FCC Test Report (5GNR n78) Report No.: RFBHQC-WTW-P21100439 FCC ID: 2AQ68RPQN7801 Test Model: RPQN-7801E, RPQN-7801I Received Date: Sep. 11, 2021 Test Date: Sep. 11 ~ Sep. 16, 2021 Dec. 06, 2021 Issued Date: Dec. 06, 2021 Applicant: Hon Lin Technology Co., Ltd. Address: 11F, No. 32, Jihu Rd., Neihu Dist., Taipei City 114, Taiwan R.O.C. Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan **Test Location:** No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan FCC Registration / **Designation Number:** 788550 / TW0003 This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. Report No.: RFBHQC-WTW-P21100439 Page No. 1 / 39 Report Format Version: 6.1.1 # **Table of Contents** | R | Release Control Record | | | | | | | |---|----------------------------|--|-----|--|--|--|--| | 1 | Certificate of Conformity5 | | | | | | | | 2 | S | ummary of Test Results | . 6 | | | | | | | 2.1 | Measurement Uncertainty | | | | | | | | 2.2 | Test Site and Instruments | | | | | | | 3 | G | eneral Information | . 8 | | | | | | | 3.1 | General Description of EUT | | | | | | | | 3.2 | Configuration of System under Test | | | | | | | | 3.2.1 | Description of Support Units | | | | | | | | 3.3
3.4 | Test Mode Applicability and Tested Channel Detail EUT Operating Conditions | | | | | | | | 3.5 | General Description of Applied Standards and References | | | | | | | 4 | | est Types and Results | | | | | | | 4 | | •• | | | | | | | | 4.1 | Output Power Measurement | | | | | | | | | Limits of Output Power Measurement | | | | | | | | | Test Procedures | | | | | | | | | Test Results | | | | | | | | 4.2 | Modulation Characteristics Measurement. | | | | | | | | 4.2.1 | | | | | | | | | | Test Procedure | | | | | | | | | Test Setup. | | | | | | | | 4.2.4 | Test Results | 14 | | | | | | | 4.3 | Frequency Stability Measurement | 15 | | | | | | | 4.3.1 | Limits of Frequency Stability Measurement | | | | | | | | 4.3.2 | | | | | | | | | | Test Instruments | | | | | | | | | Test Setup | | | | | | | | 4.3.5 | Test Results Emission Bandwidth Measurement | | | | | | | | 4.4
4.4.1 | Test Procedure | | | | | | | | 4.4.2 | | | | | | | | | | Test Setup. | | | | | | | | | Test Result | | | | | | | | 4.5 | Channel Edge / Out-of-Band Emission Measurement | | | | | | | | 4.5.1 | Limits of Channel Edge / Out-of-Band Emission Measurement | | | | | | | | | Test Setup | | | | | | | | | Test Procedures. | | | | | | | | | Test Results | | | | | | | | 4.6 | Peak to Average Ratio | | | | | | | | 4.6.1 | 5 | | | | | | | | | Test Setup Test Procedures | | | | | | | | | Test Results | | | | | | | | 4.7 | Conducted Spurious Emissions | | | | | | | | 4.7.1 | · | | | | | | | | | Test Setup | | | | | | | | | Test Procedure | | | | | | | | 4.7.4 | Test Results | | | | | | | | 4.8 | Radiated Emission Measurement | | | | | | | | 4.8.1 | | | | | | | | | | Test Procedure | | | | | | | | 4.8.3 | Deviation from Test Standard | 30 | | | | | | 4.8.4 Test Setup | |--| | 5 Pictures of Test Arrangements | | Appendix – Information of the Testing Laboratories | # **Release Control Record** | Issue No. | Description | Date Issued | |----------------------|------------------|---------------| | RFBHQC-WTW-P21100439 | Original release | Dec. 06, 2021 | # 1 Certificate of Conformity Product: 5G NR indoor O-RU S4 RPQN-7801 Brand: Foxconn Test Model: RPQN-7801E, RPQN-7801I Sample Status: Mass Production Applicant: Hon Lin Technology Co., Ltd. **Test Date:** Sep. 11 ~ Sep. 16, 2021 Dec. 06, 2021 Standards: FCC Part 27, Subpart C, O The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report. Prepared by: ______, Date: ______, Dec. 06, 2021 Pettie Chen / Senior Specialist Approved by: ______, Date: ______, Dec. 06, 2021 Jeremy Lin / Senior Engineer # 2 Summary of Test Results For 5GNR n78: | Applied Standard: FCC Part 27 & Part 2 | | | | | | | |--|---|--------|--|--|--|--| | | | | | | | | | FCC Clause | Test Item | Result | Remarks | | | | | 2.1046
