EMC TEST REPORT

NVLAP Lab Code 200033-0

Standard(s):

47 CFR FCC Part 15.247 RSS 247, Issue 3, 2023

FCC ID:Y9ZMRX21A1WS7 IC:4406A-MRX21A1WS7

Product: WS[™] ALERT[™] XPV Headset (EDR)

Model(s): MRX21A1WS7-NA

Company Name: 3M Svenska AB

3M Division: PSD

Address: Box 2341, Malmstensgatan 19 SE-33102 Värnamo, Sweden

Report Number: HRE202303408-5 Report Issue Date: September 13, 2024

Report Prepared by:

Signature: Young distinor Yuriy Litvinov

Lead EMC Engineer

Tested by: 3M Company, Hardgoods Regulatory Engineering Laboratory 410 East Fillmore Avenue, Building 76 St. Paul, Minnesota 55107-1208, USA

This report is the confidential property for the exclusive internal use of 3M Company and applies only to the specific item tested under the stated test conditions. This test report shall not be reproduced except in full, without written approval of the 3M EMC laboratory and must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government. Any changes impacting the attributes, functionality or operational characteristics documented in this report shall be communicated to the body responsible for approving (certifying) the subject equipment.

		TABLE OF CONTENTS	
Item		Description	Page
1.0		Test Summary	3
	1.1	Measurement Uncertainty	3
	1.2	Test Facility	3
2.0		Equipment Description	4
	2.1	Equipment Under Test	4
3.0		EUT Configuration	5
	3.1	System Configuration	5
	3.2	Input/Output Ports of EUT	5
	3.3	Cables	5
	3.4	Measurement Arrangements of EUT	5
	3.5	Primary functions(s) of EUT	5
	3.6	Exercising of EUT and Interfaces	5
4.0		Test Conditions and Results	6
	4.1	20dB Bandwidth	6
	4.2	Maximum Peak Conducted Output Power	8
	4.3	Channel Separation	9
	4.4	Number of Channels	11
	4.5	Time of Occupancy	19
	4.6	Radiated Emissions in restricted band	21
	4.7	Radiated Emissions in non-restricted band	33
	4.8	Band-edge Emissions Measurements	35
	4.9	Conducted Emissions	37
	4.10	RF Exposure Evaluation	39
5.0		Test Equipment	40
6.0		Revision History	40

1.0 Test Summary

Based on the results of our investigation, we have concluded the product tested **comply** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested.

	Requirement – Test	Test Description	Result	Comments
4.1	FCC Part 15.247(a)(1)/ RSS-247(5.1(a))	20dB Bandwidth	pass	
4.2	FCC Part 15.247(b)(1)/ RSS-247(5.4(b))	Maximum Peak Conducted Output Power	pass	
4.3	FCC Part 15.247(a)(1)/ RSS-247(5.1(c))	Channel Separation	pass	
4.4	FCC Part 15.247(a)(1)/ RSS-247(5.1(d))	Number of Channels	pass	
4.5	FCC Part 15.247(a)(1)/ RSS-247(5.1(4))	Time of Occupancy	pass	
4.6	FCC Part 15.209 RSS-Gen, 8.9	Radiated Emissions in restricted band	pass	
4.7	FCC Part 15.247(d)/ RSS-247(5.5)	Radiated Emissions in non-restricted band	pass	
4.8	FCC Part 15.247(d)(1)/ RSS-247(5.5)	Band-edge Emissions Measurements	pass	
4.9	FCC Part 15.207/ RSS-Gen (8.8)	Conducted Emissions	pass	
4.10	FCC Part 15.247(i)/ RSS 102 Issue 5	RF Exposure Compliance	pass	

Note:

1.1 Measurement Uncertainty

The measured value related to the corresponding limit will be used to decide whether the equipment meets the requirements. The measurement uncertainty figures were calculated and correspond to a coverage factor of k=2, providing a confidence level of respectively 95.45 % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian).

Radiated emissions 30MHz to 1000MHz	4.9 dB
Radiated emissions 1GHz to 18GHz	4.6 dB
Conducted emissions 150KHz to 30MHz (AMN)	2.7 dB
Conducted emissions 150KHz to 30MHz (AAN)	1.92 dB
RF frequency	±3 × 10 ⁻⁸
RF power, conducted	1.4 dB
RF Power Spectral Density	0.96 dB

1.2 Test Facility

	ISO/IEC 17025:2017, NVLAP LAB CODE: 200033-0
Test Facility	FCC OET Designation Number: US5320
Accreditations:	ISED CAB identifier: US0012
	Chinese Taipei - (NCC) CAB identifier: US0012

2.0 Equipment Description

2.1 Equipment Under Test					
Description:	WS ALERT XPV Headset helps protect against hazardous noise, has Bluetooth wireless communication, noise-cancelling boom microphone, and level-dependent function for ambient listening.				
Model(s):	MRX21A1WS7-N	NA			
Serial number:	128837-2				
3M Division:	Personal Safety				
Modifications and Special Measures:	none				
Frequency Range:	2402.0-2480.0 M	Hz			
Channel No.:	79				
Modulation Type:	GFSK, π/4-DQPS	SK and 8DPSK			
FCC Classification:	Spread Spectrum Transmitter (DSS)				
Output Power EIRP:	7.5dBm (5.6mW), (4.8dBm Conducted RF Power)				
Antenna Type and Antenna Assembly	External	Integral PCB Antenna		Dedicated	
Gain:	🛛 2.7dBi	Declared by the Manufacturer		Measured	
Test Deviations or Exclusions	Yes	🖾 No			
	Voltage:	X 120VAC	230VAC	⊠ 3VDC	
Defed Demon	Phase:	🛛 1ph	3ph	USB-C	
Rated Power:	Frequency:	☐ 50Hz	⊠ 60Hz		
	Current:	rent: N/A			
Test Dates:	02/05-02/13/2024				
Received Date:	01/15/2024				
Descined Organity	Poor Good				
Received Conditions:	Prototype	e Production			

3.0 EUT Configuration

3.1 System Configuration

No.	Product Type	Manufacturer	Model	Comments
1	EUT	ЗМ	MRX21A1WS7	
2	USB Charger	Apple	M1385	Support Equipment
3	Programming interface	Qualcomm	TRBI200	Support Equipment

3.2 Input/Output Ports of EUT

No.	Description	Туре	Comments
1	DC Power	USB-C	
2			

3.3 Cables

No.	Description	Туре	Length	Shielding	Comments
1	USB-C	USB 2.0	1m	Yes	
2					

3.4 Measurement Arrangements of EUT

Intended Operational Arrangement(s)	Comments
Table-top only	
Floor-standing only	
Floor-standing or table-top	
Other	Body-worn

3.5 Exercising of EUT and Interfaces

No.	Mode of Operation
1	Transmitting at lowest (0), middle (19) and highest (39) channels of operation with unmodulated CW carrier
2	Continuous transmission of modulated signal at lowest (0), middle (19) and highest (39) channels
3	Device programming using Qualcomm Bluesuit WIN.3.3 software for continuous transmission of modulated carrier at maximum rated RF output power and Duty Cycle.

