Test Voltage:	AC 120V/60Hz		MB L	
Terminal:	Line	The same of		
Test Mode:	Mode 1(FXN Battery)			THU .
Remark:	Only worse case is reporte	ed.		

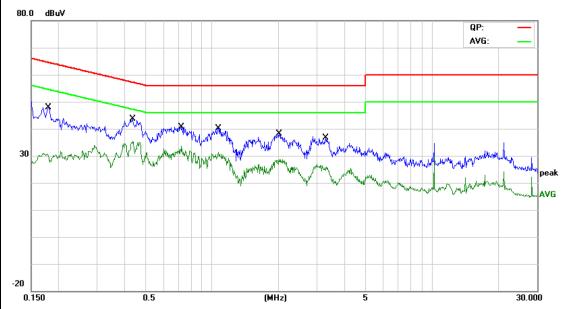
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1819	27.27	11.04	38.31	64.39	-26.08	QP
2	0.1819	18.23	11.04	29.27	54.39	-25.12	AVG
3	0.4340	30.17	10.91	41.08	57.18	-16.10	QP
4 *	0.4340	25.41	10.91	36.32	47.18	-10.86	AVG
5	0.7220	26.33	10.87	37.20	56.00	-18.80	QP
6	0.7220	21.01	10.87	31.88	46.00	-14.12	AVG
7	1.0700	26.04	10.67	36.71	56.00	-19.29	QP
8	1.0700	20.67	10.67	31.34	46.00	-14.66	AVG
9	2.8820	20.90	10.23	31.13	56.00	-24.87	QP
10	2.8820	14.63	10.23	24.86	46.00	-21.14	AVG
11	4.2180	19.35	10.07	29.42	56.00	-26.58	QP
12	4.2180	13.74	10.07	23.81	46.00	-22.19	AVG

Remark

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Report No.: TBR-C-202305-0271-19 Page: 19 of 25

Temperature:	24.5℃		Relative Hun	nidity:	45%	
Test Voltage:	AC 120V/60)Hz	CALL			A True
Terminal:	Neutral		(1) V	600	133	
Test Mode:	Mode 1(FXI	N Battery)		W.		13.7
Remark:	Only worse	case is repor	ted.		a W	
30 May 30	MAN MARKANAN	White the same of		orang Markaphaphan	QP: AVG:	peak AVG
-20 0.150 No. Mk.	0.5 Rea Freq. Lev	•	ct Measure-	imit	Over	30.000
	MHz dB			lBuV		tector
1	0.1819 27.	03 11.04	38.07 6	4.39 -2	6.32	QP
2	0.1819 18.	20 11.04	29.24 5	4.39 -2	5.15	AVG
3	0.2620 22.	77 10.91	33.68 6	1.36 -2	7.68	QP
4	0.2620 17.	79 10.91	28.70 5	1.36 -2	2.66	AVG
5	0.4340 30.	14 10.91	41.05 5	7.18 -1	6.13	QP
6 *	0.4340 25.	42 10.91	36.33 4	7.18 -1	0.85	AVG
7	1.0700 25.	95 10.67	36.62 5	6.00 -1	9.38	QP
8	1.0700 20.	78 10.67	31.45 4	6.00 -1	4.55	AVG
9	2.0220 24.	67 10.48	35.15 5	6.00 -2	0.85	QP
10	2.0220 19.	07 10.48	3 29.55 4	6.00 -1	6.45	AVG
11	2.8820 20.	38 10.23	30.61 5	6.00 -2	5.39	QP
12	2.8820 14.	22 10.23	24.45 4	6.00 -2	1.55	AVG


- Remark:
 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Report No.: TBR-C-202305-0271-19 Page: 20 of 25

Temperature:	24.5℃	Relative Humidity:	45%
Test Voltage:	AC 120V/60Hz	The same of the sa	
Terminal:	Line	THE PERSON NAMED IN	73
Test Mode:	Mode 1(PX Battery)		100
Remark:	Only worse case is reporte	ed.	