27.50
(j) | Equivalent Radiated Power | Pass | Meet the requirement of limit. | | | | | 2.1047 | Modulation Characteristics | Pass | Meet the requirement | | | | | 2.1055
27.54 | Frequency Stability Stay with the authorized bands of operation | Pass | Meet the requirement of limit. | | | | | 2.1049 | Occupied Bandwidth | Pass | Meet the requirement of limit. | | | | | 2.1051
27.53(I) | Band Edge / Out of Band Emissions
Measurements | Pass | Meet the requirement of limit. | | | | | | Peak To Average Ratio | Pass | Meet the requirement of limit. | | | | | 2.1051
27.53(I) | Conducted Spurious Emissions | Pass | Meet the requirement of limit. | | | | | 2.1053
27.53(I) | Radiated Spurious Emissions | Pass | Meet the requirement of limit. Minimum passing margin is -15.82dB at 30.97MHz. | | | | Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty. # 2.1 Measurement Uncertainty Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2: | Measurement | Frequency | Expanded Uncertainty
(k=2) (±) | |--------------------------------|-----------------|-----------------------------------| | | 9kHz ~ 30MHz | 3.04 dB | | Radiated Emissions up to 1 GHz | 30MHz ~ 200MHz | 3.59 dB | | | 200MHz ~1000MHz | 3.60 dB | | Radiated Emissions above 1 GHz | 1GHz ~ 18GHz | 2.29 dB | | Radiated Emissions above 1 GHZ | 18GHz ~ 40GHz | 2.29 dB | # 2.2 Test Site and Instruments Test Date: Sep. 11 ~ Sep. 16, 2021 | Description & Manufacturer | Model No. | Serial No. | Cal. Date | Cal. Due | |--|---------------------------------|---------------------------------|---------------|---------------| | Test Receiver KEYSIGHT | N9038A | MY55420137 | Apr. 09, 2021 | Apr. 08, 2022 | | Spectrum Analyzer ROHDE & SCHWARZ | FSP40 | 100039 | Jun. 10, 2021 | Jun. 09, 2022 | | BILOG Antenna
SCHWARZBECK | VULB9168 | 9168-160 | Nov. 06, 2020 | Nov. 05, 2021 | | HORN Antenna
SCHWARZBECK | BBHA 9120 D | 9120D-1169 | Nov. 22, 2020 | Nov. 21, 2021 | | HORN Antenna
SCHWARZBECK | BBHA 9170 | BBHA9170241 | Nov. 22, 2020 | Nov. 21, 2021 | | Preamplifier
Agilent
(Below 1GHz) | 8447D | 2944A10638 | Jun. 05, 2021 | Jun. 04, 2022 | | Preamplifier
Agilent
(Above 1GHz) | 8449B | 3008A02367 | Feb. 17, 2021 | Feb. 16, 2022 | | RF signal cable
HUBER+SUHNER&EMCI | SUCOFLEX 104 & EMC104-SM-SM8000 | CABLE-CH9-02
(248780+171006) | Jan. 16, 2021 | Jan. 15, 2022 | | RF signal cable
HUBER+SUHNER | SUCOFLEX 104 | CABLE-CH9-
(250795/4) | Jan. 16, 2021 | Jan. 15, 2022 | | RF signal cable
Woken | 8D-FB | Cable-CH9-01 | Jun. 05, 2021 | Jun. 04, 2022 | | Software
BV ADT | ADT_Radiated_
V7.6.15.9.5 | NA | NA | NA | | Antenna Tower &Turn BV ADT | AT100 | AT93021705 | NA | NA | | Turn Table
BV ADT | TT100 | TT93021705 | NA | NA | | Turn Table Controller BV ADT | SC100 | SC93021705 | NA | NA | | Boresight Antenna Fixture | FBA-01 | FBA-SIP01 | NA | NA | | WIT Standard Temperature
And Humidity Chamber | TH-4S-C | W981030 | Jun. 01, 2021 | May 31, 2022 | | JFW 20dB attenuation | 50HF-020-SMA | NA | NA | NA | | PXA Signal Analyzer
KEYSIGHT | N9030B | MY57140938 | Mar. 09, 2021 | Mar. 08, 2022 | Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. 2. The test was performed in HwaYa Chamber 9. Test Date: Dec. 06, 2021 | Description & Manufacturer | Model No. | Serial No. | Cal. Date | Cal. Due | |---------------------------------|-----------|------------|---------------|---------------| | PXA Signal Analyzer