4.0 Test Conditions and Results


4.1	20dB Bandwidt	20dB Bandwidth				
		Laboratory Ambient Temperature:	23°C			
		Relative Humidity:	48%			
		Atmospheric Pressure:	1011 mbars			
Reference Standard(s):		 ☑ ANSI C63.10:2020, Section 11.8.2 ☑ FCC Part 15.247/RSS 247 ☑ KDB 558074 	Measurement Point Conducted Radiated			
Frequency Range:		2402.0-2480.0 MHz	RBW = 30KHz VBW ≥ 3 x RBW			
Nominal Voltage: 🗌 120VAC 🛛 3.0VDC		□ 120VAC ⊠ 3.0VDC				
	Test Personnel:	Yuriy Litvinov your divino	Date: 02/06/2024			

Frequency (MHz)	Data Rate	Modulations	99% Bandwidth (KHz)	20dB Bandwidth (KHz)	Results
2402	1 Mbps	GFSK	898.4	983.2	pass
2441	1 Mbps	GFSK	897.4	962.7	pass
2480	1 Mbps	GFSK	894.8	961.0	pass
2402	2 Mbps	π/4-DQPSK	1212	1371	pass
2441	2 Mbps	π/4-DQPSK	1199	1364	pass
2480	2 Mbps	π/4-DQPSK	1205	1367	pass
2402	3 Mbps	8DPSK	1216	1357	pass
2441	3 Mbps	8DPSK	1204	1352	pass
2480	3 Mbps	8DPSK	1210	1353	pass

3M EMC Laboratory

Report Number: HRE202303408-5 Date: September 13, 2024

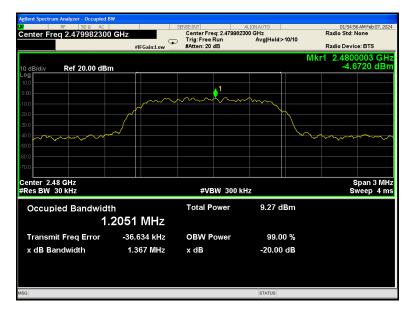
Page 7 of 40

OBW –Low Channel (1Mbps)

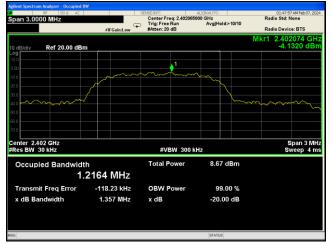
OBW – High Channel (1Mbps)

3M EMC Laboratory

Report Number: HRE202303408-5 Date: September 13, 2024


Page 8 of 40

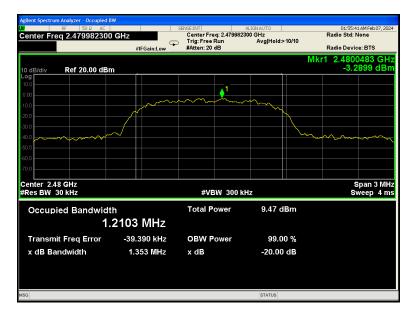
OBW –Low Channel (2Mbps)




OBW – High Channel (2Mbps)

3M EMC Laboratory

Report Number: HRE202303408-5 Date: September 13, 2024

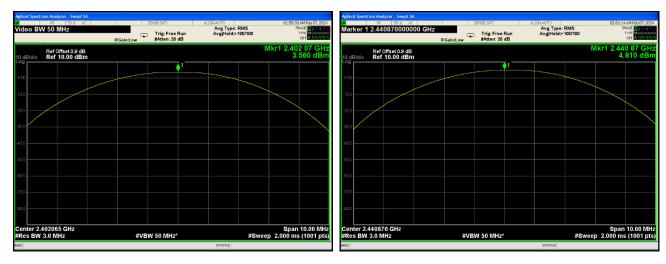

Page 9 of 40

OBW –Low Channel (3Mbps)

OBW – High Channel (3Mbps)

Note:

4.2	Maximum Output Power						
Method:	Measurements was performed with CW carrier at the highest power level at which the transmitter is intended to operate. analyzer offset was adjusted to compensate for the attenuator and other losses.						
		Laboratory Ambient Temperature:	23°C				
		Relative Humidity:	48%				
		Atmospheric Pressure:	1011 mbars				
Reference Standard(s):		KDB 558074	Measurement Point ⊠ Conducted □ Radiated at 3 meters				
Frequency Range:		⊠ 2402.0 – 2480.0 MHz					
	Antenna Gain:	2.7dBi	Maximum Power (EIRP):				
Limit:		30 dBm	7.5dBm (5.6mW)				
Nominal Voltage:		□ 120VAC 🛛 3.0VDC					
Test Personnel:		Yuriy Litvinov You'y divino	Date: 02/06/2024				

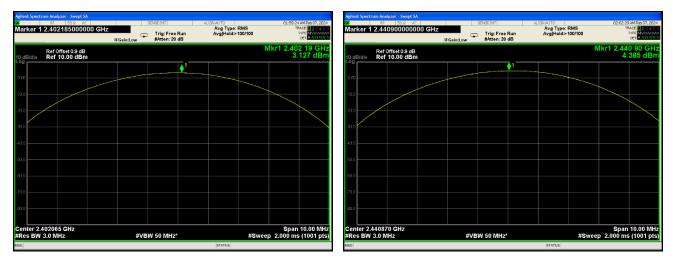

EIRP (dBm) = Conducted Power (dBm) +Antenna Gain (dBi)= 4.8+2.7= 7.5 dBm. All modes of operation and data were investigated. The results shown represent the worst case.

Frequency (MHz)	Data Rate	Modulations	RMS Conducted Power (dBm)	Limit (dBm)	Results
2402	1 Mbps	GFSK	3.6	30	pass
2440	1 Mbps	GFSK	4.8	30	pass
2480	1 Mbps	GFSK	4.4	30	pass
2402	2 Mbps	π/4-DQPSK	3.1	30	pass
2440	2 Mbps	π/4-DQPSK	4.4	30	pass
2480	2 Mbps	π/4-DQPSK	4.0	30	pass
2402	3 Mbps	8DPSK	3.2	30	pass
2440	3 Mbps	8DPSK	4.5	30	pass
2480	3 Mbps	8DPSK	4.0	30	pass

3M EMC Laboratory

Report Number: HRE202303408-5 Date: September 13, 2024

Page 11 of 40



Peak Power Low Channel (1Mbps)

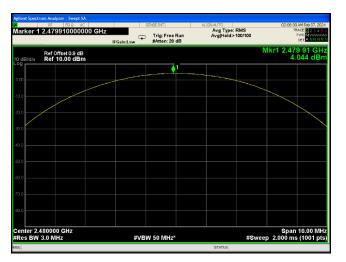
Peak Power Mid Channel (1Mbps)

	RF 50 Q /			SEVSE (INT	ALIGNAUTO			M Feb 07, 202
Marker 1	2.479860000		Gain:Low	Trig: Free Run #Atten: 20 dB	Avg Type: Avg Hold>	RMS 100/100	T)	CE 12345 PEMMAAAAA XETANNNN
10 dB/div	Ref Offset 0.9 dE Ref 10.00 dB	3 m				М	kr1 2.479 4.4	86 GH 03 dBr
10.0								
20.0								
30.0								
40.0								
50.0								
60.0								
70.0								
Center 2.4	80000 GHz		#\/B	W 50 MHz*		#Piwoon	Span 1 2.000 ms	10.00 MH
Res DW	3.0 10112		#VD	W JU WHZ		#oweep	2.000 ms	(1001 pts

Peak Power High Channel (1Mbps)

Peak Power Low Channel (2Mbps)

Peak Power Mid Channel (2Mbps)

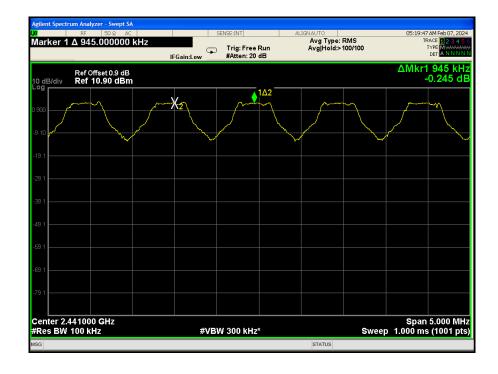


Peak Power High Channel (2Mbps)

Peak Power Low Channel (3Mbps)

Peak Power Mid Channel (3Mbps)

Peak Power High Channel (3Mbps)

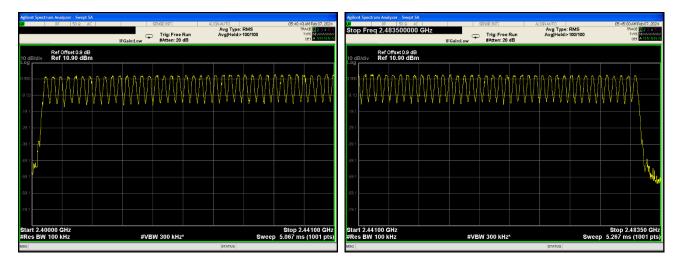


4.3	Carrier Frequency	Separation						
Method:	The measurements w	The measurements were made with transmitter set to transmit a continuously with hopping function enabled.						
		Laboratory Ambient Temperature:	23°C					
		Relative Humidity:	48%					
		Atmospheric Pressure:	1011 mbars					
Refe	rence Standard(s):	 ☑ ANSI C63.10:2020, Section 7.8 ☑ FCC Part 15.247/RSS 247 ☑ KDB 558074 	Measurement Point					
	Frequency Range:	🛛 2402-2480MHz						
	Antenna Gain:	⊠ 2.7dBi	Result					
	Limit:	 □ >25KHz ≥2/3 the value of the 20dB Bandwidth 	0.945MHz					
	Nominal Voltage:	230VAC 3.0VDC						
	Test Personnel:	Yuriy Litvinov young diwinno	Date: 02/07/2024					

Note:

The EUT complies with the minimum channel separation requirement when it is operating in 1x/EDR mode using 79 channels.

