Ossia, Inc.

TEST REPORT FOR

Cota WPT Source Model: Cota Tx203

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.247 (DTS 2400-2483.5 MHz)

Report No.: 103895-3

Date of issue: July 8, 2020

Test Certificate #803.01

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 110 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	
Software Versions	
Site Registration & Accreditation Information	
Summary of Results	
Modifications During Testing	
Conditions During Testing	
Equipment Under Test	6
General Product Information	6
FCC Part 15 Subpart C	g
15.247(a)(2) 6dB Bandwidth	
15.247(b)(3) Output Power	12
15.247(e) Power Spectral Density	15
15.247(d) RF Conducted Emissions & Band Edge	18
15.247(d) Radiated Emissions & Band Edge	31
15.207 AC Conducted Emissions	57
Appendix A: Co-Location Testing	71
Supplemental Information	109
Measurement Uncertainty	109
Fmissions Test Details	109

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Ossia, Inc.
Darcy Thompson
CKC Laboratories, Inc.
Bellevue, WA 98004
South Sierra Pines Drive
Mariposa, CA 95338

Representative: Bob McDonald Project Number: 103895

Customer Reference Number: 13172

DATE OF EQUIPMENT RECEIPT:DATE(S) OF TESTING:
June 13, 2020
June 13-29, 2020

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Steve J Be

Page 3 of 110 Report No.: 103895-3

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 22116 23rd Drive S.E., Suite A Canyon Park, Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.12

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Japan
Canyon Park, Bothell, WA	US0081	US1022	A-0136
Brea, CA	US0060	US1025	A-0136
Fremont, CA	US0082	US1023	A-0136
Mariposa, CA	US0103	US1024	A-0136

^{*}CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

Page 4 of 110 Report No.: 103895-3

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (DTS)

Test Procedure	Description	Modifications	Results
15.247(a)(2)	6dB Bandwidth	NA	Pass
15.247(b)(3)	Output Power	NA	Pass
15.247(e)	Power Spectral Density	NA	Pass
15.247(d)	RF Conducted Emissions & Band Edge	NA	Pass
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summ	ary of	Cond	itions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions	
None	

Page 5 of 110 Report No.: 103895-3

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model #	S/N
Cota WPT Source	Ossia, Inc.	Cota Tx203	OR-001

Support Equipment:

Device	Manufacturer	Model #	S/N
USB 2.0 Extension Cable	Blue Rigger	32 ft (10m)	NA
AC Adapter (for PoE Injector)	GlobTek, Inc.	GTM961808P18054-T3	NA
PoE Injector	Ossia, Inc.	OL-10282	NA
Laptop	Apple	MacBook Pro A1398	NA
USB Hub	AmazonBasics	B00DQFGJR4	NA
Thunderbolt to Ethernet adapter	Apple	A1433	NA

Configuration 2

Equipment Tested:

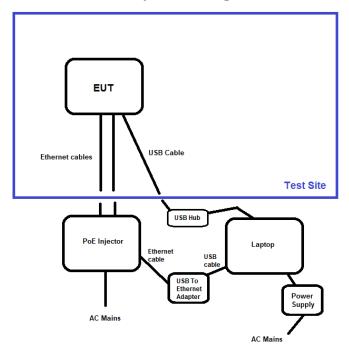
Device	Manufacturer	Model #	S/N
Cota WPT Source	Ossia, Inc.	Cota Tx203	OR-001

Support Equipment:

TI II			
Device	Manufacturer	Model #	S/N
USB 2.0 Extension Cable	Blue Rigger	32 ft (10m)	NA
AC/DC Switching Adapter	Mean Well	GST220A12	NA
Laptop	Apple	MacBook Pro A1398	NA
USB Hub	AmazonBasics	B00DQFGJR4	NA
Thunderbolt to Ethernet adapter	Apple	A1433	NA

General Product Information:

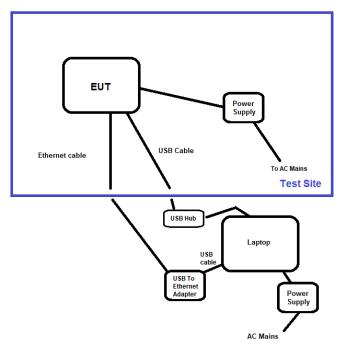
Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	Zigbee 802.15.4
Operating Frequency Range:	2405-2480MHz
Modulation Type(s):	OQPSK
Maximum Duty Cycle:	100% tested as worst case
Number of TX Chains:	1
Antenna Type(s) and Gain:	External Dipole 2dBi
Beamforming Type:	NA
Antenna Connection Type:	External Connector
Nominal Input Voltage:	120VAC, 60Hz
Firmware / Software used for Test:	0x2524CF1


Page 6 of 110 Report No.: 103895-3

Block Diagram of Test Setup(s)

Configuration 1

Test Setup Block Diagram



Page 7 of 110 Report No.: 103895-3

Configuration 2

Test Setup Block Diagram

FCC Part 15 Subpart C

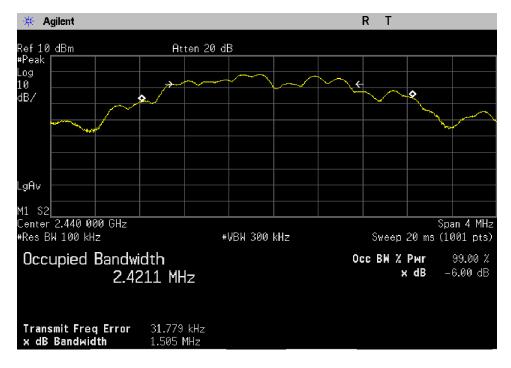
15.247(a)(2) 6dB Bandwidth

Test Setup/Conditions				
Test Location:	Bothell Lab C3	Test Engineer:	S. Pittsford	
Test Method:	ANSI C63.10 (2013) KDB 558074 (April 2, 2019)	Test Date(s):	6/13/2020	
Configuration: 2				
Test Setup:				

Environmental Conditions				
Temperature (°C) 22 Relative Humidity (%): 38				

Test Equipment							
Asset# Description Manufacturer Model Cal Date Cal Due							
P06243	Attenuator	Weinschel	54A-10	1/27/2020	1/27/2022		
P06678	Cable	Astrolab	32026-29801-29801-144	2/20/2020	2/20/2022		
02673	Spectrum Analyzer	Agilent	E4446A	2/22/2019	2/22/2021		

Test Data Summary						
Frequency Antenna Modulation Measured (kHz)					Results	
2405	1	OQPSK	1612	≥500	Pass	
2440	1	OQPSK	1505	≥500	Pass	
2480	1	OQPSK	1599	≥500	Pass	


Page 9 of 110 Report No.: 103895-3

Plot(s)

Low Channel

Middle Channel

High Channel

Test Setup Photo(s)

Page 11 of 110 Report No.: 103895-3

15.247(b)(3) Output Power

Test Setup / Conditions					
Test Location:	Bothell Lab C3	Test Engineer:	S. Pittsford		
Test Method:	ANSI C63.10 (2013) KDB 558074 (April 2, 2019)	Test Date(s):	6/13/2020		
Configuration:	2				
Test Setup:	Test Mode: Continuously Modulated. The EUT's antenna port is connected directly to the spectrum analyzer through a RF cable and an attenuator.				
	System losses are corrected for internal to the spectrum analyzer.				
	No change in power observed at	extreme voltages.			

Environmental Conditions					
Temperature (°C) 22 Relative Humidity (%): 38					

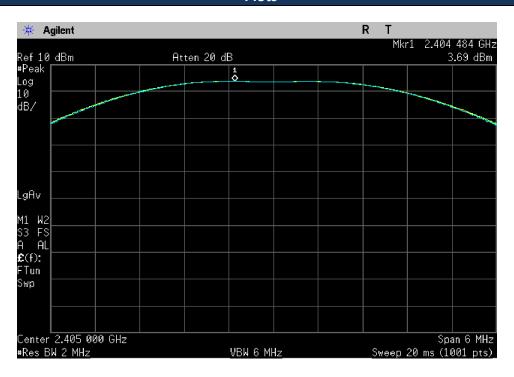
Test Equipment							
Asset# Description Manufacturer Model Cal Date Cal Due							
P06243	Attenuator	Weinschel	54A-10	1/27/2020	1/27/2022		
P06678	Cable	Astrolab	32026-29801-29801-144	2/20/2020	2/20/2022		
02673	Spectrum Analyzer	Agilent	E4446A	2/22/2019	2/22/2021		

Test Data Summary - Voltage Variations							
Frequency (MHz) Modulation / Ant Port V _{Minimum} V _{Nominal} V _I (dBm) (dBm) (Max Deviation from V _{Nominal} (dB)		
2405	OQPSK	3.69	3.69	3.69	0.00		
2440	OQPSK	3.42	3.42	3.42	0.00		
2480	OQPSK	2.91	2.91	2.91	0.00		

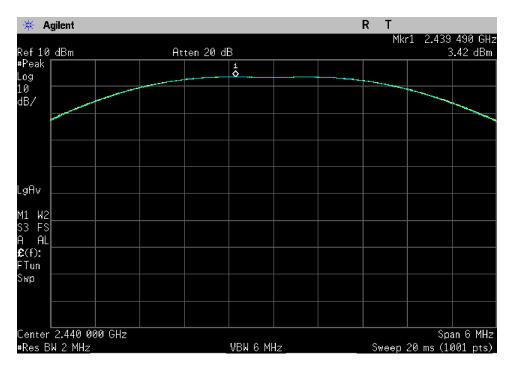
Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:

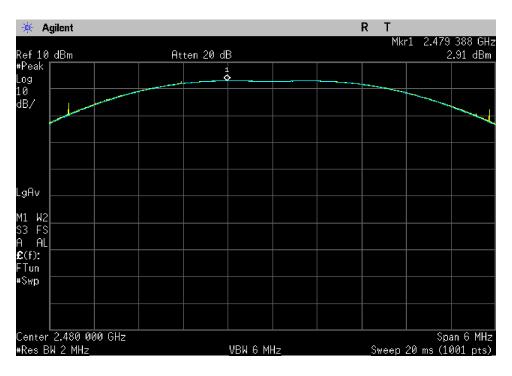
Measurements performed at input voltage Vnominal ± 15%.


Parameter	Value
V _{Nominal} :	85Vrms
V _{Minimum} :	120Vrms
V _{Maximum} :	276Vrms

	Power Output Test Data Summary - RF Conducted Measurement						
Measuremen	t Option: RBW > DTS Ba	ndwidth					
Frequency (MHz) Ant. Type / Measured Limit (MHz) Gain (dBi) (dBm) Results							
2405	OQPSK	Dipole 2dBi	3.69	≤30	Pass		
2440	OQPSK	Dipole 2dBi	3.42	≤30	Pass		
2480	OQPSK	Dipole 2dBi	2.91	≤30	Pass		


Page 12 of 110 Report No.: 103895-3

Plots



Low Channel

Middle Channel

High Channel

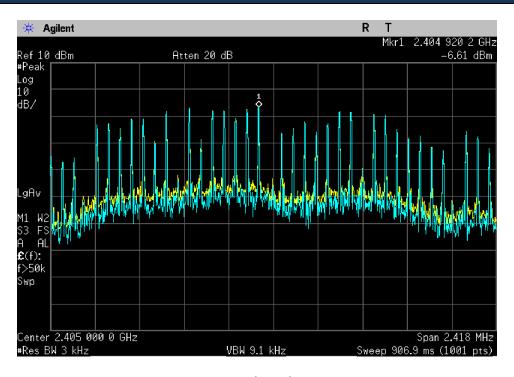
Test Setup Photo(s)

Page 14 of 110 Report No.: 103895-3

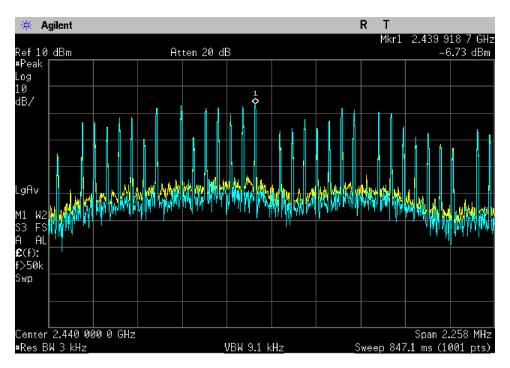
15.247(e) Power Spectral Density

Test Setup / Conditions / Data					
Test Location:	Bothell Lab C3	Test Engineer:	S. Pittsford		
Test Method:	ANSI C63.10 (2013) KDB 558074 (April 2, 2019)	Test Date(s):	6/13/2020		
Configuration:	2				
Test Setup:	Test Mode: Continuously Modula The EUT's antenna port is connect and an attenuator.		ectrum analyzer through a RF cable		
	System losses are corrected for in	iternal to the spectrur	n analyzer.		

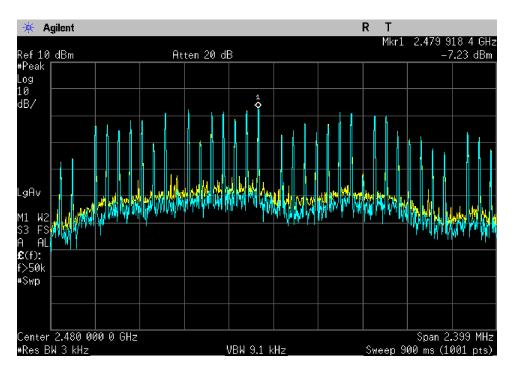
Environmental Conditions					
Temperature (°C)	22	Relative Humidity (%):	38		


Test Equipment						
Asset# Description Manufacturer Model Cal Date Cal Due						
P06243	Attenuator	Weinschel	54A-10	1/27/2020	1/27/2022	
P06678	Cable	Astrolab	32026-29801-29801-144	2/20/2020	2/20/2022	
02673	Spectrum Analyzer	Agilent	E4446A	2/22/2019	2/22/2021	

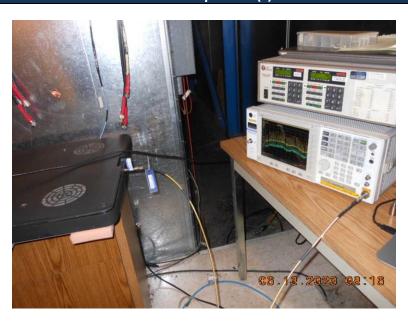
	PSD Test Data Summary - RF Conducted Measurement									
Measurement Method: PKPSD										
Frequency (MHz)	Modulation	Measured (dBm/3kHz)	Limit (dBm/3kHz)	Results						
2405	OQPSK	-6.61	≤8	Pass						
2440	OQPSK	-6.73	≤8	Pass						
2480	OQPSK	-7.23	≤8	Pass						


Page 15 of 110 Report No.: 103895-3

Plots



Low Channel


Middle Channel

High Channel

Test Setup Photo(s)

Page 17 of 110 Report No.: 103895-3

15.247(d) RF Conducted Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Ossia, Inc.

Specification: 15.247(d) Conducted Spurious Emissions

 Work Order #:
 102446
 Date:
 6/13/2020

 Test Type:
 Conducted Emissions
 Time:
 09:00:20

Tested By: Steven Pittsford Sequence#: 1

Software: EMITest 5.03.19 115V 60Hz

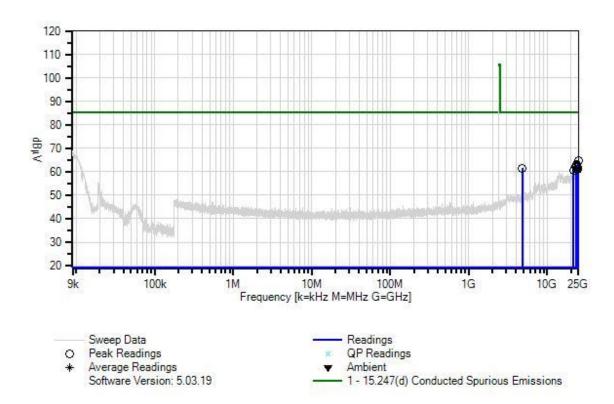
Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:


Test Mode: Continuously Modulated EUT is transmitting on Low channel

The EUT's antenna port is connected directly to the spectrum analyzer through a RF cable and an attenuator.

Page 18 of 110 Report No.: 103895-3

Ossia, Inc. WO#: 102446 Sequence#: 1 Date: 6/13/2020 15.247(d) Conducted Spurious Emissions High Test Lead: 115V 60Hz Antenna

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06243	Attenuator	54A-10	1/27/2020	1/27/2022
T2	ANP06678	Cable	32026-29801-	2/20/2020	2/20/2022
			29801-144		
	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021

Page 19 of 110 Report No.: 103895-3

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	l: Antenna	l	
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	24973.811	44.8	+10.0	+10.0			+0.0	64.8	85.5	-20.7	Anten
	M										
	22700.010	42.0	10.0	^ 7			0.0	52.0	07.7	22.5	
2	23598.910	43.0	+10.2	+9.7			+0.0	62.9	85.5	-22.6	Anten
	M										
2	23520.345	42.6	+10.2	+9.7			+0.0	62.5	85.5	-23.0	Anten
3	23320.343 M	42.0	+10.2	±3.1			+0.0	02.3	65.5	-23.0	Amen
	141										
4	23206.082	42.4	+10.1	+9.6			+0.0	62.1	85.5	-23.4	Anten
	M			.,,,,							
5	23376.307	42.2	+10.2	+9.7			+0.0	62.1	85.5	-23.4	Anten
	M										
6	24253.625	41.8	+10.0	+9.9			+0.0	61.7	85.5	-23.8	Anten
	M										
	24100 500	41.0	10.0	0.0			0.0	61.7	05.5	22.0	
7	24109.588	41.9	+10.0	+9.8			+0.0	61.7	85.5	-23.8	Anten
	M										
Q	4808.955M	48.0	+9.8	+3.8			+0.0	61.6	85.5	-23.9	Anten
8	4000.933WI	46.0	+9.0	+3.6			+0.0	01.0	65.5	-23.9	Amen
9	24607.171	41.1	+10.0	+10.0			+0.0	61.1	85.5	-24.4	Anten
	M	11.1	110.0	110.0			10.0	01.1	03.3	21.1	7 1111011
10	24384.568	41.2	+10.0	+9.9			+0.0	61.1	85.5	-24.4	Anten
	M										
11	23886.985	41.1	+10.0	+9.7			+0.0	60.8	85.5	-24.7	Anten
	M										
12	21516.918	41.2	+10.2	+9.2			+0.0	60.6	85.5	-24.9	Anten
	M										

Page 20 of 110 Report No.: 103895-3

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Ossia, Inc.

Specification: 15.247(d) Conducted Spurious Emissions

 Work Order #:
 102446
 Date:
 6/13/2020

 Test Type:
 Conducted Emissions
 Time:
 09:24:57

Tested By: Steven Pittsford Sequence#: 3

Software: EMITest 5.03.19 115V 60Hz

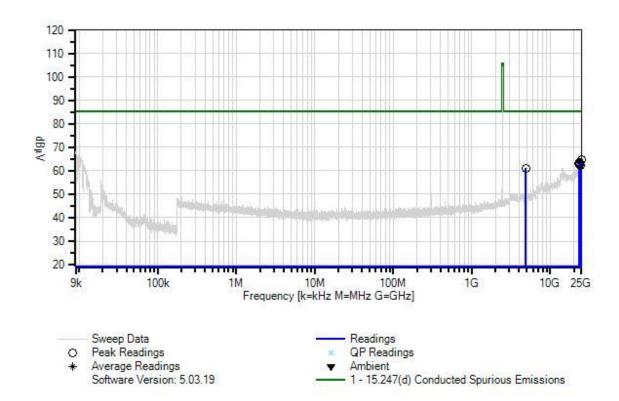
Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:


Test Mode: Continuously Modulated EUT is transmitting on Mid channel

The EUT's antenna port is connected directly to the spectrum analyzer through a RF cable and an attenuator.

Page 21 of 110 Report No.: 103895-3

Ossia, Inc. WO#: 102446 Sequence#: 3 Date: 6/13/2020 15.247(d) Conducted Spurious Emissions High Test Lead: 115V 60Hz Antenna

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06243	Attenuator	54A-10	1/27/2020	1/27/2022
T2	ANP06678	Cable	32026-29801- 29801-144	2/20/2020	2/20/2022
	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021

Page 22 of 110 Report No.: 103895-3

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Antenna	ı	
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	24895.246	44.9	+10.0	+10.0			+0.0	64.9	85.5	-20.6	Anten
	M										
2	23677.476 M	43.8	+10.1	+9.7			+0.0	63.6	85.5	-21.9	Anten
3	23546.533 M	43.3	+10.2	+9.7			+0.0	63.2	85.5	-22.3	Anten
4	23926.268 M	43.5	+10.0	+9.7			+0.0	63.2	85.5	-22.3	Anten
5	23271.553 M	43.3	+10.1	+9.6			+0.0	63.0	85.5	-22.5	Anten
6	23454.873 M	43.0	+10.2	+9.7			+0.0	62.9	85.5	-22.6	Anten
7	23402.496 M	42.8	+10.2	+9.7			+0.0	62.7	85.5	-22.8	Anten
8	24135.777 M	42.4	+10.0	+9.8			+0.0	62.2	85.5	-23.3	Anten
9	4878.960M	47.3	+9.8	+3.9			+0.0	61.0	85.5	-24.5	Anten

Page 23 of 110 Report No.: 103895-3

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Ossia, Inc.

Specification: 15.247(d) Conducted Spurious Emissions

 Work Order #:
 102446
 Date:
 6/13/2020

 Test Type:
 Conducted Emissions
 Time:
 09:15:30

Tested By: Steven Pittsford Sequence#: 2

Software: EMITest 5.03.19 115V 60Hz

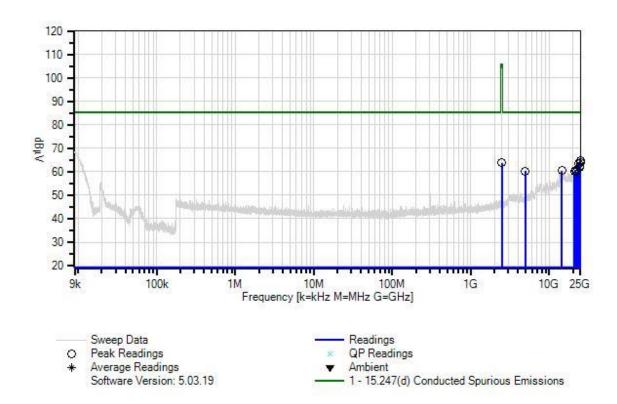
Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:


Test Mode: Continuously Modulated EUT is transmitting on High channel

The EUT's antenna port is connected directly to the spectrum analyzer through a RF cable and an attenuator.