KEYSIGHT | N9030B | MY57140938 | Mar. 09, 2021 | Mar. 08, 2022 | Note: - 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 2. The test was performed in HwaYa Chamber 9. # 3 General Information # 3.1 General Description of EUT | Product | 5G NR indoor O-RU S4 RPQN-7801 | | | | | | |--|-----------------------------------|---|--|--|---|--| | Brand | Foxconn | | | | | | | Test Model | RPQN-7801E, RPQN-780 | 11 | | | | | | Sample Status | Mass Production | | | | | | | Power Supply Rating | 12 Vdc (Adapter) | | | | | | | Modulation Type | QPSK, 16QAM, 64QAM, 2 | 56QAM | | | | | | Operating Band | n78 (3700-3800MHz) | | | | | | | Operating Frequency | n78
(Channel Bandwidth 100MHz) | 3750.00MHz | | | | | | Max. EIRP Power | n78
(Channel Bandwidth 100MHz) | QPSK
15100.80154
mW
(41.79
dBm/MHz) | 16QAM
14621.77174
mW
(41.65
dBm/MHz) | 64QAM
15066.07066
mW
(41.78
dBm/MHz) | 256QAM
15031.41966
mW
(41.77
dBm/MHz) | | | | | QPSK | 16QAM | 64QAM | 256QAM | | | Emission Designator | n78
(Channel Bandwidth 100MHz) | 94M3G7D | 93M9D7W | 94M3D7W | 94M3D7W | | | Antenna Type | Refer to Note as below | efer to Note as below | | | | | | Antenna Connector Refer to Note as below | | | | | | | | Accessory Device | Refer to Note as below | | | | | | | Cable Supplied Refer to Note as below | | | | | | | ## Note: # 1. All models are listed as below. | Brand | Model | Difference | |---------|------------|-----------------------| | F | RPQN-7801E | With external antenna | | Foxconn | RPQN-7801I | With internal antenna | 2. The EUT uses following adapter. | Brand | Model | Specification | |-------|-------|--| | DVE | | AC Input: 100-240Vac, 50/60Hz, 2.0A
DC Output: 12Vdc/5A | | 512 | | DC Output Cable: 1.2 m with 1 core | 3. The following antennas were provided to the EUT. | Antenna No. | Antenna No. Brand Mod | | Antenna
Net Gain(dBi) | Antenna Type | Connector
Type | |-------------|-----------------------|---------------|--------------------------|--------------|-------------------| | 1. External | Whayu | C107-511850-A | 5.15 | Dipole | SMA | | 2. Internal | Grand Tek | 103EG00000030 | 5.3 | PIFA | i-pex(MHF) | # 3.2 Configuration of System under Test # 3.2.1 Description of Support Units The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests. | ID | Product | Brand | Model No. | Serial No. | FCC ID | Remarks | |----|-------------------------------|---------|------------|---------------|------------------|---------------------| | A. | Adapter | LITEON | PA-1050-39 | NA | NA | Accessory | | B. | Notebook | HP | 11-u018TU | 8CG70505V9 | FCC DoC Approved | Provided by client. | | C. | Wireless Broandband
Router | Netgear | R7000P | 4TJ1737FA0811 | NA | - | | D. | Server | NA | NA | NA | NA | Provided by client. | | E. | GM | NA | NA | NA | NA | Provided by client. | | F. | GPS | NA | NA | NA | NA | Provided by client. | #### Note: - 1. All power cords of the above support units are non-shielded (1.8m). - 2. Item C~E acted as a communication partner to transfer data. | ID | Descriptions | Qty. | Length (m) | Shielding
(Yes/No) | Cores (Qty.) | Remarks | |----|--------------|------|------------|-----------------------|--------------|---------------------| | 1. | DC cable | 1 | 1.2 | N | 1 | Accessory | | 2. | USB cable | 1 | 1.0 | Υ | 0 | - | | 3. | AC cable | 1 | 1.8 | Ν | 0 | Provided by client. | | 4. | RJ45 Cable | 1 | 10 | N | 0 | Provided by client. | | 5. | Fiber cable | 1 | 30 | Ν | 0 | Provided by client. | | 6. | RJ45 Cable | 1 | 1.0 | N | 0 | - | | 7. | RJ45 Cable | 1 | 1.0 | Ν | 0 | - | | 8. | BNC cable | 1 | 15 | Ν | 0 | Provided by client. | # 3.3 Test Mode Applicability and Tested Channel Detail Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports. The worst case was found when positioned as the table below. Following channel(s) was (were) selected for the final test as listed below: | Band | Radiated Emission | |----------|-------------------| | 5GNR n78 | X-plane | For radiated emission test, the EUT has been tested under following test modes. For other tests, test mode A was with the maximum gain for final tests. | Test Mode | EUT Model | |-----------|------------| | Α | RPQN-7801I | | В | RPQN-7801E | #### 5GNR n78 | EUT
