

SAR EVALUATION REPORT

For

TYT ELECTRONICS CO., LTD

Block 39-1, Optoelectronics-information industry base, Nan'an, quanzhou Fujian China

FCC ID: POD-MD380V

Report Type: Product Type: Original report **DMR** Wilson then **Test Engineer:** Wilson Chen **Report Number:** RSZ150807001-20A **Report Date:** 2015-09-15 BeilHu Bell Hu **Reviewed By:** SAR Engineer Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F, the 3rd Phase of WanLi Industrial Building, **Prepared By:** ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

			Attestatio	n of Test Results		
		Comp	oany Name	TYT ELECTRONICS CO., LTD		
EUT Information		EUT Description		DMR		
		FCC ID		POD-MD380V		
		Mod	el Number	Tested Model: MD-380 Multiple Models: MD-390,MD-368,MD-398,N	MD-446	
			Test Date	2015-08-09		
Frequency (MHz)	Modulation		Max.	SAR Level(s) Reported (1g)	Limit (W/Kg)	
	Digital	12.5kHz		.185 W/kg(corrected by Multiplying 50%.) c: 0.297 W/kg(corrected by Multiplying 50%.)		
Analog 12.5kHz Face up: 0.264 W/kg (corrected by Multiplying 50% Body-Back: 0.592 W/kg (corrected by Multiplying 5.0%)					8.0	
	-		ANSI / IEEE C95.1: 2005 IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fileds, 3 kHz to 300 GHz.			
		ANSI / IEEE C95.3: 2002 IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to SuchFields,100 kHz—300 GHz.				
Annlicahl	e Standards	IEEE1528:2013 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques				
		Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body.				
		KDB proc KDB 44749 KDB 86566 KDB 64364	edures 8 D01 v05r02 4 D01v01r03: 6D01 v01r01	5r02: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies. r03: SAR measurement 100 MHz to 6 GHz. r01: SAR test Reduction Considerations for Occupational PTT Radios. g Number 316436 for SAR VHF system validation.		

Report No.: RSZ150807001-20A

Note: This wireless device has been shown to be capable of compliance for localized specific absorption rate SAR For Occupational /Controlled Exposure Environment limits specified in ANSI/IEEE Standards and have been tested in accordance with the measurement procedures specified in IEEE 1528-2013 and RF exposure KDB procedures.

The results and statements contained in this report pertain only to the device(s) evaluated.

SAR Evaluation Report 2 of 63

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
EUT DESCRIPTION	5
TECHNICAL SPECIFICATION	
REFERENCE, STANDARDS, AND GUILDELINES	6
SAR LIMITS	
FACILITIES	
DESCRIPTION OF TEST SYSTEM	
EQUIPMENT LIST AND CALIBRATION	16
EQUIPMENTS LIST & CALIBRATION INFORMATION	
SAR MEASUREMENT SYSTEM VERIFICATION	17
LIQUID VERIFICATION	
SYSTEM ACCURACY VERIFICATION	19
SAR SYSTEM VALIDATION DATA	
EUT TEST STRATEGY AND METHODOLOGY	
TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR	
CHEEK/TOUCH POSITIONEAR/TILT POSITION	
TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS	
SAR EVALUATION PROCEDURE	
TEST METHODOLOGY	
CONDUCTED OUTPUT POWER MEASUREMENT	
PROVISION APPLICABLE	
TEST PROCEDURE	
TEST RESULTS:	
SAR MEASUREMENT RESULTS	29
SAR TEST DATA	29
Test Result:	
SAR PLOTS (SUMMARY OF THE HIGHEST SAR VALUES)	
APPENDIX A – MEASUREMENT UNCERTAINTY	
APPENDIX B – PROBE CALIBRATION CERTIFICATES	
APPENDIX C – DIPOLE CALIBRATION CERTIFICATES	47
APPENDIX D – EUT TEST POSITION PHOTOS	
Liquid depth 15cm	
FACE-UP 2.5 CM SEPARATION TO FLAT PHANTOMBODY-BACK 0.0 CM SEPARATION TO FLAT PHANTOM	
EUT – FRONT VIEW	
EUT – BACK VIEW	
EUT-LEFT VIEW	
EUT–RIGHT VIEWEUT–TOP VIEW	
EUT-BOTTOM VIEW	
Battery View	60
EUT-Antenna1:136-174MHz	
EUT – BELT CLIP	
APPENDIX F – INFORMATIVE REFERENCES	
PRODUCT SIMILARITY DECLARATION LETTER	63

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision	
0	RSZ150807001-20A	Original Report	2015-09-15	

Report No.: RSZ150807001-20A

SAR Evaluation Report 4 of 63

EUT DESCRIPTION

This report has been prepared on behalf of TYT ELECTRONICS CO., LTD and their product and their product, FCC ID: POD-MD380V, Model: MD-380 or the EUT (Equipment Under Test) as referred to in the rest of this report. The EUT is a DMR.

Report No.: RSZ150807001-20A

*Note:

1. This series products model: MD-380 and MD-390, MD-368, MD-398, MD-446, we select model: MD-380 to test, there is no electrical change has been made to the equipment, please refer to the product similarity letter.

Technical Specification

Product Type	Portable
Exposure Category:	Occupational/Controlled Exposure
Antenna Type(s):	External Antenna
Body-Worn Accessories:	Belt Clip and Headset Cable
Face-Head Accessories:	None
Modulation Type:	FM/4FSK
Frequency Band:	136MHz-174MHz
Conducted RF Power:	37.65 dBm
EUT Dimensions (L*W*H):	131mm (L)×61mm (W)×36mm (H)
Power Source:	7.4V Rechargeable Li-ION Battery
Normal Operation:	Face Up and Body-worn

SAR Evaluation Report 5 of 63

REFERENCE, STANDARDS, AND GUILDELINES

FCC:

The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

Report No.: RSZ150807001-20A

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass.

CE:

The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 2 mW/g as recommended by EN62209-1 for an uncontrolled environment. According to the Standard, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in Europe is 2 mW/g average over 10 gram of tissue mass.

The test configurations were laid out on a specially designed test fixture to ensure the reproducibility of measurements. Each configuration was scanned for SAR. Analysis of each scan was carried out to characterize the above effects in the device.

SAR Evaluation Report 6 of 63

SAR Limits

FCC Limit (1g Tissue)

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)		
Spatial Average (averaged over the whole body)	0.08	0.4		
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0		
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0		

CE Limit (10g Tissue)

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)		
Spatial Average (averaged over the whole body)	0.08	0.4		
Spatial Peak (averaged over any 10 g of tissue)	2.0	10		
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0		

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

Occupational/Controlled environments Spatial Peak limit 8.0 W/kg (FCC/IC) & 10 W/kg (CE) applied to the EUT.

SAR Evaluation Report 7 of 63

FACILITIES

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect data is located at 6/F, the 3rd Phase of WanLi Industrial Building, Shi Hua Road, Fu Tian Free Trade Zone, Shenzhen, Guangdong, P.R. of China

SAR Evaluation Report 8 of 63

DESCRIPTION OF TEST SYSTEM

These measurements were performed with ALSAS 10 Universal Integrated SAR Measurement system from APREL Laboratories.

ALSAS-10U System Description

ALSAS-10-U is fully compliant with the technical and scientific requirements of IEEE 1528, IEC 62209, CENELEC, ARIB, ACA, and the Federal Communications Commission. The system comprises of a six axes articulated robot which utilizes a dedicated controller. ALSAS-10U uses the latest methodologies. And FDTD modeling to provide a platform which is repeatable with minimum uncertainty.

Applications

Predefined measurement procedures compliant with the guidelines of CENELEC, IEEE, IEC, FCC, etc are utilized during the assessment for the device. Automatic detection for all SAR maxima are embedded within the core architecture for the system, ensuring that peak locations used for centering the zoom scan are within a 1mm resolution and a 0.05mm repeatable position. System operation range currently available up-to 6 GHz in simulated tissue.

Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm2 step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

Report No.: RSZ150807001-20A

Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

Zoom Scan (Cube Scan Averaging)

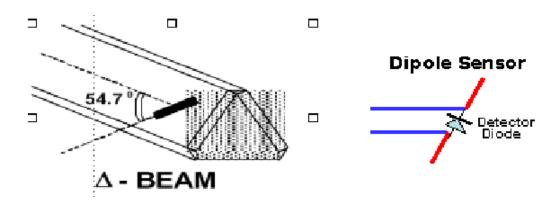
The averaging zoom scan volume utilized in the ALSAS-10U software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m3 is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 5x5x8 (8mmx8mmx5mm) providing a volume of 32mm in the X & Y axis, and 35mm in the Z axis.

SAR Evaluation Report 9 of 63

ALSAS-10U Interpolation and Extrapolation Uncertainty


The overall uncertainty for the methodology and algorithms the used during the SAR calculation was evaluated using the data from IEEE 1528 based on the example f3 algorithm:

$$f_3(x, y, z) = A \frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2} \cdot \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2} \right)$$

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

SAR is assessed with a calibrated probe which moves at a default height of 5mm from the center of the diode, which is mounted to the sensor, to the phantom surface (in the Z Axis). The 5mm offset height has been selected so as to minimize any resultant boundary effect due to the probe being in close proximity to the phantom surface.

The following algorithm is an example of the function used by the system for linearization of the output from the probe when measuring complex modulation schemes.

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

SAR Evaluation Report 10 of 63

Isotropic E-Field Probe Specification

Calibration Method	Frequency Dependent Below 1 GHz Calibration in air performed in a TEM Cell Above 1 GHz Calibration in air performed in waveguide
Sensitivity	$0.70 \ \mu V/(V/m)^2$ to $0.85 \ \mu V/(V/m)^2$
Dynamic Range	0.0005 W/kg to 100 W/kg
Isotropic Response	Better than 0.1 dB
Diode Compression Point (DCP)	Calibration for Specific Frequency
Probe Tip Diameter	< 2.9 mm
Sensor Offset	1.56 (+/- 0.02 mm)
Probe Length	289 mm
Video Bandwidth	@ 500 Hz: 1 dB @ 1.02 kHz: 3 dB
Boundary Effect	Less than 2.1% for distance greater than 0.58 mm
Spatial Resolution	The spatial resolution uncertainty is less than 1.5% for 4.9mm diameter probe. The spatial resolution uncertainty is less than 1.0% for 2.5mm diameter probe

Report No.: RSZ150807001-20A

Boundary Detection Unit and Probe Mounting Device

ALSAS-10U incorporates a boundary detection unit with a sensitivity of 0.05mm for detecting all types of surfaces. The robust design allows for detection during probe tilt (probe normalize) exercises, and utilizes a second stage emergency stop. The signal electronics are fed directly into the robot controller for high accuracy surface detection in lateral and axial detection modes (X, Y, & Z).

The probe is mounted directly onto the Boundary Detection unit for accurate tooling and displacement calculations controlled by the robot kinematics. The probe is connect to an isolated probe interconnect where the output stage of the probe is fed directly into the amplifier stage of the Daq-Paq.

Daq-Paq (Analog to Digital Electronics)

ALSAS-10U incorporates a fully calibrated Daq-Paq (analog to digital conversion system) which has a 4 channel input stage, sent via a 2 stage auto-set amplifier module. The input signal is amplified accordingly so as to offer a dynamic range from $5\mu V$ to 800mV. Integration of the fields measured is carried out at board level utilizing a Co-Processor which then sends the measured fields down into the main computational module in digitized form via an RS232 communications port. Probe linearity and duty cycle compensation is carried out within the main Daq-Paq module.

ADC	12 Bit
Amplifier Range	20 mV to 200 mV and 150 mV to 800 mV
Field Integration	Local Co-Processor utilizing proprietary integration algorithms
Number of Input Channels	4 in total 3 dedicated and 1 spare
Communication	Packet data via RS232

SAR Evaluation Report 11 of 63

Axis Articulated Robot

ALSAS-10U utilizes a six axis articulated robot, which is controlled using a Pentium based real-time movement controller. The movement kinematics engine utilizes proprietary (Thermo CRS) interpolation and extrapolation algorithms, which allow full freedom of movement for each of the six joints within the working envelope. Utilization of joint 6 allows for full probe rotation with a tolerance better than 0.05mm around the central axis.

Robot/Controller Manufacturer	Thermo CRS	
Number of Axis	Six independently controlled axis	
Positioning Repeatability	0.05 mm	
Controller Type	Single phase Pentium based C500C	
Robot Reach	710 mm	
Communication	RS232 and LAN compatible	

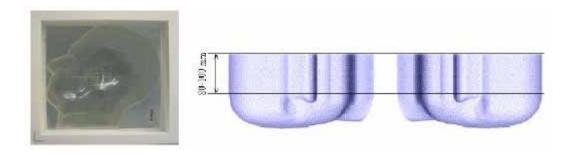
ALSAS Universal Workstation

ALSAS Universal workstation allows for repeatability and fast adaptability. It allows users to do calibration, testing and measurements using different types of phantoms with one set up, which significantly speeds up the measurement process.

Universal Device Positioner

The universal device positioner allows complete freedom of movement of the EUT. Developed to hold a EUT in a free-space scenario any additional loading attributable to the material used in the construction of the positioner has been eliminated. Repeatability has been enhanced through the linear scales which form the design used to indicate positioning for any given test scenario in all major axes. A 15° tilt indicator is included for the of aid cheek to tilt movements for head SAR analysis. Overall uncertainty for measurements have been reduced due to the design of the Universal device positioner, which allows positioning of a device in as near to a free-space scenario as possible, and by providing the means for complete repeatability.

