

FCC RADIO TEST REPORT

Applicant.....: Robert Bosch GmbH

Address...... : Robert-Bosch-Platz 1, 70839 Gerlingen, Germany

Manufacturer.....: Robert Bosch GmbH

Address.....: Robert-Bosch-Platz 1, 70839 Gerlingen, Germany

Factory 1.....: Robert Bosch Malaysia

Factory 2.....: Bosch Automotive Electronics India Pvt.Ltd.

Address......: : Hangar 703 Naganathapura, Electronic city PO, Bengaluru - 560100

Product Name.....: Multimedia device with Bluetooth and WLAN

Brand Name.....: BOSCH

Model No. : 71U0

FCC ID.....: 2AUXS-71U0

Measurement Standard......: 47 CFR FCC Part 15, Subpart C (Section 15.247)

Receipt Date of Samples.....: February 18, 2025

Date of Tested.....: February 18, 2025 to March 24, 2025

Date of Report.....: March 25, 2025

This report shows that above equipment is technically compliant with the requirements of the standards above. All test results in this report apply only to the tested sample(s). Without prior written approval of Dongguan Nore

Testing Center Co., Ltd, this report shall not be reproduced except in full.

Prepared by

Jenny Liu / Project Engineer

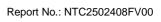
Iori Fan / Authorized Signatory

Table of Contents

1. Summary of Test Result	4
2. General Description of EUT	5
3. Test Channels and Modes Detail	9
4. Configuration of EUT	9
5. Modification of EUT	9
6. Description of Support Device	10
7. Test Facility and Location	11
8. Applicable Standards and References	12
9. Deviations and Abnormalities from Standard Conditions	12
10. Test Conditions	13
11. Measurement Uncertainty	14
12. Sample Calculations	15
13. Duty Cycle of Test Signal	16
14. Test Items and Results	17
14.1 Conducted Emissions Measurement	17
14.2 Maximum Conducted Output Power Measurement	19
14.3 6dB Bandwidth Measurement	21
14.4 Power Spectral Density Measurement	27
14.5 Band Edge and Conducted Spurious Emissions Measurement	31
14.6 Radiated Spurious Emissions and Restricted Bands Measurement	36
14.7 Antenna Requirement	50
15. Test Equipment List	51

Revision History

Report Number	Description	Issued Date
NTC2502408FV00	Initial Issue	2025-03-25



1. Summary of Test Result

FCC Rules	Description of Test	Result	Remarks
§15.207 (a)	AC Power Conducted Emission	N/A	See note
§15.247(b)(3)	Maximum Conducted Output Power	PASS	
§15.247(a)(2)	6dB Bandwidth	PASS	
§15.247(e)	Power Spectral Density	PASS	
§15.247(d)	Band Edge and Conducted Spurious Emissions	PASS	
§15.247(d),§15.209, §15.205	Radiated Spurious Emissions and Restricted Bands	PASS	
§15.203	Antenna Requirement	PASS	

Note: The device is designed for vehicle environment using and cannot connect to the public low-voltage network.

2. General Description of EUT

Product Information	
Product Name:	Multimedia device with Bluetooth and WLAN
Main Model Name:	71U0
Additional Model Name:	N/A
Model Difference:	N/A
S/N:	4c8117b1 (conducted sample) / 60c50fde (radiated sample)
Brand Name	BOSCH
Hardware Version:	DA3-002
Software Version:	D3I_51.6(S3R-01-00 (2024-51-6))
Rating:	DC 10V to 16 V come from vehicle environment
Classification:	Class B
Typical Arrangement:	Tabletop
I/O Port:	Refer to the user's manual
Accessories Information	
Adapter:	N/A
Cable:	N/A
Other:	N/A
Additional Information	
Note:	1. The device has six variant versions, and all the versions have the same schematic,
	construction, PCB Layout, Bluetooth & WIFI RF module; the differences are software
	version and components populated in accordance with the function feature. Details
	refer to following the variant version description.
	2. According to the version differences and the manufacturer, all tests were performed
	on version GEX w/DAB, deviation test of Radiated Emission was performed on version
	IND.
Remark:	All the information above are provided by the manufacturer. More detailed feature of
	the EUT please refers to the user manual.

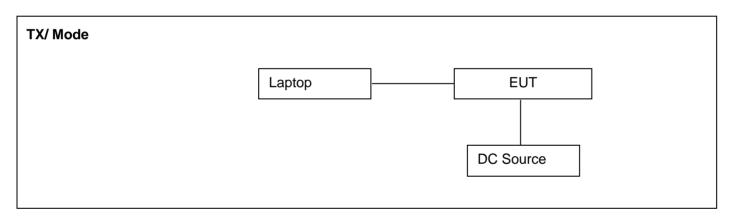
Technical Specification	
Frequency Range:	2412-2462MHz for IEEE 802.11b/g/n(HT20)
Modulation Technology:	DSSS, OFDM
Modulation Type:	CCK, DQPSK, DBPSK, 64-QAM, 16-QAM, QPSK, BPSK
Number of Channel:	11
Channel Space:	5MHz
Antenna Type:	Chip Antenna
Number of Antenna	2 (BT & 5G WIFI x1, 2.4G & 5G WIFI x 1)
Antenna Gain:	2.79 dBi maximum (Declared by the manufacturer)
Note: This report only app	lies to 2.4GHz WLAN feature of the EUT.

Variant Version Description:

	Versions					
Function	IND	GEX w/DAB	GEX with no 5GHz AP support	GEX w/o DAB	EU w/DAB	EU w/o DAB
AM	Yes	Yes	Yes	Yes	Yes	Yes
FM	Yes	Yes	Yes	Yes	Yes	Yes
DAB		Yes			Yes	
DRM	Yes					
ВТ	Yes	Yes	Yes	Yes	Yes	Yes
BLE	Yes	Yes	Yes	Yes	Yes	Yes
Wifi Station (2.4 GHz)	Yes	Yes	Yes	Yes	Yes	Yes
GNSS	Yes	Yes	Yes	Yes	Yes	Yes
Wifi AP 2.4GHz			Yes			
Wifi AP 5GHz	Yes	Yes		Yes	Yes	Yes
USB DCM	Yes				Yes	Yes
USB	Yes	Yes	Yes	Yes	Yes	Yes
QZSS	Yes	Yes	Yes	Yes	Yes	Yes
RVC	Yes	Yes	Yes	Yes	Yes	Yes
Int SVS	Yes	Yes	Yes	Yes		
Ext SVS						
Audio (8 CH)	Yes	Yes	Yes	Yes		
Audio (4 CH)					Yes	Yes

Note: For wireless functions Bluetooth and WIFI, the hardware design is exactly the same. The WIFI bands and features are locked by the software at the factory and cannot be modified by the user.