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1796	27.31	11.05	38.36	64.50	-26.14	QP
2	0.1796	18.52	11.05	29.57	54.50	-24.93	AVG
3	0.4340	30.33	10.91	41.24	57.18	-15.94	QP
4 *	0.4340	25.61	10.91	36.52	47.18	-10.66	AVG
5	0.7220	26.60	10.87	37.47	56.00	-18.53	QP
6	0.7220	21.59	10.87	32.46	46.00	-13.54	AVG
7	1.0700	25.89	10.67	36.56	56.00	-19.44	QP
8	1.0700	20.71	10.67	31.38	46.00	-14.62	AVG
9	2.0220	24.43	10.48	34.91	56.00	-21.09	QP
10	2.0220	19.00	10.48	29.48	46.00	-16.52	AVG
11	3.2900	20.62	10.16	30.78	56.00	-25.22	QP
12	3.2900	14.68	10.16	24.84	46.00	-21.16	AVG

Remark:

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Report No.: TBR-C-202305-0271-19 Page: 21 of 25

emperature:	24.5℃	2 //	Relative H	umidity:	45%	
est Voltage:	AC 120V/60Hz		and the	11		Aller
erminal:	Neutral		1	6	MA	
est Mode:	Mode 1(PX Batter	y)		1 6		
Remark:	Only worse case i	s reported.	MILLO			AROL
30 MBuV	AN MARKING MANAGER	W W W W W W W W W W W W W W W W W W W		the Marie and Joseph Angel	QI AN	P:
-20 0.150 No. Mk.	Reading Freq. Level	(MHz) Correct Factor	Measure- ment	Limit	Over	30.000
	MHz dBuV	dB	dBuV	dBuV	dB	Detector
			4541			
1 (0.2100 25.12	10.99	36.11	63.20	-27.09	QP
	0.2100 25.12 0.2100 18.31	10.99 10.99		63.20 53.20		QP AVG
2 (36.11		-23.90	
3 (0.2100 18.31	10.99	36.11 29.30	53.20	-23.90 -15.95	AVG
2 0 3 0 4 * 0	0.2100 18.31 0.4340 30.32	10.99 10.91	36.11 29.30 41.23	53.20 57.18	-23.90 -15.95 -11.00	AVG QP
2 0 3 0 4 * 0 5 0	0.2100 18.31 0.4340 30.32 0.4340 25.27	10.99 10.91 10.91	36.11 29.30 41.23 36.18	53.20 57.18 47.18	-23.90 -15.95 -11.00 -20.41	AVG QP AVG
2 0 3 0 4 * 0 5 0	0.2100 18.31 0.4340 30.32 0.4340 25.27 0.6500 24.69	10.99 10.91 10.91 10.90	36.11 29.30 41.23 36.18 35.59	53.20 57.18 47.18 56.00	-23.90 -15.95 -11.00 -20.41 -16.11	AVG QP AVG QP
2 0 3 (4 * 0 5 (6 7	0.2100 18.31 0.4340 30.32 0.4340 25.27 0.6500 24.69 0.6500 18.99	10.99 10.91 10.91 10.90 10.90	36.11 29.30 41.23 36.18 35.59 29.89	53.20 57.18 47.18 56.00 46.00	-23.90 -15.95 -11.00 -20.41 -16.11 -19.54	AVG QP AVG QP AVG
2 0 3 0 4 * 0 5 0 6 7 8	0.2100 18.31 0.4340 30.32 0.4340 25.27 0.6500 24.69 0.6500 18.99 1.1180 25.80	10.99 10.91 10.91 10.90 10.90 10.66	36.11 29.30 41.23 36.18 35.59 29.89 36.46	53.20 57.18 47.18 56.00 46.00 56.00	-23.90 -15.95 -11.00 -20.41 -16.11 -19.54 -14.93	AVG QP AVG QP AVG QP
2 0 3 0 4 * 0 5 0 6 0 7 8 9 2	0.2100 18.31 0.4340 30.32 0.4340 25.27 0.6500 24.69 0.6500 18.99 1.1180 25.80 1.1180 20.41	10.99 10.91 10.91 10.90 10.90 10.66 10.66	36.11 29.30 41.23 36.18 35.59 29.89 36.46 31.07	53.20 57.18 47.18 56.00 46.00 56.00 46.00	-23.90 -15.95 -11.00 -20.41 -16.11 -19.54 -14.93 -21.20	AVG QP AVG QP AVG QP AVG
2 0 3 0 4 * 0 5 0 6 7 8 9 2 10 2	0.2100 18.31 0.4340 30.32 0.4340 25.27 0.6500 24.69 0.6500 18.99 1.1180 25.80 1.1180 20.41 2.0220 24.32	10.99 10.91 10.91 10.90 10.90 10.66 10.66 10.48	36.11 29.30 41.23 36.18 35.59 29.89 36.46 31.07 34.80	53.20 57.18 47.18 56.00 46.00 56.00 46.00	-23.90 -15.95 -11.00 -20.41 -16.11 -19.54 -14.93 -21.20 -16.66	AVG QP AVG QP AVG QP AVG QP