All modes of operation and data were investigated. The results shown represent the worst case.



Method: The measurements were made with transmitter set to transmit a co-truously with hopping function Image: Provide the measurement of the	n enabled.
Relative Humidity: 48% Atmospheric Pressure: 1011 mbars Image: Conducted standard(s): Image: Conducted standard(s): Reference Standard(s): Image: Conducted standard(s) Image: Conducted standard(s): Image: Conducted standard(s)	
Atmospheric Pressure: 1011 mbars Reference Standard(s): ANSI C63.10:2020, Section 7.8 KDB 558074 Measurement Point Conducted	
Reference Standard(s): ANSI C63.10:2020, Section 7.8 Measurement Point Image: Conducted Image: Conducted Image: Conducted	
Reference Standard(s): Image: FCC Part 15.247/RSS 247 Measurement Point Image: Model of the standard stand	
En marcha Ranger VI o too o Latoo o Mile	
Frequency Range: 2402.0 – 2480.0 MHz	
Antenna Gain: 2.3dBi Result Limit: >75 Hopping Channels 79	
Nominal Voltage: 120VAC X 3.0VDC	
Test Personnel:Yuriy LitvinovYuriy didniknorDate: 02/07/2024	

Note:

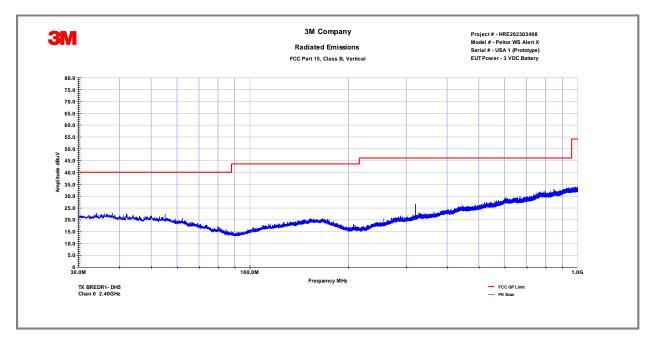
The frequency spectrum was broken up into two subranges to clearly show all the hopping frequencies.

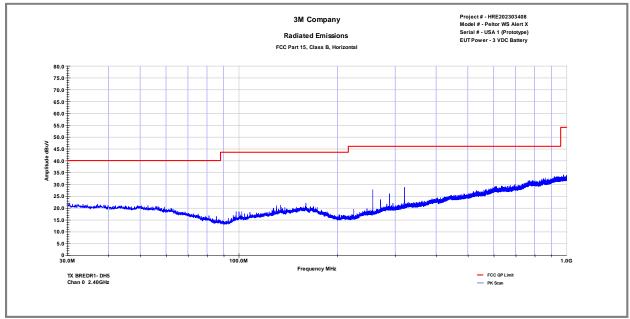
Low End Spectrum

High End Spectrum

4.5	Time of Occupanc	у					
Method:	The measurements	ents were made with transmitter set to transmit a continuously with hopping function en					
		Laboratory Ambient Temperature:	23°C				
		Relative Humidity:	48%				
		Atmospheric Pressure:	1011 mbars				
Reference Standard(s): Frequency Range: Antenna Gain: Limit (dwell time): Nominal Voltage: Test Personnel:		 ANSI C63.10:2020, Section 7.8 FCC Part 15.247/RSS 247 KDB 558074 	Measurement Point				
		⊠ 2402.0 – 2480.0 MHz					
		2.7dBi	Result				
		\boxtimes <0.4 sec within a period of 0.4 sec x N hopping channels	307ms/channel				
		□ 120VAC					
		Yuriy Litvinov yuniy distino	Date: 02/07/2024				

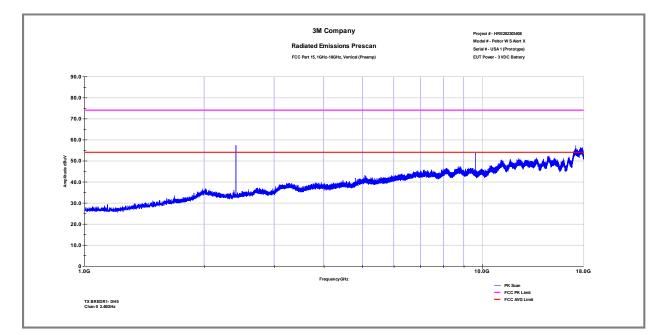
	Typically, Bluetooth 1x/EDR mode has a channel hopping rate of 1600hops/s. Since 1x/EDR use 5 transmit and 1 receive slot the actual hopping rate 1600/6=266.67 hops/slot.
	 400ms x 79 channels=31.6 (Time of Occupancy).
Note:	 Worst case BT has 266.67 hops/second 1x/(EDR modes DH5 operation).
	 266.67/79 = 3.38 hops/second (#of hops/second on one channel).
	 3.38 x 31.6=106.67 (#hops over a 31.6 second period).
	 106.67x 2.88 /channel=307.2ms (worst case dwell time for one channel in 1x/EDR)

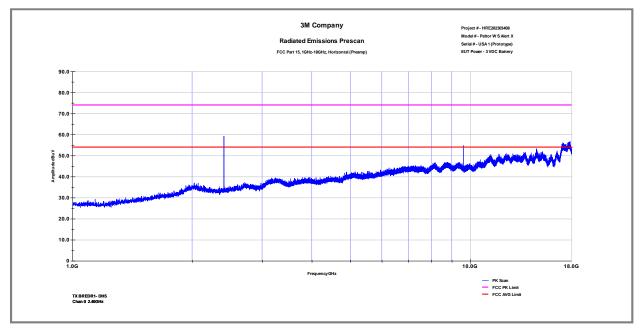

Agilent Spectrum Analyzer - Swept SA	SENSE:INT ALI	IGNAUTO	05:35:42 AM Feb 07, 2024
Marker 1 Δ 2.88000 ms	FGain:Low #Atten: 20 dB	Avg Type: Log-Pwr	TRACE 12345 TYPE WWWWW DET PNNNN
Ref Offset 0.9 dB 10 dB/div Ref 10.90 dBm			ΔMkr1 2.880 ms -0.48 dE
X2	1Δ2		
9.10			
19.1			
29.1			
39.1			
49.1			
59.1 WHALMANA	and interesting the second	hy supply while desphary and and	diadiality of an an and a stand and the stand of the stan
59.1			
79.1			
Center 2.441000000 GHz Res BW 1.0 MHz	#VBW 1.0 MHz	Sweet	Span 0 H 5 10.00 ms (1001 pts
SG		STATUS	