Page 24 of 110 Report No.: 103895-3

Ossia, Inc. WO#: 102446 Sequence#: 2 Date: 6/13/2020 15.247(d) Conducted Spurious Emissions High Test Lead: 115V 60Hz Antenna

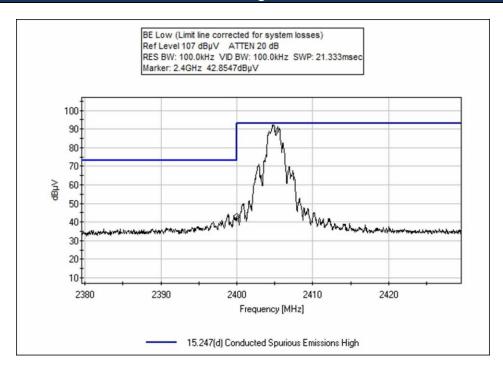
Test Equipment:

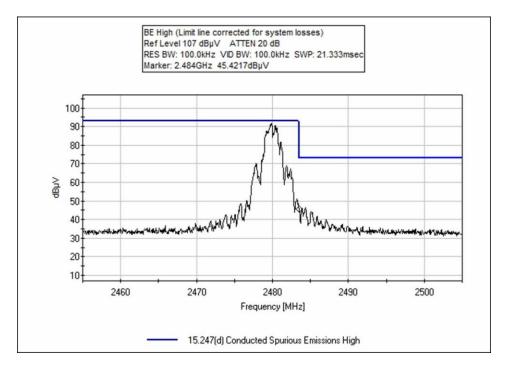
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06243	Attenuator	54A-10	1/27/2020	1/27/2022
T2	ANP06678	Cable	32026-29801-	2/20/2020	2/20/2022
			29801-144		
	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021

Page 25 of 110 Report No.: 103895-3

Measu	rement Data:	Re	eading lis	ted by ma	ırgin.			Test Lead	d: Antenna	l	
#	Freq MHz	Rdng dBµV	T1 dB	T2 dB	dB	dB	Dist Table	Corr dBµV	Spec dBµV	Margin dB	Polar Ant
1	24986.906 M	44.9	+10.0	+10.0	ць	αБ	+0.0	64.9	85.5	-20.6	Anten
2	24842.868 M	44.0	+10.0	+10.0			+0.0	64.0	85.5	-21.5	Anten
3	2483.754M	51.2	+9.8	+2.7			+0.0	63.7	85.5	-21.8	Anten
4	23598.910 M	43.5	+10.2	+9.7			+0.0	63.4	85.5	-22.1	Anten
5	24109.588 M	42.6	+10.0	+9.8			+0.0	62.4	85.5	-23.1	Anten
6	24371.474 M	41.9	+10.0	+9.9			+0.0	61.8	85.5	-23.7	Anten
7	21516.918 M	41.3	+10.2	+9.2			+0.0	60.7	85.5	-24.8	Anten
8	14406.716 M	43.2	+10.0	+7.3			+0.0	60.5	85.5	-25.0	Anten
9	21372.880 M	41.2	+10.1	+9.2			+0.0	60.5	85.5	-25.0	Anten
10	4958.955M	46.4	+9.8	+4.0			+0.0	60.2	85.5	-25.3	Anten
11	22590.650 M	40.8	+10.0	+9.3			+0.0	60.1	85.5	-25.4	Anten
12	20822.920 M	40.7	+10.0	+9.3			+0.0	60.0	85.5	-25.5	Anten

Page 26 of 110 Report No.: 103895-3


Band Edge


	Band Edge Summary								
Limit applied: Max Power/100kHz - 20dB.									
Frequency Modulation Measured Limit Results									
(MHz)		(dBμV)	(dBμV)						
2400.0	OQPSK	56.8	<85.5	Pass					
2483.5	OQPSK	57.9	<85.5	Pass					

Page 27 of 110 Report No.: 103895-3

Band Edge Plots

Page 28 of 110 Report No.: 103895-3

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Ossia, Inc.

Specification: 15.247(d) Conducted Spurious Emissions High

Work Order #: 102446 Date: 6/13/2020
Test Type: Conducted Emissions Time: 09:08:11
Tested By: Steven Pittsford Sequence#: 2

Software: EMITest 5.03.12 115V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Mode: Continuously Modulated

EUT is transmitting on Low channel.

The EUT's antenna port is connected directly to the spectrum analyzer through a RF cable and an attenuator.

Test Location: Bothell Lab C3

Test Method: ANSI C63.10 (2013) KDB 558074 (April 2, 2019)

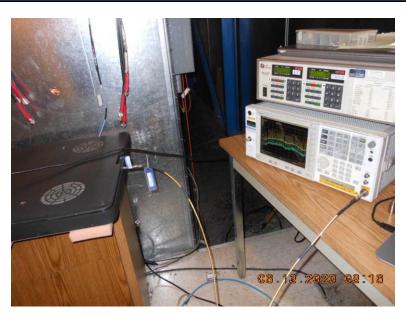
Temperature (°C) 22

Relative Humidity (%): 38

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06243	Attenuator	54A-10	1/27/2020	1/27/2022
T2	ANP06678	Cable	32026-29801-29801-144	2/20/2020	2/20/2022
	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021

 Measurement Data:
 Reading listed by margin.
 Test Lead: Antenna


 # Freq Rdng T1 T2
 Dist Corr Spec

ĺ	#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
		MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
	1	2483.500M	45.4	+9.8	+2.7			+0.0	57.9	85.5	-27.6	Anten
	2	2400.000M	44.3	+9.9	+2.6			+0.0	56.8	85.5	-28.7	Anten

Page 29 of 110 Report No.: 103895-3

Test Setup Photo(s)

Page 30 of 110 Report No.: 103895-3

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Ossia, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 103895 Date: 6/15/2020
Test Type: Maximized Emissions Time: 09:05:56
Tested By: S. Pittsford/M. Atkinson Sequence#: 4

Software: EMITest 5.03.12

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Frequency range tested: 9kHz-25GHz Test Mode: Continuously Modulated

EUT is on a 0.8m test bench below 1GHz and a 1.5m high Styrofoam test bench above 1GHz.

EUT is investigated in Low, Middle, and High Channels, X, Y, & Z Axis with only the worst case reported. Vertical and Horizontal polarities investigated

EUT connected to support Laptop via USB cable.

No emissions observed within 20dB of limit from 18-25GHz, values provided are noise floor.

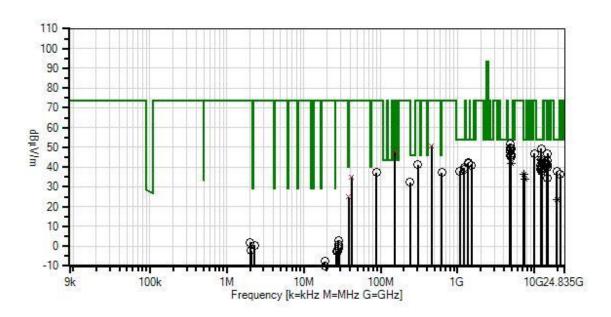
EUT connected to AC adapter for power.

EUT connected to support Laptop via Ethernet cable.

Laptop is located remotely.

Test Location: Bothell Lab C3

Test Method: ANSI C63.10 (2013) KDB 558074 (April 2, 2019)


Temperature (°C) 23

Relative Humidity (%): 33

Page 31 of 110 Report No.: 103895-3

Ossia, Inc. WO#: 103895 Sequence#: 4 Date: 6/15/2020 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Ground Para

- Readings
 QP Readings
- ▼ Ambient
- 1 15.247(d) / 15.209 Radiated Spurious Emissions
- O Peak Readings
- Average Readings Software Version: 5.03.12

Page 32 of 110 Report No.: 103895-3

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021
T2	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T3	ANP05305	Cable	ETSI-50T	9/6/2019	9/6/2021
T4	AN02307	Preamp	8447D	1/10/2020	1/10/2022
T5	ANP05360	Cable	RG214	2/3/2020	2/3/2022
T6	ANP06123	Attenuator	18N-6	4/5/2019	4/5/2021
T7	AN03628	Biconilog Antenna	3142E	6/11/2019	6/11/2021
T8	AN03540	Preamp	83017A	5/13/2019	5/13/2021
Т9	AN01467	Horn Antenna-ANSI C63.5 Calibration	3115	7/5/2019	7/5/2021
T10	ANP06515	Cable	Heliax	6/29/2018	6/29/2020
T11	ANP07504	Cable	CLU40-KMKM-02.00F	1/17/2019	1/17/2021
T12	AN03116	High Pass Filter	11SH10-00313	1/22/2019	1/22/2021
T13	AN02741	Active Horn Antenna	AMFW-5F-12001800-20-10P	4/26/2019	4/26/2021
T14	AN02742	Active Horn Antenna	AMFW-5F-18002650-20-10P	10/16/2018	10/16/2020
T15	ANP06678	Cable	32026-29801-29801-144	2/20/2020	2/20/2022
T16	AN02763-69	Waveguide	Multiple	4/28/2020	4/28/2022
T17	ANP07212	Cable	32026-29801-29801-18	8/7/2019	8/7/2021
T18	ANP07211	Cable	32026-29801-29801-18	8/7/2019	8/7/2021
T19	AN00052	Loop Antenna	6502	5/4/2020	5/4/2022

Measu	irement Data:	R	eading lis	ted by ma	argin.	Test Distance: 3 Meters						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar	
			T5	T6	T7	T8						
			T9	T10	T11	T12						
			T13	T14	T15	T16						
			T17	T18	T19							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant	
1	4810.790M	46.8	+0.0	+0.9	+0.0	+0.0	+0.0	51.8	54.0	-2.2	Horiz	
			+0.0	+0.0	+0.0	-33.6			Low Y			
			+32.4	+4.1	+0.6	+0.6						
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0	+0.0							
2	4811.010M	44.7	+0.0	+0.9	+0.0	+0.0	+0.0	49.7	54.0	-4.3	Horiz	
			+0.0	+0.0	+0.0	-33.6			Low Z			
			+32.4	+4.1	+0.6	+0.6						
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0	+0.0							
3	12202.582	53.9	+0.0	+1.4	+0.0	+0.0	+0.0	49.4	54.0	-4.6	Horiz	
	M		+0.0	+0.0	+0.0	+0.0						
			+0.0	+6.9	+0.0	+0.0			Mid Z			
			-12.8	+0.0	+0.0	+0.0						
			+0.0	+0.0	+0.0							

Page 33 of 110 Report No.: 103895-3

4 40 54 0003 5	440	0.0		0.0	0.0	0.0	10.2	~		** .
4 4961.090M	44.3	+0.0	+0.9	+0.0	+0.0	+0.0	49.3	54.0	-4.7	Horiz
		+0.0	+0.0	+0.0	-33.6			High Z		
		+32.6 +0.0	$+4.2 \\ +0.0$	$+0.4 \\ +0.0$	+0.5 +0.0					
		+0.0	+0.0	+0.0 +0.0	+0.0					
5 12202.620	53.7	+0.0	+1.4	+0.0	+0.0	+0.0	49.2	54.0	-4.8	Horiz
M	33.1	+0.0	+0.0	+0.0	+0.0 +0.0	+0.0	47.2	34.0	-4.0	110112
171		+0.0	+6.9	+0.0	+0.0			Mid Y		
		-12.8	+0.0	+0.0	+0.0			Wild I		
		+0.0	+0.0	+0.0	10.0					
6 4958.950M	44.2	+0.0	+0.9	+0.0	+0.0	+0.0	49.2	54.0	-4.8	Horiz
0 1,550,5501,1	2	+0.0	+0.0	+0.0	-33.6	10.0	.,.2	High Y	1.0	HOHE
		+32.6	+4.2	+0.4	+0.5			111811 1		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
7 4878.970M	43.7	+0.0	+0.9	+0.0	+0.0	+0.0	48.8	54.0	-5.2	Horiz
Ave		+0.0	+0.0	+0.0	-33.6			Mid Z		
		+32.5	+4.2	+0.5	+0.6					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
8 4878.886M	44.3	+0.0	+0.9	+0.0	+0.0	+0.0	48.8	54.0	-5.2	Vert
Ave		+0.0	+0.0	+0.0	-33.6			Mid X		201
		+32.5	+4.2	+0.5	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
^ 4878.860M	50.9	+0.0	+0.9	+0.0	+0.0	+0.0	55.4	54.0	+1.4	Vert
		+0.0	+0.0	+0.0	-33.6			Mid X		201
		+32.5	+4.2	+0.5	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
10 4880.890M	43.5	+0.0	+0.9	+0.0	+0.0	+0.0	48.5	54.0	-5.5	Vert
		+0.0	+0.0	+0.0	-33.6			Mid Y		
		+32.5	+4.2	+0.5	+0.5					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
11 4808.930M	43.3	+0.0	+0.9	+0.0	+0.0	+0.0	48.3	54.0	-5.7	Vert
		+0.0	+0.0	+0.0	-33.6			Low Z		
		+32.4	+4.1	+0.6	+0.6					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
12 4879.016M	42.3	+0.0	+0.9	+0.0	+0.0	+0.0	47.4		-6.6	Horiz
Ave		+0.0	+0.0	+0.0	-33.6			Mid Y		
		+32.5	+4.2	+0.5	+0.6					
		+0.0	+0.0	+0.0	+0.0					
A 4070 0403 5	40.4	+0.0	+0.0	+0.0		0.0	<i></i>	# 4 O	0.7	** .
^ 4879.010M	49.4	+0.0	+0.9	+0.0	+0.0	+0.0	54.5		+0.5	Horiz
		+0.0	+0.0	+0.0	-33.6			Mid Z		
		+32.5	+4.2	+0.5	+0.6					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						

Page 34 of 110 Report No.: 103895-3

A 4070 05435	40.0	.0.0	.0.0	.0.0	.00	.0.0	50.0	<i>7.1.0</i>	0.1	TT .
^ 4879.054M	48.8	$+0.0 \\ +0.0$	+0.9 +0.0	$+0.0 \\ +0.0$	+0.0 -33.6	+0.0	53.9	54.0 Mid Y	-0.1	Horiz
		+32.5	+0.0 +4.2	+0.0	-33.0 +0.6			IVIIU I		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	10.0					
^ 4879.040M	41.3	+0.0	+0.9	+0.0	+0.0	+0.0	46.4	54.0	-7.6	Horiz
1079.010111	11.5	+0.0	+0.0	+0.0	-33.6	10.0	10.1	Mid Z	7.0	HOHE
		+32.5	+4.2	+0.5	+0.6					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
16 4958.980M	41.3	+0.0	+0.9	+0.0	+0.0	+0.0	46.3	54.0	-7.7	Vert
		+0.0	+0.0	+0.0	-33.6			High Y		
		+32.6	+4.2	+0.4	+0.5			_		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
17 4809.080M	40.9	+0.0	+0.9	+0.0	+0.0	+0.0	45.9	54.0	-8.1	Vert
		+0.0	+0.0	+0.0	-33.6			Low Y		
		+32.4	+4.1	+0.6	+0.6					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
18 4958.940M	40.3	+0.0	+0.9	+0.0	+0.0	+0.0	45.3	54.0	-8.7	Vert
		+0.0	+0.0	+0.0	-33.6			High Z		
		+32.6	+4.2	+0.4	+0.5					
		+0.0	+0.0	+0.0	+0.0					
	10.0	+0.0	+0.0	+0.0						
19 4810.952M	40.8	+0.0	+0.9	+0.0	+0.0	+0.0	45.2	54.0	-8.8	Vert
Ave		+0.0	+0.0	+0.0	-33.6			Low X		223
		+32.4	+4.1	+0.6	+0.0					
		+0.0	+0.0	+0.0	+0.0					
A 4010.052M	10.6	+0.0	+0.0	+0.0	. 0. 0	.0.0	52.0	540	1.0	X 7
^ 4810.952M	48.6	+0.0	+0.9	+0.0	+0.0	+0.0	53.0	54.0	-1.0	Vert
		+0.0	+0.0	+0.0	-33.6			Low X		223
		+32.4 +0.0	$+4.1 \\ +0.0$	+0.6	+0.0					
		+0.0 +0.0	+0.0 +0.0	$+0.0 \\ +0.0$	+0.0					
21 12022.420	48.8	+0.0	+1.4	+0.0	+0.0	+0.0	44.0	54.0	-10.0	Horiz
M	40.0	+0.0 +0.0	+0.0	+0.0 +0.0	+0.0 +0.0	+0.0	44.0	34.0	-10.0	11011Z
Ave		+0.0 +0.0	+0.0 +6.8	+0.0 +0.0	+0.0 +0.0			Low Y		
AVC		-13.0	+0.0	+0.0 +0.0	+0.0			LOW I		
		+0.0	+0.0	+0.0	10.0					
22 12397.400	48.2	+0.0	+1.5	+0.0	+0.0	+0.0	43.7	54.0	-10.3	Vert
M	. 3.2	+0.0	+0.0	+0.0	+0.0	. 0.0	,	2	10.0	. 011
111		+0.0	+7.0	+0.0	+0.0			High Z		
		-13.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
23 12397.480	48.0	+0.0	+1.5	+0.0	+0.0	+0.0	43.5	54.0	-10.5	Horiz
M		+0.0	+0.0	+0.0	+0.0					
Ave		+0.0	+7.0	+0.0	+0.0			High Z		
		-13.0	+0.0	+0.0	+0.0			Č		
		+0.0	+0.0	+0.0						

Page 35 of 110 Report No.: 103895-3

24 12202.427	46.8	+0.0	+1.4	+0.0	+0.0	+0.0	42.3	54.0	-11.7	Horiz
M	40.6	+0.0	+0.0	+0.0 +0.0	+0.0	+0.0	42.3	34.0	-11./	HOHZ
Ave		+0.0	+6.9	+0.0	+0.0			Mid Z		
1110		-12.8	+0.0	+0.0	+0.0			1111G Z		
		+0.0	+0.0	+0.0	. 0.0					
25 1378.000M	50.1	+0.0	+0.5	+0.0	+0.0	+0.0	42.3	54.0	-11.7	Horiz
		+0.0	+0.0	+0.0	-35.6					
		+25.1	+2.0	+0.2	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
26 12397.480	46.7	+0.0	+1.5	+0.0	+0.0	+0.0	42.2	54.0	-11.8	Horiz
M		+0.0	+0.0	+0.0	+0.0					
Ave		+0.0	+7.0	+0.0	+0.0			High Y		
		-13.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
^ 12397.480	54.9	+0.0	+1.5	+0.0	+0.0	+0.0	50.4	54.0	-3.6	Horiz
M		+0.0	+0.0	+0.0	+0.0					
		+0.0	+7.0	+0.0	+0.0			High Z		
		-13.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
^ 12397.480	53.8	+0.0	+1.5	+0.0	+0.0	+0.0	49.3	54.0	-4.7	Horiz
M		+0.0	+0.0	+0.0	+0.0					
		+0.0	+7.0	+0.0	+0.0			High Y		
		-13.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
29 1375.000M	49.9	+0.0	+0.5	+0.0	+0.0	+0.0	42.0	54.0	-12.0	Horiz
		+0.0	+0.0	+0.0	-35.7					
		+25.1	+2.0	+0.2	+0.0					
		+0.0	+0.0	+0.0	+0.0					
20 4060.05214	27.2	+0.0	+0.0	+0.0	. 0. 0	. 0. 0	41.0	54.0	10.0	X7 4
30 4960.852M	37.3	+0.0	+0.9	+0.0	+0.0	+0.0	41.8	54.0	-12.2	Vert
Ave		+0.0 +32.6	+0.0	$+0.0 \\ +0.4$	-33.6 +0.0			High X		181
		+32.0	+4.2 +0.0	+0.4 +0.0	+0.0					
		+0.0	+0.0	+0.0 +0.0	+0.0					
^ 4960.852M	47.5	+0.0	+0.9	+0.0	+0.0	+0.0	52.0	54.0	-2.0	Vert
+700.0J2IVI	+1.5	+0.0	+0.9	+0.0 +0.0	-33.6	+0.0	32.0	High X	-2.0	181
		+32.6	+4.2	+0.0	+0.0			mgn A		101
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	. 0.0					
32 1525.000M	48.2	+0.0	+0.5	+0.0	+0.0	+0.0	40.9	54.0	-13.1	Horiz
22 22 20 00 01 11		+0.0	+0.0	+0.0	-35.3			2	-2.1	
		+25.1	+2.2	+0.2	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
33 12022.351	45.5	+0.0	+1.4	+0.0	+0.0	+0.0	40.7	54.0	-13.3	Vert
M		+0.0	+0.0	+0.0	+0.0					
		+0.0	+6.8	+0.0	+0.0			Low Z		
		-13.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						

