Choose certainty. Add value. # Report On Application for Grant of Equipment Authorization of the u-blox AG SARA-R410M-02B LTE Cat-M1/NB1 Module FCC CFR 47 Part 2 and 27 ISED RSS-Gen, RSS-130 and RSS-139 Report No. SD72132148-1017A February 2018 FCC ID: XPY2AGQN4NNN IC: 8595A-2AGQN4NNN Report No. SD72132148-1017A **REPORT ON** Radio Testing of the u-blox AG LTE Cat-M1/NB1 Module TEST REPORT NUMBER SD72132148-1017A PREPARED FOR u-blox AG Zuercherstrasse 68 8800 Thalwil, Switzerland CONTACT PERSON Jake Bascon Sr. Certification Engineer (858) 847-9611 x616 Jake.Bascon@u-blox.com PREPARED BY Ferdinand S. Custodio Name Title: EMC/Senior Wireless Test Engineer APPROVED BY Alex Chang Name **Authorized Signatory** Title: Commercial/Medical EMC Supervisor **DATED** February 13, 2018 FCC ID: XPY2AGQN4NNN IC: 8595A-2AGQN4NNN Report No. SD72132148-1017A # **Revision History** | SD72132148-1017A
u-blox AG
M/N SARA-R410M-02B
SARA-R410M-02B LTE Cat-M1/NB1 Module | | | | | | | | |---|-----------------|--------------|--------|-------------------|-------------|--|--| | DATE | OLD REVISION | NEW REVISION | REASON | PAGES
AFFECTED | APPROVED BY | | | | 02/13/2018 | Initial Release | | | | Alex Chang | # **CONTENTS** | Section | | Page No | |---------|---|---------| | 1 | REPORT SUMMARY | 5 | | 1.1 | Introduction | 6 | | 1.2 | Brief Summary of Results | 7 | | 1.3 | Product Information | 8 | | 1.4 | EUT Test Configuration | 11 | | 1.5 | Deviations From The Standard | | | 1.6 | Modification Record | 14 | | 1.7 | Test Methodology | 14 | | 1.8 | Test Facility Location | 14 | | 1.9 | Test Facility Registration | 15 | | 1.10 | Sample Calculations | | | 2 | TEST DETAILS | 17 | | 2.1 | Transmitter Conducted Output Power | 18 | | 2.2 | Radiated Power | 22 | | 2.3 | Occupied Bandwidth | 25 | | 2.4 | Peak-Average Ratio | 34 | | 2.5 | Band Edge | 39 | | 2.6 | Conducted Spurious Emissions | 47 | | 2.7 | Field Strength Of Spurious Radiation | 58 | | 2.8 | Frequency Stability | 66 | | 2.9 | Power Line Conducted Emissions | 75 | | 3 | TEST EQUIPMENT USED | 79 | | 3.1 | Test Equipment Used | 80 | | 3.2 | Measurement Uncertainty | 81 | | 4 | DIAGRAM OF TEST SETUP | 83 | | 4.1 | Test Setup Diagram | 84 | | 5 | ACCREDITATION DISCLAIMERS AND COPYRIGHT | 89 | FCC ID: XPY2AGQN4NNN IC: 8595A-2AGQN4NNN Report No. SD72132148-1017A # **SECTION 1** # **REPORT SUMMARY** Radio Testing of the u-blox AG SARA-R410M-02B LTE Cat-M1/NB1 Module FCC ID: XPY2AGQN4NNN IC: 8595A-2AGQN4NNN Report No. SD72132148-1017A #### 1.1 INTRODUCTION The information contained in this report is intended to show verification of the u-blox AG LTE Cat-M1/NB1 Module to the requirements of FCC CFR 47 Part 2 and 27, ISED RSS-Gen, RSS-130 and RSS-139. Objective To perform Radio Testing to determine the Equipment Under Test's (EUT's) compliance with the Test Specification, for the series of tests carried out. Manufacturer u-blox AG Model Number(s) SARA-R410M-02B FCC ID XPY2AGQN4NNN IC Number 8595A-2AGQN4NNN Serial Number(s) 357591080022319and 357591080022319 (Note: Verified LTE Cat M1 Band 4 and Band 12 with a variant of the EUTs under Model Number SARA-R410M which is declared identical with this model with the exception of different Bands support.) 