Channel List					
IEEE 802.11	b/ g/ n(HT20)	IEEE 802.11n(HT40)			
Channel	Frequency (MHz)	Channel	Frequency (MHz)		
1	2412				
2	2417				
3	2422	3			
4	2427	4			
5	2432	5			
6	2437	6			
7	2442	7			
8	2447	8			
9	2452	9			
10	2457				
11	2462				



3. Test Channels and Modes Detail

	Mode	Channel	Frequency (MHz)	Remark
	1 2412		IEEE 802.11b/ g/ n(HT20)	
1	1 TX	6	2437	IEEE 802.11b/ g/ n(HT20)/ n(HT40)
	11		11 2462	IEEE 802.11b/ g/ n(HT20)
2	WIFI (CH 11) + Bluetooth Link		Co-transmitting	

Note: TX mode means that the EUT was programmed to be in continuously transmitting mode.

4. Configuration of EUT

5. Modification of EUT

No modifications are made to the EUT during all test items.

6. Description of Support Device

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Equipment	Brand	M/N	S/N	Cable Specification	Remarks
1.	Laptop	Lenovo	R720-151KBN	PF0Z35FH		Provided by the lab

Software	Power Setting			
Software	Mode	Setting		
ADB commands & MyFTM_GUI_v2.0.1m	IEEE 802.11b	15		
	IEEE 802.11g	7		
	IEEE 802.11n(HT20)	8		

7. Test Facility and Location

Test Site	:	Dongguan Nore Testing Center Co., Ltd. (Dongguan NTC Co., Ltd.)		
Accreditations and	:	The Laboratory has been assessed and proved to be in compliance with		
Authorizations		CNAS/CL01		
		Listed by CNAS, August 13, 2018		
		ne Certificate Registration Number is L5795.		
		The Certificate is valid until August 13, 2030		
		The Laboratory has been assessed and proved to be in compliance with ISO17025		
		Listed by A2LA, November 01, 2017		
		The Certificate Registration Number is 4429.01		
		The Certificate is valid until December 31, 2025		
		Listed by FCC, November 06, 2017		
		Test Firm Registration Number is 907417		
		Listed by Industry Canada, June 08, 2017		
		The Certificate Registration Number is 46405-9743A		
Test Site Location		Building D, Gaosheng Science and Technology Park, Hongtu Road, Nancheng		
Tool one Education		District, Dongguan City, Guangdong Province, China		

8. Applicable Standards and References

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Test Standards:

47 CFR Part 15, Subpart C, 15.247 ANSI C63.10-2013

References Test Guidance:

DTS KDB 558074 D01 15.247 Meas Guidance v05r02

9. Deviations and Abnormalities from Standard Conditions

No additions, deviations and exclusions from the standard.

10. Test Conditions

No.	Test Item	Test Mode	Test Voltage	Tested by	Remarks
1.	AC Power Conducted Emission				
2.	Max. Conducted Output Power	1	DC 13.5V	Sean	See note 1
3.	6dB Bandwidth	1	DC 13.5V	Sean	See note 1
4.	Power Spectral Density	1	DC 13.5V	Sean	See note 1
5.	Band Edge and Conducted Spurious Emissions	1	DC 13.5V	Sean	See note 1
6.	Radiated Spurious Emissions and Restricted Bands	1-2	DC 13.5V	Sean	See note 1,3
7.	Antenna Requirement				

Note:

- 1. The testing climatic conditions for temperature, humidity, and atmospheric pressure are within: 15~35 °C, 30~70%, 86~106kPa
- 2. DC 13.5V comes from the external DC source.
- 3. The device is designed for vehicle environment using and cannot connect to the public low-voltage network.

11. Measurement Uncertainty

No.	Test Item	Frequency	Uncertainty	Remarks
1.	Conducted Emission	150KHz ~ 30MHz	±2.52 dB	
		9kHz ~ 30MHz	±5.60 dB	
	Radiated Emission	30MHz ~ 1GHz	±5.60 dB	
2.		1GHz ~ 18GHz	±5.22 dB	
		18GHz ~ 40GHz	±5.22 dB	
3.	RF Conducted	10Hz ~ 40GHz	±1.18 dB	
4.	Occupied Channel Bandwidth		±1.05%	

Note:

- 1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.
- 2. The measurement uncertainly levels above are estimated and calculated according to CISPR 16-4-2.
- 3. The conformity assessment statement in this report is based solely on the test results, measurement uncertainty is excluded.

12. Sample Calculations

Conducted Emission								
Freq. (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measurement (dBuV)	Limit (dBuV)	Over (dB)	Detector		
0.2379	16.70	20.60	37.30	62.17	-24.87	QP		

Where,

Freq. = Emission frequency in MHz

Reading Level = Spectrum Analyzer/Receiver Reading

Corrector Factor = Insertion loss of LISN + Cable Loss + RF Switching Unit attenuation

Measurement = Reading + Corrector Factor

Limit = Limit stated in standard

Margin = Measurement - Limit

Detector = Reading for Quasi-Peak / Average / Peak

Radiated Spurious Emissions and Restricted Bands								
Freq. (MHz)	Reading Level (dBuV)	Correct Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector		
185.2000	35.99	-9.24	26.75	43.50	-16.75	QP		

Where,

Freq. = Emission frequency in MHz

Reading Level = Spectrum Analyzer/Receiver Reading

Corrector Factor = Antenna Factor + Cable Loss - Pre-amplifier

Measurement = Reading + Corrector Factor

Limit = Limit stated in standard

Over = Margin, which calculated by Measurement - Limit

Detector = Reading for Quasi-Peak / Average / Peak

Note: For all conducted test items, the spectrum analyzer offset or transducer is derived from RF cable loss and attenuator factor. The offset or transducer is equal to the RF cable loss plus attenuator factor.