Page 36 of 110 Report No.: 103895-3

34	240.000M	40.0	+0.0	+0.2	+0.8	-27.1	+0.0	32.4	46.0	-13.6	Vert
	210.000111	10.0	+0.9	+5.8	+11.8	+0.0	10.0	32.1	10.0	15.0	100
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
35	12202.440	44.7	+0.0	+1.4	+0.0	+0.0	+0.0	40.2	54.0	-13.8	Horiz
	M		+0.0	+0.0	+0.0	+0.0					
	Ave		+0.0	+6.9	+0.0	+0.0			Mid Y		
			-12.8	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
^	12202.480	43.9	+0.0	+1.4	+0.0	+0.0	+0.0	39.4	54.0	-14.6	Horiz
	M		+0.0	+0.0	+0.0	+0.0					
			+0.0	+6.9	+0.0	+0.0			Mid Y		
			-12.8	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
37	12202.427	44.7	+0.0	+1.4	+0.0	+0.0	+0.0	40.2	54.0	-13.8	Vert
	M		+0.0	+0.0	+0.0	+0.0			–		
			+0.0	+6.9	+0.0	+0.0			Mid Z		
			-12.8	+0.0	+0.0	+0.0					
		10.7	+0.0	+0.0	+0.0			•			
38	1223.000M	48.5	+0.0	+0.4	+0.0	+0.0	+0.0	39.8	54.0	-14.2	Vert
			+0.0	+0.0	+0.0	-36.1					
			+25.1	+1.8	+0.1	+0.0					
			+0.0	+0.0	+0.0	+0.0					
20	12207 500	12.7	+0.0	+0.0	+0.0	.00	. 0. 0	20.2	540	140	X 7
39		43.7	+0.0	+1.5	+0.0	+0.0	+0.0	39.2	54.0	-14.8	Vert
	M		+0.0	+0.0	+0.0	+0.0			High V		
			+0.0 -13.0	$+7.0 \\ +0.0$	$^{+0.0}_{+0.0}$	$+0.0 \\ +0.0$			High Y		
			+0.0	+0.0 +0.0	+0.0 +0.0	+0.0					
40	12202.423	43.6	+0.0	+1.4	+0.0	+0.0	+0.0	39.1	54.0	-14.9	Vert
40	M	43.0	+0.0	+0.0	+0.0	+0.0	10.0	37.1	34.0	14.7	VCIT
	111		+0.0	+6.9	+0.0	+0.0			Mid X		
			-12.8	+0.0	+0.0	+0.0			1,110 11		
			+0.0	+0.0	+0.0	. 0.0					
41	12022.420	43.9	+0.0	+1.4	+0.0	+0.0	+0.0	39.1	54.0	-14.9	Vert
	M		+0.0	+0.0	+0.0	+0.0					
			+0.0	+6.8	+0.0	+0.0			Low Y		
			-13.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
42	12022.430	43.9	+0.0	+1.4	+0.0	+0.0	+0.0	39.1	54.0	-14.9	Vert
	M		+0.0	+0.0	+0.0	+0.0					
			+0.0	+6.8	+0.0	+0.0			Low X		
			-13.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
43	12022.400	43.9	+0.0	+1.4	+0.0	+0.0	+0.0	39.1	54.0	-14.9	Horiz
	M		+0.0	+0.0	+0.0	+0.0					
	Ave		+0.0	+6.8	+0.0	+0.0			Low Z		
			-13.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						

Page 37 of 110 Report No.: 103895-3

^ 12022.460	55.8	+0.0	+1.4	+0.0	+0.0	+0.0	51.0	54.0	-3.0	Horiz
M		+0.0	+0.0	+0.0	+0.0					
		+0.0	+6.8	+0.0	+0.0			Low Y		
		-13.0	+0.0	+0.0	+0.0					
12022 100	51.0	+0.0	+0.0	+0.0	0.0	0.0	47.1	710		TT .
^ 12022.400	51.9	+0.0	+1.4	+0.0	+0.0	+0.0	47.1	54.0	-6.9	Horiz
M		+0.0	+0.0	+0.0	+0.0			I 7		
		+0.0	+6.8	+0.0	+0.0			Low Z		
		-13.0	+0.0	+0.0	+0.0					
46 1225.000M	47.6	+0.0	+0.0	+0.0	+0.0	+0.0	38.9	54.0	-15.1	Horiz
40 1223.000M	47.0	+0.0	+0.4 +0.0	$+0.0 \\ +0.0$	+0.0 -36.1	+0.0	36.9	34.0	-13.1	попи
		+25.1	+1.8	+0.0	+0.0					
		+23.1 +0.0	+0.0	+0.1	+0.0 +0.0					
		+0.0	+0.0	+0.0	10.0					
47 38.250M	33.5	+0.0	+0.1	+0.3	-28.0	+0.0	24.9	40.0	-15.1	Vert
QP	33.3	+0.3	+5.8	+12.9	+0.0	10.0	27.7	10.0	13.1	99
V-		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
^ 38.250M	44.0	+0.0	+0.1	+0.3	-28.0	+0.0	35.4	40.0	-4.6	Vert
		+0.3	+5.8	+12.9	+0.0					99
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
49 12397.100	42.6	+0.0	+1.5	+0.0	+0.0	+0.0	38.1	54.0	-15.9	Vert
M		+0.0	+0.0	+0.0	+0.0					
		+0.0	+7.0	+0.0	+0.0			High X		
		-13.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
50 1073.000M	47.9	+0.0	+0.4	+0.0	+0.0	+0.0	38.0	54.0	-16.0	Vert
		+0.0	+0.0	+0.0	-36.8					
		+24.6	+1.8	+0.1	+0.0					
		+0.0	+0.0	+0.0	+0.0					
51 10517 100	27.0	+0.0	+0.0	+0.0	100	+0.0	27.0	540	160	V/ 4
51 19517.180	37.8	+0.0	+0.0	+0.0	+0.0	+0.0	37.8	54.0	-16.2	Vert
M		+0.0	+0.0 +0.0	+0.0	+0.0					
		$+0.0 \\ +0.0$	+0.0 -12.9	+0.0 +9.0	+0.0 +2.1					
		+0.8	+1.0	+9.0	1 4.1					
52 7289.690M	27.4	+0.0	+1.0	+0.0	+0.0	+0.0	36.6	54.0	-17.4	Vert
Ave	<i>21.</i> ⊤	+0.0	+0.0	+0.0	-34.6	10.0	50.0	Mid X	1/.7	201
11,0		+36.7	+5.4	+0.5	+0.0			.,110 11		201
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
^ 7289.690M	42.6	+0.0	+1.2	+0.0	+0.0	+0.0	51.8	54.0	-2.2	Vert
		+0.0	+0.0	+0.0	-34.6			Mid X		201
		+36.7	+5.4	+0.5	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						

Page 38 of 110 Report No.: 103895-3

54 7451 100M	23.9	٠, ٥, ٥	+1.6	+0.0	ι Ο Ο	ι Ο Ο	33.8	54.0	-20.2	Vont
54 7451.190M Ave	23.9	$+0.0 \\ +0.0$	$^{+1.0}$	+0.0	+0.0 -34.7	+0.0	33.8	High X	-20.2	Vert 201
Ave		+37.2	+5.5	+0.0	+0.0			High A		201
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	10.0					
^ 7451.190M	38.8	+0.0	+1.6	+0.0	+0.0	+0.0	48.7	54.0	-5.3	Vert
, 10 1115 0112	20.0	+0.0	+0.0	+0.0	-34.7	. 0.0	,	High X	0.0	201
		+37.2	+5.5	+0.3	+0.0			8		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
56 459.388M	52.3	+0.0	+0.2	+1.0	-27.9	+0.0	50.9	73.7	-22.8	Vert
QP		+1.4	+5.8	+18.1	+0.0					99
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
^ 459.388M	54.0	+0.0	+0.2	+1.0	-27.9	+0.0	52.6	73.7	-21.1	Vert
		+1.4	+5.8	+18.1	+0.0					100
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
58 153.126M	58.8	+0.0	+0.2	+0.6	-27.5	+0.0	48.0	73.7	-25.7	Vert
QP		+0.7	+5.8	+9.4	+0.0					99
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
^ 153.080M	57.9	+0.0	+0.2	+0.6	-27.5	+0.0	47.0	73.7	-26.7	Vert
		+0.7	+5.8	+9.3	+0.0					100
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
60.00060000	27.2	+0.0	+0.0	+0.0	0.0	0.0	450	50.5	2.0	**
60 9926.390M	35.2	+0.0	+1.3	+0.0	+0.0	+0.0	46.9	73.7	-26.8	Vert
		+0.0	+0.0	+0.0	-33.9			High X		201
		+37.5	+6.3	+0.5	+0.0					
		+0.0	+0.0	+0.0	+0.0					
61 14882.780	51.1	+0.0	+0.0	+0.0	+ΩΩ	+0.0	46.9	73.7	-26.8	Horiz
61 14882.780 M	31.1	+0.0 +0.0	+1.7 +0.0	+0.0 +0.0	$+0.0 \\ +0.0$	+0.0	40.9	13.1	-20.8	HOUZ
IVI		+0.0	+8.5	+0.0 +0.0	+0.0			High Z		
		+0.0 -14.4	+0.0	+0.0 +0.0	+0.0 +0.0			mgn Z		
		+0.0	+0.0	+0.0	10.0					
62 14876.920	47.4	+0.0	+1.7	+0.0	+0.0	+0.0	43.2	73.7	-30.5	Horiz
M	→ / . →	+0.0	+0.0	+0.0	+0.0	10.0	⊤J. ∠	13.1	30.3	HOHE
141		+0.0	+8.5	+0.0	+0.0			High Y		
		-14.4	+0.0	+0.0	+0.0			111511 1		
		+0.0	+0.0	+0.0						
63 19520.000	23.4	+0.0	+0.0	+0.0	+0.0	+0.0	23.4	54.0	-30.6	Vert
M	_2	+0.0	+0.0	+0.0	+0.0			5	- 0.0	
Ave		+0.0	+0.0	+0.0	+0.0					
		+0.0	-12.9	+9.0	+2.1					
		+0.8	+1.0	+0.0						

Page 39 of 110 Report No.: 103895-3

64	14426.660	47.2	+0.0	+1.4	+0.0	+0.0	+0.0	41.9	73.7	-31.8	Horiz
	M		+0.0	+0.0	+0.0	+0.0					
			+0.0	+8.0	+0.0	+0.0			Low Z		
			-14.7	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
65	14636.880	46.6	+0.0	+1.5	+0.0	+0.0	+0.0	41.6	73.7	-32.1	Horiz
	M		+0.0	+0.0	+0.0	+0.0			3.61.137		
			+0.0	+8.2	+0.0	+0.0			Mid Y		
			-14.7	+0.0	+0.0	+0.0					
	206 40014	16.0	+0.0	+0.0	+0.0	27.1	. 0. 0	41.1	70.7	22.6	TT '
66	306.400M	46.8	+0.0	+0.2	+0.9	-27.1	+0.0	41.1	73.7	-32.6	Horiz
			+1.1	+5.8	+13.4	+0.0					141
			+0.0	+0.0 +0.0	+0.0	+0.0					
			$+0.0 \\ +0.0$	+0.0 +0.0	$+0.0 \\ +0.0$	+0.0					
67	14426.820	16.2		+1.4		+0.0	+ O O	41.0	73.7	-32.7	Horiz
07	M	46.3	$+0.0 \\ +0.0$	+1.4 +0.0	$^{+0.0}_{+0.0}$	+0.0 +0.0	+0.0	41.0	13.1	-32.1	110112
	141		+0.0	+8.0	+0.0	+0.0			Low Y		
			-14.7	+0.0	+0.0	+0.0			LOW I		
			+0.0	+0.0	+0.0	10.0					
68	14642.950	45.0	+0.0	+1.5	+0.0	+0.0	+0.0	40.0	73.7	-33.7	Horiz
	M		+0.0	+0.0	+0.0	+0.0	. 0.0		,	00.,	110112
			+0.0	+8.2	+0.0	+0.0			Mid Z		
			-14.7	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
69	88.480M	51.2	+0.0	+0.1	+0.4	-27.8	+0.0	37.2	73.7	-36.5	Vert
			+0.5	+5.8	+7.0	+0.0					100
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
70	624.800M	35.0	+0.0	+0.3	+1.2	-28.2	+0.0	37.2	73.7	-36.5	Vert
			+1.7	+5.8	+21.4	+0.0					100
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
71	21644.540	38.6	+0.0	+0.0	+0.0	+0.0	+0.0	36.3	73.7	-37.4	Horiz
	M		+0.0	+0.0	+0.0	+0.0					
1			+0.0	+0.0	+0.0	+0.0					
1			+0.0	-15.6	+9.2	+2.0					
70	7215 5053 /	27.4	+1.3	+0.8	+0.0	.00	.0.0	26.2	72.7	27.4	X 74
	7215.505M	27.4	+0.0	+1.1	+0.0	+0.0	+0.0	36.3	73.7	-37.4	Vert
F	Ave		+0.0	+0.0 +5.3	+0.0	-34.5			Low X		223
			+36.5 +0.0	+5.5 +0.0	+0.5 +0.0	$+0.0 \\ +0.0$					
1			+0.0	+0.0 +0.0	+0.0 +0.0	+0.0					
^	7215.505M	42.3	+0.0	+1.1	+0.0	±0.0	+0.0	51.2	73.7	-22.5	Vert
	1213.303WI	42.3	+0.0	+1.1 +0.0	+0.0 +0.0	+0.0 -34.5	+0.0	31.2	Low X	-22.3	201
			+36.5	+5.3	+0.0	+0.0			LUWA		201
			+30.3	+0.0	+0.0	+0.0					
1			+0.0	+0.0	+0.0	10.0					
L			10.0	10.0	10.0						

Page 40 of 110 Report No.: 103895-3

74	41.900M	45.3	+0.0	+0.1	+0.3	-28.0	+0.0	35.0	73.7	-38.7	Vert
(QР		+0.3	+5.8	+11.2	+0.0					99
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
^	41.900M	52.6	+0.0	+0.1	+0.0	+0.0	+0.0	52.7	73.7	-21.0	Vert
			+0.0	+0.0	+0.0	+0.0					100
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
	11525000	20.5	+0.0	+0.0	+0.0	0.0	0.0	24.5	52.5	20.1	**
76	14636.898	39.6	+0.0	+1.5	+0.0	+0.0	+0.0	34.6	73.7	-39.1	Vert
	M		+0.0	+0.0	+0.0	+0.0					
			+0.0	+8.2	+0.0	+0.0			Mid X		
			-14.7	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0		40.0				~
77	28.057M	37.3	+0.0	+0.1	+0.0	+0.0	-40.0	2.7	73.7	-71.0	Groun
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.3	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
70	2.0001.6	22.2	+0.0	+0.0	+5.0	0.0	40.0	1.0	72.7	71.0	
78	2.008M	32.3	+0.0	+0.0	+0.0	+0.0	-40.0	1.9	73.7	-71.8	Para
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.1	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
	20.44.53.5	27.4	+0.0	+0.0	+9.5	0.0	40.0	0.7	52.5	52. 0	
79	28.415M	35.4	+0.0	+0.1	+0.0	+0.0	-40.0	0.7	73.7	-73.0	Groun
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.3	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
	2 2053 5	20.0	+0.0	+0.0	+4.9	0.0	40.0	0.4	52.5	50.0	
80	2.305M	30.8	+0.0	+0.0	+0.0	+0.0	-40.0	0.4	73.7	-73.3	Para
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.1	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
0.1	20.22614	24.5	+0.0	+0.0	+9.5	. 0. 0	40.0	0.0	72.7	72.0	
81	28.326M	34.5	+0.0	+0.1	+0.0	+0.0	-40.0	-0.2	73.7	-73.9	Groun
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.3	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
00	20. (20) (22.6	+0.0	+0.0	+4.9	. 0. 0	40.0	1.0	70.7	740	<u> </u>
82	28.620M	33.6	+0.0	+0.1	+0.0	+0.0	-40.0	-1.2	73.7	-74.9	Groun
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.3	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
0.2	2.0623.4	20.2	+0.0	+0.0	+4.8	. 0. 0	10.0	2.1	70.7	75.0	D.
83	2.062M	28.3	+0.0	+0.0	+0.0	+0.0	-40.0	-2.1	73.7	-75.8	Perp
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.1	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
1			+0.0	+0.0	+9.5						

Page 41 of 110 Report No.: 103895-3

0.4	27 00014	22.1	.00	ι Ο 1	.00	. 0. 0	40.0	2.4	72.7	7.6 1	D
84	27.880M	32.1	+0.0	+0.1	+0.0	+0.0	-40.0	-2.4	73.7	-76.1	Perp
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.3	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+5.1						
85	26.780M	31.4	+0.0	+0.1	+0.0	+0.0	-40.0	-2.6	73.7	-76.3	Para
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.3	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+5.6						
86	18.728M	24.3	+0.0	+0.1	+0.0	+0.0	-40.0	-7.6	73.7	-81.3	Groun
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.2	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+7.8						
87	18.788M	22.1	+0.0	+0.1	+0.0	+0.0	-40.0	-9.9	73.7	-83.6	Groun
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.2	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+7.7						
88	18.820M	21.2	+0.0	+0.1	+0.0	+0.0	-40.0	-10.8	73.7	-84.5	Groun
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.2	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+7.7						
89	18.420M	18.4	+0.0	+0.1	+0.0	+0.0	-40.0	-13.4	73.7	-87.1	Para
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.2	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+7.9						

Page 42 of 110 Report No.: 103895-3

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Ossia, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

 Work Order #:
 103895
 Date:
 6/16/2020

 Test Type:
 Maximized Emissions
 Time:
 09:56:49

Tested By: S. Pittsford/M. Atkinson Sequence#: 5

Software: EMITest 5.03.12

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Frequency range tested: 9kHz-25GHz

Test Mode: Continuously Modulated

EUT is on a 0.8m test bench below 1GHz and a 1.5m high Styrofoam test bench above 1GHz.

EUT is investigated in Low, Middle, and High Channels, X, Y, & Z Axis with only the worst case reported. Vertical and Horizontal polarities investigated

EUT connected to support Laptop via USB cable.

EUT connected to support PoE box with 2 x Ethernet cables for power.

Support laptop connected to PoE box with 1 x Ethernet cable.

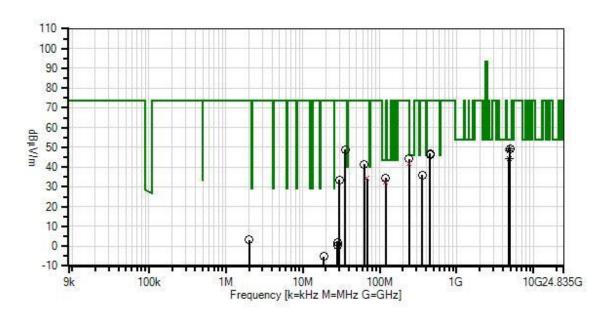
PoE box and support

Laptop are located remotely.

No emissions observed within 20dB of limit from 18-25GHz, values provided are noise floor.

Test Location: Bothell Lab C3

Test Method: ANSI C63.10 (2013) KDB 558074 (April 2, 2019)


Temperature (°C) 23

Relative Humidity (%): 33

Page 43 of 110 Report No.: 103895-3

Ossia, Inc. WO#: 103895 Sequence#: 5 Date: 6/16/2020 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Various

- Readings
 QP Readings
- ▼ Ambient
- ---- 1 15.247(d) / 15.209 Radiated Spurious Emissions
- O Peak Readings
- Average Readings Software Version: 5.03.12

Page 44 of 110 Report No.: 103895-3

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021
T2	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T3	ANP05305	Cable	ETSI-50T	9/6/2019	9/6/2021
T4	AN02307	Preamp	8447D	1/10/2020	1/10/2022
T5	ANP05360	Cable	RG214	2/3/2020	2/3/2022
T6	ANP06123	Attenuator	18N-6	4/5/2019	4/5/2021
T7	AN03628	Biconilog Antenna	3142E	6/11/2019	6/11/2021
T8	AN03540	Preamp	83017A	5/13/2019	5/13/2021
Т9	AN01467	Horn Antenna-ANSI C63.5 Calibration	3115	7/5/2019	7/5/2021
T10	ANP06515	Cable	Heliax	6/29/2018	6/29/2020
T11	ANP07504	Cable	CLU40-KMKM-02.00F	1/17/2019	1/17/2021
T12	AN03116	High Pass Filter	11SH10-00313	1/22/2019	1/22/2021
	AN02741	Active Horn Antenna	AMFW-5F-12001800-20-10P	4/26/2019	4/26/2021
	AN02742	Active Horn Antenna	AMFW-5F-18002650-20-10P	10/16/2018	10/16/2020
	ANP06678	Cable	32026-29801-29801-144	2/20/2020	2/20/2022
	AN02763-69	Waveguide	Multiple	4/28/2020	4/28/2022
	ANP07212	Cable	32026-29801-29801-18	8/7/2019	8/7/2021
	ANP07211	Cable	32026-29801-29801-18	8/7/2019	8/7/2021
T13	AN00052	Loop Antenna	6502	5/4/2020	5/4/2022

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
			T13								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	240.500M	51.9	+0.0	+0.2	+0.8	-27.1	+0.0	44.3	46.0	-1.7	Horiz
			+0.9	+5.8	+11.8	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
2	240.021M	49.6	+0.0	+0.2	+0.8	-27.1	+0.0	42.0	46.0	-4.0	Horiz
	QP		+0.9	+5.8	+11.8	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
3	4960.970M	44.4	+0.0	+0.9	+0.0	+0.0	+0.0	49.4	54.0	-4.6	Horiz
			+0.0	+0.0	+0.0	-33.6					
			+32.6	+4.2	+0.4	+0.5					
			+0.0								