SAR Evaluation Report 12 of 63



Phantom Types

The ALSAS-10U allows the integration of multiple phantom types. SAM Phantoms fully compliant with IEEE 1528, Universal Phantom, and Universal Flat.

APREL SAM Phantoms

The SAM phantoms developed using the IEEE SAM CAD file. They are fully compliant with the requirements for both IEEE 1528 and FCC Supplement C. Both the left and right SAM phantoms are interchangeable, transparent and include the IEEE 1528 grid with visible NF and MB lines.

SAR Evaluation Report 13 of 63

APREL Laboratories Universal Phantom

The Universal Phantom is used on the ALSAS-10U as a system validation phantom. The Universal Phantom has been fully validated both experimentally from 30MHz to 6GHz and numerically using XFDTD numerical software.

The shell thickness is 2mm overall, with a 4mm spacer located at the NF/MB intersection providing an overall thickness of 6mm in line with the requirements of IEEE-1528.

The design allows for fast and accurate measurements, of handsets, by allowing the conservative SAR to be evaluated at on frequency for both left and right head experiments in one measurement.

SAR Evaluation Report 14 of 63

Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Report No.: RSZ150807001-20A

Ingredients	Frequency (MHz)										
(% by weight)	45	450		835		915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2	
Salt (Nacl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04	
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0	
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	
Triton x-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5	
Conductivity (s/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78	

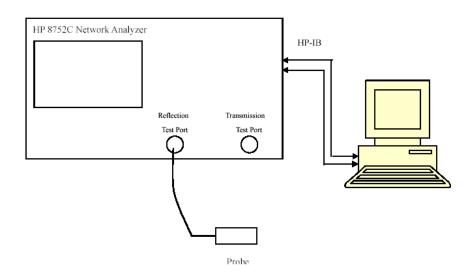
Recommended Tissue Dielectric Parameters for Head and Body

Frequency	Head '	Tissue	Body Tissue		
(MHz)	Er	O' (S/m)	Er	O'(S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800-2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	35.3	5.27	48.2	6.00	

SAR Evaluation Report 15 of 63

EQUIPMENT LIST AND CALIBRATION

Equipments List & Calibration Information


Equipment	Model	Calibration Date	Calibration Due Date	S/N
CRS F3 robot	ALS-F3	N/A	N/A	RAF0805352
CRS F3 Software	ALS-F3-SW	N/A	N/A	N/A
CRS C500C controller	ALS-C500	N/A	N/A	RCF0805379
Probe mounting device & Boundary Detection Sensor System	ALS-PMDPS-3	N/A	N/A	120-00270
Universal Work Station	ALS-UWS	N/A	N/A	100-00157
Data Acquisition Package	ALS-DAQ-PAQ-3	2014-10-14	2015-10-14	110-00212
Miniature E-Field Probe	E-020	2014-10-14	2015-10-14	500-00283
Loop, 150 MHz	CLA150	2014-05-08	2017-05-08	4004
Device holder/Positioner	ALS-H-E-SET-2	N/A	N/A	170-00510
Left ear SAM phantom	ALS-P-SAM-L	N/A	N/A	130-00311
Right ear SAM phantom	ALS-P-SAM-R	N/A	N/A	140-00359
UniPhantom	ALS-UM-FLAT	N/A	N/A	153-00104
Simulated Tissue 150 MHz Head	ALS-TS-150-H	Each Time	/	250-01302
Simulated Tissue 150 MHz Body	ALS-TS-150-B	Each Time	/	250-01304
Dielectric probe kit	HP85070B	2015-06-13	2016-06-13	N/A
Power Amplifier	5S1G4	N/A	N/A	71377
Attenuator	3dB	2015-05-08	2016-05-08	5402
Network analyzer	8752C	2015-06-03	2016-06-03	3410A02356
Synthesized Sweeper	HP 8341B	2015-06-03	2016-06-03	2624A00116
Directional couple	DC6180A	2015-06-13	2016-06-13	0325849
EMI Test Receiver	ESCI	2015-06-13	2016-06-13	101746

Report No.: RSZ150807001-20A

SAR Evaluation Report 16 of 63

SAR MEASUREMENT SYSTEM VERIFICATION

Liquid Verification

Report No.: RSZ150807001-20A

Liquid Verification Setup Block Diagram

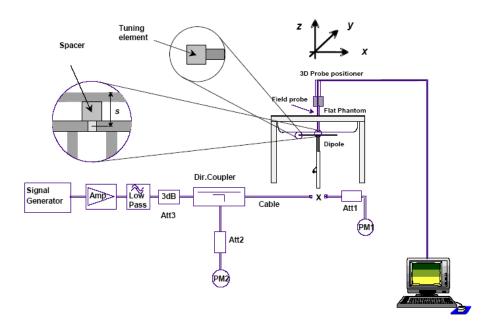
Liquid Verification Results

Frequency	Liquid	Liquid Parameter		Target Value		Delta (%)		Tolerance	
(MHz)	Type	ε _r	O (S/m)	ε _r	O (S/m)	$\epsilon_{ m r}$	O'(S/m)	(%)	
126 0125	Head	51.72	0.77	52.30	0.76	-1.109	1.316	±5	
136.0125	Body	61.33	0.80	61.90	0.80	-0.921	0.000	±5	
141 0125	Head	51.28	0.76	52.30	0.76	-1.950	0.000	±5	
141.0125	Body	63.09	0.80	61.90	0.80	1.922	0.000	±5	
146 0125	Head	50.55	0.77	52.30	0.76	-3.346	1.316	±5	
146.0125	Body	62.16	0.81	61.90	0.80	0.420	1.250	±5	
155,0000	Head	50.42	0.78	52.30	0.76	-3.595	2.632	±5	
155.0000	Body	61.78	0.80	61.90	0.80	-0.194	0.000	±5	
164.0125	Head	50.46	0.79	52.30	0.76	-3.518	3.947	±5	
164.0125	Body	60.89	0.82	61.90	0.80	-1.632	2.500	±5	
160.0125	Head	50.74	0.79	52.30	0.76	-2.983	3.947	±5	
169.0125	Body	61.39	0.82	61.90	0.80	-0.824	2.500	±5	
172 0075	Head	51.07	0.79	52.30	0.76	-2.352	3.947	±5	
173.9875	Body	60.82	0.82	61.90	0.80	-1.745	2.500	±5	

^{*}Liquid Verification was performed on 2015-08-09

SAR Evaluation Report 17 of 63

Please refer to the following tables.