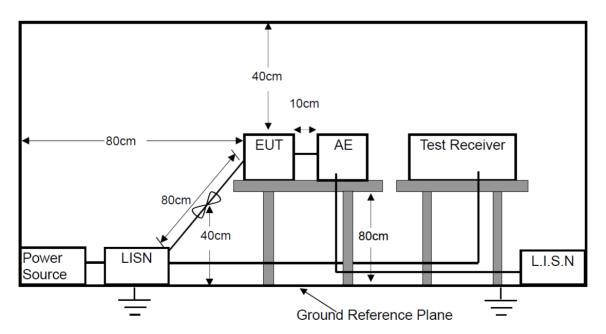
13. Duty Cycle of Test Signal

Frequency MHz	Mode	TP time (ms)	Ton time	Duty cycle	Duty cycle Factor	
2437	802.11b	12.46	12.43	99.76%	0.08	
2437	802.11g	2.11	2.07	98.10%	0.48	
2437	802.11n20	2.23	1.93	86.55%	0.52	
8	302.11b			802.11g		
R POUR Align. Auto Freq Ref. Int.(S)	PND Fast AAy3 Type Pleant (SMS] 2 3 later (off Type Fleen Run W W W W W W W R Type Run W R Type	₩ ₩ ₩	Spectrum Analyzer 1 Smept SA KEYSIGHT Inout RE Moyal Z 50 D All CONCORN Align Auto Freq Ref Int (S) 1 Spectrum Septrum 1 Spectrum	en. 40:d5 PHO Find: MANG Type: Power (TAMS) Case: Off IF Claim: Low Sig Track: Off Ref Livi Offset 7.78 dB Ref Level 30.00 dBm	3 3 4 5 6	
.50 0 .50 0	tVideo BW 8.0 MHz	Span 0 Hz Sweep 100 ms (10001 pts)	50 0 -00 0 Center 2.437000000 GHz Res BW 8 MHz	#Video BW 8.0 MHz	Span 0 Hz Sweep 100 ms (10001 pts)	
Mode Trace Scale X	Y Function Function WI 11 62 dBm 11 89 dBm 13 18 dBm	dth Function Value	S Marker Table Mode Trace Scale X 1 N 1 1 12 2 N 1 1 12 3 N 1 t 12 6 6	10 ms 11 32 dBm 100 ms 11 32 dBm 100 ms -13.32 dBm	ction Width Function Value	
€ 5 C ■ ? Feb.25, 2025 (m) A)2.11n20		Feb 25, 2025 (6.26.26 PM)		🗶 💢	
R Page Aug Core Core Core Free Real Int (S) 1 Spectrum 1 Spectru	PNO Fest Jake of Imp. Power (BMS) 2 3 1rg. Free Run W.	Mkr1 490.0 µs 11.63 dBm 11.63 dBm Span 0 Hz Sweep 100 ms (10001 pts)		Blank		
Note: Duty Cycle = (Ton time / TP time) x 100% Duty Cycle Factor= 10 x log(1/Duty Cycle) Reporting only						

14. Test Items and Results

14.1 Conducted Emissions Measurement

LIMITS


According to the requirements of FCC PART 15.207, the limits are as follows:

Frequency (MHz)	Quasi-peak	Average	
0.15 to 0.5	66 to 56	66 to 56 56 to 46	
0.5 to 5	56	46	
5 to 30	60	50	

Note: 1. If the limits for the average detector are met when using the quasi-peak detector, then the limits for the measurements with the average detector are considered to be met.

- 2. The lower limit shall apply at the transition frequencies.
- 3. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5MHz.

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

- a. The EUT was placed on a wooden table 0.8m height from the metal ground plan and 0.4m from the conducting wall of the shielding room and it was kept at 0.8m from any other grounded conducting surface.
- b. All I/O cables and support devices were positioned as per ANSI C63.10.
- c. Connect mains power port of the EUT to a line impedance stabilization network (LISN).
- d. Connect all support devices to the other LISN and AAN, if needed.
- e. Scan the frequency range from 150KHz to 30MHz at both sides of AC line for maximum conducted interference checking and record the test data.

TEST RESULTS

Not Applicable

14.2 Maximum Conducted Output Power Measurement

LIMITS

For system using digital modulation in the 2400-2483.5 MHz bands, the limit for peak output power is 1 Watt.

If the transmitting antenna of directional gain greater than 6dBi are used the peak output power form the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the Antenna exceeds 6dBi.

In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of Antenna exceeds 6dBi.

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

ANSI C63.10 - 2013, Section 11.9.1.3

ANSI C63.10 - 2013, Section 11.9.2.3.2

TEST RESULTS

PASS

Please refer to the following table.

Channel	Frequency (MHz)	Data Rate (Mbps)	Peak Output Power (dBm)	Limit (dBm)	Result		
IEEE 802.11b							
1	2412	1	12.46	≤30	PASS		
6	2437	1	13.51	≤30	PASS		
11	2462	1	13.91	≤30	PASS		
IEEE 802.11g							
1	2412	6	12.87	≤30	PASS		
6	2437	6	11.17	≤30	PASS		
11	2462	6	11.60	≤30	PASS		
		IEEE	E 802.11n(HT20)				
1	2412	MCS0	13.29	≤30	PASS		
6	2437	MCS0	14.20	≤30	PASS		
11	2462	MCS0	14.63	≤30	PASS		
Vate. Dute. Factor has appointed during the test							

Note: Duty Factor has considered during the test.

14.3 6dB Bandwidth Measurement

LIMITS

The minimum 6dB bandwidth shall be at least 500 kHz

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

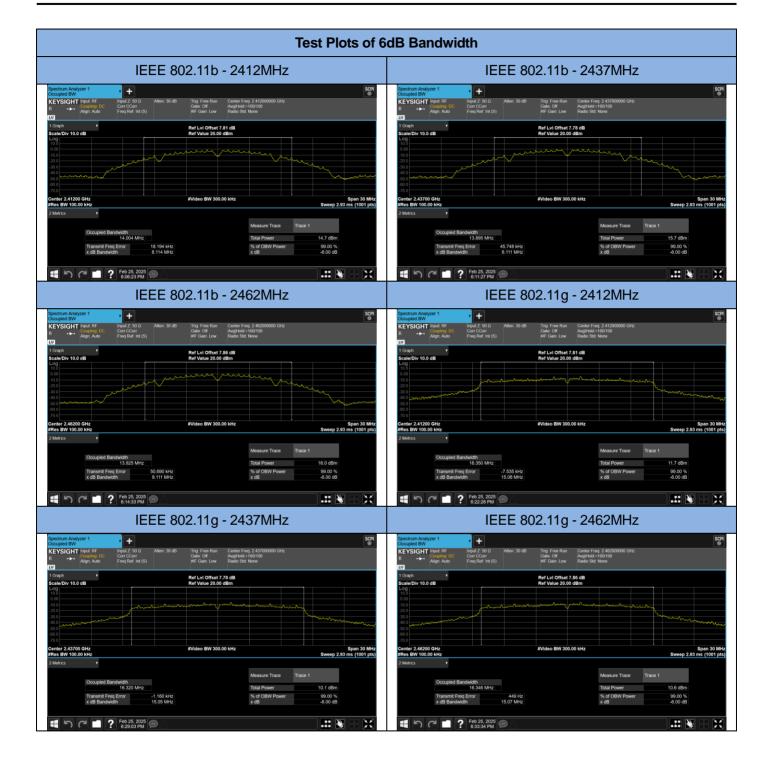
The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer was set as below according to FCC KDB558074 (v05r02):