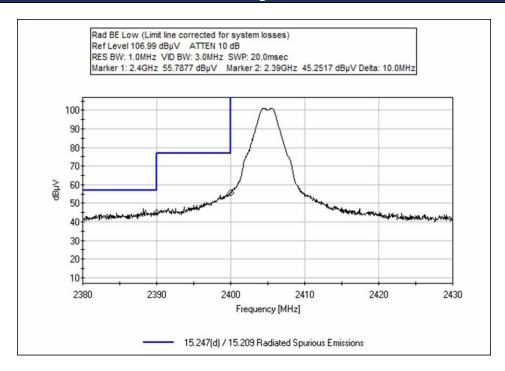
Page 45 of 110 Report No.: 103895-3

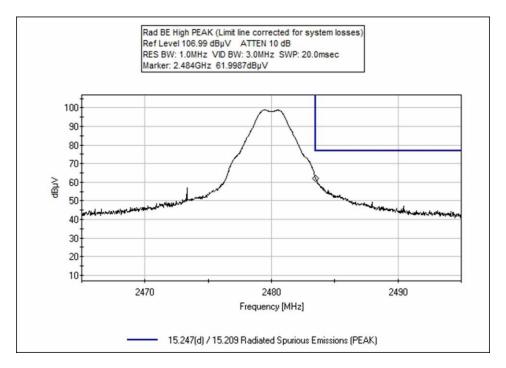
4 4878.947M	44.1	+0.0	+0.9	+0.0	+0.0	+0.0	49.2	54.0	-4.8	Vert
Ave		+0.0	+0.0	+0.0	-33.6					
		+32.5	+4.2	+0.5	+0.6					
		+0.0								
^ 4878.947M	50.3	+0.0	+0.9	+0.0	+0.0	+0.0	55.4	54.0	+1.4	Vert
		+0.0	+0.0	+0.0	-33.6					
		+32.5	+4.2	+0.5	+0.6					
		+0.0								
^ 4878.962M	46.2	+0.0	+0.9	+0.0	+0.0	+0.0	51.3	54.0	-2.7	Vert
		+0.0	+0.0	+0.0	-33.6					
		+32.5	+4.2	+0.5	+0.6					
- (0-0.000.7		+0.0								
7 4878.920M	43.3	+0.0	+0.9	+0.0	+0.0	+0.0	48.4	54.0	-5.6	Horiz
Ave		+0.0	+0.0	+0.0	-33.6					
		+32.5	+4.2	+0.5	+0.6					
4.4050.0503.5	40.7	+0.0		0.0				7 40	0.5	** .
^ 4878.950M	49.5	+0.0	+0.9	+0.0	+0.0	+0.0	54.6	54.0	+0.6	Horiz
		+0.0	+0.0	+0.0	-33.6					
		+32.5	+4.2	+0.5	+0.6					
0 120 2001	47.1	+0.0	. 0. 1	.0.5	27.6	. 0. 0	24.5	12.5	0.0	X7 .
9 120.200M	47.1	+0.0	+0.1	+0.5	-27.6	+0.0	34.5	43.5	-9.0	Vert
		+0.6	+5.8	+8.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
10 4010 05411	20.5	+0.0	.00	+ O O	.00	. 0. 0	115	540	0.5	II a mi =
10 4810.954M	39.5	$+0.0 \\ +0.0$	+0.9 +0.0	$+0.0 \\ +0.0$	+0.0 -33.6	+0.0	44.5	54.0	-9.5	Horiz
Ave		+32.4	+0.0 +4.1	+0.6	+0.6					
		+32.4	+4.1	+0.0	+0.0					
^ 4810.970M	45.7	+0.0	+0.9	+0.0	+0.0	+0.0	50.7	54.0	-3.3	Horiz
4010.770WI	73.7	+0.0	+0.0	+0.0	-33.6	10.0	30.7	34.0	-3.3	110112
		+32.4	+4.1	+0.6	+0.6					
		+0.0		10.0	10.0					
^ 4810.980M	44.4	+0.0	+0.9	+0.0	+0.0	+0.0	49.4	54.0	-4.6	Horiz
1010.900141		+0.0	+0.0	+0.0	-33.6	10.0	12.1	31.0	1.0	HOHE
		+32.4	+4.1	+0.6	+0.6					
		+0.0								
13 120.023M	45.3	+0.0	+0.1	+0.5	-27.6	+0.0	32.7	43.5	-10.8	Vert
QP		+0.6	+5.8	+8.0	+0.0	• •			-0.0	. 320
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
14 35.800M	56.3	+0.0	+0.1	+0.3	-27.9	+0.0	48.8	73.7	-24.9	Vert
		+0.3	+5.8	+13.9	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
15 451.000M	48.5	+0.0	+0.2	+1.0	-27.9	+0.0	47.0	73.7	-26.7	Horiz
		+1.4	+5.8	+18.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
16 451.000M	47.9	+0.0	+0.2	+1.0	-27.9	+0.0	46.4	73.7	-27.3	Vert
		+1.4	+5.8	+18.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								

Page 46 of 110 Report No.: 103895-3

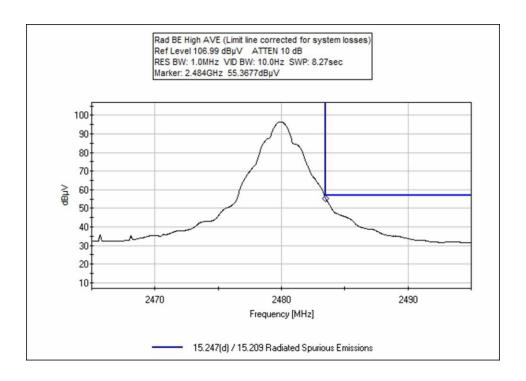
17	63.000M	54.9	+0.0	+0.1	+0.4	-27.8	+0.0	41.5	73.7	-32.2	Vert
			+0.5	+5.8	+7.6	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
18	359.800M	39.3	+0.0	+0.2	+0.9	-27.3	+0.0	36.0	73.7	-37.7	Vert
			+1.2	+5.8	+15.9	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
19	68.800M	47.8	+0.0	+0.1	+0.4	-27.8	+0.0	34.2	73.7	-39.5	Vert
(QP		+0.5	+5.8	+7.4	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
٨	68.800M	54.9	+0.0	+0.1	+0.4	-27.8	+0.0	41.3	73.7	-32.4	Vert
			+0.5	+5.8	+7.4	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
21	30.000M	29.1	+0.0	+0.1	+0.0	+0.0	+0.0	33.7	73.7	-40.0	Perp
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.3	+0.0	+0.0					
			+4.2								
22	2.014M	33.5	+0.0	+0.0	+0.0	+0.0	-40.0	3.1	73.7	-70.6	Para
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.1	+0.0	+0.0					
			+9.5								
23	28.266M	36.6	+0.0	+0.1	+0.0	+0.0	-40.0	2.0	73.7	-71.7	Groun
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.3	+0.0	+0.0					
			+5.0								
24	28.445M	35.0	+0.0	+0.1	+0.0	+0.0	-40.0	0.3	73.7	-73.4	Groun
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.3	+0.0	+0.0					
			+4.9								
25	18.728M	26.8	+0.0	+0.1	+0.0	+0.0	-40.0	-5.1	73.7	-78.8	Groun
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.2	+0.0	+0.0					
			+7.8								

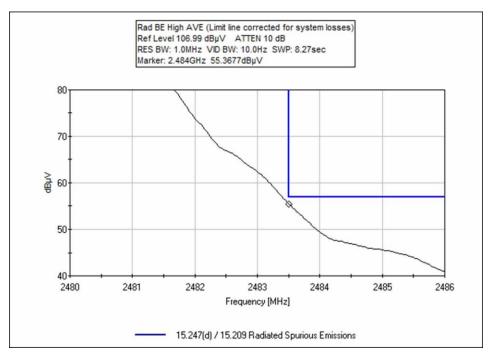
Page 47 of 110 Report No.: 103895-3


Band Edge


	Band Edge Summary											
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results							
2390.0	OQPSK	Dipole	42.2	<54	Pass							
2400.0	OQPSK	Dipole	52.7	<73.7	Pass							
2483.5	OQPSK	Dipole	59.0	<74 (PEAK)	Pass							
2483.5	OQPSK	Dipole	52.4	<54 (AVE)	Pass							

Page 48 of 110 Report No.: 103895-3




Band Edge Plots

Page 50 of 110 Report No.: 103895-3

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Ossia, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 102119 Date: 6/13/2020
Test Type: Maximized Emissions Time: 16:27:01
Tested By: Steven Pittsford Sequence#: 5

Software: EMITest 5.03.12

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Frequency range tested: Band Edge Test Mode: Continuously Modulated

EUT is on a 0.8m test bench below 1GHz and a 1.5m high Styrofoam test bench above 1GHz.

EUT is investigated in Low, Middle, and High Channels, X, Y, & Z Axis with only the worst case reported. Vertical and Horizontal polarities investigated

EUT connected to support Laptop via USB cable.

EUT connected to AC adapter for power.

EUT connected to support Laptop via Ethernet cable.

Laptop is located remotely. (Configuration 2)

Also investigated EUT connected to support Laptop via USB cable.

EUT connected to support PoE box with 2 x Ethernet cables for power.

Support laptop connected to PoE box with 1 x Ethernet cable.

PoE box and support Laptop are located remotely. (Configuration 1)

Data collected is representative of worst case.

Test Location: Bothell Lab C3

Test Method: ANSI C63.10 (2013) KDB 558074 (April 2, 2019)

Temperature (°C) 23 Relative Humidity (%):

> Page 51 of 110 Report No.: 103895-3

Test Equipment:

ID	Asset #	Description	Model	Calibration	Cal Due
				Date	Date
	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021
T1	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
	ANP05305	Cable	ETSI-50T	9/6/2019	9/6/2021
	AN02307	Preamp	8447D	1/10/2020	1/10/2022
	ANP05360	Cable	RG214	2/3/2020	2/3/2022
	ANP06123	Attenuator	18N-6	4/5/2019	4/5/2021
	AN03628	Biconilog Antenna	3142E	6/11/2019	6/11/2021
T2	AN03540	Preamp	83017A	5/13/2019	5/13/2021
T3	AN01467	Horn Antenna-ANSI C63.5	3115	7/5/2019	7/5/2021
		Calibration			
T4	ANP06515	Cable	Heliax	6/29/2018	6/29/2020
T5	ANP07504	Cable	CLU40-KMKM-	1/17/2019	1/17/2021
			02.00F		

Mea	surement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1 2483.500M	55.4	+0.6	-34.2	+27.6	+2.7	+0.0	52.4	54.0	-1.6	Horiz
			+0.3								222
	2 2390.000M	45.3	+0.6	-34.3	+27.7	+2.6	+0.0	42.2	54.0	-11.8	Horiz
			+0.3								222
	3 2483.500M	62.0	+0.6	-34.2	+27.6	+2.7	+0.0	59.0	74.0	-15.0	Horiz
			+0.3								222
	4 2400.000M	55.8	+0.6	-34.3	+27.7	+2.6	+0.0	52.7	73.7	-21.0	Horiz
			+0.3								222

Page 52 of 110 Report No.: 103895-3

Test Setup Photo(s)

Configuration 1 – Below 1GHz

Configuration 1 – Above 1GHz

Page 53 of 110 Report No.: 103895-3

Configuration 2 – Below 1GHz

Configuration 2 – Above 1GHz

Page 55 of 110 Report No.: 103895-3

Page 56 of 110 Report No.: 103895-3

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Ossia, Inc.

Specification: 15.207 AC Mains - Average

Work Order #: 102119 Date: 6/26/2020
Test Type: Conducted Emissions Time: 09:26:08
Tested By: Michael Atkinson Sequence#: 60

Software: EMITest 5.03.12 115VAC 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Temperature: 23°C Humidity: 34% Pressure: 101.6kPa

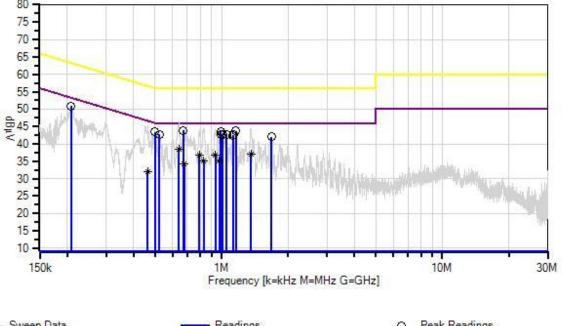
Method: ANSI C63.10 (2013)

Frequency: 0.15-30MHz

EUT connected to support Laptop via USB cable. EUT connected to support laptop via USB cable.

EUT connected to support PoE box with 2 x Ethernet cables for power.

Support laptop connected to PoE box with 1 x Ethernet cable.


Support Laptop is located remotely.

Zigbee is continuously transmitting on mid-channel as representative of worst case.

Page 57 of 110 Report No.: 103895-3

Ossia, Inc. WO#: 102119 Sequence#: 60 Date: 6/26/2020 15.207 AC Mains - Average Test Lead: 115VAC 60Hz Line

× QP Readings Software Version: 5.03.12 Readings

* Average Readings

1 - 15.207 AC Mains - Average

O Peak Readings ▼ Ambient 2 - 15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021
T1	AN02611	High Pass Filter	HE9615-150K-50-720B	1/10/2020	1/10/2022
T2	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T3	ANP06515	Cable	Heliax	6/29/2018	6/29/2020
T4	ANP06219	Attenuator	768-10	4/7/2020	4/7/2022
T5	AN01311	50uH LISN-Line1 (L)	3816/2	2/24/2020	2/24/2022
	AN01311	50uH LISN-Line2 (N)	3816/2	2/24/2020	2/24/2022

Page 58 of 110 Report No.: 103895-3

Measur	ement Data:	Re	ading list	ted by ma	argin.			Test Lead	l: Line		
#	Freq	Rdng	T1 T5	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	669.575k	34.9	+0.3 -0.4	+0.0	+0.0	+9.1	+0.0	43.9	46.0	-2.1	Line
2	1.159M	34.7	+0.2 -0.3	+0.0	+0.0	+9.1	+0.0	43.7	46.0	-2.3	Line
3	208.372k	42.7	+0.2 -1.1	+0.0	+0.0	+9.1	+0.0	50.9	53.3	-2.4	Line
4	990.470k	34.6	+0.2 -0.3	+0.0	+0.0	+9.1	+0.0	43.6	46.0	-2.4	Line
5	499.938k	34.5	+0.2 -0.4	+0.0	+0.0	+9.1	+0.0	43.4	46.0	-2.6	Line
6	1.055M	33.8	+0.2 -0.3	+0.0	+0.0	+9.1	+0.0	42.8	46.0	-3.2	Line
7	995.092k	33.8	+0.2 -0.3	+0.0	+0.0	+9.1	+0.0	42.8	46.0	-3.2	Line
8	523.826k	33.8	+0.2 -0.4	+0.0	+0.0	+9.1	+0.0	42.7	46.0	-3.3	Line
9	1.012M	33.7	+0.2 -0.3	+0.0	+0.0	+9.1	+0.0	42.7	46.0	-3.3	Line
10	1.135M	33.6	+0.2	+0.0	+0.0	+9.1	+0.0	42.6	46.0	-3.4	Line
11	1.125M	33.5	+0.2 -0.3	+0.0	+0.0	+9.1	+0.0	42.5	46.0	-3.5	Line
12	1.683M	32.9	+0.2 -0.3	+0.0	+0.1	+9.1	+0.0	42.0	46.0	-4.0	Line
13	640.546k Ave	29.4	+0.3 -0.4	+0.0	+0.0	+9.1	+0.0	38.4	46.0	-7.6	Line
^	640.546k	37.1	+0.3 -0.4	+0.0	+0.0	+9.1	+0.0	46.1	46.0	+0.1	Line
15	1.356M Ave	28.1	+0.2	+0.0	+0.1	+9.1	+0.0	37.2	46.0	-8.8	Line
۸	1.356M	35.5	+0.2 -0.3	+0.0	+0.1	+9.1	+0.0	44.6	46.0	-1.4	Line
17	937.565k Ave	27.8	+0.2 -0.3	+0.0	+0.0	+9.1	+0.0	36.8	46.0	-9.2	Line
^	937.565k	35.3	+0.2 -0.3	+0.0	+0.0	+9.1	+0.0	44.3	46.0	-1.7	Line
19	794.260k Ave	27.8	+0.2 -0.3	+0.0	+0.0	+9.1	+0.0	36.8	46.0	-9.2	Line
^	794.259k	35.1	+0.2 -0.3	+0.0	+0.0	+9.1	+0.0	44.1	46.0	-1.9	Line
21	830.728k Ave	26.2	+0.2	+0.0	+0.0	+9.1	+0.0	35.2	46.0	-10.8	Line
٨	830.728k	35.8	+0.2	+0.0	+0.0	+9.1	+0.0	44.8	46.0	-1.2	Line

Page 59 of 110 Report No.: 103895-3

23	978.143k	26.1	+0.2	+0.0	+0.0	+9.1	+0.0	35.1	46.0	-10.9	Line
1	Ave		-0.3								
٨	978.142k	35.2	+0.2	+0.0	+0.0	+9.1	+0.0	44.2	46.0	-1.8	Line
			-0.3								
25	678.042k	25.3	+0.3	+0.0	+0.0	+9.1	+0.0	34.3	46.0	-11.7	Line
1	Ave		-0.4								
٨	678.041k	35.3	+0.3	+0.0	+0.0	+9.1	+0.0	44.3	46.0	-1.7	Line
			-0.4								
27	462.443k	23.2	+0.2	+0.0	+0.1	+9.1	+0.0	32.1	46.6	-14.5	Line
1	Ave		-0.5								
٨	462.443k	36.3	+0.2	+0.0	+0.1	+9.1	+0.0	45.2	46.6	-1.4	Line
			-0.5								

Page 60 of 110 Report No.: 103895-3

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Ossia, Inc.

Specification: 15.207 AC Mains - Average

 Work Order #:
 102119
 Date: 6/26/2020

 Test Type:
 Conducted Emissions
 Time: 09:15:32

Tested By: Michael Atkinson Sequence#: 59
Software: EMITest 5.03.12 115VAC 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Temperature: 23°C Humidity: 34% Pressure: 101.6kPa

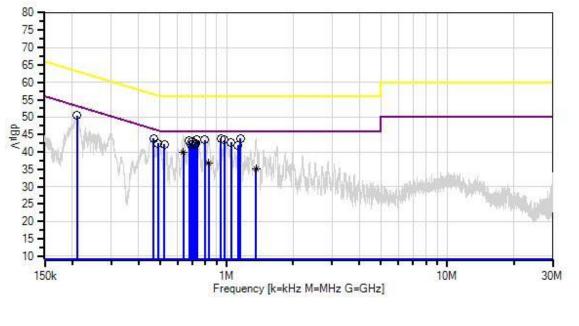
Method: ANSI C63.10 (2013)

Frequency: 0.15-30MHz

EUT connected to support Laptop via USB cable. EUT connected to support laptop via USB cable.

EUT connected to support PoE box with 2 x Ethernet cables for power.

Support laptop connected to PoE box with 1 x Ethernet cable.


Support Laptop is located remotely.

Zigbee is continuously transmitting on mid-channel as representative of worst case.

Page 61 of 110 Report No.: 103895-3

Ossia, Inc. WO#: 102119 Sequence#: 59 Date: 6/26/2020 15.207 AC Mains - Average Test Lead: 115VAC 60Hz Neutral

× QP Readings Software Version: 5.03.12 Readings

* Average Readings

1 - 15.207 AC Mains - Average

O Peak Readings

▼ Ambient
2 - 15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021
T1	AN02611	High Pass Filter	HE9615-150K-50-720B	1/10/2020	1/10/2022
T2	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T3	ANP06515	Cable	Heliax	6/29/2018	6/29/2020
T4	ANP06219	Attenuator	768-10	4/7/2020	4/7/2022
	AN01311	50uH LISN-Line1 (L)	3816/2	2/24/2020	2/24/2022
T5	AN01311	50uH LISN-Line2 (N)	3816/2	2/24/2020	2/24/2022

Page 62 of 110 Report No.: 103895-3

Measur	rement Data:	Re	eading list	ted by ma	argin.			Test Lead	d: Neutral		
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	940.647k	34.9	+0.2 -0.3	+0.0	+0.0	+9.1	+0.0	43.9	46.0	-2.1	Neutr
2	1.157M	34.8	+0.2 -0.3	+0.0	+0.0	+9.1	+0.0	43.8	46.0	-2.2	Neutr
3	733.982k	34.5	+0.2 -0.4	+0.0	+0.0	+9.1	+0.0	43.4	46.0	-2.6	Neutr
4	796.827k	34.4	+0.2 -0.3	+0.0	+0.0	+9.1	+0.0	43.4	46.0	-2.6	Neutr
5	976.601k	34.4	+0.2	+0.0	+0.0	+9.1	+0.0	43.4	46.0	-2.6	Neutr
6	466.374k	35.0	+0.2 -0.5	+0.0	+0.1	+9.1	+0.0	43.9	46.6	-2.7	Neutr
7	210.154k	42.1	+0.3 -1.1	+0.0	+0.0	+9.1	+0.0	50.4	53.2	-2.8	Neutr
8	678.344k	34.1	+0.3 -0.4	+0.0	+0.0	+9.1	+0.0	43.1	46.0	-2.9	Neutr
9	696.789k	34.0	+0.3 -0.4	+0.0	+0.0	+9.1	+0.0	43.0	46.0	-3.0	Neutr
10	1.047M	33.8	+0.2	+0.0	+0.0	+9.1	+0.0	42.8	46.0	-3.2	Neutr
11	489.355k	33.6	+0.2 -0.4	+0.0	+0.0	+9.1	+0.0	42.5	46.2	-3.7	Neutr
12	727.632k	33.4	+0.2 -0.4	+0.0	+0.0	+9.1	+0.0	42.3	46.0	-3.7	Neutr
13	522.919k	33.3	+0.2 -0.4	+0.0	+0.0	+9.1	+0.0	42.2	46.0	-3.8	Neutr
14	691.648k	33.2	+0.3 -0.4	+0.0	+0.0	+9.1	+0.0	42.2	46.0	-3.8	Neutr
15	716.141k	33.1	+0.3 -0.3	+0.0	+0.0	+9.1	+0.0	42.2	46.0	-3.8	Neutr
16	686.206k	33.0	+0.3 -0.4	+0.0	+0.0	+9.1	+0.0	42.0	46.0	-4.0	Neutr
17	1.127M	32.9	+0.2 -0.3	+0.0	+0.0	+9.1	+0.0	41.9	46.0	-4.1	Neutr
18	638.430k Ave	30.9	+0.3 -0.4	+0.0	+0.0	+9.1	+0.0	39.9	46.0	-6.1	Neutr
۸	638.429k	36.0	+0.3 -0.4	+0.0	+0.0	+9.1	+0.0	45.0	46.0	-1.0	Neutr
20	828.160k Ave	27.7	+0.2 -0.3	+0.0	+0.0	+9.1	+0.0	36.7	46.0	-9.3	Neutr
۸	828.159k	35.2	+0.2 -0.3	+0.0	+0.0	+9.1	+0.0	44.2	46.0	-1.8	Neutr
22	1.359M Ave	26.1	+0.2	+0.0	+0.1	+9.1	+0.0	35.2	46.0	-10.8	Neutr
٨	1.359M	34.9	+0.2	+0.0	+0.1	+9.1	+0.0	44.0	46.0	-2.0	Neutr

Page 63 of 110 Report No.: 103895-3

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Ossia, Inc.