Frequency		150MHz Head		150MHz Body					
136.8 51.7424 100.1394 136.8 61.1483 105.4599 137.5 51.8428 100.1150 137.5 61.0783 104.7998 138.3 52.0650 99.2499 138.3 61.0564 104.7402 139.0 51.4969 99.0322 139.0 61.2982 104.1704 139.8 51.3321 98.1782 140.6 62.7818 102.2872 141.3 51.2796 97.1842 141.3 63.0868 10.21281 142.1 51.0621 97.5089 142.1 62.2757 102.3717 142.8 51.1103 97.0383 142.8 61.1417 101.7255 143.6 50.9450 96.5010 143.6 62.5270 101.3082 144.4 50.9484 96.0863 144.4 61.3730 100.1705 145.1 50.6721 95.6479 145.1 61.3205 100.3442 145.9 50.5688 95.5964 145.9 50.5688 94.2560 148.2 50.5959 94.2560 148.2 50.3727 99.6870 147.4 60.8207 98.6444 148.2 50.5959 94.2560 148.2 61.3742 98.6846 148.2 50.5959 94.2560 148.2 61.3742 98.6846 148.9 50.5327 92.7002 148.9 61.7162 97.8055 149.7 50.4588 93.2798 149.7 50.4588 93.2798 149.7 50.4588 93.2798 149.7 50.4588 93.2798 149.7 50.4588 93.2798 149.7 50.4588 93.2798 149.7 50.4588 93.2798 149.7 50.4588 93.2798 149.7 50.4588 93.2798 149.7 50.6680 96.070 51.512 50.5112 92.0676 151.2 60.8607 95.2149 152.0 50.4983 91.9112 152.0 60.8608 59.9317 152.7 50.5486 91.8931 152.7 61.2560 95.0465 155.5 50.420 90.2585 155.0 61.7818 92.9886 155.8 50.3410 88.2480 159.6 61.5188 92.9886 155.8 50.4411 88.9478 155.8 60.8112 91.9034 159.6 61.5188 92.9886 155.8 50.4411 88.9478 155.8 60.8112 91.9034 156.6 50.5649 86.8542 162.6 61.5970 88.7932 166.4 50.9797 86.3011 150.4 60.4036 39.9451 150.6 60.4036 39.9451 155.6 60.4036 39.9451 155.6 60.4036 39.9451 156.6 60.4036 39.9451 156.6 60.6036 39.9451 156.6 60.6036 39.9451 156.6 60.6036 30.9038 30.905757 164.9 60.4036 30.9038 30.905757 164.9 60.4036 30.9038 30.905757 164.9		e'	e''		e'	e''			
136.8 51.7424 100.1394 136.8 61.1483 105.4599 137.5 51.8428 100.1150 137.5 61.0783 104.7998 138.3 52.0650 99.2499 138.3 61.0564 104.7402 139.0 51.4969 99.0322 139.0 61.2982 104.1704 139.8 51.3321 98.1782 140.6 62.7818 102.2872 141.3 51.2796 97.1842 141.3 63.0868 10.21281 142.1 51.0621 97.5089 142.1 62.2757 102.3717 142.8 51.1103 97.0383 142.8 61.1417 101.7255 143.6 50.9450 96.5010 143.6 62.5270 101.3082 144.4 50.9484 96.0863 144.4 61.3730 100.1705 145.1 50.6721 95.6479 145.1 61.3205 100.3442 145.9 50.5688 95.5964 145.9 50.5688 94.2560 148.2 50.5959 94.2560 148.2 50.3727 99.6870 147.4 60.8207 98.6444 148.2 50.5959 94.2560 148.2 61.3742 98.6846 148.2 50.5959 94.2560 148.2 61.3742 98.6846 148.9 50.5327 92.7002 148.9 61.7162 97.8055 149.7 50.4588 93.2798 149.7 50.4588 93.2798 149.7 50.4588 93.2798 149.7 50.4588 93.2798 149.7 50.4588 93.2798 149.7 50.4588 93.2798 149.7 50.4588 93.2798 149.7 50.4588 93.2798 149.7 50.4588 93.2798 149.7 50.6680 96.070 51.512 50.5112 92.0676 151.2 60.8607 95.2149 152.0 50.4983 91.9112 152.0 60.8608 59.9317 152.7 50.5486 91.8931 152.7 61.2560 95.0465 155.5 50.420 90.2585 155.0 61.7818 92.9886 155.8 50.3410 88.2480 159.6 61.5188 92.9886 155.8 50.4411 88.9478 155.8 60.8112 91.9034 159.6 61.5188 92.9886 155.8 50.4411 88.9478 155.8 60.8112 91.9034 156.6 50.5649 86.8542 162.6 61.5970 88.7932 166.4 50.9797 86.3011 150.4 60.4036 39.9451 150.6 60.4036 39.9451 155.6 60.4036 39.9451 155.6 60.4036 39.9451 156.6 60.4036 39.9451 156.6 60.6036 39.9451 156.6 60.6036 39.9451 156.6 60.6036 30.9038 30.905757 164.9 60.4036 30.9038 30.905757 164.9 60.4036 30.9038 30.905757 164.9		51.7199	101.2025	` /	61.3305	105.1271			
137.5 51.8428 100.1150 137.5 61.0783 104.7908 138.3 52.0650 99.2499 138.3 61.0564 104.7402 139.0 51.4969 99.0322 139.0 61.2982 104.1704 139.8 51.3321 98.9195 139.8 61.2570 103.7170 140.6 51.3391 98.1782 140.6 62.7818 102.2872 141.3 51.2796 97.1842 141.3 63.0868 102.1281 142.1 51.0621 97.5089 142.1 62.2757 102.3717 142.8 51.1103 97.0383 142.8 51.1103 97.0383 142.8 51.1103 97.0383 142.8 51.1103 97.0383 142.8 51.1103 97.0383 144.4 61.3730 100.1705 145.1 50.0721 95.6479 145.1 61.3205 100.3442 145.9 50.5688 95.6964 145.9 61.1532 99.7653 146.6 50.5512 95.1519 146.6 62.1550 99.6870 147.4 50.5170 94.6893 147.4 50.8207 98.6444 148.2 50.5959 94.2560 148.2 61.3724 98.6866 148.9 50.5327 92.7002 148.9 61.7162 97.8055 149.7 50.4558 93.2798 149.7 61.6266 97.0676 150.4 50.7711 92.2069 150.4 61.4400 96.4788 151.2 50.5790 99.9336 152.7 50.5486 91.9331 152.7 61.2560 95.2149 152.0 50.4983 91.9112 152.0 60.8068 95.9317 152.7 50.4586 91.8931 152.7 61.2560 95.2149 152.0 50.4983 91.9112 152.0 60.8068 95.9317 152.7 50.5486 91.8931 152.7 61.2560 95.2149 152.0 50.4983 91.9112 152.0 60.8068 95.9317 152.7 50.5486 91.8931 152.7 61.2560 95.2149 152.0 50.4983 91.9112 152.0 60.8068 95.9317 152.7 50.5486 91.8931 152.7 61.2560 95.2496 150.4 61.4400 96.4788 151.2 50.5790 90.9336 154.2 60.4085 93.9451 155.0 50.4220 90.2585 155.0 61.7818 92.9886 155.8 50.3163 90.2685 155.8 60.8518 92.9818 156.5 50.2220 89.4541 156.5 61.4034 93.0736 158.8 50.2411 88.9478 158.8 60.8518 92.9818 156.5 50.2220 89.4541 156.5 61.633 92.9248 159.6 60.2528 87.0530 161.8 80.9232 80.5521 162.6 60.5544 88.4920 61.64 61.3062 87.9062 61.5118 60.4062									
138.3 52.0650 99.2499 138.3 61.0564 104.7402 139.0 51.4969 99.0322 139.0 61.2982 104.1704 139.8 51.3321 98.9195 139.8 61.2570 103.7170 140.6 51.3391 98.1782 140.6 62.7818 102.2872 141.3 51.2796 97.1842 141.3 63.0868 02.1281 142.1 51.0621 97.5089 142.1 62.2757 102.3717 142.8 51.1103 97.0383 142.8 61.1417 101.7255 143.6 50.9450 96.5010 143.6 62.5270 103.302 144.4 50.9484 96.0863 144.4 61.3730 100.1705 145.1 50.6721 95.6479 145.1 61.3205 100.3442 145.9 50.5688 95.5964 145.9 61.1532 99.6870 147.4 50.5170 94.6893 147.4 60.8207 98.6444 148.2 50.5959 94.2560 148.2 61.3724 98.6866 148.9 50.5327 92.7002 148.9 61.7162 97.8055 149.7 50.4558 93.2798 149.7 61.6266 67.0676 150.4 50.7711 92.2069 150.4 61.4400 96.4788 151.2 50.5486 91.8931 152.7 61.2560 95.0455 152.7 50.5486 91.8931 152.7 61.2560 95.0455 155.8 50.3163 90.2685 155.0 61.7818 92.9886 155.8 50.3163 90.2685 155.0 61.7818 92.9886 158.8 50.4210 88.8055 158.0 61.7818 92.9886 158.8 50.4210 88.8055 155.0 61.7818 92.9886 158.8 50.4116 88.8055 155.0 61.7818 92.9886 161.1 50.6214 87.4783 161.1 61.4229 90.3068 161.1 50.6214 87.4783 161.1 61.4229 90.3068 161.1 50.6214 87.4783 161.1 61.4229 90.3068 161.1 50.6214 87.4783 161.1 61.4229 90.3068 161.1 50.6214 87.4783 161.1 61.4229 90.3068 161.1 50.6214 87.4783 161.1 61.4229 90.3068 161.1 50.6214 87.4783 161.1 61.4229 90.3068 161.1 50.6214 87.4783 161.1 61.4229 90.3068 161.1 50.6214 87.4783 161.1 61.4229 90.3068 161.1 50.6214 87.4783 161.1 61.4229 90.3068 161.1 50.6240 86.2556 166.4 61.5970 88.7932 166.4 50.5894 84.2606 166.4 61.3062 87.9062 167.9			100.1150						
139.0									
139.8									
140.6	139.8		98.9195			103.7170			
141.3	140.6			140.6					
142.8	141.3	51.2796	97.1842	141.3	63.0868	102.1281			
143.6 50.9450 96.5010 143.6 62.5270 101.3082 144.4 50.9484 96.0863 144.4 61.3730 100.1705 145.1 50.6721 95.6479 145.1 61.3205 100.3442 145.9 50.5688 95.6964 145.9 61.1532 99.7653 146.6 50.5512 95.1519 146.6 62.1550 99.6870 147.4 50.5170 94.6893 147.4 60.8207 98.6444 148.2 50.5959 94.2560 148.2 61.3724 98.6866 148.2 50.5327 92.7002 148.9 61.7162 97.8055 149.7 50.4558 93.2798 149.7 61.6266 97.0676 150.4 50.711 92.2069 150.4 61.4400 96.4788 151.2 50.5112 92.0676 151.2 60.8607 95.2149 152.0 50.4983 91.9112 152.0 60.8068 95.9317 152.7 50.5486 91.8931 152.7 61.6260 95.0465 153.5 50.4611 91.1154 153.5 60.4396 94.1033 154.2 50.5790 90.9336 154.2 60.4085 93.9451 155.0 50.4220 90.2585 155.0 61.7818 92.9886 158.0 50.4116 88.8035 155.8 60.8518 92.9818 159.6 50.4211 89.94541 156.5 61.4034 93.0736 158.0 50.4116 88.8035 158.0 61.2633 92.9248 159.6 50.4211 88.9478 158.8 60.8112 91.9034 159.6 50.4214 88.9478 158.8 60.8112 91.9034 159.6 50.4231 88.2480 159.6 61.5118 91.9034 159.6 50.4231 88.2480 159.6 61.5118 91.9034 159.6 50.4231 88.2480 159.6 61.5118 91.6345 160.3 50.4837 87.7337 160.3 61.8088 92.0135 163.4 50.9197 86.3011 163.4 60.0123 89.1508 163.4 50.9197 86.3011 163.4 60.0123 89.1508 164.1 50.6214 87.4783 161.1 61.4229 90.3068 161.8 50.0220 87.4540 166.4 61.3608 90.2757 164.9 50.7424 86.3038 164.9 60.2322 89.1075 165.6 50.5649 86.8542 162.6 61.5970 88.7932 163.4 50.9197 86.3011 163.4 60.0123 89.1508 164.1 50.6214 87.4783 161.1 61.4229 90.3068 164.1 50.6225 87.0530 166.8 50.9232 89.1075 165.6 50.5649 86.8542 162.6 61.5970 88.7932 163.4 50.9197 86.3011 163.4 60.0123 89.1508 166.4 50.5894 84.2606	142.1	51.0621	97.5089	142.1	62.2757	102.3717			
144.4 50.9484 96.0863 144.4 61.3730 100.1705 145.1 50.6721 95.6479 145.1 61.3205 100.3442 145.9 50.5688 95.6964 145.9 61.1532 99.7653 146.6 50.5512 95.1519 146.6 62.1550 99.6870 147.4 50.5170 94.6893 147.4 60.8207 98.6444 148.2 50.5959 94.2560 148.2 61.3724 98.6866 148.9 50.5327 92.7002 148.9 61.7162 97.8055 149.7 50.4558 93.2798 149.7 61.6266 97.0676 150.4 50.7711 92.2069 150.4 61.4400 96.4788 151.2 50.5112 92.0676 151.2 60.8607 95.2149 152.0 50.4983 91.9112 152.0 60.8068 95.9317 152.7 50.5486 91.8931 152.7 61.2560 95.0465 153.5 50.4611 91.1154 153.5 60.4396 94.1033 154.2 50.5790 90.9336 154.2 60.4085 93.9451 155.0 50.4220 90.2585 155.0 61.7818 92.9886 155.8 50.3163 90.2685 155.8 60.8188 92.9818 157.3 49.7220 89.9273 157.3 60.3082 93.6698 158.8 50.2411 88.89478 158.8 60.8112 91.9034 159.6 50.4231 88.2480 159.6 61.5118 91.6345 160.3 50.4837 87.7337 160.3 61.8088 92.0135 161.1 50.6214 87.4783 161.1 61.4229 90.3068 161.8 50.6225 87.0530 161.8 59.9838 90.5221 162.6 50.5649 86.8542 162.6 61.5970 88.7932 163.4 50.9197 86.3011 163.4 60.0123 89.1508 164.1 50.4628 86.2895 164.1 60.8903 90.2757 164.9 50.7424 86.3038 164.9 60.2322 89.1075 165.6 50.7972 85.5918 165.6 60.8261 88.5799 166.4 50.5894 84.2666 166.4 61.3662 87.9062 167.9 50.3342 84.2340 167.9 62.2960 88.0350 168.7 50.4106 84.4082 168.7 59.7594 87.1528 169.4 50.7411 83.5441 169.4 61.3857 86.010 170.2 50.8866 83.4011 170.2 62.1259 88.1478	142.8	51.1103	97.0383	142.8	61.1417	101.7255			
145.1 50.6721 95.6479 145.1 61.3205 100.3442 145.9 50.5688 95.6964 145.9 61.1532 99.7653 146.6 50.5512 95.1519 146.6 62.1550 99.6870 147.4 50.5170 94.6893 147.4 60.8207 98.6444 148.2 50.5959 94.2560 148.2 61.3724 98.6866 148.2 50.5959 94.2560 148.2 61.3724 98.6866 148.9 50.5327 92.7002 148.9 61.7162 97.8055 149.7 50.4558 93.2798 149.7 61.6266 97.0676 150.4 50.7711 92.2069 150.4 61.4400 96.4788 151.2 50.5112 92.0676 151.2 60.8607 95.2149 152.0 50.4983 91.9112 152.0 60.8068 95.9317 152.7 50.5486 91.8931 152.7 61.2560 95.0465 153.5 50.4611 91.1154 153.5 60.4396 94.1033 154.2 50.5790 90.9336 154.2 60.4085 93.9451 155.0 50.4220 90.2585 155.0 61.7818 92.9818 155.8 50.3163 90.2685 155.8 60.8518 92.9818 155.8 50.3220 89.4541 156.5 61.4034 93.0736 157.3 49.7220 89.9273 157.3 60.3082 93.6698 158.8 50.2411 88.8478 158.8 50.2411 88.9478 158.8 50.2411 88.9478 158.8 50.4116 88.8035 155.0 61.5118 91.6345 160.3 50.4837 87.7337 160.3 61.8058 92.0135 161.1 50.6214 87.4783 161.1 61.4229 90.3068 161.8 59.9838 90.5221 162.6 50.5649 86.8542 162.6 61.5970 88.7932 163.4 50.6225 87.0530 161.8 59.9838 90.5221 162.6 50.5649 86.8542 162.6 61.5970 88.7932 163.4 50.4068 86.2895 164.1 60.8903 90.2757 164.9 50.7424 86.3038 164.9 60.2322 89.1075 165.6 50.7972 85.5918 165.6 60.8261 88.5799 166.4 50.5894 84.2606 166.4 61.3062 87.9062 167.9 50.3342 84.2340 167.9 62.2960 88.0350 168.7 50.4406 84.4082 168.7 59.7594 87.1528 169.4 50.7411 83.5441 169.4 61.3857 86.9104 170.2 50.8866 83.4011 170.2 62.1259 88.1478 170.2 50.8866 83.4011 170.2 62.1259 88.1478 170.2 50.8866 83.4011 170.2 62.1259 88.1478 170.2 50.8866 83.4011	143.6	50.9450	96.5010	143.6	62.5270	101.3082			
145.9	144.4	50.9484	96.0863	144.4	61.3730	100.1705			
146.6	145.1	50.6721	95.6479	145.1	61.3205	100.3442			
147.4	145.9	50.5688	95.6964	145.9	61.1532	99.7653			
148.2 50.5959 94.2560 148.9 61.3724 98.6866 148.9 50.5327 92.7002 148.9 61.7162 97.8055 149.7 50.4558 93.2798 149.7 61.6266 97.0676 150.4 50.7711 92.2069 150.4 61.4400 96.4788 151.2 50.5112 92.0676 151.2 60.8607 95.2149 152.0 50.4983 91.9112 152.0 60.8068 95.9317 152.7 50.5486 91.8931 152.7 61.2560 95.0465 153.5 50.4611 91.1154 153.5 60.4396 94.1033 154.2 50.5790 90.9336 154.2 60.4085 93.9451 155.0 50.4220 90.2585 155.0 61.7818 92.9886 155.8 50.3163 90.2685 155.8 60.8518 92.981 156.5 50.2220 89.4541 156.5 61.4034 93.0736 157.3 49.7220	146.6	50.5512	95.1519	146.6	62.1550	99.6870			
148.9 50.5327 92.7002 148.9 61.7162 97.8055 149.7 50.4558 93.2798 149.7 61.6266 97.0676 150.4 50.7711 92.2069 150.4 61.4400 96.4788 151.2 50.5112 92.0676 151.2 60.8067 95.2149 152.0 50.4983 91.9112 152.0 60.8068 95.9317 152.7 50.5486 91.8931 152.7 61.2560 95.0465 153.5 50.4611 91.1154 153.5 60.4396 94.1033 154.2 50.5790 90.9336 154.2 60.4085 93.9451 155.0 50.4220 90.2585 155.0 61.7818 92.9818 155.8 50.3163 90.2685 155.8 60.8518 92.9818 156.5 50.2220 89.4541 156.5 61.4034 93.0736 157.3 49.7220 89.9273 157.3 60.3082 93.6698 158.0 50.4116	147.4	50.5170	94.6893	147.4	60.8207	98.6444			