- a. Set the RBW = 100KHz.
- b. Set the VBW ≥ 3 x RBW
- c. Set the Detector = peak.
- d. Set the Sweep time = auto couple.
- e. Set the Trace mode = max hold.
- f. Allow trace to fully stabilize.
- g. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

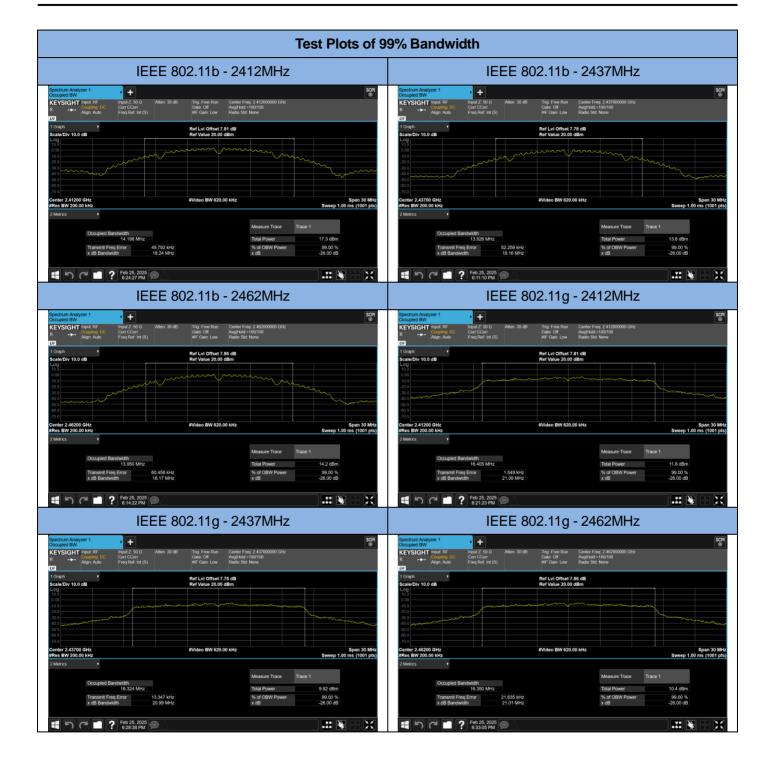
TEST RESULTS

PASS

Please refer to the following tables.



Channel	Frequency (MHz)	Data Rate (Mbps)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	6dB Limit (MHz)	Result	
	IEEE 802.11b						
1	2412	1	8.114	14.198	>0.5	PASS	
6	2437	1	8.111	13.926	>0.5	PASS	
11	2462	1	8.111	13.950	>0.5	PASS	
	IEEE 802.11g						
1	2412	6	15.080	16.405	>0.5	PASS	
6	2437	6	15.050	16.324	>0.5	PASS	
11	2462	6	15.070	16.350	>0.5	PASS	
			IEEE 802.11n(H	T20)			
1	2412	MCS0	15.090	17.642	>0.5	PASS	
6	2437	MCS0	15.040	17.603	>0.5	PASS	
11	2462	MCS0	15.060	17.627	>0.5	PASS	
Note: 99% Bandwidth measurement results are just used for reporting.							



14.4 Power Spectral Density Measurement

LIMITS

The Maximum of Power Spectral Density Measurement is 8dBm in any 3 kHz.

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

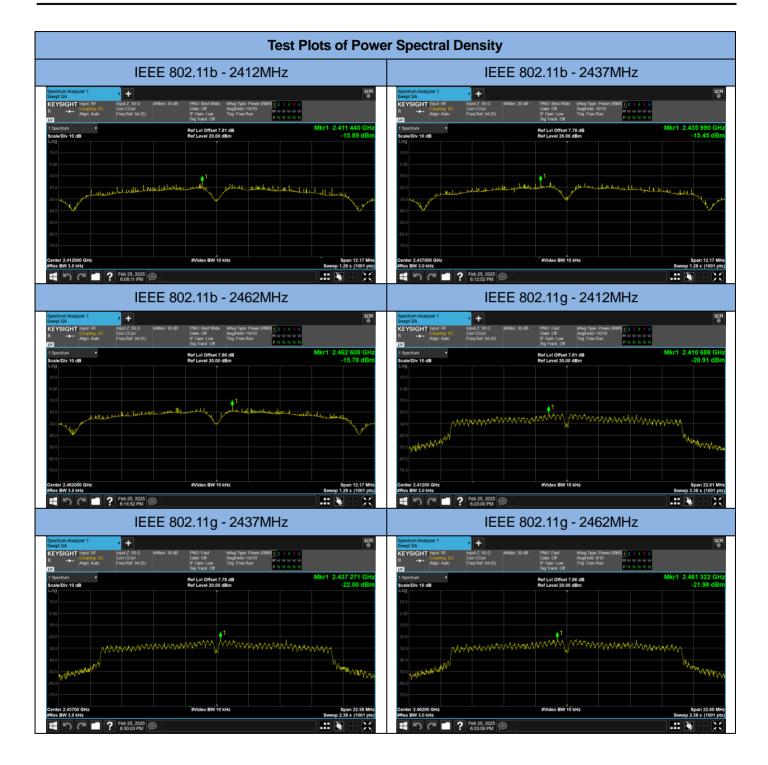
The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer was set as below according to FCC KDB558074 (v05r02):

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: 3 kHz ≤ RBW ≤ 100KHz
- d. Set the VBW \geq 3 x RBW.
- e. Set the Detector = peak.
- f. Set the Sweep time = auto couple.
- g. Set the Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.
- j. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST RESULTS

PASS

Please refer to the following table.