Specification: 15.207 AC Mains - Average

 Work Order #:
 102119
 Date: 6/14/2020

 Test Type:
 Conducted Emissions
 Time: 15:40:00

Tested By: Michael Atkinson Sequence#: 37
Software: EMITest 5.03.12 115VAC 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Temperature: 19-21°C Humidity: 29-32% Pressure: 102-103kPa

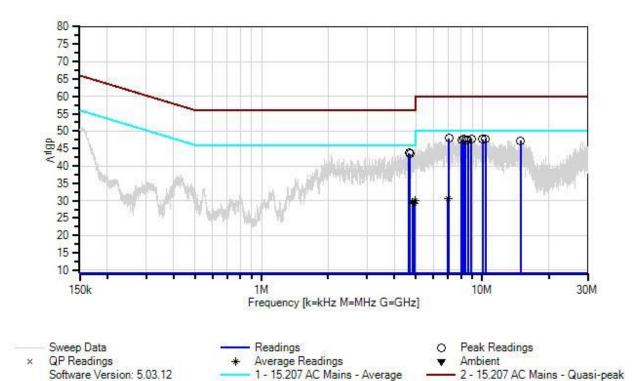
Method: ANSI C63.10 (2013)

Frequency: 0.15-30MHz

EUT connected to support Laptop via USB cable.

EUT connected to AC adapter for power.

EUT connected to support Laptop via Ethernet cable.


Laptop is located remotely.

Zigbee is continuously transmitting on mid-channel as representative of worst case.

Page 64 of 110 Report No.: 103895-3

Ossia, Inc. WO#: 102119 Sequence#: 37 Date: 6/14/2020 15.207 AC Mains - Average Test Lead: 115VAC 60Hz Line

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021
T1	AN02611	High Pass Filter	HE9615-150K-50-720B	1/10/2020	1/10/2022
T2	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T3	ANP06515	Cable	Heliax	6/29/2018	6/29/2020
T4	ANP06219	Attenuator	768-10	4/7/2020	4/7/2022
T5	AN01492	50uH LISN-Line (L1)	3816/2NM	10/14/2019	10/14/2021
	AN01492	50uH LISN-Neutral (L2)	3816/2NM	10/14/2019	10/14/2021

Page 65 of 110 Report No.: 103895-3

Measur	ement Data:	Re	eading lis	ted by ma	ırgin.			Test Lead	d: Line		
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V$	dΒμV	dB	Ant
1	7.049M	38.0	+0.1 +0.6	+0.0	+0.1	+9.1	+0.0	47.9	50.0	-2.1	Line
2	10.337M	37.9	+0.1 +0.5	+0.0	+0.2	+9.1	+0.0	47.8	50.0	-2.2	Line
3	8.939M	37.8	+0.1 +0.6	+0.0	+0.2	+9.1	+0.0	47.8	50.0	-2.2	Line
4	4.651M	33.9	+0.1 +0.5	+0.0	+0.1	+9.1	+0.0	43.7	46.0	-2.3	Line
5	10.034M	37.8	+0.1 +0.5	+0.0	+0.2	+9.1	+0.0	47.7	50.0	-2.3	Line
6	8.242M	37.7	+0.1 +0.6	+0.0	+0.1	+9.1	+0.0	47.6	50.0	-2.4	Line
7	4.691M	33.6	+0.1 +0.6	+0.0	+0.1	+9.1	+0.0	43.5	46.0	-2.5	Line
8	8.404M	37.5	+0.1 +0.6	+0.0	+0.1	+9.1	+0.0	47.4	50.0	-2.6	Line
9	8.610M	37.4	+0.1 +0.6	+0.0	+0.2	+9.1	+0.0	47.4	50.0	-2.6	Line
10	8.075M	37.6	+0.1 +0.5	+0.0	+0.1	+9.1	+0.0	47.4	50.0	-2.6	Line
11	14.923M	37.2	+0.2 +0.5	+0.1	+0.2	+9.1	+0.0	47.3	50.0	-2.7	Line
12 A	4.935M Ave	20.2	+0.1 +0.5	+0.0	+0.1	+9.1	+0.0	30.0	46.0	-16.0	Line
۸	4.935M	34.9	+0.1 +0.5	+0.0	+0.1	+9.1	+0.0	44.7	46.0	-1.3	Line
14	4.832M Ave	19.6	+0.1 +0.5	+0.0	+0.1	+9.1	+0.0	29.4	46.0	-16.6	Line
^	4.832M	34.3	+0.1 +0.5	+0.0	+0.1	+9.1	+0.0	44.1	46.0	-1.9	Line
16 A	4.902M Ave	19.5	+0.1 +0.5	+0.0	+0.1	+9.1	+0.0	29.3	46.0	-16.7	Line
۸	4.902M	34.8	+0.1 +0.5	+0.0	+0.1	+9.1	+0.0	44.6	46.0	-1.4	Line
18 A	6.976M Ave	20.8	+0.1 +0.5	+0.0	+0.1	+9.1	+0.0	30.6	50.0	-19.4	Line
^	6.976M	38.2	+0.1 +0.5	+0.0	+0.1	+9.1	+0.0	48.0	50.0	-2.0	Line

Page 66 of 110 Report No.: 103895-3

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Ossia, Inc.

Specification: 15.207 AC Mains - Average

Work Order #: 102119 Date: 6/14/2020
Test Type: Conducted Emissions Time: 15:34:45
Tested By: Michael Atkinson Sequence#: 36

Software: EMITest 5.03.12 115VAC 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Temperature: 19-21°C Humidity: 29-32% Pressure: 102-103kPa

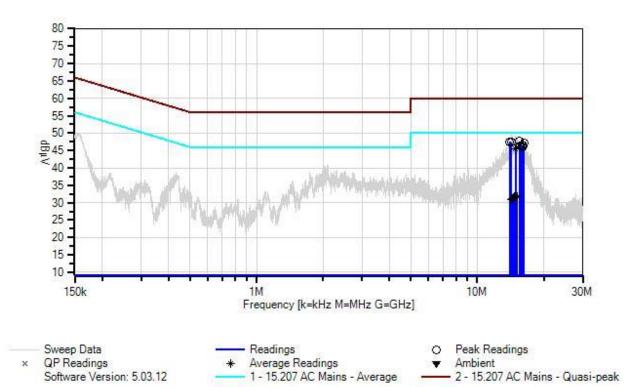
Method: ANSI C63.10 (2013)

Frequency: 0.15-30MHz

EUT connected to support Laptop via USB cable.

EUT connected to AC adapter for power.

EUT connected to support Laptop via Ethernet cable.


Laptop is located remotely.

Zigbee is continuously transmitting on mid-channel as representative of worst case.

Page 67 of 110 Report No.: 103895-3

Ossia, Inc. WO#: 102119 Sequence#: 36 Date: 6/14/2020 15.207 AC Mains - Average Test Lead: 115VAC 60Hz Neutral

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021
T1	AN02611	High Pass Filter	HE9615-150K-50-720B	1/10/2020	1/10/2022
T2	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T3	ANP06515	Cable	Heliax	6/29/2018	6/29/2020
T4	ANP06219	Attenuator	768-10	4/7/2020	4/7/2022
	AN01492	50uH LISN-Line (L1)	3816/2NM	10/14/2019	10/14/2021
T5	AN01492	50uH LISN-Neutral (L2)	3816/2NM	10/14/2019	10/14/2021

Page 68 of 110 Report No.: 103895-3

Measuren	ient Data:	Re	ading list	ted by ma	argin.			Test Lead	d: Neutral		
#	Freq	Rdng	T1 T5	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	15.547M	37.5	+0.2 +0.6	+0.1	+0.2	+9.1	+0.0	47.7	50.0	-2.3	Neutr
2	13.993M	37.5	+0.2 +0.5	+0.0	+0.2	+9.1	+0.0	47.5	50.0	-2.5	Neutr
3	14.218M	37.3	+0.2 +0.6	+0.0	+0.2	+9.1	+0.0	47.4	50.0	-2.6	Neutr
4	16.281M	37.0	+0.2 +0.5	+0.1	+0.2	+9.1	+0.0	47.1	50.0	-2.9	Neutr
5	16.005M	36.4	+0.2 +0.5	+0.1	+0.2	+9.1	+0.0	46.5	50.0	-3.5	Neutr
6	16.092M	36.2	+0.2 +0.5	+0.1	+0.2	+9.1	+0.0	46.3	50.0	-3.7	Neutr
7	15.700M	36.1	+0.2 +0.6	+0.1	+0.2	+9.1	+0.0	46.3	50.0	-3.7	Neutr
8	16.034M	35.9	+0.2 +0.5	+0.1	+0.2	+9.1	+0.0	46.0	50.0	-4.0	Neutr
9 Av	14.930M e	35.5	+0.2 +0.5	+0.1	+0.2	+9.1	+0.0	45.6	50.0	-4.4	Neutr
٨	14.930M	39.3	+0.2 +0.5	+0.1	+0.2	+9.1	+0.0	49.4	50.0	-0.6	Neutr
11 Av	14.944M e	21.8	+0.2 +0.5	+0.1	+0.2	+9.1	+0.0	31.9	50.0	-18.1	Neutr
٨	14.944M	39.0	+0.2 +0.5	+0.1	+0.2	+9.1	+0.0	49.1	50.0	-0.9	Neutr
13 Av	14.785M e	21.6	+0.2 +0.5	+0.1	+0.2	+9.1	+0.0	31.7	50.0	-18.3	Neutr
٨	14.785M	38.1	+0.2 +0.5	+0.1	+0.2	+9.1	+0.0	48.2	50.0	-1.8	Neutr
15 Av	15.119M e	21.4	+0.2 +0.6	+0.1	+0.2	+9.1	+0.0	31.6	50.0	-18.4	Neutr
^	15.119M	38.8	+0.2 +0.6	+0.1	+0.2	+9.1	+0.0	49.0	50.0	-1.0	Neutr
17 Av	14.647M e	21.4	+0.2 +0.5	+0.1	+0.2	+9.1	+0.0	31.5	50.0	-18.5	Neutr
^ 1	14.647M	38.3	+0.2 +0.5	+0.1	+0.2	+9.1	+0.0	48.4	50.0	-1.6	Neutr
19 Av	14.465M e	21.3	+0.2 +0.5	+0.0	+0.2	+9.1	+0.0	31.3	50.0	-18.7	Neutr
	14.465M	39.2	+0.2 +0.5	+0.0	+0.2	+9.1	+0.0	49.2	50.0	-0.8	Neutr
21 Av	14.327M	20.8	+0.2 +0.6	+0.0	+0.2	+9.1	+0.0	30.9	50.0	-19.1	Neutr
	14.327M	39.5	+0.2 +0.6	+0.0	+0.2	+9.1	+0.0	49.6	50.0	-0.4	Neutr

Page 69 of 110 Report No.: 103895-3

Test Setup Photo(s)

Configuration 1

Configuration 2

Appendix A: Co-Location Testing

Co-Location testing was performed and no mixing products were observed within 15dB of 15.209 limit.

The following configurations were tested as representative of worst case with channels available at time of test:

WPT 2.45GHz + Pi Wi-Fi 2.452GHz WPT 2.45GHz + Pi Wi-Fi 2.452GHz + Zigbee 2.455GHz Pi Wi-Fi 2.452GHz + Zigbee 2.45GHz Pi Wi-Fi 5.180GHz + Zigbee 2.480GHz Zigbee

Pi Wi-Fi 5.180GHz + WPT 2.46GHz

Page 71 of 110 Report No.: 103895-3

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Ossia, Inc.

Specification: 15.207 AC Mains - Average

 Work Order #:
 102119
 Date:
 6/26/2020

 Test Type:
 Conducted Emissions
 Time:
 09:50:06

Tested By: Michael Atkinson Sequence#: 61

Software: EMITest 5.03.12 115VAC 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Temperature: 20-25°C Humidity: 30-36% Pressure: 101-102kPa

Method: ANSI C63.10 (2013)

Frequency range tested: 0.15-30MHz

XYZ EUT orientations investigated, worst case reported.

Below 30MHz, 3 x orthogonal axes investigated, above 30MHz, Horizontal and Vertical Antenna polarities investigated, worst case reported.

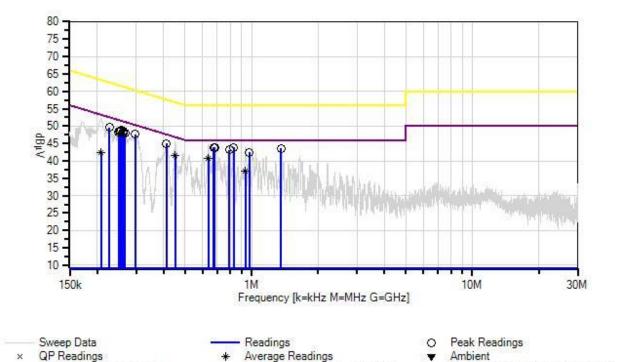
Investigated Radiated Spurious Emissions of Integrated Raspberry Pi 4 module while running the 2.4GHz Wi-Fi radio continuously. Customer was provided a worst case script of maximum power, running on Channel 1 (2412MHz) at worst case data rate for spurious emissions.

EUT connected to support laptop via USB cable.

EUT connected to support PoE box with 2 x Ethernet cables for power.

Support laptop connected to PoE box with 1 x Ethernet cable.

PoE box and support Laptop are located remotely. (Configuration 1)


Integrated Module Info

Raspberry Pi 4B (FCC ID 2ABCB-RPI4B)

Page 72 of 110 Report No.: 103895-3

Ossia, Inc. WO#: 102119 Sequence#: 61 Date: 6/26/2020 15.207 AC Mains - Average Test Lead: 115VAC 60Hz Line

Test Equipment:

Software Version: 5.03.12

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021
T1	AN02611	High Pass Filter	HE9615-150K-50-720B	1/10/2020	1/10/2022
T2	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T3	ANP06515	Cable	Heliax	6/29/2018	6/29/2020
T4	ANP06219	Attenuator	768-10	4/7/2020	4/7/2022
T5	AN01311	50uH LISN-Line1 (L)	3816/2	2/24/2020	2/24/2022
	AN01311	50uH LISN-Line2 (N)	3816/2	2/24/2020	2/24/2022

1 - 15.207 AC Mains - Average

Page 73 of 110 Report No.: 103895-3

2 - 15.207 AC Mains - Quasi-peak

measur	rement Data:	Re	eading list	ted by ma	argin.			Test Lead	d: Line		
#	Freq	Rdng	T1 T5	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	830.728k	34.9	+0.2 -0.3	+0.0	+0.0	+9.1	+0.0	43.9	46.0	-2.1	Line
2	675.320k	34.8	+0.3	+0.0	+0.0	+9.1	+0.0	43.8	46.0	-2.2	Line
3	680.460k	34.8	+0.3	+0.0	+0.0	+9.1	+0.0	43.8	46.0	-2.2	Line
4	1.358M	34.5	-0.4 +0.2	+0.0	+0.1	+9.1	+0.0	43.6	46.0	-2.4	Line
5	296.986k	39.2	-0.3 +0.1	+0.0	+0.0	+9.1	+0.0	47.7	50.3	-2.6	Line
6	411.983k	36.2	-0.7 +0.2	+0.0	+0.0	+9.1	+0.0	45.0	47.6	-2.6	Line
7	256.755k	40.4	-0.5 +0.2	+0.0	+0.0	+9.1	+0.0	48.8	51.5	-2.7	Line
8	792.718k	34.2	-0.9 +0.2	+0.0	+0.0	+9.1	+0.0	43.2	46.0	-2.8	Line
9	227.550k	41.2	-0.3 +0.3	+0.0	+0.0	+9.1	+0.0	49.6	52.5	-2.9	Line
10	261.561k	40.0	+0.2	+0.0	+0.0	+9.1	+0.0	48.5	51.4	-2.9	Line
11	254.693k	40.1	-0.8 +0.2	+0.0	+0.0	+9.1	+0.0	48.5	51.6	-3.1	Line
12	252.806k	40.1	-0.9 +0.2	+0.0	+0.0	+9.1	+0.0	48.5	51.7	-3.2	Line
13	263.341k	39.6	-0.9 +0.2	+0.0	+0.0	+9.1	+0.0	48.1	51.3	-3.2	Line
14	266.545k	39.4	-0.8 +0.2	+0.0	+0.0	+9.1	+0.0	47.9	51.2	-3.3	Line
15	250.606k	39.9	+0.2	+0.0	+0.0	+9.1	+0.0	48.3	51.7	-3.4	Line
16	978.142k	33.5	-0.9 +0.2	+0.0	+0.0	+9.1	+0.0	42.5	46.0	-3.5	Line
17	451.558k	32.6	-0.3 +0.2	+0.0	+0.1	+9.1	+0.0	41.5	46.8	-5.3	Line
^ A	451.557k	36.8	-0.5 +0.2	+0.0	+0.1	+9.1	+0.0	45.7	46.8	-1.1	Line
19		31.6	-0.5 +0.3	+0.0	+0.0	+9.1	+0.0	40.6	46.0	-5.4	Line
^	Ave 638.429k	35.7	+0.3	+0.0	+0.0	+9.1	+0.0	44.7	46.0	-1.3	Line
21		28.2	+0.2	+0.0	+0.0	+9.1	+0.0	37.2	46.0	-8.8	Line
^ A	Ave 938.078k	35.2	-0.3 +0.2	+0.0	+0.0	+9.1	+0.0	44.2	46.0	-1.8	Line
	208.268k	34.1	-0.3 +0.2	+0.0	+0.0	+9.1	+0.0	42.3	53.3	-11.0	Line
	Ave 208.267k	44.0	-1.1 +0.2 -1.1	+0.0	+0.0	+9.1	+0.0	52.2	53.3	-1.1	Line

Page 74 of 110 Report No.: 103895-3

Customer: Ossia, Inc.

Specification: 15.207 AC Mains - Average

Work Order #: 102119 Date: 6/26/2020
Test Type: Conducted Emissions Time: 09:53:53
Tested By: Michael Atkinson Sequence#: 62

Software: EMITest 5.03.12 115VAC 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Temperature: 20-25°C Humidity: 30-36% Pressure: 101-102kPa

Method: ANSI C63.10 (2013)

Frequency range tested: 0.15-30MHz

XYZ EUT orientations investigated, worst case reported.

Below 30MHz, 3 x orthogonal axes investigated, above 30MHz, Horizontal and Vertical Antenna polarities investigated, worst case reported.

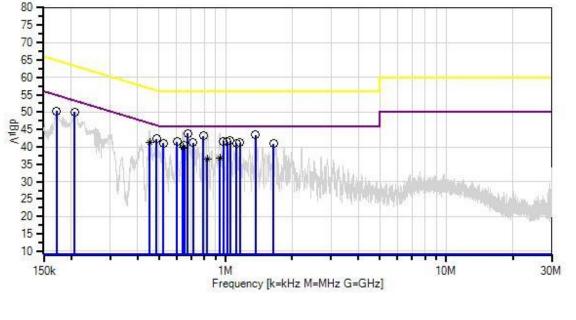
Investigated Radiated Spurious Emissions of Integrated Raspberry Pi 4 module while running the 2.4GHz Wi-Fi radio continuously. Customer was provided a worst case script of maximum power, running on Channel 1 (2412MHz) at worst case data rate for spurious emissions.

EUT connected to support laptop via USB cable.

EUT connected to support PoE box with 2 x Ethernet cables for power.

Support laptop connected to PoE box with 1 x Ethernet cable.