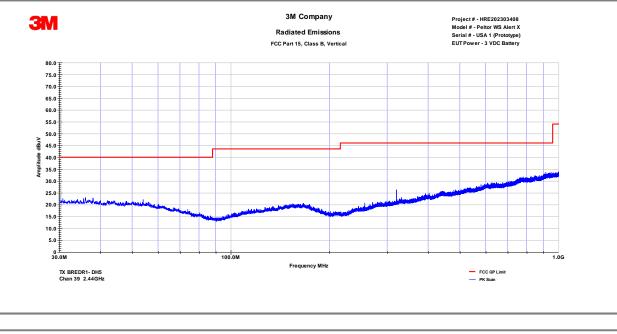
4.6	Radiated Emissions i	n restricted band	n restricted band						
Method:	EUT was rotated through highest emission relative the limit was used in mal performed with external p	e in a 3-meter semi-anechoic chamber that complies to CISPR 16/ANSI C63.4 standards. three orthogonal axes to determine which attitude (orientation) and arrangement produces the to the limit; the attitude and device arrangement that produces the highest emission relative to ng final radiated emission measurements. Spurious Radiated emissions measurements ware eamp and a high pass filter. Final measurements were then performed by rotating the EUT 360° antenna height from 1 to 4 m. All frequencies were investigated in both horizontal and vertical plicable.							
		Laborato	ry Ambient Tempe	rature:		23°C			
Test	Verification: 🛛		Relative Hu	midity:		55%			
			Atmospheric Pre	ssure:		1011 mb	ars		
Reference Standard(s):		ANSI C63.10:20				Measurement	Distance		
		 ☑ FCC Part 15.205/15.209/RSS Gen (8.9) ☑ KDB 558074 			🛛 3 Meters 🔲				
Frequency Range:		30 MHz to 1 GHz			RBW = 100KHz, VBW ≥ 3 x RBW				
		I GHz to 25 GHz				RBW = 1MHz, VBW ≥ 3 x RBW			
	Nominal Voltage:	□ 120VAC ⊠ 3.0VDC							
	Test Personnel:	Keith Schwartz KS			Date: 02/09/2024				
		Limits –15	.209 and RSS Ge	n					
Fre	equency (MHz)	Limit dB (μV/m)							
		Quasi-Peak	Average	Pe	eak	Distance	Results		
(0.009-0.490		2400/F(KHz)			300	N/A		
(0.490-1.705	24000/F(KHz)				30	N/A		
	1.705-30	30				30	N/A		
	30 to 88	40				3	pass		
	88 to 216	43.5				3	pass		
	216 to 960	46				3	pass		
	Above 960		54	7	74	3	pass		

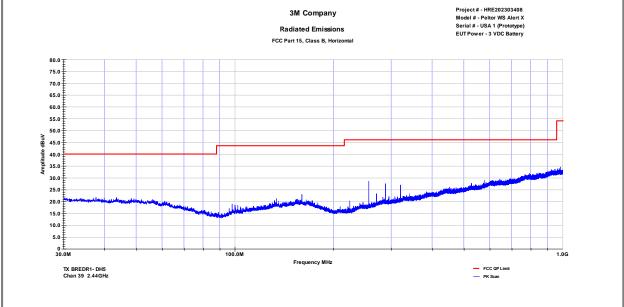
Modifications:	
Note:	The lower limit applies at the transition frequency. An inverse proportionality factor of 20 dB per decade has been used to normalize the measured data to the specified distance for determining compliance. All modes of operation and data were investigated. The results shown represent the worst case. No radiated spurious emissions were detected above 18GHz. There are no emissions were detected in the 15.205 restricted band within 30dB below 15.209 limit adjacent or nearby to 2400-2483.5MHz frequency band during operation at the high channel.



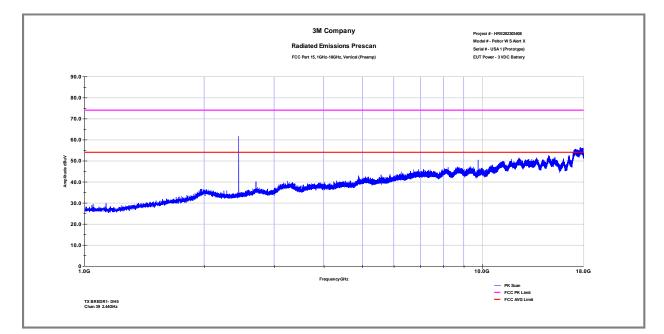


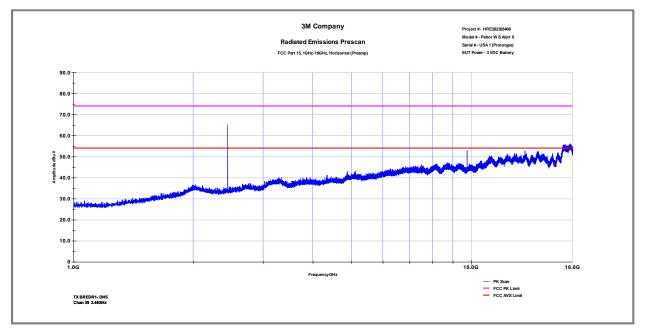
FCC Part 15.209 Radiated Emissions in restricted band - Low Channel (DH5)



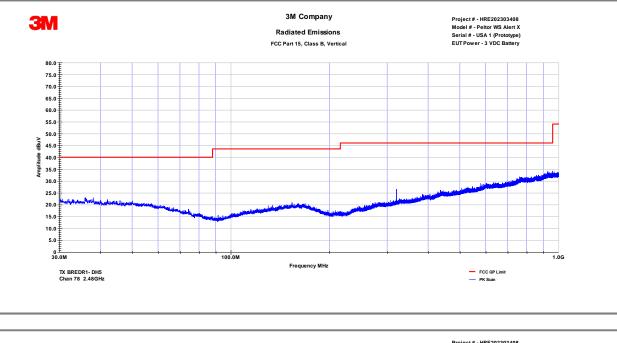


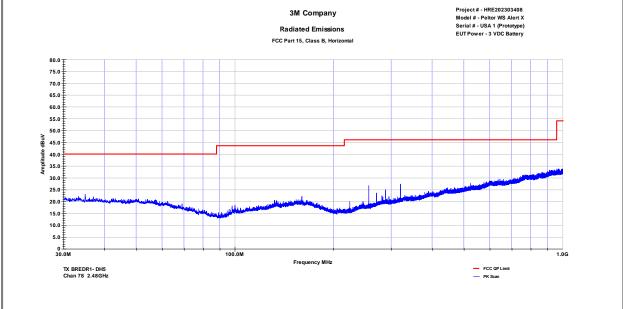
FCC Part 15.209 Radiated Emissions in restricted band – Low Channel (DH5)



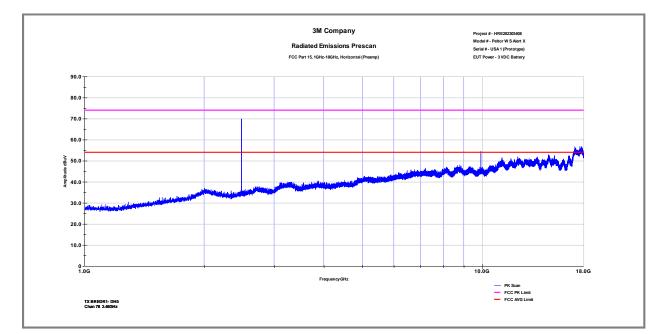


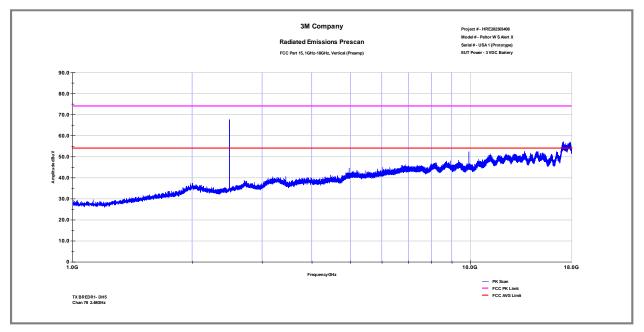
FCC Part 15.209 Radiated Emissions in restricted band – Mid Channel (DH5)