Channel	Frequency (MHz)	Data Rate (Mbps)	PSD dBm / 3kHz	Limit dBm / 3kHz	Result			
	IEEE 802.11b							
1	2412	1	-15.89	8	PASS			
6	2437	1	-15.45	8	PASS			
11	2462	1	-15.78	8	PASS			
	IEEE 802.11g							
1	2412	6	-20.91	8	PASS			
6	2437	6	-22.00	8	PASS			
11	2462	6	-21.98	8	PASS			
	IEEE 802.11n(HT20)							
1	2412	MCS0	-20.61	8	PASS			
6	2437	MCS0	-19.13	8	PASS			
11	2462	MCS0	-17.71	8	PASS			

14.5 Band Edge and Conducted Spurious Emissions Measurement

LIMITS

In any 100KHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

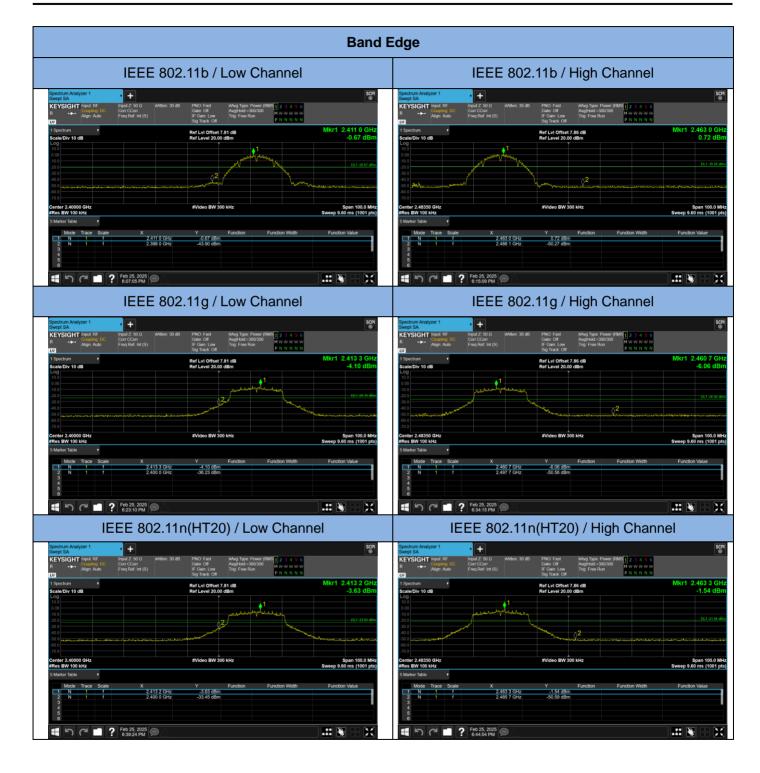
The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer was set as below according to ANSI C63.10-2013, Section 11.11

Measurement Procedure REF

- a. Set the RBW = 100 kHz.
- b. Set the VBW ≥ 300 kHz.
- c. Set the Detector = peak.
- d. Set the Sweep time = auto couple.
- e. Trace mode = max hold.
- f. Allow trace to fully stabilize.
- g. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

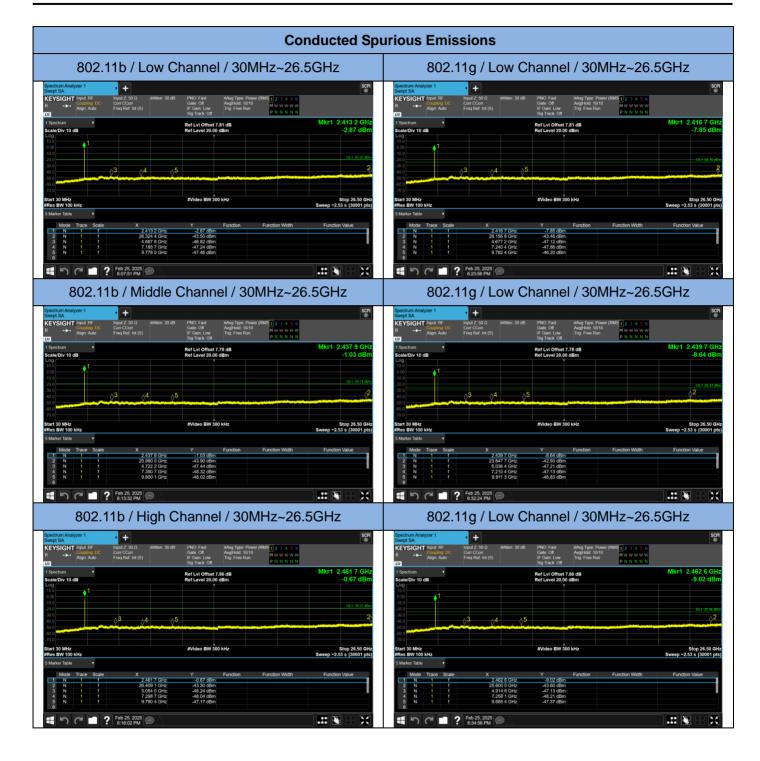
Measurement Procedure OOBE

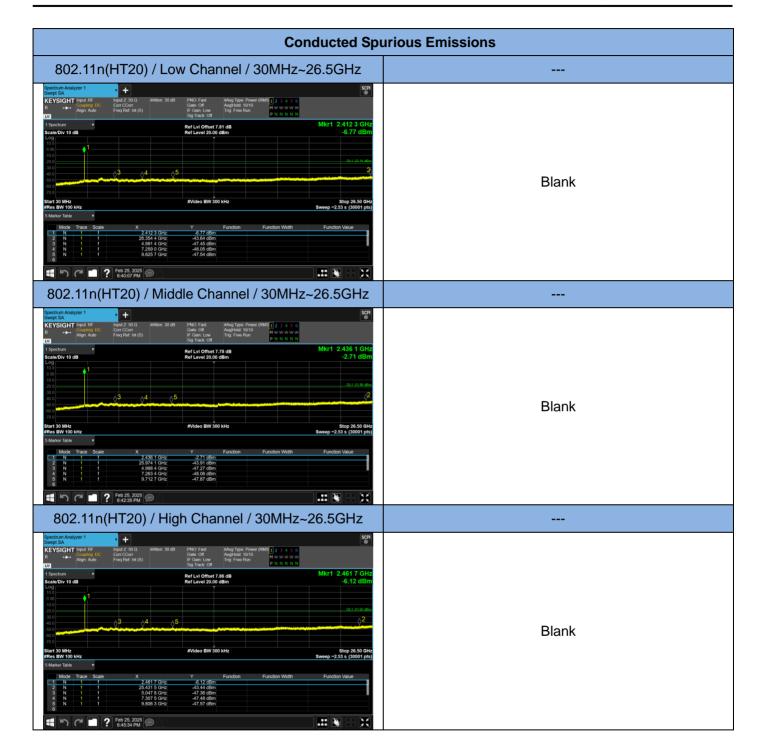
- a. Set RBW = 100 kHz.
- b. Set VBW ≥ 300 kHz.
- c. Set the Detector = peak.
- d. Set the Sweep = auto couple.
- e. Set the Trace Mode = max hold.
- f. Allow trace to fully stabilize.
- g. Use the peak marker function to determine the maximum amplitude level.