149.7	148.2	50.5959	94.2560	148.2	61.3724	98.6866			
150.4 50.7711 92.2069 150.4 61.4400 96.4788 151.2 50.5112 92.0676 151.2 60.8607 95.2149 152.0 50.4983 91.9112 152.0 60.8068 95.9317 152.7 50.5486 91.8931 152.7 61.2560 95.0465 153.5 50.4611 91.1154 153.5 60.4396 94.1033 154.2 50.5790 90.9336 154.2 60.4085 93.9451 155.0 50.4220 90.2585 155.0 61.7818 92.9886 155.8 50.3163 90.2685 155.8 60.8518 92.9818 156.5 50.2220 89.4541 156.5 61.4034 93.0736 157.3 49.7220 89.9273 157.3 60.3082 93.6698 158.0 50.4116 88.8035 158.0 61.2633 92.9248 159.6 50.4231 88.2480 159.6 61.5118 91.6345 160.3 50.4231 88.2480 159.6 61.5118 91.6345 161.1 50.6214 87.4783 161.1 61.4229 90.3068 161.8 50.6225 87.0530 161.8 59.9838 90.5221 162.6 50.5649 86.8542 162.6 61.5970 88.7932 163.4 50.5940 86.2895 164.1 60.8903 90.2757 164.9 50.7424 86.3038 164.9 60.2322 89.1075 165.6 50.7972 85.5918 165.6 60.8261 88.5799 166.4 50.5894 84.2564 167.2 60.6554 88.4920 167.9 50.3426 84.2564 167.2 60.6554 88.4920 167.9 50.3426 84.2564 167.2 60.6554 88.4920 167.9 50.3426 84.2564 167.2 60.6554 88.4920 167.9 50.3426 84.2564 167.2 60.6554 88.4920 168.7 50.7411 83.5441 169.4 61.3857 89.104 170.2 50.8866 83.4011 170.2 62.1259 88.1478 170.2 50.8866 83.4011 170.2 62.1259 88.1478 170.2 50.8866 83.4011 170.2 62.1259 88.1478 170.2 50.8866 83.4011 170.2 62.1259 88.1478 170.2 50.8866 83.4011 170.2 62.1259 88.1478 170.2 50.8866 83.4011 170.2 62.1259 88.1478 170.2 50.8866 83.4011 170.2 62.1259 88.1478 170.2 50.8866 83.4011 170.2 62.1259 88.1478 170.2 50.8866 83.4011 170.2 62.1259 88.1478 170.250.250.250.250.250.250.250.250.250.25	148.9	50.5327	92.7002	148.9	61.7162				
151.2		50.4558			61.6266	97.0676			
152.0 50.4983 91.9112 152.0 60.8068 95.9317 152.7 50.5486 91.8931 152.7 61.2560 95.0465 153.5 50.4611 91.1154 153.5 60.4396 94.1033 154.2 50.5790 90.9336 154.2 60.4085 93.9451 155.0 50.4220 90.2585 155.0 61.7818 92.9886 155.8 50.3163 90.2685 155.8 60.8518 92.9818 156.5 50.2220 89.4541 156.5 61.4034 93.0736 157.3 49.7220 89.9273 157.3 60.3082 93.6698 158.0 50.4116 88.8035 158.0 61.2633 92.9248 158.8 50.2411 88.9478 158.8 60.8112 91.9034 159.6 50.4231 88.2480 159.6 61.5118 91.6345 160.3 50.4837 87.7337 160.3 61.8058 92.0135 161.1 50.6214			92.2069		61.4400	96.4788			
152.7 50.5486 91.8931 152.7 61.2560 95.0465 153.5 50.4611 91.1154 153.5 60.4396 94.1033 154.2 50.5790 90.9336 154.2 60.4085 93.9451 155.0 50.4220 90.2585 155.0 61.7818 92.9886 155.8 50.3163 90.2685 155.8 60.8518 92.9818 156.5 50.2220 89.4541 156.5 61.4034 93.0736 157.3 49.7220 89.9273 157.3 60.3082 93.6698 158.0 50.4116 88.8035 158.0 61.2633 92.9248 158.8 50.2411 88.9478 158.8 60.8112 91.9034 159.6 50.4231 88.2480 159.6 61.5118 91.6345 160.3 50.4837 87.7337 160.3 61.8058 92.0135 161.1 50.6214 87.4783 161.1 61.4229 90.3068 161.8 50.9255	151.2	50.5112			60.8607	95.2149			
153.5 50.4611 91.1154 153.5 60.4396 94.1033 154.2 50.5790 90.9336 154.2 60.4085 93.9451 155.0 50.4220 90.2585 155.0 61.7818 92.9886 155.8 50.3163 90.2685 155.8 60.8518 92.9818 156.5 50.2220 89.4541 156.5 61.4034 93.0736 157.3 49.7220 89.9273 157.3 60.3082 93.6698 158.0 50.4116 88.8035 158.0 61.2633 92.9248 158.8 50.2411 88.9478 158.8 60.8112 91.9034 159.6 50.4231 88.2480 159.6 61.5118 91.6345 160.3 50.4837 87.7337 160.3 61.8058 92.0135 161.1 50.6214 87.4783 161.1 61.4229 90.3068 161.8 50.6225 87.0530 161.8 59.9838 90.5221 162.6 50.5649									
154.2 50.5790 90.9336 154.2 60.4085 93.9451 155.0 50.4220 90.2585 155.0 61.7818 92.9886 155.8 50.3163 90.2685 155.8 60.8518 92.9818 156.5 50.2220 89.4541 156.5 61.4034 93.0736 157.3 49.7220 89.9273 157.3 60.3082 93.6698 158.0 50.4116 88.8035 158.0 61.2633 92.9248 158.8 50.2411 88.9478 158.8 60.8112 91.9034 159.6 50.4231 88.2480 159.6 61.5118 91.6345 160.3 50.4837 87.7337 160.3 61.8058 92.0135 161.1 50.6214 87.4783 161.1 61.4229 90.3068 161.8 50.6225 87.0530 161.8 59.9838 90.5221 162.6 50.5649 86.8542 162.6 61.5970 88.7932 163.4 50.9197									
155.0 50.4220 90.2585 155.0 61.7818 92.9886 155.8 50.3163 90.2685 155.8 60.8518 92.9818 156.5 50.2220 89.4541 156.5 61.4034 93.0736 157.3 49.7220 89.9273 157.3 60.3082 93.6698 158.0 50.4116 88.8035 158.0 61.2633 92.9248 158.8 50.2411 88.9478 158.8 60.8112 91.9034 159.6 50.4231 88.2480 159.6 61.5118 91.6345 160.3 50.4837 87.7337 160.3 61.8058 92.0135 161.1 50.6214 87.4783 161.1 61.4229 90.3068 161.8 50.6225 87.0530 161.8 59.9838 90.5221 162.6 50.5649 86.8542 162.6 61.5970 88.7932 163.4 50.9197 86.3011 163.4 60.0123 89.1508 164.1 50.4628									
155.8 50.3163 90.2685 155.8 60.8518 92.9818 156.5 50.2220 89.4541 156.5 61.4034 93.0736 157.3 49.7220 89.9273 157.3 60.3082 93.6698 158.0 50.4116 88.8035 158.0 61.2633 92.9248 158.8 50.2411 88.9478 158.8 60.8112 91.9034 159.6 50.4231 88.2480 159.6 61.5118 91.6345 160.3 50.4837 87.7337 160.3 61.8058 92.0135 161.1 50.6214 87.4783 161.1 61.4229 90.3068 161.8 50.6225 87.0530 161.8 59.9838 90.5221 162.6 50.5649 86.8542 162.6 61.5970 88.7932 163.4 50.9197 86.3011 163.4 60.0123 89.1508 164.1 50.4628 86.2895 164.1 60.8903 90.2757 164.9 50.7424									
156.5 50.2220 89.4541 156.5 61.4034 93.0736 157.3 49.7220 89.9273 157.3 60.3082 93.6698 158.0 50.4116 88.8035 158.0 61.2633 92.9248 158.8 50.2411 88.9478 158.8 60.8112 91.9034 159.6 50.4231 88.2480 159.6 61.5118 91.6345 160.3 50.4837 87.7337 160.3 61.8058 92.0135 161.1 50.6214 87.4783 161.1 61.4229 90.3068 161.8 50.6225 87.0530 161.8 59.9838 90.5221 162.6 50.5649 86.8542 162.6 61.5970 88.7932 163.4 50.9197 86.3011 163.4 60.0123 89.1508 164.1 50.4628 86.2895 164.1 60.8903 90.2757 164.9 50.7424 86.3038 164.9 60.2322 89.1075 165.6 50.7972									
157.3 49.7220 89.9273 157.3 60.3082 93.6698 158.0 50.4116 88.8035 158.0 61.2633 92.9248 158.8 50.2411 88.9478 158.8 60.8112 91.9034 159.6 50.4231 88.2480 159.6 61.5118 91.6345 160.3 50.4837 87.7337 160.3 61.8058 92.0135 161.1 50.6214 87.4783 161.1 61.4229 90.3068 161.8 50.6225 87.0530 161.8 59.9838 90.5221 162.6 50.5649 86.8542 162.6 61.5970 88.7932 163.4 50.9197 86.3011 163.4 60.0123 89.1508 164.1 50.4628 86.2895 164.1 60.8903 90.2757 164.9 50.7424 86.3038 164.9 60.2322 89.1075 165.6 50.7972 85.5918 165.6 60.8261 88.5799 166.4 50.5894									
158.0 50.4116 88.8035 158.0 61.2633 92.9248 158.8 50.2411 88.9478 158.8 60.8112 91.9034 159.6 50.4231 88.2480 159.6 61.5118 91.6345 160.3 50.4837 87.7337 160.3 61.8058 92.0135 161.1 50.6214 87.4783 161.1 61.4229 90.3068 161.8 50.6225 87.0530 161.8 59.9838 90.5221 162.6 50.5649 86.8542 162.6 61.5970 88.7932 163.4 50.9197 86.3011 163.4 60.0123 89.1508 164.1 50.4628 86.2895 164.1 60.8903 90.2757 164.9 50.7424 86.3038 164.9 60.2322 89.1075 165.6 50.7972 85.5918 165.6 60.8261 88.5799 166.4 50.5894 84.2606 166.4 61.3062 87.9062 167.9 50.3342									
158.8 50.2411 88.9478 158.8 60.8112 91.9034 159.6 50.4231 88.2480 159.6 61.5118 91.6345 160.3 50.4837 87.7337 160.3 61.8058 92.0135 161.1 50.6214 87.4783 161.1 61.4229 90.3068 161.8 50.6225 87.0530 161.8 59.9838 90.5221 162.6 50.5649 86.8542 162.6 61.5970 88.7932 163.4 50.9197 86.3011 163.4 60.0123 89.1508 164.1 50.4628 86.2895 164.1 60.8903 90.2757 164.9 50.7424 86.3038 164.9 60.2322 89.1075 165.6 50.7972 85.5918 165.6 60.8261 88.5799 166.4 50.5894 84.2606 166.4 61.3062 87.9062 167.2 50.2496 84.2564 167.2 60.6554 88.4920 168.7 50.4106									
159.6 50.4231 88.2480 159.6 61.5118 91.6345 160.3 50.4837 87.7337 160.3 61.8058 92.0135 161.1 50.6214 87.4783 161.1 61.4229 90.3068 161.8 50.6225 87.0530 161.8 59.9838 90.5221 162.6 50.5649 86.8542 162.6 61.5970 88.7932 163.4 50.9197 86.3011 163.4 60.0123 89.1508 164.1 50.4628 86.2895 164.1 60.8903 90.2757 164.9 50.7424 86.3038 164.9 60.2322 89.1075 165.6 50.7972 85.5918 165.6 60.8261 88.5799 166.4 50.5894 84.2606 166.4 61.3062 87.9062 167.2 50.2496 84.2564 167.2 60.6554 88.4920 168.7 50.4106 84.4082 168.7 59.7594 87.1528 169.4 50.7411									
160.3 50.4837 87.7337 160.3 61.8058 92.0135 161.1 50.6214 87.4783 161.1 61.4229 90.3068 161.8 50.6225 87.0530 161.8 59.9838 90.5221 162.6 50.5649 86.8542 162.6 61.5970 88.7932 163.4 50.9197 86.3011 163.4 60.0123 89.1508 164.1 50.4628 86.2895 164.1 60.8903 90.2757 164.9 50.7424 86.3038 164.9 60.2322 89.1075 165.6 50.7972 85.5918 165.6 60.8261 88.5799 166.4 50.5894 84.2606 166.4 61.3062 87.9062 167.2 50.2496 84.2564 167.2 60.6554 88.4920 168.7 50.4106 84.4082 168.7 59.7594 87.1528 169.4 50.7411 83.5441 169.4 61.3857 86.9104 170.2 50.8866									
161.1 50.6214 87.4783 161.1 61.4229 90.3068 161.8 50.6225 87.0530 161.8 59.9838 90.5221 162.6 50.5649 86.8542 162.6 61.5970 88.7932 163.4 50.9197 86.3011 163.4 60.0123 89.1508 164.1 50.4628 86.2895 164.1 60.8903 90.2757 164.9 50.7424 86.3038 164.9 60.2322 89.1075 165.6 50.7972 85.5918 165.6 60.8261 88.5799 166.4 50.5894 84.2606 166.4 61.3062 87.9062 167.2 50.2496 84.2564 167.2 60.6554 88.4920 168.7 50.3342 84.2340 167.9 62.2960 88.0350 168.7 50.4106 84.4082 168.7 59.7594 87.1528 169.4 50.7411 83.5441 169.4 61.3857 86.9104 170.2 50.8866									
161.8 50.6225 87.0530 161.8 59.9838 90.5221 162.6 50.5649 86.8542 162.6 61.5970 88.7932 163.4 50.9197 86.3011 163.4 60.0123 89.1508 164.1 50.4628 86.2895 164.1 60.8903 90.2757 164.9 50.7424 86.3038 164.9 60.2322 89.1075 165.6 50.7972 85.5918 165.6 60.8261 88.5799 166.4 50.5894 84.2606 166.4 61.3062 87.9062 167.2 50.2496 84.2564 167.2 60.6554 88.4920 168.7 50.3342 84.2340 167.9 62.2960 88.0350 168.7 50.4106 84.4082 168.7 59.7594 87.1528 169.4 50.7411 83.5441 169.4 61.3857 86.9104 170.2 50.8866 83.4011 170.2 62.1259 88.1478									
162.6 50.5649 86.8542 162.6 61.5970 88.7932 163.4 50.9197 86.3011 163.4 60.0123 89.1508 164.1 50.4628 86.2895 164.1 60.8903 90.2757 164.9 50.7424 86.3038 164.9 60.2322 89.1075 165.6 50.7972 85.5918 165.6 60.8261 88.5799 166.4 50.5894 84.2606 166.4 61.3062 87.9062 167.2 50.2496 84.2564 167.2 60.6554 88.4920 168.7 50.3342 84.2340 167.9 62.2960 88.0350 168.7 50.4106 84.4082 168.7 59.7594 87.1528 169.4 50.7411 83.5441 169.4 61.3857 86.9104 170.2 50.8866 83.4011 170.2 62.1259 88.1478									
163.4 50.9197 86.3011 163.4 60.0123 89.1508 164.1 50.4628 86.2895 164.1 60.8903 90.2757 164.9 50.7424 86.3038 164.9 60.2322 89.1075 165.6 50.7972 85.5918 165.6 60.8261 88.5799 166.4 50.5894 84.2606 166.4 61.3062 87.9062 167.2 50.2496 84.2564 167.2 60.6554 88.4920 168.7 50.3342 84.2340 167.9 62.2960 88.0350 168.7 50.4106 84.4082 168.7 59.7594 87.1528 169.4 50.7411 83.5441 169.4 61.3857 86.9104 170.2 50.8866 83.4011 170.2 62.1259 88.1478									
164.1 50.4628 86.2895 164.1 60.8903 90.2757 164.9 50.7424 86.3038 164.9 60.2322 89.1075 165.6 50.7972 85.5918 165.6 60.8261 88.5799 166.4 50.5894 84.2606 166.4 61.3062 87.9062 167.2 50.2496 84.2564 167.2 60.6554 88.4920 167.9 50.3342 84.2340 167.9 62.2960 88.0350 168.7 50.4106 84.4082 168.7 59.7594 87.1528 169.4 50.7411 83.5441 169.4 61.3857 86.9104 170.2 50.8866 83.4011 170.2 62.1259 88.1478									
164.9 50.7424 86.3038 164.9 60.2322 89.1075 165.6 50.7972 85.5918 165.6 60.8261 88.5799 166.4 50.5894 84.2606 166.4 61.3062 87.9062 167.2 50.2496 84.2564 167.2 60.6554 88.4920 167.9 50.3342 84.2340 167.9 62.2960 88.0350 168.7 50.4106 84.4082 168.7 59.7594 87.1528 169.4 50.7411 83.5441 169.4 61.3857 86.9104 170.2 50.8866 83.4011 170.2 62.1259 88.1478									
165.6 50.7972 85.5918 165.6 60.8261 88.5799 166.4 50.5894 84.2606 166.4 61.3062 87.9062 167.2 50.2496 84.2564 167.2 60.6554 88.4920 167.9 50.3342 84.2340 167.9 62.2960 88.0350 168.7 50.4106 84.4082 168.7 59.7594 87.1528 169.4 50.7411 83.5441 169.4 61.3857 86.9104 170.2 50.8866 83.4011 170.2 62.1259 88.1478									
166.4 50.5894 84.2606 166.4 61.3062 87.9062 167.2 50.2496 84.2564 167.2 60.6554 88.4920 167.9 50.3342 84.2340 167.9 62.2960 88.0350 168.7 50.4106 84.4082 168.7 59.7594 87.1528 169.4 50.7411 83.5441 169.4 61.3857 86.9104 170.2 50.8866 83.4011 170.2 62.1259 88.1478									
167.2 50.2496 84.2564 167.2 60.6554 88.4920 167.9 50.3342 84.2340 167.9 62.2960 88.0350 168.7 50.4106 84.4082 168.7 59.7594 87.1528 169.4 50.7411 83.5441 169.4 61.3857 86.9104 170.2 50.8866 83.4011 170.2 62.1259 88.1478									
167.9 50.3342 84.2340 167.9 62.2960 88.0350 168.7 50.4106 84.4082 168.7 59.7594 87.1528 169.4 50.7411 83.5441 169.4 61.3857 86.9104 170.2 50.8866 83.4011 170.2 62.1259 88.1478									
168.7 50.4106 84.4082 168.7 59.7594 87.1528 169.4 50.7411 83.5441 169.4 61.3857 86.9104 170.2 50.8866 83.4011 170.2 62.1259 88.1478									
169.4 50.7411 83.5441 169.4 61.3857 86.9104 170.2 50.8866 83.4011 170.2 62.1259 88.1478									
170.2 50.8866 83.4011 170.2 62.1259 88.1478									
1/1.0 50.02±5 65./502 1/1.0 01.4625 60.990/									
171.7 50.9265 83.4542 171.7 60.6390 86.9918									
171.7 30.9263 83.4942 171.7 00.0390 80.9918 172.5 50.8542 82.5847 172.5 60.4453 86.3278									
172.5 30.6342 82.3847 172.5 00.4435 80.3278 173.2 51.0664 82.2909 173.2 61.8396 85.4756									
173.2 31.0004 82.2909 173.2 01.3390 83.4730 174.0 51.0698 81.7157 174.0 60.8174 84.6864									