Configure
Mode | Test item | Available channel | Tested channel | Channel
Bandwidth | Modulation | Mode | |--------------------------|---------------------------------|-------------------|---------------------|----------------------|----------------------------------|---------| | Α | EIRP | 650000 | 650000 (3750.00MHz) | 100MHz | QPSK / 16QAM /
64QAM / 256QAM | Full RB | | А | Modulation Characteristics | 650000 | 650000 (3750.00MHz) | 100MHz | QPSK / 16QAM /
64QAM / 256QAM | Full RB | | Α | Frequency Stability | 650000 | 650000 (3750.00MHz) | 100MHz | QPSK | Full RB | | Α | Emission Bandwidth | 650000 | 650000 (3750.00MHz) | 100MHz | QPSK / 16QAM /
64QAM / 256QAM | Full RB | | Α | Band Edge | 650000 | 650000 (3750.00MHz) | 100MHz | QPSK | Full RB | | Α | Peak to Average Ratio | 650000 | 650000 (3750.00MHz) | 100MHz | QPSK / 16QAM /
64QAM / 256QAM | Full RB | | Α | Conducted Emission | 650000 | 650000 (3750.00MHz) | 100MHz | QPSK | Full RB | | A, B | Radiated Emission
Below 1GHz | 650000 | 650000 (3750.00MHz) | 100MHz | QPSK | Full RB | | A, B | Radiated Emission
Above 1GHz | 650000 | 650000 (3750.00MHz) | 100MHz | QPSK | Full RB | Note: Only output power, modulation characteristics, occupied bandwidth and Peak to average ratio items had been tested under QPSK, 16QAM, 64QAM and 256QAM modes, the other test items were performed under worst mode according to the maximum output power. ## **Test Condition:** | Test Item | Environmental Conditions | Input Power (system) | Tested By | |----------------------------|--------------------------|----------------------|------------| | EIRP | 25deg. C, 60%RH | 120Vac, 60Hz | James Yang | | Modulation characteristics | 25deg. C, 60%RH | 120Vac, 60Hz | James Yang | | Frequency Stability | 25deg. C, 60%RH | 120Vac, 60Hz | James Yang | | Occupied Bandwidth | 25deg. C, 60%RH | 120Vac, 60Hz | James Yang | | Band Edge | 25deg. C, 60%RH | 120Vac, 60Hz | James Yang | | Peak To Average Ratio | 25deg. C, 60%RH | 120Vac, 60Hz | James Yang | | Conducted Emission | 25deg. C, 60%RH | 120Vac, 60Hz | James Yang | | Radiated Emission | 21deg. C, 66%RH | 120Vac, 60Hz | Rex Wang | # 3.4 EUT Operating Conditions The EUT makes a call to the communication simulator. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency # 3.5 General Description of Applied Standards and References The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and References: **Test Standard:** FCC 47 CFR Part 2 FCC 47 CFR Part 27 ANSI/TIA/EIA-603-E 2016 ANSI 63.26-2015 All test items have been performed and recorded as per the above standards. **References Test Guidance:** KDB 971168 D01 Power Meas License Digital Systems v03r01 KDB 971168 D02 Misc Rev Approv License Devices v02r01 All test items have been performed as a reference to the above KDB test guidance. ## 4 Test Types and Results # 4.1 Output Power Measurement ## 4.1.1 Limits of Output Power Measurement The power of each fixed or base station transmitting in the 3700-3980 MHz band and situated in any geographic location other than that described in paragraph (j)(1) of this section is limited to an EIRP of 1640 Watts/MHz. This limit applies to the aggregate power of all antenna elements in any given sector of a base station. #### 4.1.2 Test Procedures # **Conducted Power Measurement:** The EUT was set up for the maximum power with 5GNR link data modulation and link up with Spectrum Analyzer. Set the EUT to transmit under low, middle and high channel