TEST RESULTS

PASS

Please refer to the following test plots of the worst case.





14.6 Radiated Spurious Emissions and Restricted Bands Measurement

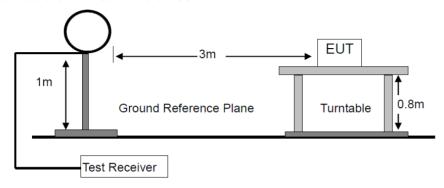
LIMIT of Radiated Band Edges and non-restricted bands

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB.

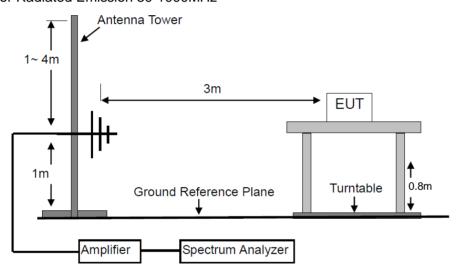
LIMIT of Restricted bands

In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below:

Frequency range	Distance Meters	Field Strengths Limit (15.209)	
MHz	Distance Meters	μV/m	
0.009 ~ 0.490	300	2400/F(kHz)	
0.490 ~ 1.705	30	24000/F(kHz)	
1.705 ~ 30	30	30	
30 ~ 88	3	100	
88 ~ 216	3	150	
216 ~ 960	3	200	
Above 960	3	500	

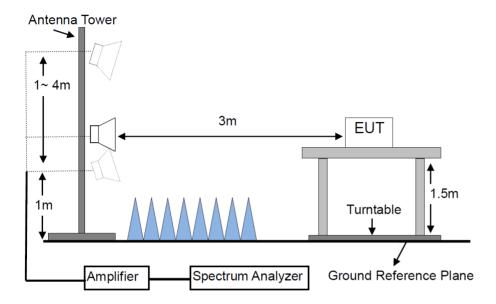

Remark:

- (1) Emission level (dB) μ V = 20 log Emission level μ V/m
- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.
- (4) The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.
- (5) §15.247(d) specifies that emissions which fall in the restricted bands, as defined in §15.205 comply with radiated emission limits specified in §15.209.



BLOCK DIAGRAM OF TEST SETUP

For Radiated Emission below 30MHz



For Radiated Emission 30-1000MHz

For Radiated Emission Above 1000MHz.

TEST PROCEDURES

- a. Below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi- anechoic chamber room.
- b. For the radiated emission test above 1GHz:

The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter full anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to peak detect function and specified bandwidth with maximum hold mode.
- f. A Quasi-peak measurement was then made for that frequency point for below 1GHz test. PK and AV for above 1GHz emission test.
- g. Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and packet type.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

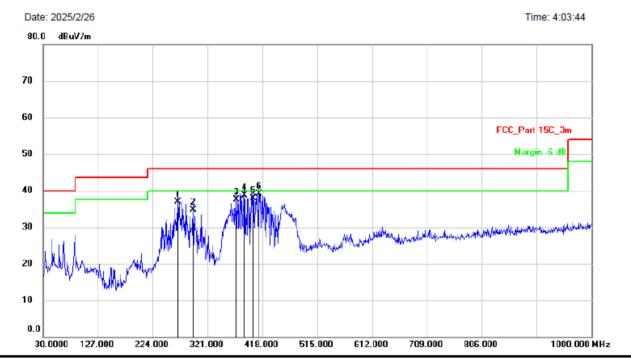
Frequency Band (MHz)	Detector	Resolution Bandwidth	Video Bandwidth	
0.009 to 0.090	AVG	300 Hz	1 KHz	
0.091 to 0.109	QP	300 Hz	1 KHz	
0.110 to 0.490	AVG	300 Hz / 10 KHz	1 KHz / 30 KHz	
0.15 to 30	QP, AVG	10 KHz	30 KHz	
30 to 1000	QP	120 kHz	300 kHz	
Above 1000	Peak	1 MHz	3 MHz	
7.55.5 1000	Average	1 MHz	10 Hz	

TEST RESULTS


PASS

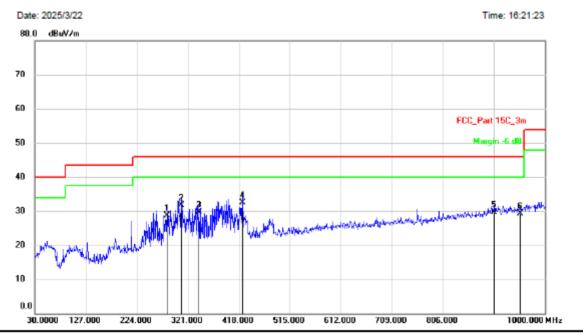
Please refer to the following pages of the worst case.

M/N: 71U0 (GEX w/DAB version)	Testing Voltage: DC 13.5V
Polarization: Horizontal	Detector: QP
Test Mode: 1 (IEEE 802.11n20 High channel)	Distance: 3m


	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
'			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
	1		261.8299	45.76	-6.13	39.63	46.00	-6.37	QP		
'	2	*	282.2000	46.62	-5.84	40.78	46.00	-5.22	QP		
	3	İ	359.8000	44.66	-4.01	40.65	46.00	-5.35	QP		
	4		405.3900	42.31	-3.25	39.06	46.00	-6.94	QP		
	5		456.8000	34.05	-2.44	31.61	46.00	-14.39	QP		
'	6		951.5000	24.47	6.28	30.75	46.00	-15.25	QP		

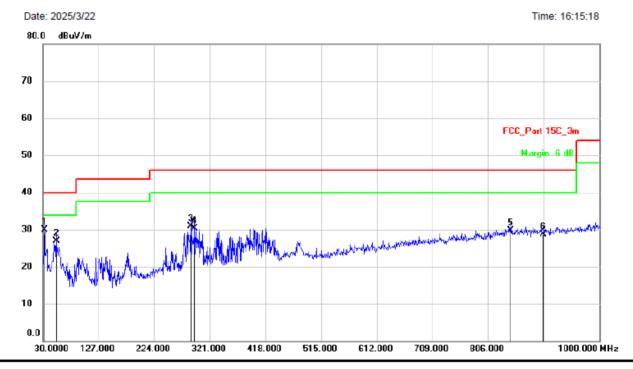
Note 1: Below 30MHz, the emissions are lower than 20dB below the allowable limit.