SAR Evaluation Report 18 of 63

System Accuracy Verification

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

System Verification Setup Block Diagram

Probe and dipole antenna List and Detail

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
APREL	Probe	ALS-E-020	500-00283	2014-10-14	2015-10-13
Speag	Loop antenna(150MHz)	CLA150	4004	2014-05-08	2017-05-07

System Accuracy Check Results

Date	Frequency (MHz)	Liquid Type	Measured SAR (W/Kg)				Target Value (W/Kg)	Delta (%)	Tolerance (%)
2015-08-09	150	Head	1g	3.422	3.75	-8.747	±10		
		Body	1g	3.479	3.81	-8.688	±10		

^{*}All SAR values are normalized to 1 Watt forward power.

SAR Evaluation Report 19 of 63

Report No.: RSZ150807001-20A

SAR SYSTEM VALIDATION DATA

Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

System Performance Check 150 MHz Head Liquid

Loop150 MHz; Type: CLA150; S/N:4004

Product Data

Device Name : Loop 150 MHz

Serial No. · 4004 : Loop Type Model : CLÁ150 Frequency Band : 150 Max. Transmit Pwr : 1 W Drift Time : 3 min(s) : 3.052 W/kg Power Drift-Start Power Drift-Finish : 3.020 W/kg Power Drift (%) : -1.063

Phantom Data

Name : APREL-Uni Type : Uni-Phantom Serial No. : System Default

Location : Center Description : Default

Phantom Data

Tissue Data

: Head Type Serial No. : 250-01302 : 150.00MHz Frequency Last Calib. Date : 09-Aug-2015 : 20.00 °C Temperature Ambient Temp. : 21.00 °C : 56.00 RH% Humidity : 50.59 F/m Epsilon Sigma : 0.78 S/m

Density : 1000.00 kg/cu. m

Probe Data

Name : E-Field Model : E-020

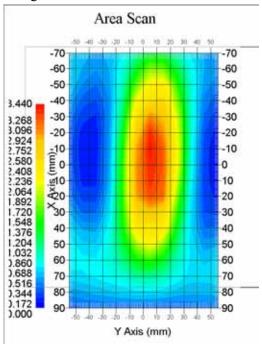
Type : E-Field Triangle Serial No. : 500-00283 Last Calib. Date : 14-Oct-2014

Frequency Band : 150 Duty Cycle Factor : 1 Conversion Factor : 6.0

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

Measurement Data


Crest Factor : 1

Scan Type : Complete Tissue Temp. : 21.00 °C Ambient Temp. : 21.00 °C

Area Scan : 8x10x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

SAR Evaluation Report 20 of 63

1 gram SAR value : 3.422 W/kg 10 gram SAR value : 2.439 W/kg Area Scan Peak SAR : 3.428 W/kg Zoom Scan Peak SAR : 5.196 W/kg

150 MHz System Validation with Head Tissue

SAR Evaluation Report 21 of 63

System Performance Check 150 MHz Body Liquid

Loop 150 MHz; Type: CLA150; S/N: 4004

Product Data

Device Name : Loop 150 MHz

: 4004 Serial No. Type : Loop Model : CAL150 Frequency Band : 150 Max. Transmit Pwr : 1 W Drift Time : 3 min(s) Power Drift-Start : 3.241 W/kg Power Drift-Finish : 3.105 W/kg Power Drift (%) : -3.625

Phantom Data

Name : APREL-Uni Type : Uni-Phantom Serial No. : System Default

Location : Center Description : Default

Phantom Data

Tissue Data

Type : Body 250-01304 Serial No. : 150.00MHz Frequency Last Calib. Date : 09-Aug-2015 Temperature : 20.00 °C : 21.00 °C Ambient Temp. : 56.00 RH% Humidity : 61.54 F/m Epsilon : 0.81 S/m Sigma Density : 1000.00 kg/cu. m

Probe Data

Name : E-Field Model : E-020

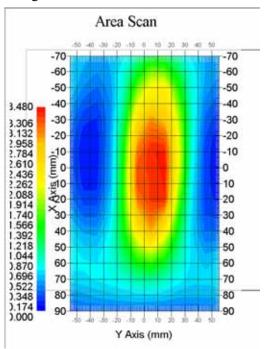
Type : E-Field Triangle Serial No. : 500-00283 Last Calib. Date : 14-Oct-2014

Frequency Band : 150 Duty Cycle Factor : 1 Conversion Factor : 6.0

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

Measurement Data


Crest Factor : 1

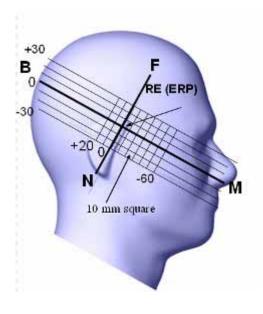
Scan Type : Complete Tissue Temp. : 21.00 °C Ambient Temp. : 21.00 °C

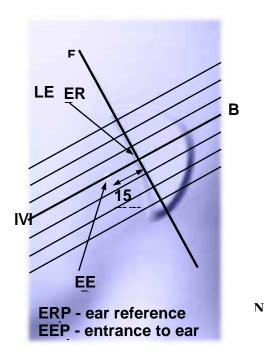
Area Scan : 8x10x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

SAR Evaluation Report 22 of 63

1 gram SAR value : 3.479 W/kg 10 gram SAR value : 2.412 W/kg Area Scan Peak SAR : 3.481 W/kg Zoom Scan Peak SAR : 5.612 W/kg

150 MHz System Validation with Body Tissue


SAR Evaluation Report 23 of 63


EUT TEST STRATEGY AND METHODOLOGY

Test Positions for Device Operating Next to a Person's Ear

This category includes most wireless handsets with fixed, retractable or internal antennas located toward the top half of the device, with or without a foldout, sliding or similar keypad cover. The handset should have its earpiece located within the upper ¼ of the device, either along the centerline or off-centered, as perceived by its users. This type of handset should be positioned in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point". The "test device reference point" should be located at the same level as the center of the earpiece region. The "vertical centerline" should bisect the front surface of the handset at its top and bottom edges. A "ear reference point" is located on the outer surface of the head phantom on each ear spacer. It is located 1.5 cm above the center of the ear canal entrance in the "phantom reference plane" defined by the three lines joining the center of each "ear reference point" (left and right) and the tip of the mouth

A handset should be initially positioned with the earpiece region pressed against the ear spacer of a head phantom. For the SCC-34/SC-2 head phantom, the device should be positioned parallel to the "N-F" line defined along the base of the ear spacer that contains the "ear reference point". For interim head phantoms, the device should be positioned parallel to the cheek for maximum RF energy coupling. The "test device reference point" is aligned to the "ear reference point" on the head phantom and the "vertical centerline" is aligned to the "phantom reference plane". This is called the "initial ear position". While maintaining these three alignments, the body of the handset is gradually adjusted to each of the following positions for evaluating SAR:

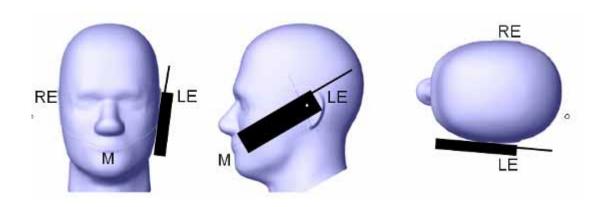
Report No.: RSZ150807001-20A

SAR Evaluation Report 24 of 63

Cheek/Touch Position

The device is brought toward the mouth of the head phantom by pivoting against the "ear reference point" or along the "N-F" line for the SCC-34/SC-2 head phantom.

This test position is established:


• When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom.