and record the power level shown on Spectrum Analyzer. #### Maximum EIRP / ERP The relevant equation for determining the maximum ERP or EIRP from the measured RF output power is given in Equation as follows: EIRP = $P_{Meas} + G_{T}$ $ERP = P_{Meas} + G_{T}-2.15$ where ERP or EIRP effective radiated power or equivalent isotropically radiated power, respectively (expressed in the same units as P_{Meas}, e.g., dBm or dBW) P_{Meas} measured transmitter output power or PSD, in dBm or dBW G_T gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP) ## 4.1.3 Test Setup **Conducted Power Measurement:** ## 4.1.4 Test Results # **Conducted Output Power (dBm)** 5GNR n78: | | Freq. (MHz) | | QPSK | | | | | | | | | | |-------------------|-------------|--------------------------------------|-------|-------|-------|-------|---------------|--------------|---------|---------|---------------|--| | Channel
Number | | Conducted Average Power
(dBm/MHz) | | | | | Directional | EIRP
(dBm | EIRP | Limit | PASS
/FAIL | | | | | Ant.0 | Ant.1 | Ant.2 | Ant.3 | Total | gain
(dBi) | /MHz) | (W/MHz) | (W/MHz) | | | | 650000 | 3750 | 24.11 | 24.24 | 24.67 | 24.73 | 30.47 | 11.32 | 41.79 | 15.10 | 1640.00 | PASS | | | | Freq.
(MHz) | 16QAM | | | | | | | | | | |-------------------|----------------|--------------------------------------|-------|-------|-------|-------------|---------------|-------|---------|---------------|------| | Channel
Number | | Conducted Average Power
(dBm/MHz) | | | | Directional | EIRP
(dBm | EIRP | Limit | PASS
/FAIL | | | | | Ant.0 | Ant.1 | Ant.2 | Ant.3 | Total | gain
(dBi) | /MHz) | (W/MHz) | (W/MHz) | | | 650000 | 3750 | 23.84 | 24.10 | 24.72 | 24.51 | 30.33 | 11.32 | 41.65 | 14.62 | 1640.00 | PASS | | Channel
Number | Freq.
(MHz) | 64QAM | | | | | | | | | | |-------------------|----------------|-------|--------------------------------------|-------|-------|-------|---------------|--------------|---------|---------|---------------| | | | | Conducted Average Power
(dBm/MHz) | | | | Directional | EIRP
(dBm | EIRP | Limit | PASS
/FAIL | | | | Ant.0 | Ant.1 | Ant.2 | Ant.3 | Total | gain
(dBi) | /MHz) | (W/MHz) | (W/MHz) | | | 650000 | 3750 | 23.93 | 24.15 | 24.94 | 24.65 | 30.46 | 11.32 | 41.78 | 15.07 | 1640.00 | PASS | | | | Freq.
(MHz) | 256QAM | | | | | | | | | | |--|-------------------|----------------|--------|-------|-------|-------|---------------|--------------|---------|---------|---------------|------| | | Channel
Number | | | | | | Directional | EIRP
(dBm | EIRP | Limit | PASS
/FAIL | | | | | Ant.0 | Ant.1 | Ant.2 | Ant.3 | Total | gain
(dBi) | /MHz) | (W/MHz) | (W/MHz) | | | | | 650000 | 3750 | 23.92 | 24.13 | 24.87 | 24.74 | 30.45 | 11.32 | 41.77 | 15.03 | 1640.00 | PASS | ^{*}Directional gain=5.3 dBi +Array Gain(6.02)= 11.32 dBi ^{*}The antenna gain was declared by client. ^{*}EIRP = Conducted + Directional gain (11.32 dBi) # 4.2 Modulation Characteristics Measurement # 4.2.1 Limits of Modulation Characteristics N/A # 4.2.2 Test Procedure Connect the EUT to Spectrum Analyzer via the antenna connector, the frequency band is set as EUT supported Modulation and Channels, the EUT output is matched with 50 ohm load, the waveform quality and constellation of the EUT was tested. # 4.2.3 Test Setup Spectrum Analyzer EUT ## 4.2.4 Test Results ## 4.3 Frequency Stability Measurement # 4.3.1 Limits of Frequency Stability Measurement The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation. According to the FCC part 2.1055 shall be tested the frequency stability. The rule is defined that" The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block." The test extreme voltage is according to the 2.1055(d)(1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment and the extreme temperature rule is comply with specification of EUT -30°C . #### 4.3.2 Test Procedure - a. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error. - b. EUT is connected the external power supply to control the AC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate. - c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the ± 0.5 $^{\circ}$ C during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition. Note: The frequency error was recorded frequency error from the communication simulator. #### 4.3.3 Test Instruments | Description & Manufacturer | Model No. | Serial No. | Cal. Date | Cal. Due | |---|-----------|------------|---------------|---------------| | PXA Signal Analyzer KEYSIGHT | N9030B | MY57140938 | Mar. 09, 2021 | Mar. 08, 2022 | | Temperature & Humidity
Chamber
TERCHY | HRM-120RF | 931022 | Dec. 24, 2020 | Dec. 23, 2021 | | Digital Multimeter Fluke | 87-III | 70360742 | Jun. 24, 2021 | Jun. 23, 2022 | | AC Power Supply Extech | CFW-105 | E000603 | NA | NA | Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. #### 4.3.4 Test Setup Report No.: RFBHQC-WTW-P21100439 Page No. 15 / 39 Report Format Version: 6.1.1 # 4.3.5 Test Results Frequency Error vs. Voltage | r requeries En | equency Error vs. voltage | | | | | | | | | | |----------------|---------------------------|-----------------------|-----------------|-----------------------|--|--|--|--|--|--| | | 5GNR n78 | | | | | | | | | | | Voltage | Channel Bandwidth 100 MHz | | | | | | | | | | | (Vac) | Ant. | TX 0 | Ant. TX 1 | | | | | | | | | | Frequency (MHz) | Frequency Error (ppm) | Frequency (MHz) | Frequency Error (ppm) | | | | | | | | 120.00 | 3750.000037 | 0.010 | 3750.000026 | 0.007 | | | | | | | | 102.00 | 3750.000025 | 0.007 | 3750.000026 | 0.007 | | | | | | | | 138.00 | 3750.000024 | 0.006 | 3750.000020 | 0.005 | | | | | | | Note: The applicant defined the normal working voltage is from 102Vac to 138Vac. Frequency Error vs. Temperature | 1 7 | or vs. remperature | 5GNF | R n78 | | | |------------|--------------------|-----------------------|-----------------|-----------------------|--| | Temp. (°ℂ) | | Channel Bandy | width 100 MHz | | | | iemp. (C) | Ant. | TX 0 | Ant. TX 1 | | | | | Frequency (MHz) | Frequency Error (ppm) | Frequency (MHz) | Frequency Error (ppm) | | | -30 | 3750.000029 | 0.008 | 3750.000025 | 0.007 | | | -20 | 3750.000034 | 0.009 | 3750.000032 | 0.009 | | | -10 | 3750.000040 | 0.011 | 3750.000014 | 0.004 | | | 0 | 3750.000040 | 0.011 | 3750.000011 | 0.003 | | | 10 | 3750.000037 | 0.010 | 3750.000032 | 0.009 | | | 20 | 3749.999976 | -0.006 | 3749.999976 | -0.006 | | | 30 | 3749.999969 | -0.008 | 3749.999973 | -0.007 | | | 40 | 3749.999989 | -0.003 | 3749.999977 | -0.006 | | | 50 | 3749.999966 | -0.009 | 3749.999976 | -0.006 | | Frequency Error vs. Voltage | 1 Toquonoy En | oi vs. voitage | | | | | | | | | | | | | |------------------|---------------------------|-----------------------|-----------------|-----------------------|--|--|--|--|--|--|--|--|--| | Voltage
(Vac) | 5GNR n78 | | | | | | | | | | | | | | | Channel Bandwidth 100 MHz | | | | | | | | | | | | | | | Ant. | TX 2 | Ant. TX 3 | | | | | | | | | | | | | Frequency (MHz) | Frequency Error (ppm) | Frequency (MHz) | Frequency Error (ppm) | | | | | | | | | | | 120.00 | 3750.000034 | 0.009 | 3750.000014 | 0.004 | | | | | | | | | | | 102.00 | 3750.000025 | 0.007 | 3750.000030 | 0.008 | | | | | | | | | | | 138.00 | 3750.000014 | 0.004 | 3750.000036 | 0.010 | | | | | | | | | | Note: The applicant defined the normal working voltage is from 102Vac to 138Vac. Frequency Error vs. Temperature | - | 5GNR n78 | | | | | | | | | | | | | |------------|---------------------------|-----------------------|-----------------|-----------------------|--|--|--|--|--|--|--|--|--| | Temp. (°ℂ) | Channel