M/N: 71U0 (GEX w/DAB version)	Testing Voltage: DC 13.5V
Polarization: Vertical	Detector: QP
Test Mode: 1 (IEEE 802.11n20 High channel)	Distance: 3m


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		268.6200	43.95	-7.03	36.92	46.00	-9.08	QP		
2		295.7800	41.35	-6.60	34.75	46.00	-11.25	QP		
3		372.4100	42.40	-4.84	37.56	46.00	-8.44	QP		
4		385.9900	43.24	-4.62	38.62	46.00	-7.38	QP		
5		401.5100	42.22	-4.30	37.92	46.00	-8.08	QP		
6	*	412.1800	43.25	-4.12	39.13	46.00	-6.87	QP		

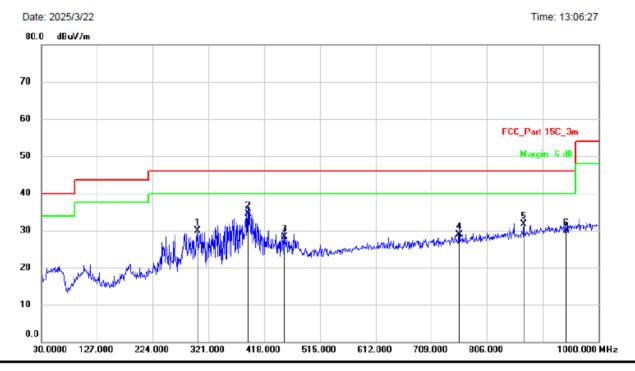
Note 1: Below 30MHz, the emissions are lower than 20dB below the allowable limit.

M/N: 71U0 (GEX w/DAB version)	Testing Voltage: DC 13.5V				
Polarization: Horizontal	Detector: QP				
Test Mode: 2	Distance: 3m				


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		281.2300	34.56	-5.86	28.70	46.00	-17.30	QP		
2		308.3900	36.99	-5.29	31.70	46.00	-14.30	QP		
3		342.3400	34.09	-4.29	29.80	46.00	-16.20	QP		
4	*	424.7900	35.44	-2.94	32.50	46.00	-13.50	QP		
5		903.9700	23.50	6.20	29.70	46.00	-16.30	QP		
6		952.4700	23.02	6.28	29.30	46.00	-16.70	QP		

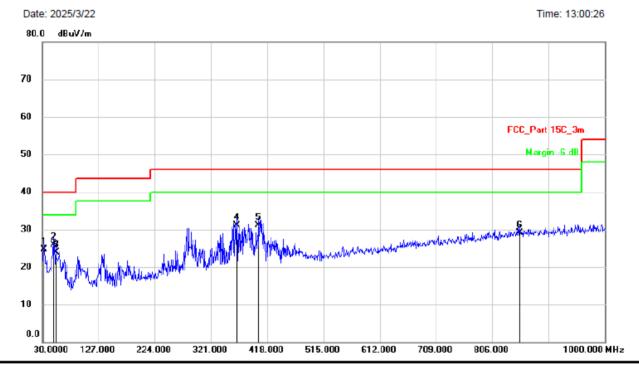
Note 1: Below 30MHz, the emissions are lower than 20dB below the allowable limit.

M/N: 71U0 (GEX w/DAB version)	Testing Voltage: DC 13.5V
Polarization: Vertical	Detector: QP
Test Mode: 2	Distance: 3m


	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
ľ			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
	1	*	32.9100	39.39	-9.49	29.90	40.00	-10.10	QP		
	2		53.2800	34.37	-7.47	26.90	40.00	-13.10	QP		
	3		288.0200	37.76	-6.76	31.00	46.00	-15.00	QP		
	4		294.8100	37.02	-6.62	30.40	46.00	-15.60	QP		
ľ	5		845.7700	25.08	4.72	29.80	46.00	-16.20	QP		
ľ	6		902.0300	23.74	4.96	28.70	46.00	-17.30	QP		

Note 1: Below 30MHz, the emissions are lower than 20dB below the allowable limit.

M/N: 71U0 (IND version)	Testing Voltage: DC 13.5V				
Polarization: Horizontal	Detector: QP				
Test Mode: 1 (IEEE 802.11n20 High channel)	Distance: 3m				

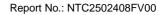

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		302.5700	35.34	-5.44	29.90	46.00	-16.10	QP		
2	*	389.8700	38.14	-3.54	34.60	46.00	-11.40	QP		
3		452.9200	30.89	-2.49	28.40	46.00	-17.60	QP		
4		757.5000	25.73	3.17	28.90	46.00	-17.10	QP		
5		870.0200	26.79	4.91	31.70	46.00	-14.30	QP		
6		943.7400	23.74	6.26	30.00	46.00	-16.00	QP		

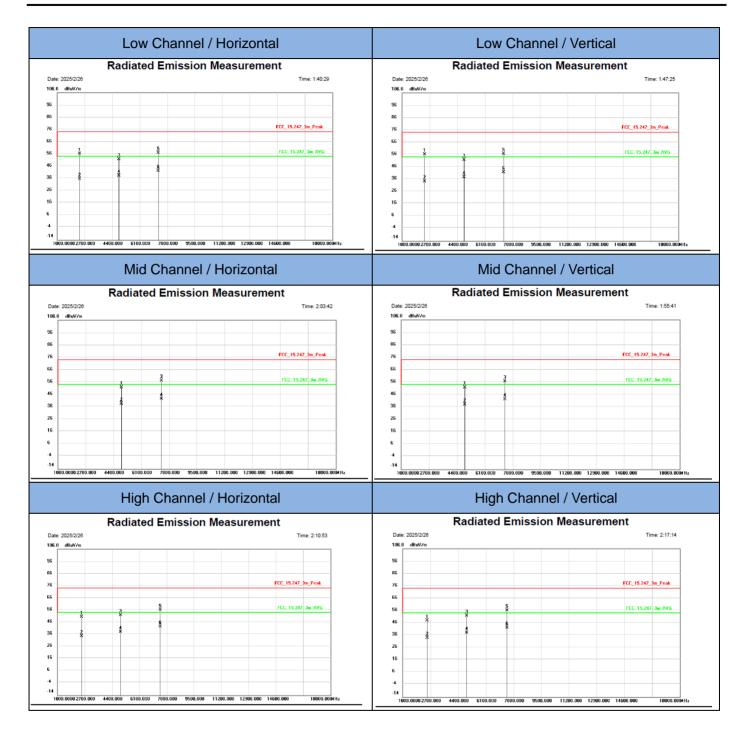
Note 1: Below 30MHz, the emissions are lower than 20dB below the allowable limit.