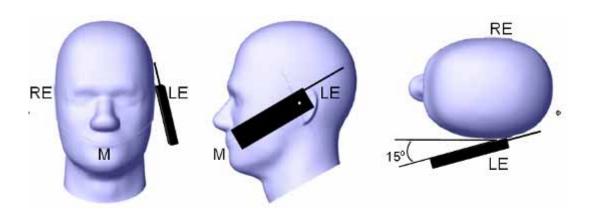
Report No.: RSZ150807001-20A

o (or) When any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom.

For existing head phantoms – when the handset loses contact with the phantom at the pivoting point, rotation should continue until the device touches the cheek of the phantom or breaks its last contact from the ear spacer.

Cheek / Touch Position

Ear/Tilt Position


With the handset aligned in the "Cheek/Touch Position":

- 1) If the earpiece of the handset is not in full contact with the phantom's ear spacer (in the "Cheek/Touch position") and the peak SAR location for the "Cheek/Touch" position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer.
- 2) (otherwise) The handset should be moved (translated) away from the cheek perpendicular to the line passes through both "ear reference points" (note: one of these ear reference points may not physically exist on a split head model) for approximate 2-3 cm. While it is in this position, the device handset is tilted away from the mouth with respect to the "test device reference point" until the inside angle between the vertical centerline on the front surface of the phone and the horizontal line passing through the ear reference point isby 15 80°. After the tilt, it is then moved (translated) back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15° so that the device and its antenna would touch the phantom simultaneously. This test position may require a device holder or positioner to achieve the translation and tilting with acceptable positioning repeatability.

SAR Evaluation Report 25 of 63

If a device is also designed to transmit with its keypad cover closed for operating in the head position, such positions should also be considered in the SAR evaluation. The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tile/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s). If the transmission band of the test device is less than 10 MHz, testing at the high and low frequency channels is optional.

Ear /Tilt 15° Position

Test positions for body-worn and other configurations

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested.

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components.

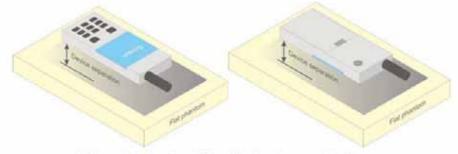


Figure 5 - Test positions for body-worn devices

SAR Evaluation Report 26 of 63

SAR Evaluation Procedure

The evaluation was performed with the following procedure:

Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing.

Report No.: RSZ150807001-20A

- Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or EUT and the horizontal grid spacing was 10 mm x 10 mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.
- Step 3: Around this point, a volume of 35 mm x 35 mm x 35 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:
 - 1) The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - 2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the averages.

All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

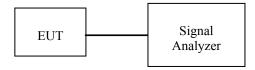
Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.

Test methodology

IEEE1528:2013 KDB 447498 D01 v05r02 KDB 865664 D01 v01r03 KDB 643646 D01 v01r01

KDB Inquiry: Tracking Number 316436

SAR Evaluation Report 27 of 63


CONDUCTED OUTPUT POWER MEASUREMENT

Provision Applicable

The measured peak output power should be greater and within 5% than EMI measurement.

Test Procedure

The RF output of the transmitter was connected to the input of the Signal Analyzer through sufficient attenuation.

Report No.: RSZ150807001-20A

Maximum Output Power among production units

Max. tune-up tolerance power limit for Production Unit (dBm)							
PTT/Mode Frequency(136-174)MHz							
Digital-12.5K	27.70						
Analog-12.5K	37.70						

Test Results:

Mode	Frequency Spacing (kHz)	Frequency (MHz)	Output(dBm)	Output Power(W)	Power level
		136.0125	37.62	5.781	High
		141.0125	37.60	5.754	High
		146.0125	37.42	5.521	High
Digital	12.5	155.0000	37.56	5.702	High
		164.0125	37.47	5.585	High
		169.0125	37.65	5.821	High
		173.9875	37.57	5.715	High
		136.0125	37.50	5.623	High
		141.0125	37.60	5.754	High
		146.0125	37.62	5.781	High
Analog	12.5	155.0000	37.30	5.370	High
		164.0125	37.39	5.483	High
		169.0125	37.63	5.794	High
		173.9875	37.48	5.598	High

SAR Evaluation Report 28 of 63

SAR MEASUREMENT RESULTS

This page summarizes the results of the performed dosimetric evaluation.

SAR Test Data

Environmental Conditions

Temperature:	21
Relative Humidity:	50%
ATM Pressure:	1002 mbar

^{*} Testing was performed by Wilson Chen on 2015-08-09

Test Result:

Digital (Modulation 4FSK; Channel Spacing 12.5 kHz):

Engguera	Power Max. Max. 1 g SAR Value(W/Kg) Meas. Rated					/Kg)				
Frequency (MHz)	Antenna	Drift (%)	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	50%	Plot	
	Face up (2.5cm)									
136.0125	136-174MHz	-1.527	37.62	37.70	1.019	0.325	0.331	0.166	/	
141.0125	136-174MHz	2.267	37.60	37.70	1.023	0.287	0.294	0.147	/	
146.0125	136-174MHz	2.397	37.42	37.70	1.067	0.305	0.325	0.163	/	
155.0000	136-174MHz	1.587	37.56	37.70	1.033	0.357	0.369	0.185	1#	
164.0125	136-174MHz	-4.722	37.47	37.70	1.054	0.256	0.270	0.135	/	
169.0125	136-174MHz	4.656	37.65	37.70	1.012	0.229	0.232	0.116	/	
173.9875	136-174MHz	-0.148	37.57	37.70	1.030	0.221	0.228	0.114	/	
			Body-Back	with Belt	Clip(0.0cm)					
136.0125	136-174MHz	-0.112	37.62	37.70	1.019	0.547	0.557	0.279	/	
141.0125	136-174MHz	-0.754	37.60	37.70	1.023	0.512	0.524	0.262	/	
146.0125	136-174MHz	-0.327	37.42	37.70	1.067	0.552	0.589	0.295	/	
155.0000	136-174MHz	-0.594	37.56	37.70	1.033	0.574	0.593	0.297	2#	
164.0125	136-174MHz	1.172	37.47	37.70	1.054	0.449	0.473	0.237	/	
169.0125	136-174MHz	0.516	37.65	37.70	1.012	0.432	0.437	0.219	/	
173.9875	136-174MHz	1.180	37.57	37.70	1.030	0.457	0.471	0.236	/	

Report No.: RSZ150807001-20A

SAR Evaluation Report 29 of 63

Analog (Modulation FM; Channel Spacing 12.5 kHz):

Frequency		Power	Max. Meas.	Max. Rated	1 g SAR Value(W/Kg)					
(MHz)	Antenna	Drift (%)	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	50%	Plot	
	Face up (2.5cm)									
136.0125	136-174MHz	0.547	37.50	37.70	1.047	0.505	0.529	0.264	/	
141.0125	136-174MHz	4.846	37.60	37.70	1.023	0.447	0.457	0.229	/	
146.0125	136-174MHz	-0.371	37.62	37.70	1.019	0.431	0.439	0.220	/	
155.0000	136-174MHz	1.644	37.30	37.70	1.096	0.523	0.573	0.287	3#	
164.0125	136-174MHz	-3.716	37.39	37.70	1.074	0.486	0.522	0.261	/	
169.0125	136-174MHz	1.803	37.63	37.70	1.016	0.397	0.403	0.202		
173.9875	136-174MHz	-0.975	37.48	37.70	1.052	0.427	0.449	0.225	/	
		В	ody-Back w	rith Belt (Clip(0.0cm	1)				
136.0125	136-174MHz	-4.325	37.50	37.70	1.047	0.923	0.966	0.483	/	
141.0125	136-174MHz	4.560	37.60	37.70	1.023	0.965	0.987	0.494	/	
146.0125	136-174MHz	-2.379	37.62	37.70	1.019	0.857	0.873	0.436	/	
155.0000	136-174MHz	-0.285	37.30	37.70	1.096	1.171	1.284	0.642	4#	
164.0125	136-174MHz	-4.406	37.39	37.70	1.074	1.091	1.172	0.586	/	
169.0125	136-174MHz	2.810	37.63	37.70	1.016	0.869	0.883	0.442		
173.9875	136-174MHz	-3.136	37.48	37.70	1.052	0.773	0.813	0.407	/	

Note:

- 1. When the 1-g SAR tested using the default battery and default accessories is $\leq 3.5W/Kg$ (corrected by Multiplying 50% for FM mode), testing for other channels are optional.
- 2. For a analog PTT, only simplex communication technology was supported, so the SAR value need to be corrected by Multiplying 50%.
- 3. The frequencies points result in highest SAR value were selected to test.
- 4. Passive body-worn and audio accessories generally do not apply to the head SAR of PTT radios.
- 5. The whole antenna and radiating structures that may contribute to the measured SAR or influence the SAR distribution has been included in the area scan.

SAR Evaluation Report 30 of 63

SAR Plots (Summary of the Highest SAR Values)

Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

Face-Up 2.5cm (Digital 12.5k-155.0MHz)

Measurement Data

Modulation mode : 4FSK
Crest Factor : 2
Scan Type : Complete

Area Scan : 15x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.315 W/kg Power Drift-Finish : 0.320 W/kg Power Drift (%) : 1.587

Tissue Data

 Type
 : Head

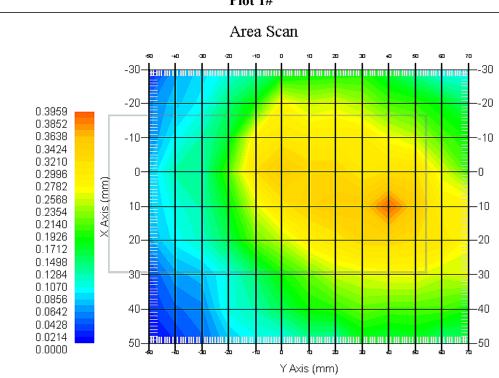
 Frequency
 : 155.0MHz

 Epsilon
 : 50.42 F/m

 Sigma
 : 0.78 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data


Serial No. : 500-00283
Frequency Band : 150
Duty Cycle Factor : 2
Conversion Factor : 6.0

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)2$

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.357 W/kg 10 gram SAR value : 0.196 W/kg Area Scan Peak SAR : 0.395 W/kg Zoom Scan Peak SAR : 0.495 W/kg

Plot 1#

SAR Evaluation Report 31 of 63

Body-back 0.0cm (Digital 12.5k-155.0MHz)

Measurement Data

Modulation mode : 4FSK Crest Factor : 2 Scan Type : Complete

Area Scan : 15x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.673 W/kg Power Drift-Finish : 0.669 W/kg Power Drift (%) : -0.594

Tissue Data

 Type
 : Body

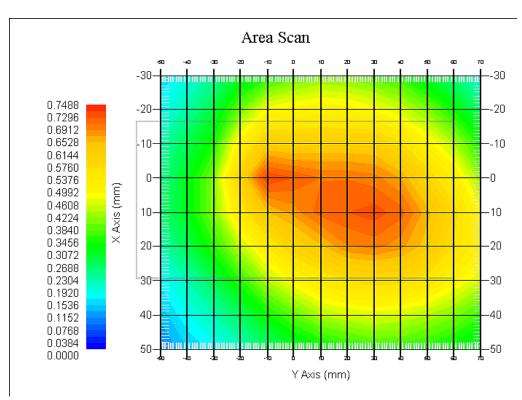
 Frequency
 : 155.0 MHz

 Epsilon
 : 61.78 F/m

 Sigma
 : 0.80 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data


Serial No. : 500-00283
Frequency Band : 150
Duty Cycle Factor : 2
Conversion Factor : 6.0

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.574 W/kg 10 gram SAR value : 0.386 W/kg Area Scan Peak SAR : 0.741 W/kg Zoom Scan Peak SAR : 0.859 W/kg

Plot 2#

SAR Evaluation Report 32 of 63

Face-Up 2.5cm (Analog 12.5k-155MHz)

Measurement Data

Modulation mode : FM Crest Factor : 1

Scan Type : Complete

Area Scan : 15x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.365 W/kg Power Drift-Finish : 0.371 W/kg Power Drift (%) : 1.644

Tissue Data

 Type
 : Head

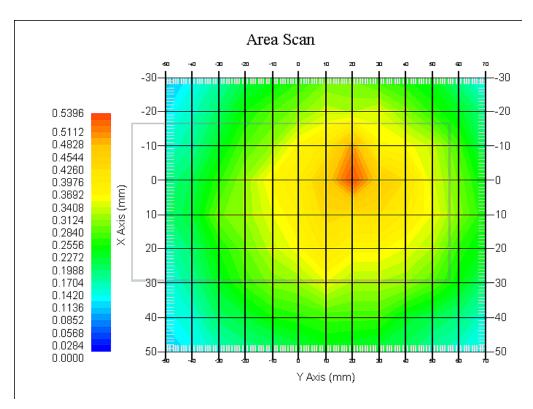
 Frequency
 : 155.0MHz

 Epsilon
 : 50.42 F/m

 Sigma
 : 0.78 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data


Serial No. : 500-00283
Frequency Band : 150
Duty Cycle Factor : 1
Conversion Factor : 6.0

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.523 W/kg 10 gram SAR value : 0.382 W/kg Area Scan Peak SAR : 0.537 W/kg Zoom Scan Peak SAR : 0.728 W/kg

Plot 3#

SAR Evaluation Report 33 of 63

Body-back 0.0cm (Analog 12.5k-155.0MHz)

Measurement Data

Modulation mode : FM Crest Factor : 1

Scan Type : Complete

Area Scan : 15x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 1.053 W/kg Power Drift-Finish : 1.050 W/kg Power Drift (%) : -0.285

Tissue Data

 Type
 : Body

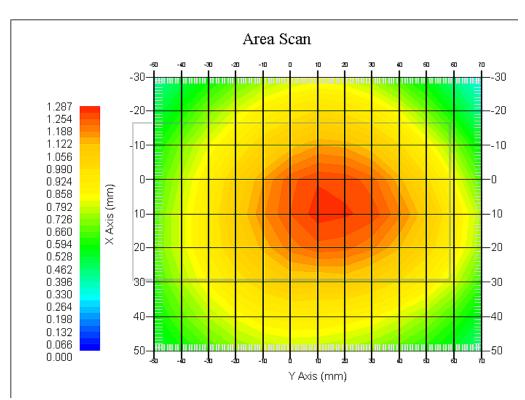
 Frequency
 : 155.0 MHz

 Epsilon
 : 61.78 F/m

 Sigma
 : 0.80 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data


Serial No. : 500-00283
Frequency Band : 150
Duty Cycle Factor : 1
Conversion Factor : 6.0

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 1.171 W/kg 10 gram SAR value : 0.724 W/kg Area Scan Peak SAR : 1.265 W/kg Zoom Scan Peak SAR : 1.863 W/kg

Plot 4#

SAR Evaluation Report 34 of 63

APPENDIX A – MEASUREMENT UNCERTAINTY

The uncertainty budget has been determined for the measurement system and is given in the following Table.