FCC Part 15.209 Radiated Emissions in restricted band – Mid Channel (DH5)





FCC Part 15.209 Radiated Emissions in restricted band - High Channel (DH5)

FCC Part 15.209 Radiated Emissions in restricted band – High Channel (DH5)

Frequency (MHz)	Pol.	QP Reading dBµV/m	Total CF dB	Net at 3 m dBµV/m	Limit (dBµV/m)	Margin dB			
37.22	Н	3.6	17.2	20.9	40	-19.1			
54.44	Н	2.2	18.2	20.4	40	-19.6			
159.89	Н	2.2	18.2	20.4	43.5	-23.1			
256.37	Н	1.7	17	18.6	46	-27.4			
319.01	н	2.1	19.3	21.4	46	-24.6			
845.24	н	3.3	28.8	32.1	46	-13.9			
Notes:		Net Reading (dBµV) = Reading (dBµV) + Antenna CF(dB)+Cable CF(dB) – Amp Gain(dB) Low Channel-DH5							

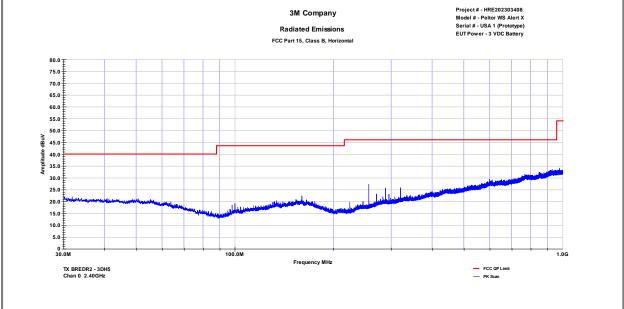
Frequency (MHz)	Pol.	QP Reading dBµV/m	Total CF dB	Net at 3 m dBµV/m	Limit (dBµV/m)	Margin dB			
36.74	Н	3.7	17.2	20.8	40	-19.2			
160.99	Н	2.2	18.2	20.4	43.5	-23.1			
255.65	Н	1.6	16.9	18.5	46	-27.5			
287.18	Н	2	18.4	20.4	46	-25.6			
320.06	V	2.1	19.4	21.6	46	-24.4			
576.44	Н	2.8	24.8	27.6	46	-18.4			
Notes:	Net Reading (dBuV) = Reading (dBµV) + Antenna CF(dB)+Cable CF(dB) – Amp Gain(dB) Mid Channel-DH5								

Frequency (MHz)	Pol.	QP Reading dBµV/m	Total CF dB	Net at 3 m dBµV/m	Limit (dBµV/m)	Margin dB				
34.22	Н	3.9	16.8	20.7	40	-19.3				
37.4	Н	3.4	17.2	20.7	40	-19.3				
159.47	Н	2.2	18.2	20.4	43.5	-23.1				
255.23	Н	1.6	16.9	18.5	46	-27.5				
288.74	Н	1.8	18.4	20.2	46	-25.8				
320.21	н	2.1	19.4	21.5	46	-24.5				
Notes:		Net Reading (dBuV) = Reading (dBµV) + Antenna CF(dB)+Cable CF(dB) – Amp Gain(dB) High Channel-DH5								

3M EMC Laboratory

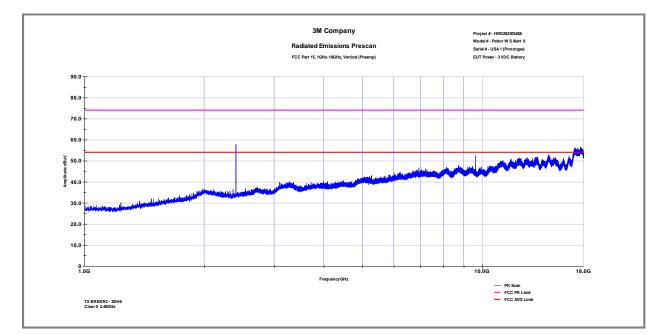
Report Number: HRE202303408-5 Date: September 13, 2024

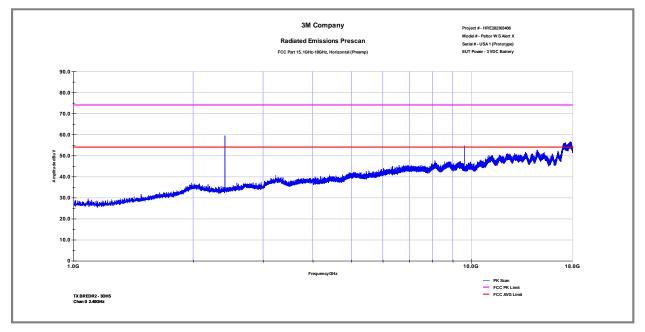
Page 24 of 40


Pol	Frequency (MHz)	Peak dBµV/m	AVG dBµV/m	Total CF dB	Net Peak dBµV/m	Net AVE dBµV/m	PK Limit dBµV/m	AVE Limit dBµV/m	PK Margin dB	AVG Margin dB
V	3689.40	50.18	38.9	-9.85	40.33	29.09	74.00	54.00	-33.67	-24.91
н	3689.40	50.60	38.9	-9.85	40.75	29.09	74.00	54.00	-33.25	-24.91
V	4803.50	50.62	41.6	-6.36	44.26	35.24	74.00	54.00	-29.74	-18.76
Н	4803.50	49.26	39.9	-6.36	42.90	33.55	74.00	54.00	-31.10	-20.45
V	8099.70	47.72	36.5	0.10	47.82	36.60	74.00	54.00	-26.18	-17.40
н	8099.70	47.88	36.6	0.10	47.98	36.74	74.00	54.00	-26.02	-17.26
V	9607.00	55.02	50.0	-0.23	54.79	49.72	74.00	54.00	-19.21	-4.28
Н	9607.00	56.91	52.4	-0.23	56.68	52.15	74.00	54.00	-17.32	-1.85
	Notes: Net Reading (dBuV) = Reading (dBµV) + (Antenna with amp CF(dB)+Cable CF(dB)) Low Channel-DH5									

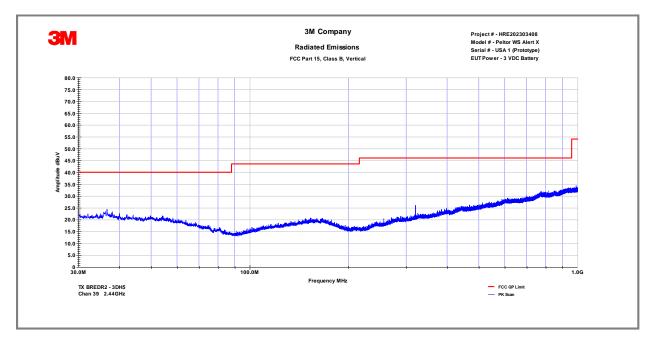
Pol	Frequency (MHz)	Peak dBµV/m	AVG dBµV/m	Total CF dB	Net Peak dBµV/m	Net AVE dBµV/m	PK Limit dBµV/m	AVE Limit dBµV/m	PK Margin dB	AVG Margin dB
V	4880.00	51.42	44.2	-5.30	46.12	38.85	74.00	54.00	-27.88	-15.15
н	4880.00	50.16	42.0	-5.30	44.86	36.67	74.00	54.00	-29.14	-17.33
V	7320.00	48.91	38.5	-2.01	46.90	36.47	74.00	54.00	-27.10	-17.53
н	7320.00	49.04	38.9	-2.01	47.03	36.92	74.00	54.00	-26.97	-17.08
V	9763.50	52.65	46.7	-0.16	52.49	46.55	74.00	54.00	-21.51	-7.45
н	9763.50	53.63	48.0	-0.16	53.47	47.79	74.00	54.00	-20.53	-6.21
	Notes:	Net Reading (dBuV) = Reading (dBµV) + (Antenna with amp CF(dB)+Cable CF(dB))								
	Mid Channel-DH5									