352753090010743 and 352753090011964 Number of Samples Tested Test Specification/Issue/Date FCC CFR 47 Part 2 and 27 (October 1, 2017). RSS-130 – Mobile Broadband Services (MBS) Equipment Operating in the Frequency Bands 698-756 MHz and 777- 787 MHz (Issue 1, October 2013). RSS-139 – Advanced Wireless Services (AWS) Equipment Operating in the Bands 1710-1780 MHz and 2110-2180 MHz (Issue 3, July 2015). • RSS-Gen - General Requirements and Information for the Certification of Radio Apparatus (Issue 4, November 2014). Start of Test October 17, 2017 Finish of Test November 01, 2017 Name of Engineer(s) Ferdinand S. Custodio Related Document(s) ANSI/TIA-603-C-2004 – Land Mobile FM or PM – Communications Equipment – Measurement and Performance Standards. - KDB971168 (D01 Power Meas License Digital Systems v03) Measurement Guidance For Certification Of Licensed Digital Transmitters - KDB412172 D01 Determining ERP and EIRP v0101 (Guidelines for Determining the Effective Radiated Power (ERP) and Equivalent Isotropically Radiated Power (EIRP) of a RF Transmitting System. - SD72128174-0517A U-Blox SARA R-410M FCC IC Part 27 B4 B12 Test Report.pdf - Supporting documents for EUT certification are separate exhibits. # 1.2 BRIEF SUMMARY OF RESULTS A brief summary of the tests carried out in accordance with FCC CFR 47 Part 2 and 27 with cross-reference to the corresponding IC RSS standard is shown below. | | | Spec Clause | | | Total Description | | |--------------------|----------------|---|---------|---------|--------------------------------------|----------------------------| | Section FCC Part 2 | FCC Part 2 | FCC Part 27 | RSS-130 | RSS-139 | Test Description | Result | | 2.1 | 2.1046 | 27.50 (b)(9)
and (10) | 4.4 | 6.5 | Transmitter Conducted Output Power | Compliant* | | | | - | 4.4 | 6.5 | Equivalent Isotropic Radiated Power | Compliant* | | 2.2 | - | 27.50 (b)(9)
and (10) | - | - | Effective Radiated Power | Compliant* | | 2.3 | 2.1049 | 27.53 | RSS-G | en 6.6 | Occupied Bandwidth | Reporting
Purposes Only | | 2.4 | - | 27.50 (d)(5) | 4.4 | 6.5 | Peak-Average Ratio | Compliant* | | 2.5 | 2.1051 | 27.53 (c)(2)
and (5) | 4.6.1 | 6.6 | Band Edge | Compliant* | | 2.6 | 2.1051 | 27.53
(c)(1),(2),(4),(5)
,(6) and (f) | 4.6 | 6.6 | Conducted Spurious Emissions | Compliant* | | 2.7 | Clause 7of KDB | 971168 D01 v03 | | - | Field Strength Of Spurious Radiation | Compliant* | | 2.8 | 2.1055 | 27.54 | 4.3 | 6.4 | Frequency Stability | Compliant* | | - | - | - | RSS-G | en 7.0 | Receiver Spurious Emissions | N/A* | | 2.9 | - | - | RSS-G | en 8.8 | Power Line Conducted Emission | Compliant* | N/A Not applicable. EUT does not fall to any category defined as Receiver under Section 5 of RSS-Gen Issue 4. Compliant* A variant of the EUT was previously approved under this FCC ID under Model Number SARA-R410M. No change on the hardware but the model name changes from SARA-R410M to SARA-R410M-02B with additional Cell Band(s) support. All data for LTE CAT M1 B4 and B12 presented in this test report are from the original filing test report (SD72128174-0517A U-Blox SARA R-410M FCC IC Part 27 B4 B12 Test Report.pdf). Test data from FCC CFR 47 Part 2, Part 27 October 2016 version could be leveraged for October 2017 compliance. # 1.3 PRODUCT INFORMATION # 1.3.1 Technical Description The Equipment Under Test (EUT) was a u-blox AG Model SARA-R410M-02B LTE Cat-M1/NB1 Module as shown in the photographs below. The EUT is based on Qualcomm Technologies' MDM9206 LTE modem designed to allow a larger number of devices to connect to the Internet of Things (IoT). The EUT was previously certified for LTE CAT M1 B2, B4, B5 and B12. This report covers additional LTE CAT M1 B13. All changes are through software. No change on the hardware but the model name changes from SARA-R410M to SARA-R410M-02B. All data for LTE CAT M1 B4 and B12 presented in this test report are from the original filling test report (SD72128174-0517A U-Blox SARA R-410M FCC IC Part 27 B4 B12 Test Report.pdf). Equipment Under Test (installed on WL3 evaluation board) **Equipment Under Test** # 1.3.2 EUT General Description EUT Description LTE Cat-M1/NB1 Module Model Name SARA-R410M-02B Model Number(s) SARA-R410M-02B Rated Voltage 4.2VDC using a programmable power supply Mode Verified LTE Band 4, 12 and 13 Frequency Range 1710 MHz – 1755 MHz (Band 4) 699 MHz -716 MHz (Band 12) 777 MHz -787MHz (Band 13) Capability LTE Band 5, 2, 4, 12 and 13 Primary Unit (EUT) Production Pre-Production Engineering Antenna Gain 6.75 dBi for Band 4, 3.66 dBi for band 12 and 3.94 dBi for band 13 (this is the maximum antenna gain that can be used with the EUT and still complies with all relevant requirements of the $\frac{1}{2}$ Equipment Authorization for mobile use) # 1.3.3 Transmit Frequency Table | | | Frequency | | Rated | Power | |----------|---------|-----------|--|---------------------|-------------------| | LTE Band | Channel | (MHz) | Emission Designators | Max. Power
(dBm) | Max. Power
(W) | | | 19957 | 1710.7 | | | | | 4 | 20175 | 1732.5 | 1M23G7D/1M12W7D 1M13G7D/1M13W7D 25.00 | 1M23G7D/1M12W7D | 0.316 | | | 20393 | 1754.3 | | | | | | 23017 | 699.7 | | | | | 12 | 23095 | 707.5 | | 25.00 | | | | 23173 | 715.3 | | | | | | 23187 | 777.7 | | | | | 13 | 23230 | 782.0 | 1M13G7D/1M21W7D | | | | | 23273 | 786.3 | | | | # 1.4 EUT TEST CONFIGURATION # 1.4.1 Test Configuration Description | Test
Configuration | Description | |-----------------------|--| | Default | The EUT was installed on a development board powered by a programmable power supply. Nominal voltage is 4.2VDC. RF configuration is through a support laptop running Qualcomm Radio Control Toolkit connected via USB. | #### 1.4.2 EUT Exercise Software Manufacturer provided a configuration software (Qualcomm Radio Control Toolkit Version 3.0.242.0 for CAT M1 and Qualcomm Radio Control Tool Version 4.0.00036 for CAT NB1) running from a support laptop where the EUT is connected via USB. Major configuration parameters provided by the manufacturer are shown in Section 1.4.5 of this test report. # 1.4.3 Support Equipment and I/O cables | Manufacturer | Equipment/Cable | Description | |----------------------------------|--------------------------------------
--| | Lenovo | Support Laptop (T410S) | P/N 0A31972 S/N R9-92MH0 10/11 | | LiteOn Technology
Corporation | AC Adapter for Support Laptop | Model 42T4430 S/N
11S42T4430Z1ZGWE27AA9X REV G | | Hewlett Packard | DC Power Supply | M/N E3610A S/N KR51311519 | | - | USB Cable (EUT to Support
Laptop) | USB 2.0, 1.8 meters, USB A to Mini B connector | | Pasternack | Support 20dB attenuator | M/N PE7017-20 25 watts DC-18GHz | | Narda | Support 50Ω Termination | M/N 370BNM 50-Ohm Coaxial Termination DC-
18GHz | # 1.4.4 Worst Case Configuration Worst-case configuration used in this test report as per maximum conducted output power measurements: | Band | Channel | Frequency | Modulation | PUSCH RBs | PA Range | TX Gain | |------|---------|------------|------------|-----------|----------|---------| | 4 | Low | 1710.7 MHz | QPSK | 6 | 2 | 66 | | 12 | High | 715.3 MHz | QPSK | 6 | 2 | 66 | | 13 | Low | 777.7 MHz | 16QAM | 6 | 2 | 66 | EUT is a RF module. For radiated measurements, the EUT was verified installed on a development board using the worst case axis ("X") verified via prescan. # 1.4.5 Simplified Test Configuration Diagram # Antenna Conducted Port Test Setup # General RF Test Configuration (Manufacturer provided) # Band Edge Test Configuration for CAT M1 (using FTM RF Verification) # General RF Test Configuration for CAT NB1 (Manufacturer provided) #### 1.5 DEVIATIONS FROM THE STANDARD No deviations from the applicable test standards or test plan were made during testing. #### 1.6 MODIFICATION RECORD | Description of Modification | Modification
Fitted By | Date
Modification