Measurement Uncertainty for 30 MHz to 6 GHz

Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	c _i ¹ (1-g)	c _i ¹ (10-g)	Standard Uncertainty (1-g) %	Standard Uncertainty (10-g) %
		Measure	ment Syst	em			
Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Axial Isotropy	3.7	rectangular	$\sqrt{3}$	$(1-cp)^{1/2}$	$(1-cp)^1$	1.5	1.5
Hemispherical Isotropy	10.9	rectangular	$\sqrt{3}$	√ср	√ср	4.4	4.4
Boundary Effect	1.0	rectangular	$\sqrt{3}$	1	1	0.6	0.6
Linearity	4.7	rectangular	$\sqrt{3}$	1	1	2.7	2.7
Detection Limit	1.0	rectangular	$\sqrt{3}$	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	$\sqrt{3}$	1	1	0.5	0.5
Integration Time	1.7	rectangular	$\sqrt{3}$	1	1	1.0	1.0
RF Ambient Condition -Noise	0.6	rectangular	$\sqrt{3}$	1	1	0.3	0.3
RF Ambient Condition - Reflections	3.0	rectangular	$\sqrt{3}$	1	1	1.7	1.7
Probe Positioner Mech. Restrictions	0.4	rectangular	$\sqrt{3}$	1	1	0.2	0.2
		Res	triction				
Probe Positioning with respect to Phantom Shell	2.9	rectangular	$\sqrt{3}$	1	1	1.7	1.7
Extrapolation and Integration	3.7	rectangular	$\sqrt{3}$	1	1	2.1	2.1
Test Sample Positioning	2.3	normal	1	1	1	2.3	2.3
Device Holder Uncertainty	6.215	normal	1	1	1	6.215	6.215
Drift of Output Power	4.627	rectangular	$\sqrt{3}$	1	1	2.67	2.67
		Phantor	n and Setu	ıp			
Phantom Uncertainty(shape & thickness tolerance)	3.4	rectangular	$\sqrt{3}$	1	1	2.0	2.0
Liquid Conductivity(target)	5.0	rectangular	$\sqrt{3}$	0.7	0.5	2.0	1.4
Liquid Conductivity(meas.)	1.938	normal	1	0.7	0.5	1.36	0.97
Liquid Permittivity(target)	5.0	rectangular	$\sqrt{3}$	0.6	0.5	1.7	1.4
Liquid Permittivity(meas.)	3.093	normal	1	0.6	0.5	1.86	1.55
Combined Uncertainty		RSS				10.78	10.55
Expanded uncertainty (coverage factor=2)		Normal(k=2)				21.56	21.10

SAR Evaluation Report 35 of 63

APPENDIX B – PROBE CALIBRATION CERTIFICATES

NCL CALIBRATION LABORATORIES

Report No.: RSZ150807001-20A

Calibration File No.: PC-1598

Task No: BACL-5778

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

> Equipment. Miniature Isotropic RF Probe Record of Calibration Head and Body Manufacturer. APREL Laboratories Model No.: E-020

Serial No.: 500-00283

Calibration Procedure: D01-032-E020-V2, D22-012-Tissue, D28-002-Dipole

Project No: BACL-5745

Calibrated: 14th October 2014 Released on: 14th October 2014

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

Art Brennan, Quality Manager

NCL CALIBRATION LABORATORIES

Suite 102, 303 Terry Fox Dr. OTTAWA, ONTARIO CANADA K2K 3J1 Division of APREL Lab. TEL: (613) 435-8300 FAX: (613) 435-6306

SAR Evaluation Report 36 of 63

Division of APREL Inc.

Introduction

This Calibration Report reproduces the results of the calibration performed in line with the references listed below. Calibration is performed using accepted methodologies as per the references listed below. Probes are calibrated for air, and tissue and the values reported are the results from the physical quantification of the probe through meteorgical practices.

Report No.: RSZ150807001-20A

Calibration Method

Probes are calibrated using the following methods.

<800 MHz

TEM Cell for sensitivity in air

Standard phantom using temperature transfer method for sensitivity in tissue

>800 MHz

Waveguide* method to determine sensitivity in air and tissue

*Waveguide is numerically (simulation) assessed to determine the field distribution and power

The boundary effect for the probe is assessed using a standard flat phantom where the probe output is compared against a numerically simulated series of data points

References

- IEEE Standard 1528:2013
 - IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- o EN 62209-1:2006
 - Human Exposure to RF Fields from hand-held and body-mounted wireless communication devices Human models. instrumentation, and procedures Part 1: Procedure to measure the Specific Absorption Rate (SAR) for hand-held mobile wireless devices
- o IEC 62209-2:2010
 - Human exposure to RF fields from hand-held and body-mounted wireless devices Human models, instrumentation, and procedures Part 2: specific absorption rate (SAR) for wireless communication devices (30 MHz 6 GHz)
- TP-D01-032-E020-V2 E-Field probe calibration procedure
- D22-012-Tissue dielectric tissue calibration procedure
- D28-002-Dipole procedure for validation of SAR system using a dipole
- IEEE 1309 Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9kHz to 40GHz

Page 2 of 10

This page has been reviewed for content and attested to on Page 2 of this document.

SAR Evaluation Report 37 of 63

Division of APREL Inc.

Conditions

Probe 500-00283 was a recalibration.

Ambient Temperature of the Laboratory: 22 °C +/- 1.5°C Temperature of the Tissue: 21 °C +/- 1.5°C Relative Humidity: < 60%

Primary Measurement Standards

 Instrument
 Serial Number
 Cal due date

 Tektronix USB Power Meter
 11C940
 May 14, 2015

 Signal Generator HP 83640B
 3844A00689
 Feb 12, 2015

Secondary Measurement Standards

Network Analyzer Anritsu 37347C 002106 Feb. 20, 2015

Attestation

The below named signatories have conducted the calibration and review of the data which is presented in this calibration report.

> We the undersigned attest that to the best of our knowledge the calibration of this subject has been accurately conducted and that all information contained within the results pages have been reviewed for accuracy.

Art Brennan, Quality Manager

Dan Brooks, Test Engineer

Page 3 of 10

This page has been reviewed for content and attested to on Page 2 of this document.

SAR Evaluation Report 38 of 63

Division of APREL Inc.

Probe Summary

E-Field Probe E020 Probe Type:

500-00283 Serial Number:

Frequency: As presented on page 5

Sensor Offset: 1.56 Sensor Length: 2.5

Composite* Tip Enclosure: Tip Diameter: < 2.9 mm Tip Length: 55 mm **Total Length:** 289 mm

*Resistive to recommended tissue recipes per IEEE-1528

Sensitivity in Air

1.2 μV/(V/m)² 1.2 μV/(V/m)² 1.2 μV/(V/m)² Channel X: Channel Y: Channel Z:

Diode Compression Point: 95 mV

Page 4 of 10
This page has been reviewed for content and attested to on Page 2 of this document.

39 of 63 **SAR Evaluation Report**

Division of APREL Inc.

Calibration for Tissue (Head H. Body B)

Frequency	Tissue Type	Measured Epsilon	Measured Sigma	Standard Uncertainty (%)	Calibration Frequency Range (MHz)	Conversion Factor
450 H	Head	43.59	0.86	3.5	±50	5.7
450 B	Body	56.74	0.94	3.5	±50	5.8
750 H	Head	42.98	0.92	3.5	±50	6.0
750 B	Body	43.05	0.93	3.5	±50	5.5
835 H	Head	43.42	0.94	3.5	±50	5.9
835 B	Body	55.77	1.01	3.5	±50	5.9
900 H	Head	41.87	1.06	3.5	±50	6.0
900 B	Body	55.62	1.05	3.5	±50	5.9
1450 H	Head	X	X	X	X	Х
1450 B	Body	X	X	×	×	х
1500 H	Head	X	X	X	×	х
1500 B	Body	X	X	×	X	X
1640 H	Head	X	X	×	X	X
1640 B	Body	X	X	×	X	×
1750 H	Head	38.23	1.38	3.5	±75	5.4
1750 B	Body	52.86	1.54	3.5	±75	5.3
1800 H	Head	X	X	X	×	X
1800 B	Body	X	Х	X	X	х
1900 H	Head	40.20	1.38	3.5	±75	4.8
1900 B	Body	52.63	1.46	3.5	±75	4.5
2000 H	Head	x	X	X	X	x
2000 B	Body	X	×	×	X	×
2100 H	Head	x	X	×	X	X
2100 B	Body	x	×	X	X	×
2300 H	Head	X	X	X	X	х
2300 B	Body	Х	X	X	X	х
2450 H	Head	37.26	1.84	3.5	±75	4.9
2450B	Body	53.61	1,9	3.5	±75	4.3
3000 H	Head	X	X	X	X	X
3000 B	Body	X	×	X	X	X
3600 H	Head	37.49	3.16	3.5	±100	4.5
3600 B	Body	49.94	3.86	3.5	±100	4.0
5250 H	Head	35.51	4.78	3.5	±100	3.0
5250 B	Body	47.54	5.11	3.5	±100	2.8
5600 H	Head	36.05	5.15	3.5	±100	2.8
5600 B	Body	46.49	5.72	3.5	±100	2.2
5800 H	Head	45.99	6.01	3.5	±100	3.2
5800 B	Body	35.6	5.37	3.5	±100	2.5

SAR Evaluation Report 40 of 63

Page 5 of 10
This page has been reviewed for content and attested to on Page 2 of this document.

Division of APREL Inc.

Boundary Effect:

Uncertainty resulting from the boundary effect is less than 2.1% for the distance between the tip of the probe and the tissue boundary, when less than 0.58mm.

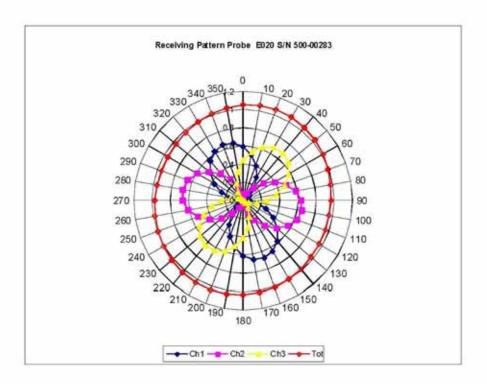
Spatial Resolution:

The spatial resolution uncertainty is less than 1.5% for 4.9mm diameter probe. The spatial resolution uncertainty is less than 1.0% for 2.5mm diameter probe.

DAQ-PAQ Contribution

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 M Ω .

Probe Calibration Uncertainty

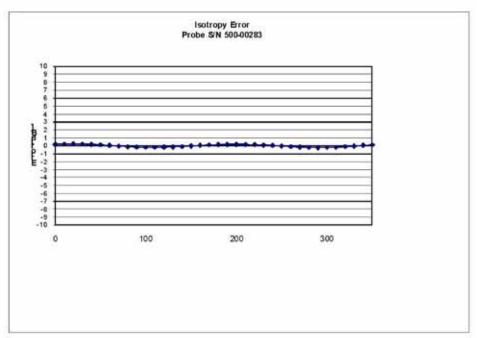

Uncertainty component	Tolerance (±%)	Probability distribution	Divisor	Standard uncertainty (± %)
Incident or forward power	2.5	R	√3	1.44
Reflected power	2	R	√3	1.15
Liquid conductivity measurement	1	R	√3	0.58
Liquid permittivity measurement	1	R	√3	0.58
Liquid conductivity deviation	1.5	R	√3	0.87
Liquid permittivity deviation	1.5	R	√3	0.87
Frequency deviation	2.25	R	√3	1.30
Field homogeneity	2.5	R	√3	1.44
Field-probe positioning	2.5	R	√3	1.44
Field-probe linearity	1.55	R	√3	0.89
Combined standard uncertainty		RSS		3.50

Page 6 of 10
This page has been reviewed for content and attested to on Page 2 of this document.

41 of 63 **SAR Evaluation Report**

Division of APREL Inc.