Bandwidth 100 MHz | | | | | | | | | | | | | | Temp. (C) | Ant. | TX 2 | Ant. TX 3 | | | | | | | | | | | | | Frequency (MHz) | Frequency Error (ppm) | Frequency (MHz) | Frequency Error (ppm) | | | | | | | | | | | -30 | 3750.000028 | 0.007 | 3750.000037 | 0.010 | | | | | | | | | | | -20 | 3750.000037 | 0.010 | 3750.000034 | 0.009 | | | | | | | | | | | -10 | 3750.000025 | 0.007 | 3750.000019 | 0.005 | | | | | | | | | | | 0 | 3750.000023 | 0.006 | 3750.000021 | 0.006 | | | | | | | | | | | 10 | 3750.000037 | 0.010 | 3750.000029 | 0.008 | | | | | | | | | | | 20 | 3749.999975 | -0.007 | 3749.999988 | -0.003 | | | | | | | | | | | 30 | 3749.999984 | -0.004 | 3749.999961 | -0.010 | | | | | | | | | | | 40 | 3749.999984 | -0.004 | 3749.999979 | -0.006 | | | | | | | | | | | 50 | 3749.999969 | -0.008 | 3749.999970 | -0.008 | | | | | | | | | | #### 4.4 Emission Bandwidth Measurement #### 4.4.1 Test Procedure According to FCC 2.1049, the occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 % of the total mean power radiated by a given emission. For the 26dBc bandwidth measurement method, please refer to section 5.4.3 of ANSI C63.26. #### 4.4.2 Test Procedure For the 26dBc bandwidth measurement method, please refer to section 5.4.3 of ANSI C63.26. - a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the spectrum analyzer shall be wide enough to see sufficient roll off of the signal to make the measurement. - b) The nominal RBW shall be in the range of 1% to 5% of the anticipated OBW, and the VBW shall be set ≥ 3 × RBW. - c) Set the reference level of the instrument as required to prevent the signal amplitude from exceeding the maximum spectrum analyzer input mixer level for linear operation. See guidance provided in 4.2.3. - d) The dynamic range of the spectrum analyzer at the selected RBW shall be more than 10 dB below the target "−X dB" requirement, i.e., if the requirement calls for measuring the −26 dB OBW, the spectrum analyzer noise floor at the selected RBW shall be at least 36 dB below the reference level. - e) Set spectrum analyzer detection mode to peak, and the trace mode to max hold. - f) Determine the following reference values: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). - g) Determine the "-X dB amplitude" as equal to (Reference Value X). Alternatively, this calculation can be performed on the spectrum analyzer using the delta-marker measurement function. - h) Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the "-X dB amplitude" determined in step f). If a marker is below this "-X dB amplitude" value it should be as close as possible to this value. The OBW is the positive frequency difference between the two markers. - i) The OBW shall be reported by providing plot(s) of the measuring instrument display, to include markers depicting the relevant frequency and amplitude information (e.g., marker table). The frequency and amplitude axis and scale shall be clearly labeled. Tabular data may be reported in addition to the plot(s). For the occupied bandwidth measurement method, please refer to section 5.4.4 of ANSI C63.26. # 4.4.3 Test Setup Report No.: RFBHQC-WTW-P21100439 Page No. 18 / 39 Report Format Version: 6.1.1 # 4.4.4 Test Result Occupied Bandwidth | | | | 99% Occupied Bandwidth (MHz) | | | | | | | | | | | | | | | |-------------------|------|-------|------------------------------|-------|--------|----------|-------|-------|--------|-------|-------|-------|--------|----------|-------|-------|--------| | Channel
Number | | | Ant | . TX0 | | Ant. TX1 | | | | | Ant | . TX2 | | Ant. TX3 | | | | | | , , | QPSK | 16QAM | 64QAM | 256QAM | | 650000 | 3750 | 94.21 | 93.76 | 94.22 | 94.21 | 94.34 | 93.91 | 94.30 | 94.28 | 94.25 | 93.81 | 94.28 | 94.26 | 94.23 | 93.83 | 94.25 | 94.23 | # 26dB Bandwidth | Channel Fr