Fitted | | | | |---|---------------------------|--------------------------------|--|--|--| | Serial Number 352753090010743 and 352753090011964 | | | | | | | N/A | - | - | | | | The table above details modifications made to the EUT during the test programme. The modifications incorporated during each test (if relevant) are recorded on the appropriate test pages. #### 1.7 TEST METHODOLOGY All measurements contained in this report were conducted with ANSI C63.26 2015 and American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services and ANSI/TIA-603-C-2004 – Land Mobile FM or PM – Communications Equipment – Measurement and Performance Standards. For conducted (if applicable) and radiated emissions the equipment under test (EUT) was configured to measure its highest possible emission level. This level was based on the maximized cable configuration from exploratory testing per ANSI C63.26-2015. The test modes were adapted according to the Operating Instructions provided by the manufacturer/client. #### 1.8 TEST FACILITY LOCATION #### 1.8.1 TÜV SÜD America Inc. (Mira Mesa) 10040 Mesa Rim Road, San Diego, CA 92121-2912 (32.901268,-117.177681). Phone: 858 678 1400 Fax: 858 546 0364. #### 1.8.2 TÜV SÜD America Inc. (Rancho Bernardo) 16936 Via Del Campo, San Diego, CA 92127-1708 (33.018644,-117.092409). Phone: 858 678-1400 Fax: 858 546 0364. #### 1.9 TEST FACILITY REGISTRATION #### 1.9.1 FCC – Designation No.: US1146 TUV SUD America Inc. (San Diego), is an accredited test facility with the site description report on file and has met all the requirements specified in §2.948 of the FCC rules. The acceptance letter from the FCC is maintained in our files and the designation is US1146. #### 1.9.2 Innovation, Science and Economic Development Canada (IC) Registration No.: 3067A-1 & 22806-1 The 10m Semi-anechoic chamber of TUV SUD America Inc. (San Diego Rancho Bernardo) has been registered by Certification and Engineering Bureau of Innovation, Science and Economic Development Canada for radio equipment testing with Registration No. 3067A-1. The 3m Semi-anechoic chamber of TUV SUD America Inc. (San Diego Mira Mesa) has been registered by Certification and Engineering Bureau of Innovation, Science and Economic Development Canada for radio equipment testing with Registration No. 22806-1. #### 1.9.3 BSMI – Laboratory Code: SL2-IN-E-028R (US0102) TUV Product Service Inc. (San Diego) is a recognized EMC testing laboratory by the BSMI under the MRA (Mutual Recognition Arrangement) with the United States. Accreditation includes CNS 13438 up to 6GHz. # 1.9.4 NCC (National Communications Commission - US0102) TUV SUD America Inc. (San Diego) is listed as a Foreign Recognized Telecommunication Equipment Testing Laboratory and is accredited to ISO/IEC 17025 (A2LA Certificate No.2955.13) which under APEC TEL MRA Phase 1 was designated as a Conformity Assessment Body competent to perform testing of equipment subject to the Technical Regulations covered under its scope of accreditation including RTTE01, PLMN01 and PLMN08 for TTE type of testing and LP002 for Low-Power RF Device type of testing. #### 1.9.1 VCCI – Registration No. A-0280 and A-0281 TUV SUD America Inc. (San Diego) is a VCCI registered measurement facility which includes radiated field strength measurement, radiated field strength measurement above 1GHz, mains port interference measurement and telecommunication port interference measurement. #### 1.10 SAMPLE CALCULATIONS # 1.10.1 LTE Emission Designator (QPSK) Emission Designator = 4M51G7D G = Phase Modulation 7= Quantized/Digital Info D = Combination (Audio/Data) # 1.10.2 LTE Emission Designator (16QAM) Emission Designator = 4M52W7D W = Frequency Modulation 7= Quantized/Digital Info D = Combination (Audio/Data #### 1.10.3 Spurious Radiated Emission (below 1GHz) | Measuring equipment raw measur | 24.4 | | | |---------------------------------|----------------------------|-------|-------| | | Asset# 1066 (cable) | 0.3 | | | Correction Factor (dB) | Asset# 1172 (cable) | 0.3 | | | | Asset# 1016 (preamplifier) | -30.7 | -12.6 | | | Asset# 1175(cable) | 0.3 | | | | Asset# 1002 (antenna) | 17.2 | | | Reported QuasiPeak Final Measur | 11.8 | | | #### 1.10.4 Spurious Radiated Emission – Substitution Method Example = 84dBµV/m @ 1413 MHz (numerical sample only) The field strength reading of $84dB\mu V/m$ @ 1413 MHz (2^{nd} Harmonic of 706.5 MHz) is the maximized measurement when the EUT is on the turntable measured at 3 meters. The gain of the substituted antenna is 7.8dBi while the transmit cable loss is 1.0 dB (cable between signal generator and the substituted antenna). The signal generator level is adjusted until the $84dB\mu V/m$ level at the receiving end is replicated (identical test setup, i.e. same antenna, cable/s and preamp). If the adjusted signal generator level is -18dBm, then we have the following for both EIRP and ERP as required: $P_{EIRP} = -18 dBm + 7.8 dBi - 1dB$ = 11.2 dBm $P_{ERP} = P_{EIRP} - 2.15 dB$ = 11.2 dBm - 2.15 dB = 9.05 dBm # **SECTION 2** # **TEST DETAILS** Radio Testing of the u-blox AG SARA-R410M-02B LTE Cat-M1/NB1 Module #### 2.1 TRANSMITTER CONDUCTED OUTPUT POWER #### 2.1.1 Specification Reference FCC 47 CFR Part 2, Clause 2.1046 (a) and (c) FCC 47 CFR Part 27, Clause 27.50 (b)(9) and (10) RSS-130, Clause 4.4 RSS-139, Clause 6.5 # 2.1.2 Standard Applicable FCC 47 CFR Part 2, Clause 2.1046: - (a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in §2.1033(c)(8). The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated. - (c) For measurements conducted pursuant to paragraphs (a) and (b) of this section, all calculations and methods used by the applicant for determining carrier power or peak envelope power, as appropriate, on the basis of measured power in the radio frequency load attached to the transmitter output terminals shall be shown. Under the test conditions specified, no components of the emission spectrum shall exceed the limits specified in the applicable rule parts as necessary for meeting occupied bandwidth or emission limitations. #### FCC 47 CFR Part 27, Clause 27.50 (b)(9): Control stations and mobile stations transmitting in the 746–757 MHz, 776–788 MHz, and 805–806 MHz bands and fixed stations transmitting in the 787–788 MHz and 805–806 MHz bands are limited to 30 watts ERP. FCC 47 CFR Part 27, Clause 27.50 (b)(10): Portable stations (hand-held devices) transmitting in the 746-757 MHz, 776-788 MHz, and 805-806 MHz bands are limited to 3 watts ERP. # 2.1.3 Equipment Under Test and Modification State Serial No: 352753090010743 and 352753090010743/ Default Test Configuration #### 2.1.4 Date of Test/Initial of test personnel who performed the test May 25, October 20 and 26, 2017/FSC # 2.1.5 Test Equipment Used The major items of test equipment used for the above tests are identified in Section 3.1. #### 2.1.6 Environmental Conditions Test performed at TÜV SÜD America Inc. Rancho Bernardo facility. $\begin{array}{lll} \mbox{Ambient Temperature} & 25.4 - 25.8 \ ^{\circ}\mbox{C} \\ \mbox{Relative Humidity} & 41.0 - 48.6 \ \% \\ \mbox{ATM Pressure} & 98.0 - 99.0 \ \mbox{kPa} \end{array}$ #### 2.1.7 Additional Observations - This is a conducted test using an average power meter. - The path loss was measured and entered as a level offset. | Frequency | Correction Factor | |------------|-------------------| | 707.50 MHz | 20.175 dB | | 1732.5 MHz | 20.380 dB | | 782.00 MHz | 20.100 dB | • Measurements were verified within the manufacturer declared Tune-Up procedure. #### 2.1.8 Test Results | LTE Band 12 (69 Tx Gain Index) | | | | | | | | |--------------------------------|-----------|----------|-----------|------------------|--|--|--| | Modulation | Bandwidth | Channels | Frequency | Tx Average (dBm) | | | | | | | 23017 | 699.7 | 23.4 | | | | | QPSK | 1.4 MHz | 23095 | 707.5 | 23.8 | | | | | | | 23173 | 715.3 | 24.0 | | | | | | | 23017 | 699.7 |