PoE box and support Laptop are located remotely. (Configuration 1)


Integrated Module Info

Raspberry Pi 4B (FCC ID 2ABCB-RPI4B)

Page 75 of 110 Report No.: 103895-3

Ossia, Inc. WO#: 102119 Sequence#: 62 Date: 6/26/2020 15.207 AC Mains - Average Test Lead: 115VAC 60Hz Neutral

× QP Readings Software Version: 5.03.12 Readings

* Average Readings

1 - 15.207 AC Mains - Average

O Peak Readings
▼ Ambient
2 - 15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021
T1	AN02611	High Pass Filter	HE9615-150K-50-720B	1/10/2020	1/10/2022
T2	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T3	ANP06515	Cable	Heliax	6/29/2018	6/29/2020
T4	ANP06219	Attenuator	768-10	4/7/2020	4/7/2022
	AN01311	50uH LISN-Line1 (L)	3816/2	2/24/2020	2/24/2022
T5	AN01311	50uH LISN-Line2 (N)	3816/2	2/24/2020	2/24/2022

Page 76 of 110 Report No.: 103895-3

# Freq Rdng T1 T2 T3 T4 Dist Corr Spec T5 MHz dBμV dB dB dB dB Table dBμV dBμV 1 674.413k 34.8 +0.3 +0.0 +0.0 +9.1 +0.0 43.8 46.0 -0.4 2 1.364M 34.3 +0.2 +0.0 +0.1 +9.1 +0.0 43.4 46.0 -0.3 3 791.691k 34.1 +0.2 +0.0 +0.0 +9.1 +0.0 43.1 46.0 -0.3 4 207.428k 41.8 +0.2 +0.0 +0.0 +9.1 +0.0 50.0 53.3 -1.1 5 486.633k 33.4 +0.2 +0.0 +0.0 +9.1 +0.0 42.3 46.2 -0.4 6 1.049M 32.7 +0.2 +0.0 +0.0 +9.1 +0.0 41.7 46.0 -0.3 7 978.142k 32.6 +0.2 +0.0 +0.0 +9.1 +0.0 41.6 46.0	Margin dB -2.2 -2.6 -2.9 -3.3 -3.9 -4.3 -4.4	Ant Neutr Neutr Neutr Neutr Neutr Neutr
1 674.413k 34.8 +0.3 +0.0 +0.0 +9.1 +0.0 43.8 46.0 2 1.364M 34.3 +0.2 +0.0 +0.1 +9.1 +0.0 43.4 46.0 3 791.691k 34.1 +0.2 +0.0 +0.0 +9.1 +0.0 43.1 46.0 -0.3 -0.3 +0.0 +0.0 +9.1 +0.0 50.0 53.3 -1.1 -1.1 +0.0 +9.1 +0.0 42.3 46.2 -0.4 -0.4 -0.4 +0.0 +9.1 +0.0 41.7 46.0 -0.3 -0.3 +0.2 +0.0 +0.0 +9.1 +0.0 41.7 46.0	-2.2 -2.6 -2.9 -3.3 -3.9 -4.3 -4.4	Neutr Neutr Neutr Neutr Neutr Neutr Neutr
-0.4 2 1.364M 34.3 +0.2 +0.0 +0.1 +9.1 +0.0 43.4 46.0 -0.3 3 791.691k 34.1 +0.2 +0.0 +0.0 +9.1 +0.0 43.1 46.0 -0.3 4 207.428k 41.8 +0.2 +0.0 +0.0 +9.1 +0.0 50.0 53.3 -1.1 5 486.633k 33.4 +0.2 +0.0 +0.0 +9.1 +0.0 42.3 46.2 -0.4 6 1.049M 32.7 +0.2 +0.0 +0.0 +9.1 +0.0 41.7 46.0 -0.3	-2.6 -2.9 -3.3 -3.9 -4.3	Neutr Neutr Neutr Neutr Neutr
-0.3 3 791.691k 34.1 +0.2 +0.0 +0.0 +9.1 +0.0 43.1 46.0 -0.3 4 207.428k 41.8 +0.2 +0.0 +0.0 +9.1 +0.0 50.0 53.3 -1.1 5 486.633k 33.4 +0.2 +0.0 +0.0 +9.1 +0.0 42.3 46.2 -0.4 6 1.049M 32.7 +0.2 +0.0 +0.0 +9.1 +0.0 41.7 46.0 -0.3	-2.9 -3.3 -3.9 -4.3 -4.4	Neutr Neutr Neutr Neutr
-0.3 4 207.428k 41.8 +0.2 +0.0 +0.0 +9.1 +0.0 50.0 53.3 -1.1 5 486.633k 33.4 +0.2 +0.0 +0.0 +9.1 +0.0 42.3 46.2 -0.4 6 1.049M 32.7 +0.2 +0.0 +0.0 +9.1 +0.0 41.7 46.0 -0.3	-3.3 -3.9 -4.3 -4.4	Neutr Neutr Neutr
4 207.428k 41.8 +0.2 +0.0 +0.0 +9.1 +0.0 50.0 53.3 -1.1 5 486.633k 33.4 +0.2 +0.0 +0.0 +9.1 +0.0 42.3 46.2 -0.4 6 1.049M 32.7 +0.2 +0.0 +0.0 +9.1 +0.0 41.7 46.0 -0.3	-3.9 -4.3 -4.4	Neutr Neutr
5 486.633k 33.4 +0.2 +0.0 +0.0 +9.1 +0.0 42.3 46.2 -0.4 6 1.049M 32.7 +0.2 +0.0 +0.0 +9.1 +0.0 41.7 46.0 -0.3	-4.3 -4.4	Neutr
6 1.049M 32.7 +0.2 +0.0 +0.0 +9.1 +0.0 41.7 46.0 -0.3	-4.4	
7 978.142k 32.6 +0.2 +0.0 +0.0 +9.1 +0.0 41.6 46.0		NT ·
-0.3		Neutr
8 1.017M 32.5 +0.2 +0.0 +0.0 +9.1 +0.0 41.5 46.0 -0.3	-4.5	Neutr
9 601.841k 32.5 +0.3 +0.0 +0.0 +9.1 +0.0 41.5 46.0 -0.4	-4.5	Neutr
10 171.901k 42.3 +0.4 +0.0 +0.0 +9.1 +0.0 50.3 54.9 -1.5	-4.6	Neutr
11 711.908k 32.1 +0.3 +0.0 +0.0 +9.1 +0.0 41.2 46.0 -0.3	-4.8	Neutr
12 1.160M 32.2 +0.2 +0.0 +0.0 +9.1 +0.0 41.2 46.0 -0.3	-4.8	Neutr
13 522.617k 32.1 +0.2 +0.0 +0.0 +9.1 +0.0 41.0 46.0 -0.4	-5.0	Neutr
14 1.124M 32.0 +0.2 +0.0 +0.0 +9.1 +0.0 41.0 46.0 -0.3	-5.0	Neutr
15 1.649M 31.8 +0.2 +0.0 +0.1 +9.1 +0.0 40.9 46.0 -0.3	-5.1	Neutr
16 452.162k 32.4 +0.2 +0.0 +0.1 +9.1 +0.0 41.3 46.8 Ave -0.5	-5.5	Neutr
^ 452.162k 36.0 +0.2 +0.0 +0.1 +9.1 +0.0 44.9 46.8 -0.5	-1.9	Neutr
18 650.222k 31.5 +0.3 +0.0 +0.0 +9.1 +0.0 40.5 46.0 -0.4	-5.5	Neutr
19 639.942k 31.0 +0.3 +0.0 +0.0 +9.1 +0.0 40.0 46.0 Ave -0.4	-6.0	Neutr
^ 639.941k 35.6 +0.3 +0.0 +0.0 +9.1 +0.0 44.6 46.0 -0.4	-1.4	Neutr
21 941.674k 27.7 +0.2 +0.0 +0.0 +9.1 +0.0 36.7 46.0 Ave -0.3	-9.3	Neutr
^ 941.674k 35.3 +0.2 +0.0 +0.0 +9.1 +0.0 44.3 46.0 -0.3	-1.7	Neutr
23 825.592k 27.6 +0.2 +0.0 +0.0 +9.1 +0.0 36.6 46.0 Ave -0.3	-9.4	Neutr
^ 825.591k 35.3 +0.2 +0.0 +0.0 +9.1 +0.0 44.3 46.0 -0.3	-1.7	Neutr

Page 77 of 110 Report No.: 103895-3

Customer: Ossia, Inc.

Specification: 15.207 AC Mains - Average

Work Order #: 102119 Date: 6/26/2020
Test Type: Conducted Emissions Time: 10:12:07
Tested By: Michael Atkinson Sequence#: 64

Software: EMITest 5.03.12 115VAC 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Temperature: 20-25°C Humidity: 30-36% Pressure: 101-102kPa

Method: ANSI C63.10 (2013)

Frequency range tested: 0.15-30MHz

XYZ EUT orientations investigated, worst case reported.

Below 30MHz, 3 x orthogonal axes investigated, above 30MHz, Horizontal and Vertical Antenna polarities investigated, worst case reported.

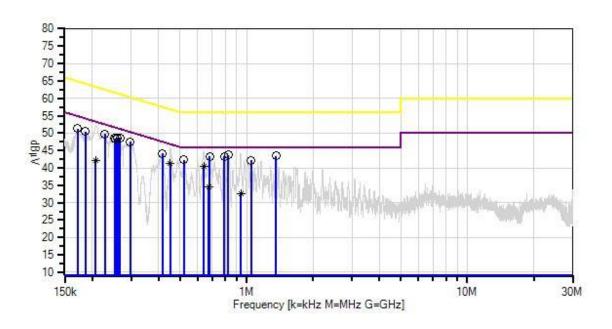
Investigated Radiated Spurious Emissions of Integrated Raspberry Pi 4 module while running the 5GHz Wi-Fi radio continuously. Customer was provided a worst case script of maximum power, running on Channel 36 (5180MHz) at worst case data rate for spurious emissions. Also investigated Channel 140 (5700MHz) but no emissions observed within 20dB of 15.209 limit.

EUT connected to support laptop via USB cable.

EUT connected to support PoE box with 2 x Ethernet cables for power.

Support laptop connected to PoE box with 1 x Ethernet cable.

PoE box and support Laptop are located remotely. (Configuration 1)


Integrated Module Info

Raspberry Pi 4B (FCC ID 2ABCB-RPI4B)

Page 78 of 110 Report No.: 103895-3

Ossia, Inc. WO#: 102119 Sequence#: 64 Date: 6/26/2020 15.207 AC Mains - Average Test Lead: 115VAC 60Hz Line

Sweep Data

× QP Readings

Software Version: 5.03.12

Readings

Average Readings

1 - 15.207 AC Mains - Average

O Peak Readings

▼ Ambient
2 - 15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021
T1	AN02611	High Pass Filter	HE9615-150K-50-720B	1/10/2020	1/10/2022
T2	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T3	ANP06515	Cable	Heliax	6/29/2018	6/29/2020
T4	ANP06219	Attenuator	768-10	4/7/2020	4/7/2022
T5	AN01311	50uH LISN-Line1 (L)	3816/2	2/24/2020	2/24/2022
	AN01311	50uH LISN-Line2 (N)	3816/2	2/24/2020	2/24/2022

Reading listed by margin. Test Lead: Line Measurement Data: T2 T4 Freq Rdng T1 Dist Corr Spec Margin Polar T5 MHz dΒμV dB $dB\mu V$ dΒμV dB dΒ dB Table dΒ Ant 43.7 +0.2 -2.3 825.078k 34.7 +0.0+0.0+9.1 +0.046.0Line -0.3 2 266.545k 40.2 +0.2 +0.0 +0.0+9.1 +0.048.7 51.2 -2.5 Line -0.8

> Page 79 of 110 Report No.: 103895-3

3	1.357M	34.4	+0.2	+0.0	+0.1	+9.1	+0.0	43.5	46.0	-2.5	Line
4	260.137k	40.2	+0.2	+0.0	+0.0	+9.1	+0.0	48.7	51.4	-2.7	Line
5	681.065k	34.3	+0.3	+0.0	+0.0	+9.1	+0.0	43.3	46.0	-2.7	Line
6	793.232k	34.3	+0.2	+0.0	+0.0	+9.1	+0.0	43.3	46.0	-2.7	Line
7	296.808k	39.0	+0.1 -0.7	+0.0	+0.0	+9.1	+0.0	47.5	50.3	-2.8	Line
8	227.864k	41.3	+0.3 -1.0	+0.0	+0.0	+9.1	+0.0	49.7	52.5	-2.8	Line
9	252.492k	40.1	+0.2 -0.9	+0.0	+0.0	+9.1	+0.0	48.5	51.7	-3.2	Line
10	255.509k	39.9	+0.2 -0.9	+0.0	+0.0	+9.1	+0.0	48.3	51.6	-3.3	Line
11	416.077k	35.3	+0.2 -0.5	+0.0	+0.0	+9.1	+0.0	44.1	47.5	-3.4	Line
12	171.693k	43.3	+0.4 -1.5	+0.0	+0.0	+9.1	+0.0	51.3	54.9	-3.6	Line
13	186.469k	42.4	+0.3 -1.3	+0.0	+0.0	+9.1	+0.0	50.5	54.2	-3.7	Line
14	520.500k	33.4	+0.2 -0.4	+0.0	+0.0	+9.1	+0.0	42.3	46.0	-3.7	Line
15	1.050M	33.2	+0.2 -0.3	+0.0	+0.0	+9.1	+0.0	42.2	46.0	-3.8	Line
	451.860k Ave	32.5	+0.2 -0.5	+0.0	+0.1	+9.1	+0.0	41.4	46.8	-5.4	Line
۸	451.860k	36.7	+0.2 -0.5	+0.0	+0.1	+9.1	+0.0	45.6	46.8	-1.2	Line
18	639.337k Ave	31.5	+0.3 -0.4	+0.0	+0.0	+9.1	+0.0	40.5	46.0	-5.5	Line
۸	639.336k	35.9	+0.3 -0.4	+0.0	+0.0	+9.1	+0.0	44.9	46.0	-1.1	Line
20	207.325k Ave	34.0	+0.2 -1.2	+0.0	+0.0	+9.1	+0.0	42.1	53.3	-11.2	Line
^	207.324k	44.2	+0.2 -1.2	+0.0	+0.0	+9.1	+0.0	52.3	53.3	-1.0	Line
22	673.808k Ave	25.6	+0.3 -0.4	+0.0	+0.0	+9.1	+0.0	34.6	46.0	-11.4	Line
^	673.808k	35.2	+0.3 -0.4	+0.0	+0.0	+9.1	+0.0	44.2	46.0	-1.8	Line
24	944.756k Ave	23.5	+0.2 -0.3	+0.0	+0.0	+9.1	+0.0	32.5	46.0	-13.5	Line
٨	944.756k	35.2	+0.2	+0.0	+0.0	+9.1	+0.0	44.2	46.0	-1.8	Line

Page 80 of 110 Report No.: 103895-3

Customer: Ossia, Inc.

Specification: 15.207 AC Mains - Average

Work Order #: 102119 Date: 6/26/2020
Test Type: Conducted Emissions Time: 10:04:41
Tested By: Michael Atkinson Sequence#: 63

Software: EMITest 5.03.12 115VAC 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Temperature: 20-25°C Humidity: 30-36% Pressure: 101-102kPa

Method: ANSI C63.10 (2013)

Frequency range tested: 0.15-30MHz

XYZ EUT orientations investigated, worst case reported.

Below 30MHz, 3 x orthogonal axes investigated, above 30MHz, Horizontal and Vertical Antenna polarities investigated, worst case reported.

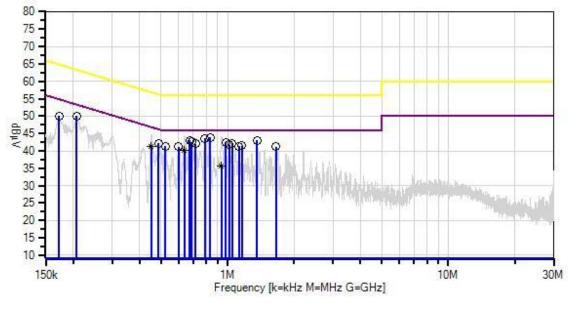
Investigated Radiated Spurious Emissions of Integrated Raspberry Pi 4 module while running the 5GHz Wi-Fi radio continuously. Customer was provided a worst case script of maximum power, running on Channel 36 (5180MHz) at worst case data rate for spurious emissions. Also investigated Channel 140 (5700MHz) but no emissions observed within 20dB of 15.209 limit.

EUT connected to support laptop via USB cable.

EUT connected to support PoE box with 2 x Ethernet cables for power.

Support laptop connected to PoE box with 1 x Ethernet cable.

PoE box and support Laptop are located remotely. (Configuration 1)


Integrated Module Info

Raspberry Pi 4B (FCC ID 2ABCB-RPI4B)

Page 81 of 110 Report No.: 103895-3

Ossia, Inc. WO#: 102119 Sequence#: 63 Date: 6/26/2020 15.207 AC Mains - Average Test Lead: 115VAC 60Hz Neutral

× QP Readings Software Version: 5.03.12 Readings
 Average Readings
 1 - 15.207 AC Mains - Average

O Peak Readings
▼ Ambient
2 - 15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021
T1	AN02611	High Pass Filter	HE9615-150K-50-720B	1/10/2020	1/10/2022
T2	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T3	ANP06515	Cable	Heliax	6/29/2018	6/29/2020
T4	ANP06219	Attenuator	768-10	4/7/2020	4/7/2022
	AN01311	50uH LISN-Line1 (L)	3816/2	2/24/2020	2/24/2022
T5	AN01311	50uH LISN-Line2 (N)	3816/2	2/24/2020	2/24/2022

Page 82 of 110 Report No.: 103895-3

Measu	rement Data:	Re	eading list	ted by ma	argin.			Test Lead	d: Neutral		
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	833.296k	34.8	+0.2 -0.3	+0.0	+0.0	+9.1	+0.0	43.8	46.0	-2.2	Neutr
2	788.609k	34.6	+0.2 -0.3	+0.0	+0.0	+9.1	+0.0	43.6	46.0	-2.4	Neutr
3	675.622k	34.0	+0.3 -0.4	+0.0	+0.0	+9.1	+0.0	43.0	46.0	-3.0	Neutr
4	1.356M	33.9	+0.2	+0.0	+0.1	+9.1	+0.0	43.0	46.0	-3.0	Neutr
5	207.114k	41.8	+0.2	+0.0	+0.0	+9.1	+0.0	50.0	53.3	-3.3	Neutr
6	687.415k	33.6	+0.3	+0.0	+0.0	+9.1	+0.0	42.6	46.0	-3.4	Neutr
7	982.765k	33.5	+0.2	+0.0	+0.0	+9.1	+0.0	42.5	46.0	-3.5	Neutr
8	1.048M	33.2	+0.2	+0.0	+0.0	+9.1	+0.0	42.2	46.0	-3.8	Neutr
9	714.932k	33.0	+0.3	+0.0	+0.0	+9.1	+0.0	42.1	46.0	-3.9	Neutr
10	487.238k	33.3	+0.2	+0.0	+0.0	+9.1	+0.0	42.2	46.2	-4.0	Neutr
11	1.018M	32.7	+0.2	+0.0	+0.0	+9.1	+0.0	41.7	46.0	-4.3	Neutr
12	1.158M	32.5	+0.2	+0.0	+0.0	+9.1	+0.0	41.5	46.0	-4.5	Neutr
13	522.012k	32.5	+0.2 -0.4	+0.0	+0.0	+9.1	+0.0	41.4	46.0	-4.6	Neutr
14	1.127M	32.4	+0.2	+0.0	+0.0	+9.1	+0.0	41.4	46.0	-4.6	Neutr
15	172.531k	41.9	+0.4	+0.0	+0.0	+9.1	+0.0	50.0	54.8	-4.8	Neutr
16	598.212k	32.2	+0.3	+0.0	+0.0	+9.1	+0.0	41.2	46.0	-4.8	Neutr
17	1.662M	32.1	+0.2	+0.0	+0.1	+9.1	+0.0	41.2	46.0	-4.8	Neutr
18	451.860k Ave	32.5	+0.2	+0.0	+0.1	+9.1	+0.0	41.4	46.8	-5.4	Neutr
٨		35.9	+0.2 -0.5	+0.0	+0.1	+9.1	+0.0	44.8	46.8	-2.0	Neutr
20	638.430k Ave	31.2	+0.3	+0.0	+0.0	+9.1	+0.0	40.2	46.0	-5.8	Neutr
٨	638.429k	35.5	+0.3	+0.0	+0.0	+9.1	+0.0	44.5	46.0	-1.5	Neutr
22	936.538k Ave	26.8	+0.2	+0.0	+0.0	+9.1	+0.0	35.8	46.0	-10.2	Neutr
٨	936.537k	35.1	+0.2	+0.0	+0.0	+9.1	+0.0	44.1	46.0	-1.9	Neutr
			0.5								

Page 83 of 110 Report No.: 103895-3

Customer: Ossia, Inc.

Specification: 15.207 AC Mains - Average

Work Order #: 102119 Date: 6/26/2020
Test Type: Conducted Emissions Time: 14:13:25
Tested By: Michael Atkinson Sequence#: 78

Software: EMITest 5.03.12 115VAC 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Temperature: 20-25°C Humidity: 30-36% Pressure: 101-102kPa

Method: ANSI C63.10 (2013)

Frequency range tested: 0.15-30MHz

XYZ EUT orientations investigated, worst case reported.

Below 30MHz, 3 x orthogonal axes investigated, above 30MHz, Horizontal and Vertical Antenna polarities investigated, worst case reported.

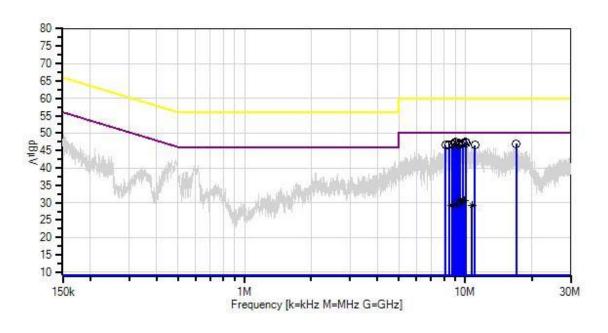
Investigated Radiated Spurious Emissions of Integrated Raspberry Pi 4 module while running the 2.4GHz Wi-Fi radio continuously. Customer was provided a worst case script of maximum power, running on Channel 1 (2412MHz) at worst case data rate for spurious emissions.

EUT connected to support laptop via USB cable.

EUT connected to AC adapter for power.

EUT connected to support Laptop via Ethernet cable.