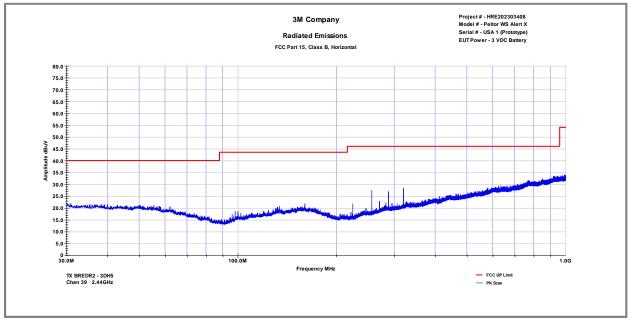
Pol	Frequency (MHz)	Peak dBµV/m	AVG dBµV/m	Total CF dB	Net Peak dBµV/m	Net AVE dBµV/m	PK Limit dBµV/m	AVE Limit dBµV/m	PK Margin dB	AVG Margin dB
V	2700.00	52.19	42.3	-12.21	39.98	30.10	74.00	54.00	-34.02	-23.90
н	2700.00	52.50	42.5	-12.21	40.29	30.24	74.00	54.00	-33.71	-23.76
V	4959.30	51.81	45.0	-5.17	46.64	39.81	74.00	54.00	-27.36	-14.19
н	4959.30	49.55	39.7	-5.17	44.38	34.56	74.00	54.00	-29.62	-19.44
V	7439.40	49.67	40.1	-1.69	47.98	38.41	74.00	54.00	-26.02	-15.59
н	7439.40	49.67	40.1	-1.69	47.98	38.36	74.00	54.00	-26.02	-15.64
V	9919.30	53.08	46.2	0.35	53.43	46.57	74.00	54.00	-20.57	-7.43
н	9919.30	55.48	50.6	0.35	55.83	50.99	74.00	54.00	-18.17	-3.01
	Notes:	Net AVG VBW>1/T=2KHz Reading (dBuV) = Reading (dBµV) + (Antenna with amp CF(dB)+Cable CF(dB)) High Channel-DH5								



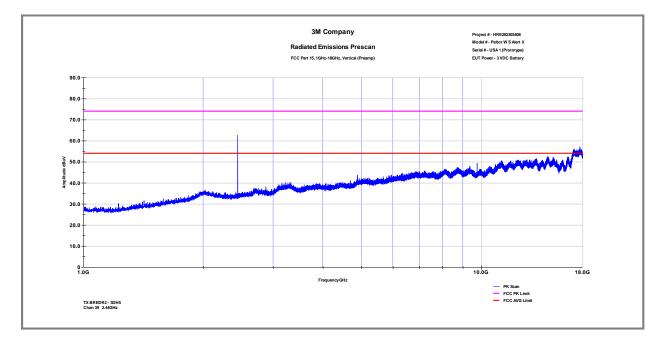


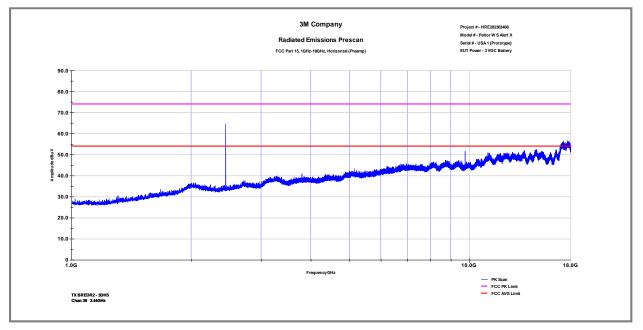
FCC Part 15.209 Radiated Emissions in restricted band - Low Channel (3-DH5)



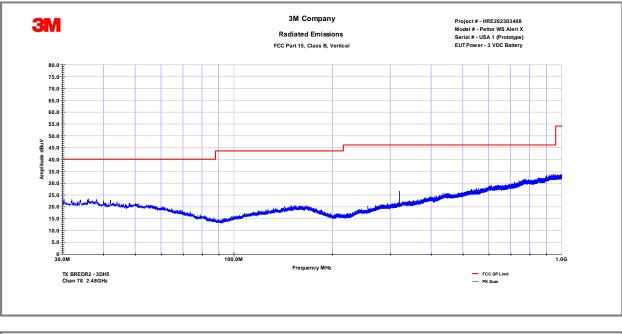


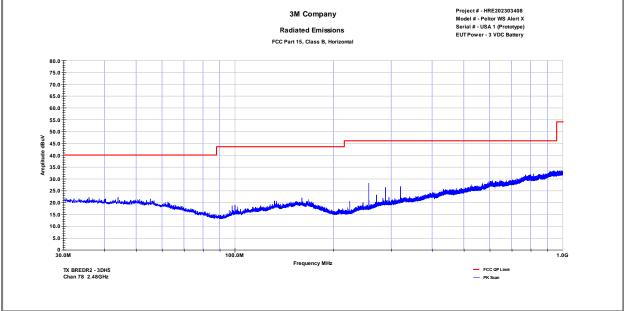
FCC Part 15.209 Radiated Emissions in restricted band - Low Channel (3-DH5)



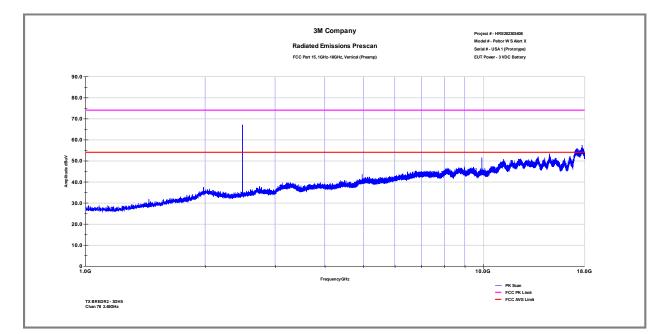


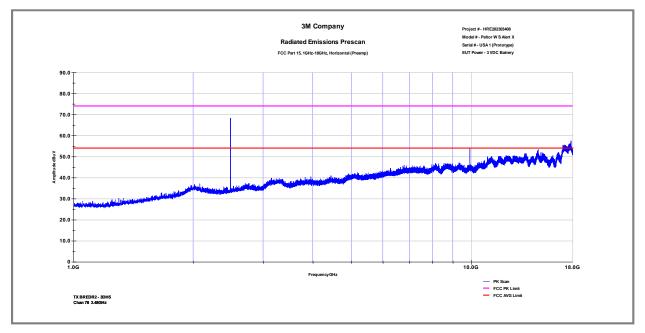
FCC Part 15.209 Radiated Emissions in restricted band – Mid Channel (3-DH5)





FCC Part 15.209 Radiated Emissions in restricted band – Mid Channel (3-DH5)





FCC Part 15.209 Radiated Emissions in restricted band -High Channel (3-DH5)

Tables - Radiated Emissions in restricted band

Frequency (MHz)	Pol.	QP Reading dBµV/m	Total CF dB	Net at 3 m dBµV/m	Limit (dBµV/m)	Margin dB			
32.99	V	3.9	16.7	20.7	40	-19.3			
99.98	Н	3	13.5	16.5	43.5	-27			
132.22	Н	2	16.6	18.6	43.5	-24.9			
255.71	Н	1.6	16.9	18.5	46	-27.5			
288.23	V	1.8	18.4	20.2	46	-25.8			
319.13	Н	2	19.3	21.3	46	-24.7			
Notes:		Net Reading (dBuV) = Reading (dBµV) + Antenna CF(dB)+Cable CF(dB) – Amp Gain(dB) Low Channel-3DH5							

Frequency (MHz)	Pol.	QP Reading dBµV/m	Total CF dB	Net at 3 m dBµV/m	Limit (dBµV/m)	Margin dB				
36.11	Н	3.7	17	20.7	40	-19.3				
160.94	Н	2.2	18.2	20.5	43.5	-23				
224.39	Н	1.8	14.8	16.7	46	-29.3				
256.04	Н	1.7	16.9	18.6	46	-27.4				
288.92	Н	1.9	18.4	20.3	46	-25.7				
320.09	Н	2.1	19.4	21.5	46	-24.5				
Notes:		Net Reading (dBuV) = Reading (dBµV) + Antenna CF(dB)+Cable CF(dB) – Amp Gain(dB) Mid Channel-3DH5								