Number (M | | | 26dB Bandwidth (MHz) | | | | | | | | | | | | | | | | |-------------------------|------|-------|----------------------|-------|--------|-------|----------|-------|--------|-------|----------|-------|--------|-------|----------|-------|--------|--| | | | | Ant | . TX0 | | | Ant. TX1 | | | | Ant. TX2 | | | | Ant. TX3 | | | | | | , | QPSK | 16QAM | 64QAM | 256QAM | | | 650000 | 3750 | 99.75 | 99.56 | 99.65 | 99.64 | 99.77 | 99.57 | 99.69 | 99.66 | 99.75 | 99.56 | 99.67 | 99.66 | 99.76 | 99.57 | 99.67 | 99.65 | | ## 4.5 Channel Edge / Out-of-Band Emission Measurement ## 4.5.1 Limits of Channel Edge / Out-of-Band Emission Measurement For base station operations in the 3700-3980 MHz band, the conducted power of any emission outside the licensee's authorized bandwidth shall not exceed –13 dBm/MHz. Compliance with this paragraph (I)(1) is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. #### Note: This device can be impelement MIMO function, so the limit of spurious emissions needs to be reduced by $10\log(\text{NumbersAnt})$ according to FCC KDB 662911 D01 guidance. $(4TX: \text{The limit is adjusted to } -13dBm - 10*\log(4) = -19.02dBm.)$ #### 4.5.2 Test Setup #### 4.5.3 Test Procedures - a. The EUT was set up for the rated peak power. The power was measured with Spectrum Analyzer. All measurements were done at 2 channels: low and high operational frequency range. - b. Measurement refer to ANSI C63.26 section 5.7.2 and FCC Part 27 section 27.53. - c. Record the max trace plot into the test report. ## 4.5.4 Test Results ## **Out-of-Band Emission** 5GNR n78: Ant. TX 0 # Ant. TX 1 # Ant. TX 2 # Ant. TX 3 # 4.6 Peak to Average Ratio # 4.6.1 Limits of Peak to Average Ratio Measurement In measuring transmissions in this band using an average power technique, the peak to-average ratio (PAR) of the transmission may not exceed 13 dB # 4.6.2 Test Setup ## 4.6.3 Test Procedures - a. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth; - b. Set the number of counts to a value that stabilizes the measured CCDF curve; - c. Record the maximum PAPR level associated with a probability of 0.1%. # 4.6.4 Test Results # 5GNR n78: | | | | Peak To Average Ratio (dB) | | | | | | | | | | | | | | | | |-------------------|------|------|----------------------------|-------|--------|------|----------|-------|--------|------|----------|-------|--------|------|----------|-------|--------|--| | Channel
Number | | | Ant. TX0 | | | | Ant. TX1 | | | | Ant. TX2 | | | | Ant. TX3 | | | | | | ` | QPSK | 16QAM | 64QAM | 256QAM | | | 650000 | 3750 | 8.27 | 8.48 | 8.36 | 8.37 | 8.28 | 8.44 | 8.35 | 8.35 | 8.28 | 8.43 | 8.36 | 8.35 | 8.46 | 8.45 | 8.38 | 8.35 | | ## 4.7 Conducted Spurious Emissions # 4.7.1 Limits of Conducted Spurious Emissions Measurement According to FCC 27.53(I), for operations in the 3700-3980 MHz band, the conducted power of any emission outside the licensee's authorized bandwidth shall not exceed -13 dBm/MHz. #### Note: This device can be impelement MIMO function, so the limit of spurious emissions needs to be reduced by $10\log(\text{NumbersAnt})$ according to FCC KDB 662911 D01 guidance. (4TX: The limit is adjusted to -13dBm - 10*log(4) = -19.02dBm.) ## 4.7.2 Test Setup ## 4.7.3 Test Procedure - a. Measuring frequency range is from 9 kHz up to 40GHz, whichever is lower. 20dB attenuation pad is connected with spectrum. - b. The spectrum set RBW = 1MHz, VBW = 3MHz. - c. Measurement refer to ANSI C63.26 section 5.7.3. # 4.7.4 Test Results # 5GNR n78: ## Ant. TX 0 *The 9 kHz tone is from the spectrum analyzer. # Ant. TX 1 *The 9 kHz tone is from the spectrum analyzer.