Laptop is located remotely. (Configuration 2)


Integrated Module Info

Raspberry Pi 4B (FCC ID 2ABCB-RPI4B)

Page 84 of 110 Report No.: 103895-3

Ossia, Inc. WO#: 102119 Sequence#: 78 Date: 6/26/2020 15.207 AC Mains - Average Test Lead: 115VAC 60Hz Line

Sweep Data

× QP Readings
Software Version: 5.03.12

Readings

* Average Readings

1 - 15.207 AC Mains - Average

O Peak Readings

▼ Ambient
2 - 15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021
T1	AN02611	High Pass Filter	HE9615-150K-50-720B	1/10/2020	1/10/2022
T2	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T3	ANP06515	Cable	Heliax	6/29/2018	6/29/2020
T4	ANP06219	Attenuator	768-10	4/7/2020	4/7/2022
T5	AN01311	50uH LISN-Line1 (L)	3816/2	2/24/2020	2/24/2022
	AN01311	50uH LISN-Line2 (N)	3816/2	2/24/2020	2/24/2022

Measur	ement Data:	Re	ading lis	ted by ma	argin.			Test Lead	d: Line		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	9.050M	38.6	+0.1	+0.0	+0.2	+9.1	+0.0	47.5	50.0	-2.5	Line
			-0.5								
2	10.051M	38.6	+0.1	+0.0	+0.2	+9.1	+0.0	47.5	50.0	-2.5	Line
			-0.5								

Page 85 of 110 Report No.: 103895-3

3	8.939M	38.3	+0.1	+0.0	+0.2	+9.1	+0.0	47.2	50.0	-2.8	Line
			-0.5								
4	10.068M	38.3	+0.1 -0.5	+0.0	+0.2	+9.1	+0.0	47.2	50.0	-2.8	Line
5	9.273M	38.2	+0.1	+0.0	+0.2	+9.1	+0.0	47.1	50.0	-2.9	Line
			-0.5								
6	9.798M	38.2	+0.1	+0.0	+0.2	+9.1	+0.0	47.1	50.0	-2.9	Line
7	17.029M	38.0	-0.5 +0.2	+0.1	+0.2	+9.1	+0.0	46.9	50.0	-3.1	Line
,	17.02711	30.0	-0.7	10.1	10.2	17.1	10.0	70.7	30.0	-3.1	Line
8	8.747M	38.0	+0.1	+0.0	+0.2	+9.1	+0.0	46.9	50.0	-3.1	Line
			-0.5								
9	9.486M	37.9	+0.1 -0.5	+0.0	+0.2	+9.1	+0.0	46.8	50.0	-3.2	Line
10	11.044M	37.7	+0.1	+0.0	+0.2	+9.1	+0.0	46.6	50.0	-3.4	Line
			-0.5	. 3.0	. ~ 					٥٠.	
11	8.439M	37.6	+0.1	+0.0	+0.2	+9.1	+0.0	46.5	50.0	-3.5	Line
			-0.5								
12	8.156M	37.7	+0.1 -0.5	+0.0	+0.1	+9.1	+0.0	46.5	50.0	-3.5	Line
13	9.324M	37.6	+0.1	+0.0	+0.2	+9.1	+0.0	46.5	50.0	-3.5	Line
			-0.5								
14	8.849M	37.6	+0.1	+0.0	+0.2	+9.1	+0.0	46.5	50.0	-3.5	Line
15	9.516M	22.0	-0.5 +0.1	+0.0	+0.2	+9.1	+0.0	30.9	50.0	-19.1	Line
	Ave	22.0	-0.5	+0.0	+0.2	+9.1	+0.0	30.9	30.0	-19.1	Line
^	9.516M	39.4	+0.1	+0.0	+0.2	+9.1	+0.0	48.3	50.0	-1.7	Line
			-0.5								
17	9.905M	21.7	+0.1	+0.0	+0.2	+9.1	+0.0	30.6	50.0	-19.4	Line
	Ave 9.905M	40.0	-0.5 +0.1	+0.0	+0.2	+9.1	+0.0	48.9	50.0	-1.1	Line
	J.JUJIVI	+0.0	-0.5	10.0	10.2	17.1	10.0	70.2	50.0	-1.1	Line
19	9.610M	21.1	+0.1	+0.0	+0.2	+9.1	+0.0	30.0	50.0	-20.0	Line
	Ave		-0.5								
^	9.610M	39.4	+0.1	+0.0	+0.2	+9.1	+0.0	48.3	50.0	-1.7	Line
21	9.110M	20.6	-0.5 +0.1	+0.0	+0.2	+9.1	+0.0	29.5	50.0	-20.5	Line
	Ave	20.0	-0.5	10.0	10.2	1 7.1	10.0	27.3	50.0	20.5	Line
^	9.110M	39.1	+0.1	+0.0	+0.2	+9.1	+0.0	48.0	50.0	-2.0	Line
			-0.5								
23	8.687M	20.2	+0.1	+0.0	+0.2	+9.1	+0.0	29.1	50.0	-20.9	Line
A	4ve	20.0	-0.5	100	10.2	+0.1	ι Ο Ο	47.0	50.0	2.2	Tin-
	8.687M	38.9	+0.1 -0.5	+0.0	+0.2	+9.1	+0.0	47.8	50.0	-2.2	Line
25	10.702M	20.2	+0.1	+0.0	+0.2	+9.1	+0.0	29.1	50.0	-20.9	Line
A	Ave		-0.5								
^	10.702M	39.2	+0.1	+0.0	+0.2	+9.1	+0.0	48.1	50.0	-1.9	Line
<u> </u>			-0.5								

Page 86 of 110 Report No.: 103895-3

Customer: Ossia, Inc.

Specification: 15.207 AC Mains - Average

Work Order #: 102119 Date: 6/26/2020
Test Type: Conducted Emissions Time: 14:09:01
Tested By: Michael Atkinson Sequence#: 77

Software: EMITest 5.03.12 115VAC 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Temperature: 20-25°C Humidity: 30-36% Pressure: 101-102kPa

Method: ANSI C63.10 (2013)

Frequency range tested: 0.15-30MHz

XYZ EUT orientations investigated, worst case reported.

Below 30MHz, 3 x orthogonal axes investigated, above 30MHz, Horizontal and Vertical Antenna polarities investigated, worst case reported.

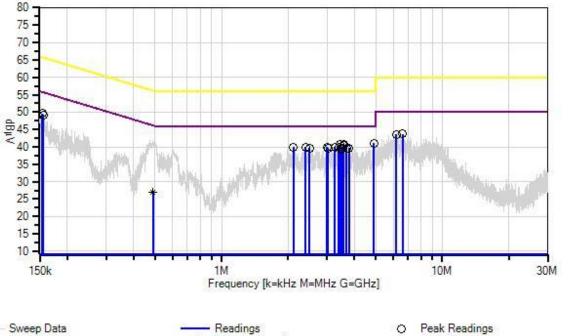
Investigated Radiated Spurious Emissions of Integrated Raspberry Pi 4 module while running the 2.4GHz Wi-Fi radio continuously. Customer was provided a worst case script of maximum power, running on Channel 1 (2412MHz) at worst case data rate for spurious emissions.

EUT connected to support laptop via USB cable.

EUT connected to AC adapter for power.

EUT connected to support Laptop via Ethernet cable.

Laptop is located remotely. (Configuration 2)


Integrated Module Info

Raspberry Pi 4B (FCC ID 2ABCB-RPI4B)

Page 87 of 110 Report No.: 103895-3

Ossia, Inc. WO#: 102119 Sequence#: 77 Date: 6/26/2020 15.207 AC Mains - Average Test Lead: 115VAC 60Hz Neutral

× QP Readings Software Version: 5.03.12

Readings
 Average Readings
 1 - 15.207 AC Mains - Average

O Peak Readings
▼ Ambient
2 - 15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021
T1	AN02611	High Pass Filter	HE9615-150K-50-720B	1/10/2020	1/10/2022
T2	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T3	ANP06515	Cable	Heliax	6/29/2018	6/29/2020
T4	ANP06219	Attenuator	768-10	4/7/2020	4/7/2022
	AN01311	50uH LISN-Line1 (L)	3816/2	2/24/2020	2/24/2022
T5	AN01311	50uH LISN-Line2 (N)	3816/2	2/24/2020	2/24/2022

Page 88 of 110 Report No.: 103895-3

Measur	rement Data:	Re	eading list	ted by ma	argin.			Test Lead	d: Neutral		
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	4.895M	32.2	+0.1 -0.4	+0.0	+0.1	+9.1	+0.0	41.1	46.0	-4.9	Neutr
2	3.427M	31.6	+0.1	+0.0	+0.1	+9.1	+0.0	40.6	46.0	-5.4	Neutr
3	3.575M	31.6	+0.1	+0.0	+0.1	+9.1	+0.0	40.6	46.0	-5.4	Neutr
4	3.563M	31.3	+0.1	+0.0	+0.1	+9.1	+0.0	40.3	46.0	-5.7	Neutr
5	3.003M	31.0	+0.1	+0.0	+0.1	+9.1	+0.0	40.0	46.0	-6.0	Neutr
6	2.113M	30.9	+0.2	+0.0	+0.1	+9.1	+0.0	40.0	46.0	-6.0	Neutr
7	3.391M	31.0	+0.1	+0.0	+0.1	+9.1	+0.0	40.0	46.0	-6.0	Neutr
8	3.258M	31.0	+0.1	+0.0	+0.1	+9.1	+0.0	40.0	46.0	-6.0	Neutr
9	2.403M	30.9	+0.1	+0.0	+0.1	+9.1	+0.0	39.9	46.0	-6.1	Neutr
10	153.981k	41.4	+0.8 -1.7	+0.0	+0.0	+9.1	+0.0	49.6	55.8	-6.2	Neutr
11	3.501M	30.7	+0.1	+0.0	+0.1	+9.1	+0.0	39.7	46.0	-6.3	Neutr
12	2.505M	30.7	+0.1	+0.0	+0.1	+9.1	+0.0	39.7	46.0	-6.3	Neutr
13	6.613M	34.8	+0.1	+0.0	+0.1	+9.1	+0.0	43.7	50.0	-6.3	Neutr
14	3.777M	30.7	+0.1	+0.0	+0.1	+9.1	+0.0	39.7	46.0	-6.3	Neutr
15	3.031M	30.6	+0.1	+0.0	+0.1	+9.1	+0.0	39.6	46.0	-6.4	Neutr
16	6.189M	34.7	+0.1 -0.4	+0.0	+0.1	+9.1	+0.0	43.6	50.0	-6.4	Neutr
17	155.762k	41.0	+0.8 -1.7	+0.0	+0.0	+9.1	+0.0	49.2	55.7	-6.5	Neutr
18	3.689M	30.5	+0.1	+0.0	+0.1	+9.1	+0.0	39.5	46.0	-6.5	Neutr
19	3.458M	30.4	+0.1	+0.0	+0.1	+9.1	+0.0	39.4	46.0	-6.6	Neutr
20	489.658k Ave	18.0	+0.2	+0.0	+0.0	+9.1	+0.0	26.9	46.2	-19.3	Neutr
^	489.657k	32.8	+0.2	+0.0	+0.0	+9.1	+0.0	41.7	46.2	-4.5	Neutr

Page 89 of 110 Report No.: 103895-3

Customer: Ossia, Inc.

Specification: 15.207 AC Mains - Average

 Work Order #:
 102119
 Date: 6/26/2020

 Test Type:
 Conducted Emissions
 Time: 14:20:34

Tested By: Michael Atkinson Sequence#: 79
Software: EMITest 5.03.12 115VAC 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Temperature: 20-25°C Humidity: 30-36% Pressure: 101-102kPa

Method: ANSI C63.10 (2013)

Frequency range tested: 0.15-30MHz

XYZ EUT orientations investigated, worst case reported.

Below 30MHz, 3 x orthogonal axes investigated, above 30MHz, Horizontal and Vertical Antenna polarities investigated, worst case reported.

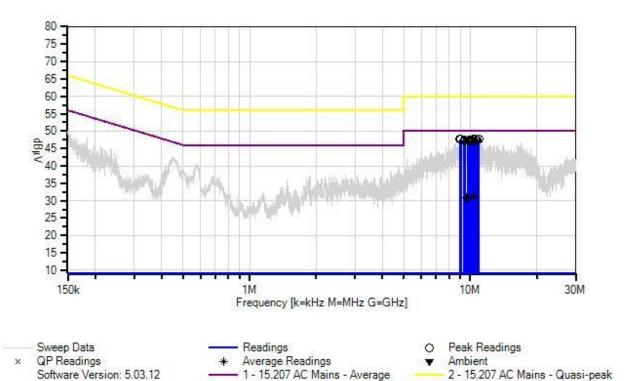
Investigated Radiated Spurious Emissions of Integrated Raspberry Pi 4 module while running the 5GHz Wi-Fi radio continuously. Customer was provided a worst case script of maximum power, running on Channel 36 (5180MHz) at worst case data rate for spurious emissions. Also investigated Channel 140 (5700MHz) but no emissions observed within 20dB of 15.209 limit.

EUT connected to support laptop via USB cable.

EUT connected to AC adapter for power.

EUT connected to support Laptop via Ethernet cable.

Laptop is located remotely. (Configuration 2)


Integrated Module Info

Raspberry Pi 4B (FCC ID 2ABCB-RPI4B)

Page 90 of 110 Report No.: 103895-3

Ossia, Inc. WO#: 102119 Sequence#: 79 Date: 6/26/2020 15.207 AC Mains - Average Test Lead: 115VAC 60Hz Line

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021
T1	AN02611	High Pass Filter	HE9615-150K-50-720B	1/10/2020	1/10/2022
T2	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T3	ANP06515	Cable	Heliax	6/29/2018	6/29/2020
T4	ANP06219	Attenuator	768-10	4/7/2020	4/7/2022
T5	AN01311	50uH LISN-Line1 (L)	3816/2	2/24/2020	2/24/2022
	AN01311	50uH LISN-Line2 (N)	3816/2	2/24/2020	2/24/2022

Page 91 of 110 Report No.: 103895-3

Measur	ement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Line		
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	10.312M	38.9	+0.1 -0.5	+0.0	+0.2	+9.1	+0.0	47.8	50.0	-2.2	Line
2	10.935M	38.8	+0.1 -0.5	+0.0	+0.2	+9.1	+0.0	47.7	50.0	-2.3	Line
3	8.952M	38.7	+0.1	+0.0	+0.2	+9.1	+0.0	47.6	50.0	-2.4	Line
4	9.080M	38.7	+0.1 -0.5	+0.0	+0.2	+9.1	+0.0	47.6	50.0	-2.4	Line
5	10.492M	38.7	+0.1	+0.0	+0.2	+9.1	+0.0	47.6	50.0	-2.4	Line
6	9.897M	38.6	+0.1 -0.5	+0.0	+0.2	+9.1	+0.0	47.5	50.0	-2.5	Line
7	10.218M	38.6	+0.1 -0.5	+0.0	+0.2	+9.1	+0.0	47.5	50.0	-2.5	Line
8	10.688M	38.6	+0.1 -0.5	+0.0	+0.2	+9.1	+0.0	47.5	50.0	-2.5	Line
9	9.452M	38.5	+0.1 -0.5	+0.0	+0.2	+9.1	+0.0	47.4	50.0	-2.6	Line
10	10.042M	38.5	+0.1 -0.5	+0.0	+0.2	+9.1	+0.0	47.4	50.0	-2.6	Line
11	10.615M	38.5	+0.1 -0.5	+0.0	+0.2	+9.1	+0.0	47.4	50.0	-2.6	Line
12	9.401M	38.4	+0.1 -0.5	+0.0	+0.2	+9.1	+0.0	47.3	50.0	-2.7	Line
13	10.136M	38.3	+0.1 -0.5	+0.0	+0.2	+9.1	+0.0	47.2	50.0	-2.8	Line
14	10.333M	38.3	+0.1 -0.5	+0.0	+0.2	+9.1	+0.0	47.2	50.0	-2.8	Line
15	9.760M	38.2	+0.1 -0.5	+0.0	+0.2	+9.1	+0.0	47.1	50.0	-2.9	Line
16	9.957M	38.2	+0.1 -0.5	+0.0	+0.2	+9.1	+0.0	47.1	50.0	-2.9	Line
17	10.448M Ave	22.4	+0.1	+0.0	+0.2	+9.1	+0.0	31.3	50.0	-18.7	Line
٨	10.448M	39.6	+0.1 -0.5	+0.0	+0.2	+9.1	+0.0	48.5	50.0	-1.5	Line
19	9.743M Ave	22.1	+0.1 -0.5	+0.0	+0.2	+9.1	+0.0	31.0	50.0	-19.0	Line
٨	9.743M	40.2	+0.1	+0.0	+0.2	+9.1	+0.0	49.1	50.0	-0.9	Line
21	9.563M Ave	22.0	+0.1 -0.5	+0.0	+0.2	+9.1	+0.0	30.9	50.0	-19.1	Line
٨	9.563M	39.2	+0.1 -0.5	+0.0	+0.2	+9.1	+0.0	48.1	50.0	-1.9	Line
23	9.657M Ave	21.7	+0.1 -0.5	+0.0	+0.2	+9.1	+0.0	30.6	50.0	-19.4	Line
٨	9.657M	39.0	+0.1 -0.5	+0.0	+0.2	+9.1	+0.0	47.9	50.0	-2.1	Line

Page 92 of 110 Report No.: 103895-3

Customer: Ossia, Inc.

Specification: 15.207 AC Mains - Average

Work Order #: 102119 Date: 6/26/2020
Test Type: Conducted Emissions Time: 14:23:41
Tested By: Michael Atkinson Sequence#: 80

Software: EMITest 5.03.12 115VAC 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Temperature: 20-25°C Humidity: 30-36% Pressure: 101-102kPa

Method: ANSI C63.10 (2013)

Frequency range tested: 0.15-30MHz

XYZ EUT orientations investigated, worst case reported.

Below 30MHz, 3 x orthogonal axes investigated, above 30MHz, Horizontal and Vertical Antenna polarities investigated, worst case reported.

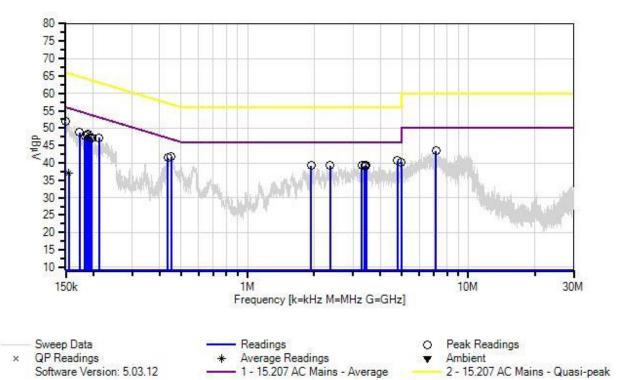
Investigated Radiated Spurious Emissions of Integrated Raspberry Pi 4 module while running the 5GHz Wi-Fi radio continuously. Customer was provided a worst case script of maximum power, running on Channel 36 (5180MHz) at worst case data rate for spurious emissions. Also investigated Channel 140 (5700MHz) but no emissions observed within 20dB of 15.209 limit.

EUT connected to support laptop via USB cable.

EUT connected to AC adapter for power.

EUT connected to support Laptop via Ethernet cable.

Laptop is located remotely. (Configuration 2)


Integrated Module Info

Raspberry Pi 4B (FCC ID 2ABCB-RPI4B)

Page 93 of 110 Report No.: 103895-3

Ossia, Inc. WO#: 102119 Sequence#: 80 Date: 6/26/2020 15.207 AC Mains - Average Test Lead: 115VAC 60Hz Neutral

Test Equipment:

Software Version: 5.03.12

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021
T1	AN02611	High Pass Filter	HE9615-150K-50-720B	1/10/2020	1/10/2022
T2	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T3	ANP06515	Cable	Heliax	6/29/2018	6/29/2020
T4	ANP06219	Attenuator	768-10	4/7/2020	4/7/2022
T5	AN01311	50uH LISN-Line1 (L)	3816/2	2/24/2020	2/24/2022
	AN01311	50uH LISN-Line2 (N)	3816/2	2/24/2020	2/24/2022

Page 94 of 110 Report No.: 103895-3

2 - 15.207 AC Mains - Quasi-peak

Measur	ement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Neutral		
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	150.000k	42.1	+2.5 -1.8	+0.0	+0.0	+9.1	+0.0	51.9	56.0	-4.1	Neutr
2	450.045k	32.9	+0.2 -0.5	+0.0	+0.1	+9.1	+0.0	41.8	46.9	-5.1	Neutr
3	4.771M	31.8	+0.1 -0.4	+0.0	+0.1	+9.1	+0.0	40.7	46.0	-5.3	Neutr
4	435.833k	32.6	+0.2 -0.5	+0.0	+0.1	+9.1	+0.0	41.5	47.1	-5.6	Neutr
5	190.452k	40.1	+0.3	+0.0	+0.0	+9.1	+0.0	48.2	54.0	-5.8	Neutr
6	212.459k	39.0	+0.3	+0.0	+0.0	+9.1	+0.0	47.3	53.1	-5.8	Neutr
7	4.978M	31.3	+0.1	+0.0	+0.1	+9.1	+0.0	40.2	46.0	-5.8	Neutr
8	173.684k	40.8	+0.4 -1.5	+0.0	+0.0	+9.1	+0.0	48.8	54.8	-6.0	Neutr
9	186.679k	40.0	+0.3	+0.0	+0.0	+9.1	+0.0	48.1	54.2	-6.1	Neutr
10	197.368k	39.2	+0.2	+0.0	+0.0	+9.1	+0.0	47.3	53.7	-6.4	Neutr
11	7.130M	34.5	+0.1	+0.0	+0.1	+9.1	+0.0	43.4	50.0	-6.6	Neutr
12	192.443k	39.1	+0.3	+0.0	+0.0	+9.1	+0.0	47.2	53.9	-6.7	Neutr
13	182.906k	39.6	+0.4	+0.0	+0.0	+9.1	+0.0	47.7	54.4	-6.7	Neutr
14	3.295M	30.3	+0.1	+0.0	+0.1	+9.1	+0.0	39.3	46.0	-6.7	Neutr
15	3.439M	30.3	+0.1	+0.0	+0.1	+9.1	+0.0	39.3	46.0	-6.7	Neutr
16	3.400M	30.3	+0.1	+0.0	+0.1	+9.1	+0.0	39.3	46.0	-6.7	Neutr
17	1.940M	30.1	+0.2	+0.0	+0.1	+9.1	+0.0	39.2	46.0	-6.8	Neutr
18	2.363M	30.2	+0.1	+0.0	+0.1	+9.1	+0.0	39.2	46.0	-6.8	Neutr
19	3.406M	30.1	+0.1 -0.3	+0.0	+0.1	+9.1	+0.0	39.1	46.0	-6.9	Neutr
20	155.030k Ave	29.0	+0.8	+0.0	+0.0	+9.1	+0.0	37.2	55.7	-18.5	Neutr
^	155.030k	46.2	+0.8	+0.0	+0.0	+9.1	+0.0	54.4	55.7	-1.3	Neutr

Page 95 of 110 Report No.: 103895-3

Customer: Ossia, Inc.

Specification: 15.209 Radiated Emissions

 Work Order #:
 102119
 Date: 6/29/2020

 Test Type:
 Maximized Emissions
 Time: 11:03:14

Tested By: Michael Atkinson Sequence#: 7

Software: EMITest 5.03.12

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Temperature: 20-25°C Humidity: 30-36% Pressure: 101-102kPa

Method: ANSI C63.10 (2013)

Frequency range tested: 9kHz-25GHz

XYZ EUT orientations investigated, worst case reported.

Below 30MHz, 3 x orthogonal axes investigated, above 30MHz, Horizontal and Vertical Antenna polarities investigated, worst case reported.

Investigated Radiated Spurious Emissions of Integrated Raspberry Pi 4 module while running the 2.4GHz Wi-Fi radio continuously. Customer was provided a worst case script of maximum power, running on Channel 1 (2412MHz) at worst case data rate for spurious emissions.

EUT connected to support laptop via USB cable.

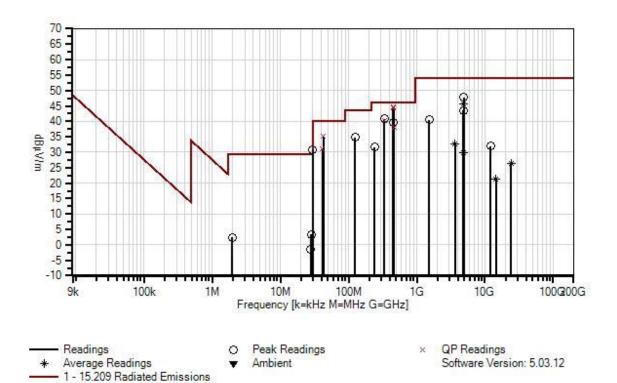
EUT connected to support PoE box with 2 x Ethernet cables for power.