Frequency (MHz)	Pol.	QP Reading dBµV/m	Total CF dB	Net at 3 m dBµV/m	Limit (dBµV/m)	Margin dB				
35.33	н	3.8	17	20.7	40	-19.3				
159.5	V	2.2	18.2	20.4	43.5	-23.1				
255.41	Н	1.6	16.9	18.5	46	-27.5				
287.96	Н	2	18.4	20.4	46	-25.6				
320.27	V	2.1	19.4	21.5	46	-24.5				
770.84	Н	3.1	28.4	31.5	46	-14.5				
Notes:		Net Reading (dBuV) = Reading (dBµV) + Antenna CF(dB)+Cable CF(dB) – Amp Gain(dB) Mid Channel-3DH5								

3M EMC Laboratory

Report Number: HRE202303408-5 Date: September 13, 2024

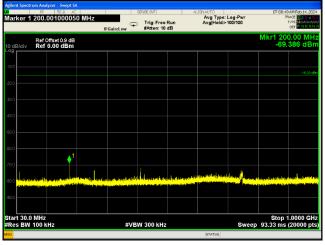
Page 32 of 40

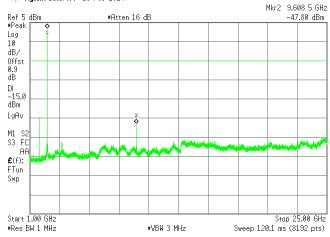
Pol	Frequency (MHz)	Peak dBµV/m	AVG dBµV/m	Total CF dB	Net Peak dBµV/m	Net AVE dBµV/m	PK Limit dBµV/m	AVE Limit dBµV/m	PK Margin dB	AVG Margin dB
V	3689.40	50.67	39.1	-9.85	40.82	29.28	74.00	54.00	-33.18	-24.72
н	3689.40	49.67	39.2	-9.85	39.82	29.30	74.00	54.00	-34.18	-24.70
V	4803.50	50.60	41.9	-6.36	44.24	35.52	74.00	54.00	-29.76	-18.48
н	4803.50	50.49	39.7	-6.36	44.13	33.30	74.00	54.00	-29.87	-20.70
V	8099.70	47.39	36.4	0.10	47.49	36.46	74.00	54.00	-26.51	-17.54
н	8099.70	47.93	36.4	0.10	48.03	36.51	74.00	54.00	-25.97	-17.49
V	9608.00	54.84	48.4	-0.23	54.61	48.21	74.00	54.00	-19.39	-5.79
н	9608.00	57.25	51.3	-0.23	57.02	51.10	74.00	54.00	-16.98	-2.90
	Notes:	Net Reading (dBuV) = Reading (dBµV) + (Antenna with amp CF(dB)+Cable CF(dB)) Low Channel-3DH5								

Pol	Frequency (MHz)	Peak dBµV/m	AVG dBµV/m	Total CF dB	Net Peak dBµV/m	Net AVE dBµV/m	PK Limit dBµV/m	AVE Limit dBµV/m	PK Margin dB	AVG Margin dB
V	4880.90	50.92	42.4	-5.30	45.62	37.14	74.00	54.00	-28.38	-16.86
н	4880.90	49.85	40.28	-5.30	44.55	-5.30	74.00	54.00	-29.45	-19.02
V	7320.00	48.25	37.1	-2.01	46.24	35.09	74.00	54.00	-27.76	-18.91
н	7320.00	48.30	37.2	-2.01	46.29	35.15	74.00	54.00	-27.71	-18.85
V	9763.50	52.12	44.6	-0.16	51.96	44.44	74.00	54.00	-22.04	-9.56
н	9763.50	53.84	47.1	-0.16	53.68	46.91	74.00	54.00	-20.32	-7.09
	Notes:	Net Reading (dBuV) = Reading (dBµV) + (Antenna with amp CF(dB)+Cable CF(dB))								
	Notes.	Mid Channel-3DH5								

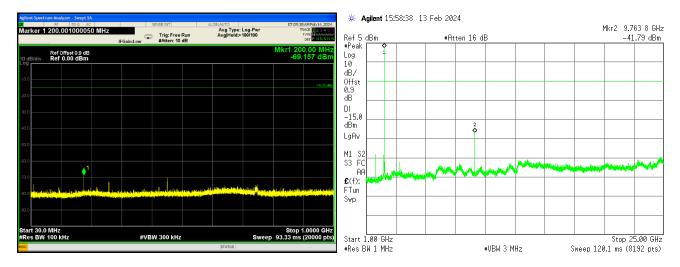
Pol	Frequency (MHz)	Peak dBµV/m	AVG dBµV/m	Total CF dB	Net Peak dBµV/m	Net AVE dBµV/m	PK Limit dBµV/m	AVE Limit dBµV/m	PK Margin dB	AVG Margin dB
V	2700.00	51.81	41.5	-12.21	39.60	29.27	74.00	54.00	-34.40	-24.73
н	2700.00	51.83	41.1	-12.21	39.62	28.84	74.00	54.00	-34.38	-25.16
V	4959.30	51.82	44.0	-5.17	46.65	38.82	74.00	54.00	-27.35	-15.18
н	4959.30	49.42	39.5	-5.17	44.25	34.30	74.00	54.00	-29.75	-19.70
V	7439.40	49.49	39.0	-1.69	47.80	37.35	74.00	54.00	-26.20	-16.65
н	7439.40	49.12	38.9	-1.69	47.43	37.24	74.00	54.00	-26.57	-16.76
V	9919.30	49.22	39.1	0.35	49.57	39.41	74.00	54.00	-24.43	-14.59
н	9919.30	49.27	38.9	0.35	49.62	39.21	74.00	54.00	-24.38	-14.79
	Notes:	Reading (dBuV) = Reading (dBµV) + (Antenna with amp CF(dB)+Cable CF(dB)) High Channel-3DH5								

4.7	Radiated Emissio	ns in non-restricted band	
Method:		nd spurious emissions were investigated from 30M made with transmitter set to transmit continuously at	
		Laboratory Ambient Temperature:	23°C
		Relative Humidity:	48%
		Atmospheric Pressure:	1011 mbars
Reference Standard(s):		 ☑ ANSI C63.10:2020, Section 11.11 ☑ FCC Part 15.247/RSS Gen (8.9) ☑ KDB 558074 	Measurement Point
1	Frequency Range:	⊠ 2402.0-2480.0MHz	
In-band	power in 100KHz:	⊠ 4.8dBm	Results:
Limit:		☐ -25.2dBm (30dBc below in-band power)	>37dBc
	Nominal Voltage:	□ 120VAC 🛛 3.0VDC	
	Test Personnel:	Yuriy Litvinov your distins	Date: 02/13/2024

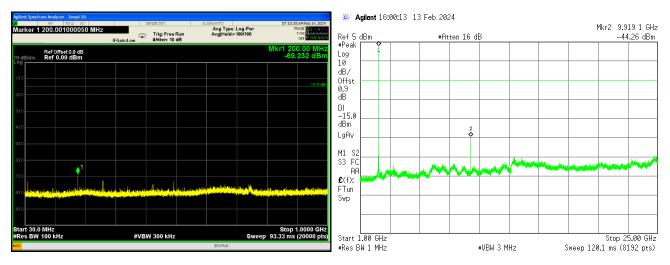

Note: Out-of -the band conducted spurious emissions were investigated for all data rates and the worst-case emissions were found with the EUT transmitting at 3mbps..