Receiving Pattern Air



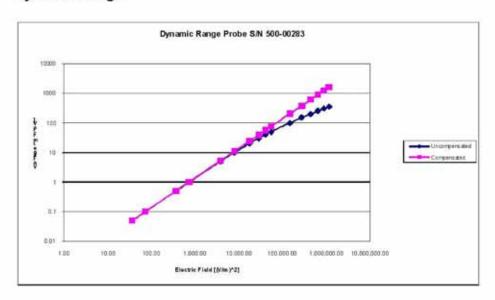

Page 7 of 10
This page has been reviewed for content and attested to on Page 2 of this document.

SAR Evaluation Report 42 of 63

Division of APREL Inc.

Isotropy Error Air

Isotropicity Tissue:

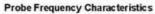

0.10 dB

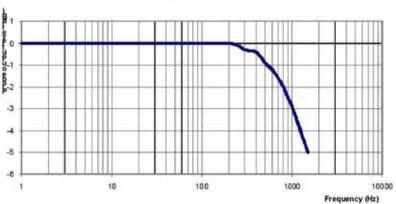
Page 8 of 10
This page has been reviewed for content and attested to on Page 2 of this document.

SAR Evaluation Report 43 of 63

NCL Calibration Laboratories Division of APREL Inc.

Dynamic Range




Page 9 of 10
This page has been reviewed for content and attested to on Page 2 of this document.

SAR Evaluation Report 44 of 63

Division of APREL Inc.

Video Bandwidth

Video Bandwidth at 500 Hz 1 dB Video Bandwidth at 1.02 KHz: 3 dB

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2014.

Page 10 of 10

This page has been reviewed for content and attested to on Page 2 of this document.

SAR Evaluation Report 45 of 63

ANNEX

Report No.: RSZ150807001-20A

PROBE ALS-E020 S/N 500-00283 CALIBRATION

Conditions

 $\begin{array}{lll} \mbox{Ambient Temperature of the laboratory:} & 20\ ^{\circ}\mbox{C}\ +/-\ 1.5\ ^{\circ}\mbox{C} \\ \mbox{Temperature of the Tissue:} & 21\ ^{\circ}\mbox{C}\ +/-\ 1.5\ ^{\circ}\mbox{C} \\ \mbox{Relative Humidity:} & <55\% \\ \end{array}$

Frequency	Tissue Type	Measured Epsilon	Measured Sigma	Standard Uncertainty (%)	Calibration Frequency Range (MHz)	Conversion Factor
150 H	Head	50.6	0.78	3.5	±50	6.0
150 B	Body	60.8	0.82	3.5	±50	6.0

Probe Calibration Uncertainty

Uncertainty component	Tolerance (± %)	Probability distribution	Divisor	Standard uncertainty (± %)
Incident or forward power	2.5	R	√3	1.44
Reflected power	2	R	√3	1.15
Liquid conductivity measurement	1	R	√3	0.58
Liquid permittivity measurement	1	R	√3	0.58
Liquid conductivity deviation	1.5	R	√3	0.87
Liquid permittivity deviation	1.5	R	√3	0.87
Frequency deviation	2.25	R	√3	1.30
Field homogeneity	2.5	R	√3	1.44
Field-probe positioning	2.5	R	√3	1.44
Field-probe linearity	1.55	R	√3	0.89
Combined standard uncertainty		RSS		3.50

SAR Evaluation Report 46 of 63

APPENDIX C – DIPOLE CALIBRATION CERTIFICATES

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

BACL

Accreditation No.: SCS 108

C

Certificate No: CLA150-4004_May14

CALIBRATION CERTIFICATE

Object CLA150 - SN: 4004

Calibration procedure(s) QA CAL-15.v8

Calibration procedure for system validation sources below 700 MHz

Calibration date: May 08, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate,

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Certificate No: CLA150-4004_May14

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
Reference 20 dB Attenuator	SN: S5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe EX3DV4	SN: 3877	06-Jan-14 (No. EX3-3877_Jan14)	Jan-15
DAE4	SN: 654	18-Jul-13 (No. DAE4-654_Jul13)	Jul-14
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	04-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14
	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Moren Chalace
Approved by:	Katja Pokovic	Technical Manager	delle-
			Issued: May 8, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

SAR Evaluation Report 47 of 63

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di tarature
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2013
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CLA150-4004_May14 Page 2 of 8

SAR Evaluation Report 48 of 63

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness; 2 ± 0.2 mm
EUT Positioning	Touch Position	
Zoom Scan Resolution	dx, dy, dz = 5.0 mm	
Frequency	150 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	52.3	0.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	49.9 ± 6 %	0.76 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	
SAR measured	1 W input power	3.79 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	3.75 W/kg ± 18.4 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	1 W input power	2.51 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	2.49 W/kg ± 18.0 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	61.9	0.80 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) "C	62.5 ± 6 %	0.80 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	1 W input power	3.80 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	3.81 W/kg ± 18.4 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	1 W input power	2.55 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	2.55 W/kg ± 18.0 % (k=2)

Certificate No: CLA150-4004_May14

Page 3 of 8

SAR Evaluation Report 49 of 63

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	45.5 Ω - 10.6 jΩ	
Return Loss	- 18.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.0 Ω - 14.6 jΩ
Return Loss	- 16.2 dB

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 23, 2013

Certificate No: CLA150-4004_May14

SAR Evaluation Report 50 of 63

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 08.05.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: CLA150; Type: CLA150; Serial: CLA150 - SN: 4004

Communication System: UID 0 - CW; Frequency: 150 MHz

Medium parameters used: f = 150 MHz; $\sigma = 0.76 \text{ S/m}$; $\varepsilon_r = 49.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

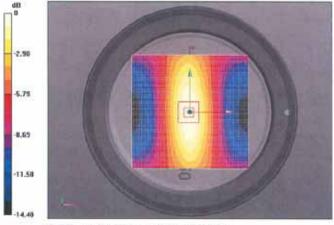
Probe: EX3DV4 - SN3877; ConvF(11.76, 11.76, 11.76); Calibrated: 06.01.2014;

- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 18.07.2013
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

CLA Calibration for HSL-LF Tissue/CLA150, touch configuration, Pin=1W/Area Scan

(81x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 4.91 W/kg

CLA Calibration for HSL-LF Tissue/CLA150, touch configuration, Pin=1W/Zoom Scan

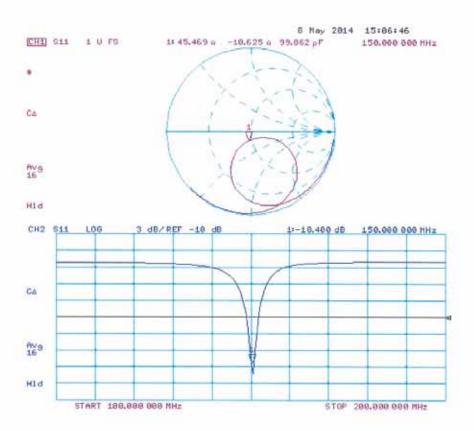

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 80.11 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 6.11 W/kg

SAR(1 g) = 3.79 W/kg; SAR(10 g) = 2.51 W/kg

Maximum value of SAR (measured) = 4.89 W/kg


0 dB = 4.91 W/kg = 6.91 dBW/kg

Certificate No: CLA150-4004_May14

Page 5 of 8

SAR Evaluation Report 51 of 63

Impedance Measurement Plot for Head TSL

Certificate No: CLA150-4004_May14 Page 6 of 8

SAR Evaluation Report 52 of 63

Date: 08.05.2014

Report No.: RSZ150807001-20A

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: CLA150; Type: CLA150; Serial: CLA150 - SN: 4004

Communication System: UID 0 - CW; Frequency: 150 MHz

Medium parameters used: f = 150 MHz; $\sigma = 0.8 \text{ S/m}$; $\varepsilon_r = 62.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: EX3DV4 - SN3877; ConvF(11.45, 11.45, 11.45); Calibrated: 06.01.2014;

· Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn654; Calibrated: 18.07.2013

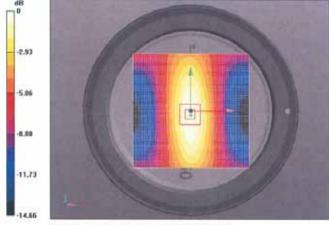
Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

CLA Calibration for MSL-LF Tissue/CLA150, touch configuration, Pin=1W/Area Scan

(81x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 4.87 W/kg

CLA Calibration for MSL-LF Tissue/CLA150, touch configuration, Pin=1W/Zoom Scan


(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 77.84 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 6.05 W/kg

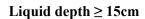
SAR(1 g) = 3.8 W/kg; SAR(10 g) = 2.55 W/kg

Maximum value of SAR (measured) = 4.88 W/kg

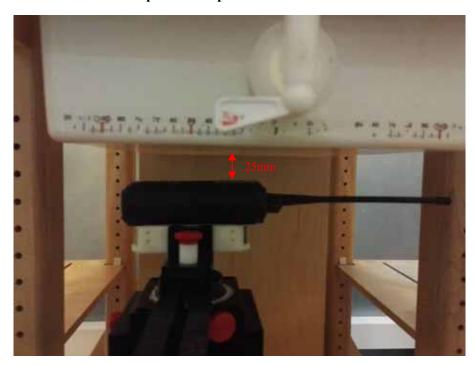
0 dB = 4.87 W/kg = 6.88 dBW/kg

Certificate No: CLA150-4004_May14

Page 7 of 8


SAR Evaluation Report 53 of 63

Certificate No: CLA150-4004_May14 Page 8 of 8


SAR Evaluation Report 54 of 63

APPENDIX D – EUT TEST POSITION PHOTOS

Face-Up 2.5 cm Separation to Flat Phantom

SAR Evaluation Report 55 of 63

Body-Back 0.0 cm Separation to Flat Phantom

SAR Evaluation Report 56 of 63

APPENDIX E – EUT PHOTOS

EUT – Front View

EUT – Back View

SAR Evaluation Report 57 of 63

EUT-Left View

EUT-Right View

SAR Evaluation Report 58 of 63

EUT-Top View

EUT-Bottom View

SAR Evaluation Report 59 of 63

Battery View

EUT-Antenna1:136-174MHz

SAR Evaluation Report 60 of 63

EUT – Belt Clip

SAR Evaluation Report 61 of 63

APPENDIX F – INFORMATIVE REFERENCES

[1] Federal Communications Commission, \Report and order: Guidelines for evaluating the environmental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, FCC, Washington, D.C. 20554, 1996.

Report No.: RSZ150807001-20A

- [2] David L. Means Kwok Chan, Robert F. Cleveland, \Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields", Tech. Rep., Federal Communication Commission, O ce of Engineering & Technology, Washington, DC, 1997.
- [3] Thomas Schmid, Oliver Egger, and Niels Kuster, \Automated E-_eld scanning system for dosimetricPage 62 of 63 assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105{113, Jan. 1996.
- [4] Niels Kuster, Ralph K.astle, and Thomas Schmid, \Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp. 645 (652, May 1997.
- [5] CENELEC, \Considerations for evaluating of human exposure to electromagnetic fields (EMFs) from mobile telecommunication equipment (MTE) in the frequency range 30MHz 6GHz", Tech. Rep., CENELEC, European Committee for Electrotechnical Standardization, Brussels, 1997.
- [6] ANSI, ANSI/IEEE C95.1-1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992.
- [7] Katja Pokovic, Thomas Schmid, and Niels Kuster, \Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies", in ICECOM _ 97, Dubrovnik, October 15 {17, 1997, pp. 120-24.
- [8] Katja Pokovic, Thomas Schmid, and Niels Kuster, \E-field probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23 {25 June, 1996, pp. 172-175.
- [9] Volker Hombach, Klaus Meier, Michael Burkhardt, Eberhard K. uhn, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 900 MHz", IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1865-1873, Oct. 1996.
- [10] Klaus Meier, Ralf Kastle, Volker Hombach, Roger Tay, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 1800 MHz", IEEE Transactions on Microwave Theory and Techniques, Oct. 1997, in press.
- [11] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992.
- [12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992. Dosimetric Evaluation of Sample device, month 1998 9
- [13] NIS81 NAMAS, \The treatment of uncertainity in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddington, Middlesex, England, 1994.
- [14] Barry N. Taylor and Christ E. Kuyatt, \Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994. Dosimetric Evaluation of Sample device, month 1998 10.
- [15] FCC OET KDB643646 SAR Test Reduction Considerations for Occupational PTT Radios.

SAR Evaluation Report 62 of 63

TYT ELECTRONICS CO., LTD

Block 39-1, Optoelectronics-information industry b, Nan'an, Quanzhou, Fujian, China Fax: +86 595-27770858 Fax: +86 595-27770857

Report No.: RSZ150807001-20A

2015-08-31

Product Similarity Declaration

To Whom It May Concern,

We, TYT ELECTRONICS CO., LTD, hereby declare that we have a product named as DMR (Model no: MD-380) was tested by BACL, meanwhile, for our marketing purpose, we would like to list a series models (MD-390 MD-368 MD-398 MD-446) on reports and certificate, all the models are identical schematics, except for the differences as below,

I, Model number

No other changes are made to them.

We confirm that all information above is true, and we'll be responsible for all the consequences. Please contact me if you have any question.

Signature:

Jiamao Lin

Manager

***** END OF REPORT *****

SAR Evaluation Report 63 of 63