- Remark:
 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 22 of 25

Attachment B--Unwanted Emissions Data

--- Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

Below the permissible value has no need to be reported.

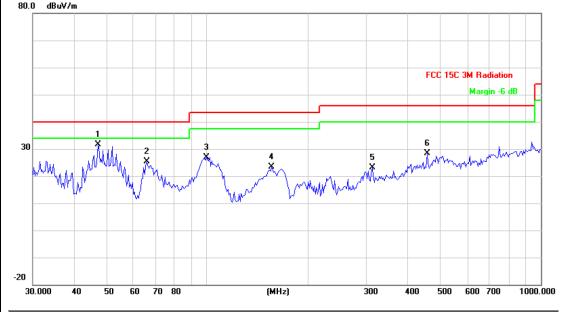
30MHz~1GHz

en	nperat	ture:	2	23.5°	,C			Relative	Humie	dity:	46%	
Гes	t Volta	age:		4C 1	20	V/60Hz	P. Comment			95.	and the same	VAD.
Ant	. Pol.		ŀ	Horiz	zon	ital		AHOR			1 6	
Tes	t Mod	e:	I	Mode 2 TX 1Mbps Mode Channel 00(FXN Battery)								
Remark:				Only	WC	orse case	e is reported	d.	No.			
80.	0 dBuV	/m			_							
			+							FC	C 15C 3M Radia	tion
			-	-							Margin ·	-6 dB
			_	_		\perp						4
30			+			+1		3 X	5		6	
							_2		<u> </u>	maham	min mande	may .
							ū	II. AILINY	Lahdad A	,		
	MVVAM					X ₀ ~	نرپهههديد	horaman all them.				
	MANANT	May make for	Maria	~M~	Mary.	mar Xwm	WAMA	homman for the				
	MVAM	May make the	~Vmn	~M~	MM.	mar Xv	WYW	hound of the				
	MANA	of the state of th	~Mm.	~M~	V/w/n	www	Www.	hound Mill				
-20					Mark.	mouther	W^^W^	home of the			202 70	
	0.000	40	50		70	80	(MHz)	home all the	300	400	500 600 700	0 1000.00
	0.000		50	60		Readin	g Correc		e			0 1000.00
	0.000	40 Mk.	50 F	60 req.		Readin Level	g Correc	r ment	re- L	imit	Over	
	0.000 No.		50 F	req.		Readin Level	g Correc Facto	r ment dBuV/n	re- L	imit BuV/m	Over	Detector
	0.000		50 F	60 req.		Readin Level	g Correc Facto	r ment dBuV/n	re- L	imit	Over	
	0.000 No.		50 F N 97.	req.	0	Readin Level	g Correct Facto dB/m -14.92	r ment dBuV/n 15.34	re- L m d	imit BuV/m	Over	Detector
	No.	Mk.	50 F 97.	Freq. MHz 4560	0	Readin Level dBuV 30.26	g Correct Facto dB/m -14.92 -13.91	ment dBuV/n 15.34 16.61	re- L m d 1 4	imit _{BuV/m} 13.50	Over dB -28.16	Detector peak
	No.	Mk.	50 F 97. 153 240	req. MHz 4560	0 35 14	Readin Level dBuV 30.26 30.52	g Correct Facto dB/m -14.92 -13.91 -11.51	ment dBuV/n 15.34 16.61 27.96	re- L m d 1 4 1 4 6 4	imit BuV/m 13.50 13.50	Over dB -28.16 -26.89 -18.04	Detector peak peak
	No.	Mk.	F N 97 153 240 263	Freq. MHz 4560	0 55 14 100	Readin Level dBuV 30.26 30.52 39.47	g Correct Facto dB/m -14.92 -13.91 -11.51 -10.35	ment dBuV/n 15.34 16.61 27.96	re- Lm dd 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	imit BuV/m 13.50 13.50 16.00	Over dB -28.16 -26.89 -18.04	Detector peak peak peak