Support laptop connected to PoE box with 1 x Ethernet cable.

PoE box and support Laptop are located remotely.

The manufacturer declares the other power configuration is unlikely to affect the Radiated Spurious Emissions of the 2.4GHz WiFi from the module, however, AC emissions will be run in both PoE and AC Adapter configurations.

No emissions observed above 18GHz, values provided are noise floor.


Integrated Module Info

Raspberry Pi 4B (FCC ID 2ABCB-RPI4B)

Page 96 of 110 Report No.: 103895-3

Ossia, Inc. WO#: 102119 Sequence#: 7 Date: 6/29/2020 15.209 Radiated Emissions Test Distance: 3 Meters Various

Page 97 of 110 Report No.: 103895-3

Test Equipment:

ID	Asset #	Description	Model	Calibration	Cal Due
				Date	Date
T1	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021
T2	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T3	ANP05305	Cable	ETSI-50T	9/6/2019	9/6/2021
T4	AN02307	Preamp	8447D	1/10/2020	1/10/2022
T5	ANP05360	Cable	RG214	2/3/2020	2/3/2022
Т6	ANP06123	Attenuator	18N-6	4/5/2019	4/5/2021
T7	AN03628	Biconilog Antenna	3142E	6/11/2019	6/11/2021
T8	AN03540	Preamp	83017A	5/13/2019	5/13/2021
T9	AN01467	Horn Antenna-ANSI C63.5	3115	7/5/2019	7/5/2021
		Calibration			
T10	ANP06515	Cable	Heliax	6/29/2018	6/29/2020
T11	ANP07504	Cable	CLU40-KMKM-02.00F	1/17/2019	1/17/2021
T12	AN03116	High Pass Filter	11SH10-00313	1/22/2019	1/22/2021
T13	AN02741	Active Horn Antenna	AMFW-5F-12001800-20-	4/26/2019	4/26/2021
			10P		
T14	AN02742	Active Horn Antenna	AMFW-5F-18002650-20-	10/16/2018	10/16/2020
			10P		
T15	ANP06678	Cable	32026-29801-29801-144	2/20/2020	2/20/2022
T16	AN02763-	Waveguide	Multiple	4/28/2020	4/28/2022
	69				
T17	ANP07212	Cable	32026-29801-29801-18	8/7/2019	8/7/2021
T18	ANP07211	Cable	32026-29801-29801-18	8/7/2019	8/7/2021
T19	AN00052	Loop Antenna	6502	5/4/2020	5/4/2022
	ANP07226	Attenuator	PE7004-6	10/2/2019	10/2/2021

Meas	urement Data:	R	eading lis	sted by ma	argin.		Te	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
			T13	T14	T15	T16					
			T17	T18	T19						
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m \\$	dB	Ant
1	448.529M	46.1	+0.0	+0.2	+1.0	-27.9	+0.0	44.6	46.0	-1.4	Horiz
	QP		+1.4	+5.8	+18.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
/	448.529M	51.1	+0.0	+0.2	+1.0	-27.9	+0.0	49.6	46.0	+3.6	Horiz
			+1.4	+5.8	+18.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						

Page 98 of 110 Report No.: 103895-3

3 454.728M	45.7	+0.0	+0.2	+1.0	-27.9	+0.0	44.3	46.0	-1.7	Vert
QP		+1.4	+5.8	+18.1	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
^ 454.728M	48.1	+0.0	+0.2	+1.0	-27.9	+0.0	46.7	46.0	+0.7	Vert
		+1.4	+5.8	+18.1	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
5 42.543M	45.8	+0.0	+0.1	+0.3	-28.0	+0.0	35.2	40.0	-4.8	Vert
QP		+0.3	+5.8	+10.9	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
6 333.600M	45.1	+0.0	+0.2	+0.9	-27.1	+0.0	40.8	46.0	-5.2	Vert
		+1.2	+5.8	+14.7	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
7 333.346M	44.5	+0.0	+0.2	+0.9	-27.1	+0.0	40.2	46.0	-5.8	Vert
QP		+1.2	+5.8	+14.7	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
8 4897.000M	42.8	+0.0	+0.9	+0.0	+0.0	+0.0	47.8	54.0	-6.2	Vert
		+0.0	+0.0	+0.0	-33.6					
		+32.5	+4.2	+0.5	+0.5					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
9 451.000M	41.0	+0.0	+0.2	+1.0	-27.9	+0.0	39.5	46.0	-6.5	Vert
		+1.4	+5.8	+18.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
10 468.400M	39.2	+0.0	+0.3	+1.1	-28.0	+0.0	38.0	46.0	-8.0	Horiz
QP		+1.4	+5.8	+18.2	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
^ 468.400M	42.2	+0.0	+0.3	+1.1	-28.0	+0.0	41.0	46.0	-5.0	Horiz
		+1.4	+5.8	+18.2	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						

Page 99 of 110 Report No.: 103895-3

12 4900.000M	40.8	+0.0	+0.9	+0.0	+0.0	+0.0	45.8	54.0	-8.2	Horiz
Ave		+0.0	+0.0	+0.0	-33.6					
		+32.5	+4.2	+0.5	+0.5					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
^ 4900.000M	44.4	+0.0	+0.9	+0.0	+0.0	+0.0	49.4	54.0	-4.6	Horiz
		+0.0	+0.0	+0.0	-33.6					
		+32.5	+4.2	+0.5	+0.5					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
14 125.100M	47.5	+0.0	+0.1	+0.5	-27.6	+0.0	34.8	43.5	-8.7	Vert
		+0.7	+5.8	+7.8	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
15 41 6003 5	41.2	+0.0	+0.0	+0.0	20.0	. 0. 0	21.2	40.0	0.0	X7 ·
15 41.600M	41.3	+0.0	+0.1	+0.3	-28.0	+0.0	31.2	40.0	-8.8	Vert
QP		+0.3	+5.8	+11.4	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
^ 41 600M	50.0	+0.0	+0.0	+0.0	20.0	. 0. 0	20.0	40.0	0.1	X 74
^ 41.600M	50.0	+0.0	+0.1	+0.3	-28.0	+0.0	39.9	40.0	-0.1	Vert
		+0.3 +0.0	+5.8 +0.0	$+11.4 \\ +0.0$	$+0.0 \\ +0.0$					
		+0.0 +0.0	+0.0 +0.0	+0.0						
		+0.0 +0.0	+0.0 +0.0	+0.0	+0.0					
17 30.000M	26.2	+0.0	+0.0	+0.0	+0.0	+0.0	30.8	40.0	-9.2	Perp
17 30.000101	20.2	+0.0	+0.1	+0.0	+0.0	+0.0	30.8	40.0	-9.2	reip
		+0.0	+0.3	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+4.2	10.0					
18 4823.970M	38.6	+0.0	+0.9	+0.0	+0.0	+0.0	43.5	54.0	-10.5	Vert
10 7023.770IVI	50.0	+0.0	+0.9	+0.0	-33.6	10.0	٠.٠	57.0	-10.5	V CI t
		+32.4	+4.1	+0.5	+0.6					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	. 0.0					
19 1530.000M	47.7	+0.0	+0.5	+0.0	+0.0	+0.0	40.5	54.0	-13.5	Horiz
1, 12,0,000,11	.,.,	+0.0	+0.0	+0.0	-35.3	. 5.0		2 1.0	10.0	
		+25.2	+2.2	+0.2	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	•					
20 240.500M	39.2	+0.0	+0.2	+0.8	-27.1	+0.0	31.6	46.0	-14.4	Vert
		+0.9	+5.8	+11.8	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
L										

Page 100 of 110 Report No.: 103895-3

21 3619.430M	30.3	+0.0	+0.8	+0.0	+0.0	+0.0	32.7	54.0	-21.3	Vert
Ave		+0.0	+0.0	+0.0	-33.8					
		+30.4	+3.6	+0.6	+0.8					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
^ 3619.450M	42.5	+0.0	+0.8	+0.0	+0.0	+0.0	44.9	54.0	-9.1	Vert
		+0.0	+0.0	+0.0	-33.8					
		+30.4	+3.6	+0.6	+0.8					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
23 12060.000	36.7	+0.0	+1.4	+0.0	+0.0	+0.0	31.9	54.0	-22.1	Horiz
M		+0.0	+0.0	+0.0	+0.0					
		+0.0	+6.8	+0.0	+0.0					
		-13.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
24 4823.970M	24.9	+0.0	+0.9	+0.0	+0.0	+0.0	29.8	54.0	-24.2	Horiz
Ave		+0.0	+0.0	+0.0	-33.6					
		+32.4	+4.1	+0.5	+0.6					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
25 28.505M	38.1	+0.0	+0.1	+0.0	+0.0	-40.0	3.3	29.5	-26.2	Groun
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.3	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+4.8						
26 1.984M	32.8	+0.0	+0.0	+0.0	+0.0	-40.0	2.4	29.5	-27.1	Para
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.1	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+9.5						
27 24119.900	25.9	+0.0	+0.0	+0.0	+0.0	+0.0	26.4	54.0	-27.6	Vert
M		+0.0	+0.0	+0.0	+0.0					
Ave		+0.0	+0.0	+0.0	+0.0					
		+0.0	-13.2	+9.8	+1.9					
		+1.0	+1.0	+0.0						
28 27.907M	32.9	+0.0	+0.1	+0.0	+0.0	-40.0	-1.6	29.5	-31.1	Perp
		+0.0	+0.0	+0.0	+0.0					-
		+0.0	+0.3	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+5.1						

Page 101 of 110 Report No.: 103895-3

29	14472.000	26.8	+0.0	+1.3	+0.0	+0.0	+0.0	21.4	54.0	-32.6	Horiz
	M		+0.0	+0.0	+0.0	+0.0					
	Ave		+0.0	+8.1	+0.0	+0.0					
			-14.8	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
٨	14472.000	38.2	+0.0	+1.3	+0.0	+0.0	+0.0	32.8	54.0	-21.2	Horiz
	M		+0.0	+0.0	+0.0	+0.0					
			+0.0	+8.1	+0.0	+0.0					
			-14.8	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
31	29.990M	22.6	+0.0	+0.1	+0.0	+0.0	-40.0	-12.8	29.5	-42.3	Para
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.3	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+4.2						
32	18.758M	18.8	+0.0	+0.1	+0.0	+0.0	-40.0	-13.2	29.5	-42.7	Groun
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.2	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+7.7						

Page 102 of 110 Report No.: 103895-3

Customer: Ossia, Inc.

Specification: 15.209 Radiated Emissions

Work Order #: 102119 Date: 6/29/2020
Test Type: Maximized Emissions Time: 10:26:37
Tested By: Michael Atkinson Sequence#: 8

Software: EMITest 5.03.12

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Temperature: 20-25°C Humidity: 30-36% Pressure: 101-102kPa

Method: ANSI C63.10 (2013)

Frequency range tested: 9kHz-40GHz

XYZ EUT orientations investigated, worst case reported.

Below 30MHz, 3 x orthogonal axes investigated, above 30MHz, Horizontal and Vertical Antenna polarities investigated, worst case reported.

Investigated Radiated Spurious Emissions of Integrated Raspberry Pi 4 module while running the 5GHz Wi-Fi radio continuously. Customer was provided a worst case script of maximum power, running on Channel 36 (5180MHz) at worst case data rate for spurious emissions. Also investigated Channel 140 (5700MHz) but no emissions observed within 20dB of 15.209 limit.

EUT connected to support laptop via USB cable.

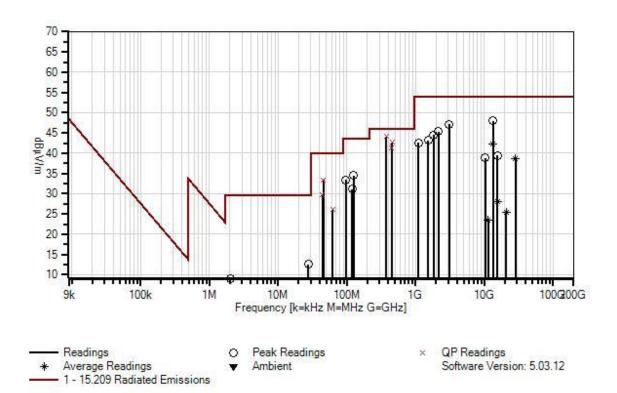
EUT connected to support PoE box with 2 x Ethernet cables for power.

Support laptop connected to PoE box with 1 x Ethernet cable.

PoE box and support Laptop are located remotely.

The manufacturer declares the other power configuration is unlikely to affect the Radiated Spurious Emissions of the 5GHz WiFi from the module, however, AC emissions will be run in both PoE and AC Adapter configurations.

No emissions observed above 18GHz, values provided are noise floor.


Integrated Module Info

Raspberry Pi 4B (FCC ID 2ABCB-RPI4B)

Page 103 of 110 Report No.: 103895-3

Ossia, Inc. WO#: 102119 Sequence#: 8 Date: 6/29/2020 15.209 Radiated Emissions Test Distance: 3 Meters Various

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021
T2	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T3	ANP05305	Cable	ETSI-50T	9/6/2019	9/6/2021
T4	AN02307	Preamp	8447D	1/10/2020	1/10/2022
T5	ANP05360	Cable	RG214	2/3/2020	2/3/2022
Т6	ANP06123	Attenuator	18N-6	4/5/2019	4/5/2021
T7	AN03628	Biconilog Antenna	3142E	6/11/2019	6/11/2021
T8	AN03540	Preamp	83017A	5/13/2019	5/13/2021
Т9	AN01467	Horn Antenna-ANSI C63.5 Calibration	3115	7/5/2019	7/5/2021
T10	ANP06515	Cable	Heliax	6/29/2018	6/29/2020
T11	ANP07504	Cable	CLU40-KMKM-02.00F	1/17/2019	1/17/2021
	AN03116	High Pass Filter	11SH10-00313	1/22/2019	1/22/2021
T12	AN02741	Active Horn Antenna	AMFW-5F-12001800-20-10P	4/26/2019	4/26/2021
T13	AN02742	Active Horn Antenna	AMFW-5F-18002650-20-10P	10/16/2018	10/16/2020
T14	ANP06678	Cable	32026-29801-29801-144	2/20/2020	2/20/2022
T15	AN02763-69	Waveguide	Multiple	4/28/2020	4/28/2022
T16	ANP07212	Cable	32026-29801-29801-18	8/7/2019	8/7/2021
T17	ANP07211	Cable	32026-29801-29801-18	8/7/2019	8/7/2021
T18	AN00052	Loop Antenna	6502	5/4/2020	5/4/2022
T19	ANP07226	Attenuator	PE7004-6	10/2/2019	10/2/2021
T20	AN02743	Active Horn Antenna	AMFW-5F-260400-33-8P	4/26/2019	4/26/2021
T21	AN02764-70	Waveguide	Multiple	4/28/2020	4/28/2022

Measurem	ent Data:	R	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters	}	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
			T13	T14	T15	T16					
			T17	T18	T19	T20					
			T21								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1 37	75.002M	46.9	+0.0	+0.2	+1.0	-27.5	+0.0	44.2	46.0	-1.8	Vert
QP			+1.3	+5.8	+16.5	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
2 45	57.800M	44.1	+0.0	+0.2	+1.0	-27.9	+0.0	42.7	46.0	-3.3	Horiz
QP			+1.4	+5.8	+18.1	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

Page 105 of 110 Report No.: 103895-3

3 451.000M	42.9	+0.0	+0.2	+1.0	-27.9	+0.0	41.4	46.0	-4.6	Vert
QP		+1.4	+5.8	+18.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
4 13472.000	45.9	+0.0	+1.3	+0.0	+0.0	+0.0	48.0	54.0	-6.0	Vert
M		+0.0	+0.0	+0.0	-33.7					
		+40.5	+7.5	+1.0	-14.5					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
5 45.500M	45.4	+0.0	+0.1	+0.3	-28.0	+0.0	33.4	40.0	-6.6	Vert
QP		+0.4	+5.8	+9.4	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
6 3106.000M	41.8	+0.0	+0.8	+0.0	+0.0	+0.0	47.2	54.0	-6.8	Vert
		+0.0	+0.0	+0.0	-34.0					
		+29.3	+3.0	+0.4	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+5.9	+0.0					
		+0.0								
7 2161.000M	42.8	+0.0	+0.6	+0.0	+0.0	+0.0	45.3	54.0	-8.7	Vert
		+0.0	+0.0	+0.0	-34.4					
		+27.8	+2.4	+0.2	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+5.9	+0.0					
		+0.0								
8 125.100M	47.2	+0.0	+0.1	+0.5	-27.6	+0.0	34.5	43.5	-9.0	Vert
		+0.7	+5.8	+7.8	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
9 1837.000M	44.0	+0.0	+0.5	+0.0	+0.0	+0.0	44.5	54.0	-9.5	Vert
		+0.0	+0.0	+0.0	-34.8					
		+26.4	+2.3	+0.2	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+5.9	+0.0					
		+0.0								
10 96.900M	46.3	+0.0	+0.1	+0.5	-27.7	+0.0	33.4	43.5	-10.1	Vert
10 ,0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.0.0	+0.6	+5.8	+7.8	+0.0	. 0.0	22		20.1	. 510
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	. 0.0	. 0.0	. 0.0					
		10.0								

Page 106 of 110 Report No.: 103895-3

11 44.500M	41.2	+0.0	+0.1	+0.3	-28.0	+0.0	29.7	40.0	-10.3	Vert
QP		+0.4	+5.8	+9.9	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
12 1531.000M	44.5	+0.0	+0.5	+0.0	+0.0	+0.0	43.2	54.0	-10.8	Vert
		+0.0	+0.0	+0.0	-35.3					
		+25.2	+2.2	+0.2	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+5.9	+0.0					
		+0.0								
13 1108.000M	46.4	+0.0	+0.4	+0.0	+0.0	+0.0	42.6	54.0	-11.4	Horiz
		+0.0	+0.0	+0.0	-36.7					
		+24.7	+1.8	+0.1	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+5.9	+0.0					
		+0.0	10.0	13.7	. 0.0					
14 13475.175	40.1	+0.0	+1.3	+0.0	+0.0	+0.0	42.2	54.0	-11.8	Vert
M	40.1	+0.0	+0.0	+0.0	-33.7	10.0	72,2	34.0	11.0	VCIT
Ave		+40.5	+7.5	+1.0	-14.5					
Ave		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
15 120.200M	43.7		ı O 1	10.5	27.6	ι Ο Ο	31.1	43.5	-12.4	Vert
13 120.200M	43.7	+0.0 +0.6	+0.1 +5.8	+0.5	-27.6 +0.0	+0.0	31.1	43.3	-12.4	vert
				+8.0						
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
4.5 . 50 0003.5	20.7	+0.0	0.1	0.4	25.0		2.1	40.0	12.0	**
16 62.000M	39.5	+0.0	+0.1	+0.4	-27.8	+0.0	26.1	40.0	-13.9	Vert
QP		+0.5	+5.8	+7.6	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
17 15541.110	36.7	+0.0	+1.8	+0.0	+0.0	+0.0	39.4	54.0	-14.6	Horiz
M		+0.0	+0.0	+0.0	-34.2					
		+39.0	+8.2	+0.7	-12.8					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
18 10360.560	40.4	+0.0	+1.3	+0.0	+0.0	+0.0	38.8	54.0	-15.2	Vert
M		+0.0	+0.0	+0.0	-34.1					
		+36.3	+6.2	+0.8	-12.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
L		. 0.0								

Page 107 of 110 Report No.: 103895-3

19	28310.000	19.3	+0.0	+0.0	+0.0	+0.0	+0.0	38.6	54.0	-15.4	Vert
	M		+0.0	+0.0	+0.0	+0.0					
	Ave		+0.0	+0.0	+0.0	+0.0					
			+0.0	+10.8	+0.0	+1.3					
			+1.1	+0.0	+0.0	+2.2					
			+3.9								
20	27.518M	46.8	+0.0	+0.1	+0.0	+0.0	-40.0	12.5	29.5	-17.0	Groun
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.3	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+5.3	+0.0	+0.0					
			+0.0								
21	2.014M	39.5	+0.0	+0.0	+0.0	+0.0	-40.0	9.1	29.5	-20.4	Groun
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.1	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+9.5	+0.0	+0.0					
			+0.0								
22	15539.885	25.4	+0.0	+1.8	+0.0	+0.0	+0.0	28.1	54.0	-25.9	Horiz
	M		+0.0	+0.0	+0.0	-34.2					
	Ave		+39.0	+8.2	+0.7	-12.8					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
23	20720.000	25.9	+0.0	+0.0	+0.0	+0.0	+0.0	25.3	54.0	-28.7	Vert
	M		+0.0	+0.0	+0.0	+0.0					
	Ave		+0.0	+0.0	+0.0	+0.0					
			-13.9	+9.2	+2.0	+1.2					
			+0.9	+0.0	+0.0	+0.0					
			+0.0			0.5					
24	11398.750	28.9	+0.0	+1.4	+0.0	+0.0	+0.0	23.5	54.0	-30.5	Vert
	. M		+0.0	+0.0	+0.0	+0.0					
	Ave		+0.0	+6.5	+0.0	-13.3					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
^	11398.750	42.2	+0.0	+1.4	+0.0	+0.0	+0.0	36.8	54.0	-17.2	Vert
	M		+0.0	+0.0	+0.0	+0.0					
			+0.0	+6.5	+0.0	-13.3					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

Page 108 of 110 Report No.: 103895-3

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

	SAMPLE CALCULATIONS								
	Meter reading (dBμV)								
+	Antenna Factor	(dB/m)							
+	Cable Loss	(dB)							
-	Distance Correction	(dB)							
-	Preamplifier Gain	(dB)							
=	Corrected Reading	(dBµV/m)							

Page 109 of 110 Report No.: 103895-3

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING	MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE								
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING						
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz						
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz						
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz						
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz						
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz						

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.

Page 110 of 110 Report No.: 103895-3