M/N: 71U0 (IND version)	Testing Voltage: DC 13.5V
Polarization: Vertical	Detector: QP
Test Mode: 1 (IEEE 802.11n20 High channel)	Distance: 3m

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
	1		32.9100	34.29	-9.49	24.80	40.00	-15.20	QP		
	2	*	49.4000	33.00	-7.00	26.00	40.00	-14.00	QP		
	3		53.2800	31.47	-7.47	24.00	40.00	-16.00	QP		
	4		365.6200	36.03	-4.93	31.10	46.00	-14.90	QP		
ľ	5		403.4500	35.38	-4.28	31.10	46.00	-14.90	QP		
	6		852.5600	24.38	4.82	29.20	46.00	-16.80	QP		

Note 1: Below 30MHz, the emissions are lower than 20dB below the allowable limit.




Modulation: TX (IEEE 80)2.11n20. th	ne worst ca	ıse)	Test Result: PASS			Test frequency range: 1-25GHz			
Freq. (MHz)	Ant. Pol.	Reading Level(dBuV)		Factor (dB/m)	Emission Level (dBuV/m)		Limit 3m (dBuV/m)		Margin (dB)	
(**************************************	(H/V)	PK	AV	,	PK	AV	PK	AV	PK	AV
Ī	ation Mode: TX Mode (Low)									
4824	Н	45.52	32.12	6.38	51.90	38.50	74.00	54.00	-22.10	-15.50
7236	Н	46.45	31.78	10.48	56.93	42.26	74.00	54.00	-17.07	-11.74
4824	V	45.43	31.36	6.38	51.81	37.74	74.00	54.00	-22.19	-16.26
7236	V	46.28	31.31	10.48	56.76	41.79	74.00	54.00	-17.24	-12.21
			Ope	ration Mod	de: TX Mo	de (Mid)				
4874	Н	45.40	32.24	6.56	51.96	38.80	74.00	54.00	-22.04	-15.20
7311	Н	46.59	32.02	10.53	57.12	42.55	74.00	54.00	-16.88	-11.45
4874	V	45.30	31.4	6.56	51.86	37.96	74.00	54.00	-22.14	-16.04
7311	V	46.08	31.83	10.53	56.61	42.36	74.00	54.00	-17.39	-11.64
			Oper	ation Mod	le: TX Mod	de (High)				
4924	Н	45.03	31.35	6.76	51.79	38.11	74.00	54.00	-22.21	-15.89
7386	Н	45.58	31.63	10.57	56.15	42.20	74.00	54.00	-17.85	-11.80
4924	V	45.08	31.16	6.76	51.84	37.92	74.00	54.00	-22.16	-16.08
7386	V	45.42	31.37	10.57	55.99	41.94	74.00	54.00	-18.01	-12.06
Spurious Emission in restricted band:										
2390.000	Н	55.97	35.55	0.13	56.10	35.68	74.00	54.00	-17.90	-18.32
2390.000	V	55.93	33.93	0.13	56.06	34.06	74.00	54.00	-17.94	-19.94
2483.500	Н	50.07	34.10	0.34	50.41	34.44	74.00	54.00	-23.59	-19.56
2483.500	V	47.53	33.66	0.34	47.87	34.00	74.00	54.00	-26.13	-20.00

Remark:

- 1. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits.
- 2. Others emissions are attenuated 20dB below the limits, so it does not record in report.

Test Mode: 2	2			Test Resu	ılt: PASS		Test frequency range: 1-25GHz				
Freq.	Ant. Pol.	Reading Level(dBuV)		Factor	Emission Level (dBuV/m)		Limit 3m (dBuV/m)		Margin (dB)		
(MHz)	(H/V)	PK	AV	(dB/m)	PK	AV	PK	AV	PK	AV	
Operation Mode: TX Mode											
5726	Н	48.62	36.68	6.90	55.52	43.58	74.00	54.00	-18.48	-10.42	
7613	Н	46.19	34.74	10.85	57.04	45.59	74.00	54.00	-16.96	-8.41	
3584	V	46.41	34.72	2.92	49.33	37.64	74.00	54.00	-24.67	-16.36	
5080	V	46.99	34.93	6.97	53.96	41.90	74.00	54.00	-20.04	-12.10	

Remark:

1. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits.

14.7 Antenna Requirement

STANDARD APPLICABLE

According to of FCC part 15C section 15.203 and 15.247:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Systems operating in the 2400-2483.5MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

ANTENNA CONNECTED CONSTRUCTION

The antenna is chip antenna that no antenna other than furnished by the responsible party shall be used with the device, and the best case gain of the antenna is 2.79 dBi, therefore, the antenna is considered to meet the requirement.

15. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCI7	100837	Mar. 12, 2025	1 Year
2.	Antenna	Schwarzbeck	VULB9162	9162-010	Mar. 23, 2024	2 Year
3.	Spectrum Analyzer	Keysight	N9010B	MY62170254	Aug. 14, 2024	1 Year
4.	Spectrum Analyzer	Keysight	N9020A	MY54200831	Mar. 12, 2025	1 Year
5.	Horn Antenna+Amplifier	COM-Power	AHA-840	10100020	Mar. 23, 2024	2 Year
6.	Horn Antenna	COM-Power	AH-118	071078	Mar. 23, 2024	2 Year
7.	Pre-Amplifier	HP	HP 8449B	3008A00964	Mar. 12, 2025	1 Year
8.	Pre-Amplifier	HP	HP 8447D	1145A00203	Mar. 12, 2025	1 Year
9.	Power Meter	Agilent	N1912A	MY41497159	Aug.14, 2024	1 Year
10.	Power Sensor	Agilent	N1921A	MY48251036	Aug.14, 2024	1 Year
11.	Loop Antenna	Schwarzbeck	FMZB 1513	1513-272	Mar. 23, 2024	2 Year
12.	Test Receiver	Rohde & Schwarz	ESCI	101152	Mar. 12, 2025	1 Year
13.	L.I.S.N	Rohde & Schwarz	ENV 216	101317	Mar. 12, 2025	1 Year
14.	L.I.S.N	Rohde & Schwarz	ESH2-Z5	893606/014	Mar. 12, 2025	1 Year
15.	RF Switching Unit	Compliance Direction Systems Inc.	RSU-M2	38311	Mar. 12, 2025	1 Year
16.	Temperature & Humidity Chamber	REMAFEE	SYHR225L	N/A	Mar. 12, 2025	1 Year
17.	DC Source	Maynuo	MY8811	N/A	Mar. 12, 2025	1 Year
18.	Temporary antenna connector	TESCOM	SS402	N/A	N/A	N/A
19.	Chamber	SAEMC	9*7*7m	N/A	Apr. 21, 2023	2 Year
20.	Test Software	EZ	EZ_EMC	N/A	N/A	N/A

Note: For photographs of EUT and measurement, please refer to appendix in separate documents.