*:Maximum data

x:Over limit !:over margin

Remark:

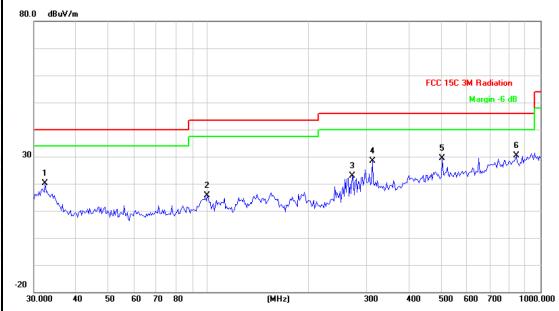

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 23 of 25

Temperature:	23.5℃	Relative Humidity:	46%						
Test Voltage:	AC 120V/60Hz								
Ant. Pol.	Vertical	Vertical							
Test Mode:	Mode 2 TX 1Mbps Mode Channel 00(FXN Battery)								
Remark:	Only worse case is reported.								
80.0 dBuV/m									

No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	46.9948	48.32	-16.61	31.71	40.00	-8.29	peak
2		65.8031	41.67	-16.40	25.27	40.00	-14.73	peak
3		99.5281	41.83	-14.94	26.89	43.50	-16.61	peak
4		155.9101	37.21	-13.82	23.39	43.50	-20.11	peak
5		312.1794	30.90	-7.73	23.17	46.00	-22.83	peak
6		455.9058	32.74	-4.41	28.33	46.00	-17.67	peak

x:Over limit !:over margin *:Maximum data

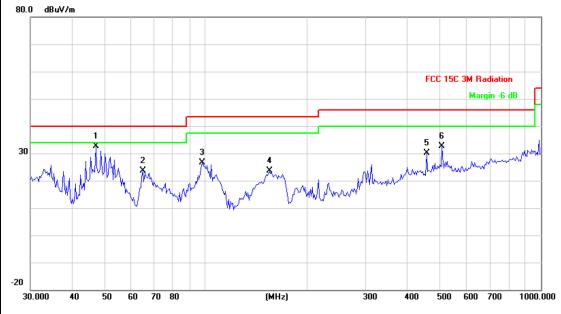

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 24 of 25

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal	OHIT SE	- TO TO
Test Mode:	Mode 2 TX 1Mbps Mode Cl	nannel 00(PX Battery)	11/12
Remark:	Only worse case is reported		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		32.4059	30.22	-10.21	20.01	40.00	-19.99	peak
2		99.5281	30.67	-14.94	15.73	43.50	-27.77	peak
3		271.3246	32.94	-10.15	22.79	46.00	-23.21	peak
4		312.1794	36.03	-7.73	28.30	46.00	-17.70	peak
5		506.4791	33.25	-3.85	29.40	46.00	-16.60	peak
6	*	845.0878	29.01	1.46	30.47	46.00	-15.53	peak

^{*:}Maximum data x:Over limit !:over margin


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 25 of 25

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz	MULL				
Ant. Pol.	Vertical		W. D.			
Test Mode:	Mode 2 TX 1Mbps Mode Channel 00(PX Battery)					
Remark:	Only worse case is repo	orted.	NI W			
80.0 dBuV/m						

No	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	46.9948	49.24	-16.61	32.63	40.00	-7.37	peak
2		64.8865	40.17	-16.47	23.70	40.00	-16.30	peak
3		97.4560	41.63	-14.92	26.71	43.50	-16.79	peak
4		154.8204	37.61	-13.87	23.74	43.50	-19.76	peak
5		455.9058	34.62	-4.41	30.21	46.00	-15.79	peak
6		506.4791	36.47	-3.85	32.62	46.00	-13.38	peak

x:Over limit !:over margin *:Maximum data

TOBY

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

----END OF THE REPORT-----