3M EMC Laboratory

Report Number: HRE202303408-5 Date: September 13, 2024

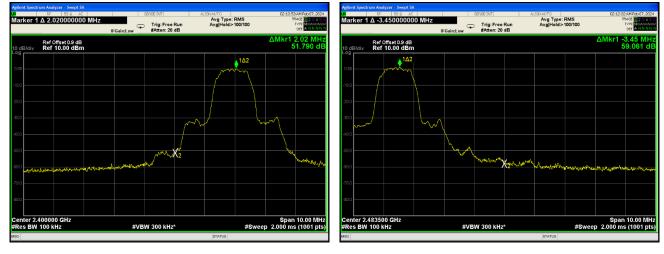

🔆 Agilent 15:57:06 13 Feb 2024

Page 34 of 40



Conducted Spurious - Low Channel (3-DH5)

Conducted Spurious – Mid Channel (3-DH5)


Conducted Spurious – High Channel (3-DH5)

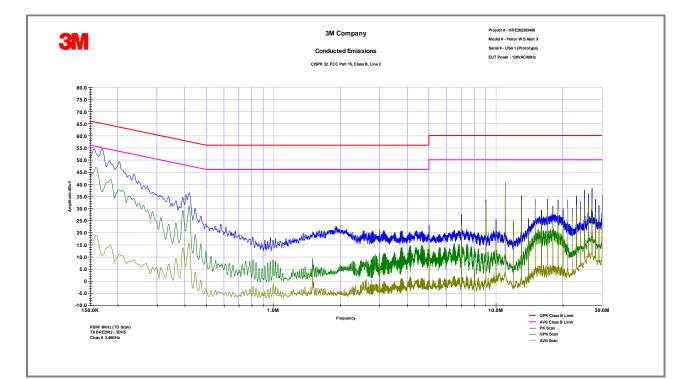
3M

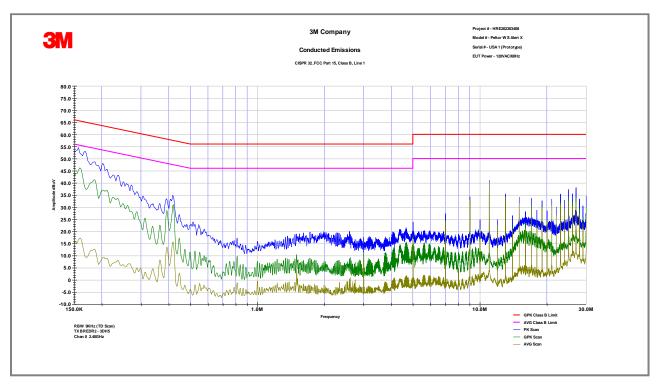
4.8	Band-Edge Co	dge Compliance			
Method:	The measurements were made with transmitter set to transmit continuously with modulated signal at low and high channels.				
		Laboratory Ambient Temperature:	23°C		
		Relative Humidity:	48%		
		Atmospheric Pressure:	1011 mbars		
Reference Standard(s):		 ANSI C63.10:2020, Section 6.10.4 FCC Part 15.247/RSS 247 KDB 558074 	Measurement Point Conducted Radiated		
Frequency Range:		🔀 2402.0-2480.0 MHz	Results		
Limit:		⊠ >30dBc	Low Ch., 2402 MHz > 51dBc High Ch., 2480 MHz > 59dBc		
Nominal Voltage:		□ 120VAC 🖾 3.0VDC			
Test Personnel:		Yuriy Litvinov you'd divina	Date: 02/07/2024		

Note: Out-of-band conducted spurious emissions at the band edge were investigated for all data rates in hopping and no-hopping modes. The worst-case emissions were found with the EUT transmitting at 3mbps. Plots of the worst-case emissions are shown below.

Band Edge - Low Channel Hopping Disabled Center Freq. 2.400GHz

Band Edge - High Channel Hopping Disabled Center Freq. 2.4835GHz


Band Edge - Low Channel Hopping Enabled Center Freq. 2.400GHz


Band Edge - High Channel Hopping Enabled Center Freq. 2.4835GHz

4.9	Conducted Emissions Data					
	The AMN was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane. This distance was between the closest points of the AMN and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the AMN. All power was connected to the system through Artificial Mains Network (AMN). Conducted voltage measurements on mains lines were made at the output of the AMN.					
Method:	All power was connected to the system through Artificial Mains Network (AMN). All tested telecommunications lines were connected to an Asymmetric Artificial Network (AAN) and conducted voltage measurements on telecommunications lines were made at the output of the ISN. Where an AAN was not appropriate or available measurements were made using a Capacitive Voltage Probe.					
· · · · · · · · · · · · · · · · · · ·			Laboratory Ambient Temperature:		23°C	
	Test Verifi	cation: 🛛	Relative Humidity:		48%	
			Atmosph	eric Pressure:	1011 mbars	
Reference Standard(s):			 ☑ FCC 15.207/RSS Gen (8.8) ☑ ANSI C63.4:2014 ☑ ANSI C63.10:2020 		Measurement Point Mains Telecommunication ports	
Nominal Voltage:			☑ 120VAC □ 230VAC □ 3.0VDC			
Test Personnel:			Keith Schwartz KS	Date: 02/08/2	02/08/2024	
Limits – Part 15.207/RSS Gen – AC Mains						
Frequenc		Limit dB (µV)				
		Quasi-Peak	Average	Result	Comments	
0.15 to	0.50	66 to 56	56 to 46	pass	Time Domain Scan	
0.50	to 5	56	46	pass	Time Domain Scan	
5 to	30	60	50	pass	Time Domain Scan	

Modifications:	
Note:	

3M EMC Laboratory

4.8 RF Exposure Evaluation				
Reference Standard(s):	 ☑ KDB 447498 RF Exposure Guidance v06 □ KDB 447498 Interim RF Exposure Guidance v01 ☑ RSS 102, Issue 5 □ 	 ☐ MPE ☐ SAR Evaluation ☑ SAR Test Exclusion 		
Frequency Range(s):	□ 911-918.5MHz ⊠ 2402-2480.0MHz □			
	r			
Antenna Separation Distance:	>40mm			
RF Exposure Conditions:	Portable (Body-worn)			
2.4GHz Antenna Gain:	2.7dBi			
BT EDR the source-based conducted output power:	3.0mW(4.8dBm)*0.7(FHSS worst case duty cycle)= 2.1mW(3.2dBm)			
BT EDR EIRP/ERP output power:	EIRP=3.2dBm + 2.7dBi=5.9dBm, ERP=5.9dBm - 2.15dB=3.75dBm(2.4mW)			
BLE the source-based conducted output power:	1.3 mVV(10Bm) ² U 85(WOrst case duty cycle)= 1.1 mVV(U 40Bm)			
BLE EIRP/ERP output power:	EIRP=0.4dBm + 2.7dBi=3.1dBm, ERP=3.1dBm - 2.15dB= 0.95dBm(1.2mW)			
The SAR Exclusion Threshold Level				
FCC Part 2.1093	77mW<40mm @2.45GHz			
RSS 102, Issue 5	173mW>40mm @2.45GHz			

Note:

5.0	Test Equipment				
Test Equipment Used					
Description	Manufacturer	Model	Identifier	Last Cal. Date	Check
Biconilog Antenna	Schwarzbeck	VULB 9168	9168-1070	10/20/2023	\boxtimes
Horn Antenna	A.H. Systems	SAS 571	1010	10/20/2023	\boxtimes
Loop Antenna	A.H. Systems	EHA-51B	1213E	10/20/2023	
EMI Receiver	Rohde & Schwarz	ESW26	101412	10/20/2023	\boxtimes
Signal Analyzer	Agilent	N9000A	MY53031040	10/20/2023	\boxtimes
EMI Receiver	Agilent	E4448A	1530975	10/20/2023	\boxtimes
LISN	TESEQ	NNB51	1130	10/20/2023	\boxtimes
Coaxial Cable	Insulated Wire	2803	CBL2039	10/20/2023	
EMC Software	ETS-Lindgren	TILE 7		N/A	
Equipment C	alibration Interval:		12 months	24 months	

6.0	Report revision history				
Revisio	n Level	Date	Report Number	Notes	
	0	09/12/2024	HRE202303408-5	Original Issue	