23.5 | | | | | 16QAM | 1.4 MHz | 23095 | 707.5 | 23.8 | | | | | | | 23173 | 715.3 | 24.3 | | | | | LTE Band 4 (65 Tx Gain Index) | | | | | | | | |-------------------------------|-----------|----------|-----------|------------------|--|--|--| | Modulation | Bandwidth | Channels | Frequency | Tx Average (dBm) | | | | | | | 19957 | 1710.7 | 23.9 | | | | | QPSK | 1.4 MHz | 20175 | 1732.5 | 23.8 | | | | | | | 20393 | 1754.3 | 23.5 | | | | | | | 19957 | 1710.7 | 23.9 | | | | | 16QAM | 1.4 MHz | 20175 | 1732.5 | 23.8 | | | | | | | 20393 | 1754.3 | 23.5 | | | | | LTE Band 13 (64 Tx Gain Index) | | | | | | | | |--------------------------------|-----------|----------|-----------|------------------|--|--|--| | Modulation | Bandwidth | Channels | Frequency | Tx Average (dBm) | | | | | | 1.4 MHz | 23187 | 777.7 | 24.4 | | | | | QPSK | | 23230 | 782.0 | 24.4 | | | | | | | 23273 | 786.3 | 24.3 | | | | | 16QAM | | 23187 | 777.7 | 24.5 | | | | | | 1.4 MHz | 23230 | 782.0 | 24.3 | | | | | | | 23273 | 786.3 | 24.3 | | | | # 2.1.9 Sample Test Plot Hi Channel LTE Band 12 16QAM **Low Channel LTE Band 4 QPSK** Mid Channel LTE Band 13 16QAM #### 2.2 RADIATED POWER #### 2.2.1 Specification Reference FCC 47 CFR Part 27, Clause 27.50 (b)(9) and (10) RSS-130, Clause 4.4 RSS-139, Clause 6.5 # 2.2.2 Standard Applicable FCC 47 CFR Part 27, Clause 27.50 (b)(9): Control stations and mobile stations transmitting in the 746–757 MHz, 776–788 MHz, and 805–806 MHz bands and fixed stations transmitting in the 787–788 MHz and 805–806 MHz bands are limited to 30 watts ERP. FCC 47 CFR Part 27, Clause 27.50 (b)(10): Portable stations (hand-held devices) transmitting in the 746-757 MHz, 776-788 MHz, and 805-806 MHz bands are limited to 3 watts ERP. RSS-130, Clause 4.4: The e.i.r.p. shall not exceed 50 watts for mobile equipment or for outdoor fixed subscriber equipment, nor shall it exceed 5 watts for portable equipment or for indoor fixed subscriber equipment. RSS-139, Clause 6.5: The equivalent isotropically radiated power (e.i.r.p.) for mobile and portable transmitters shall not exceed one watt. The e.i.r.p. for fixed and base stations in the band 1710-1780 MHz shall not exceed one watt. # 2.2.3 Equipment Under Test and Modification State $Serial No: 352753090010743 \ and \ 352753090011964 \ / \ Calculation Only$ # 2.2.4 Date of Test/Initial of test personnel who performed the test May 25, October 20 and 26, 2017/FSC #### 2.2.5 Additional Observations - EIRP/ERP was calculated as per Section 1.3.2 of KDB412172 D01 (Determining ERP and EIRP v01). - Calculation formula in logarithmic terms: # $ERP/EIRP=P_T + G_T - L_C$ Where: P_T = transmitter conducted output power dBm (Section 2.1 of this test report). G_T = gain of the transmitting antenna, in dBi for EIRP or dBd for ERP. Lc = signal attenuation in the connecting cable between the transmitter and antenna, in dB. Maximum antenna gain relationship between ERP and EIRP could be determined by the following equation: **ERP=EIRP - 2.15** # 2.2.6 Sample Computation $\mathsf{ERP} \quad = \mathsf{P}_\mathsf{T} + \mathsf{G}_\mathsf{T} - \mathsf{L}_\mathsf{C} - 2.15 \mathsf{dB}$ = 23.4 dBm (Average) + 3.67dBi (EIRP) – 0 (transmitter conducted power presented has an offset already) -2.15 (ERP/EIRP relationship factor) = 24.92 dBm (high channel/QPSK) #### 2.2.7 Test Results | LTE Band 12 Uplink (699 MHz -716 MHz) 1.4MHz BW | | | | | | | | |---|---------|--------------------|---------------------------|--------------------------|---------------|--------------|----------------| | Modulation | Channel | Frequency
(MHz) | Average
Power
(dBm) | Antenna
Gain
(dBi) | EIRP
(dBm) | ERP
(dBm) | Limit
(dBm) | | | 23017 | 699.7 | 23.4 | 3.67 | 27.07 | - | 37.00 | | QPSK | 23095 | 707.5 | 23.8 | 3.67 | 27.47 | - | 37.00 | | | 23173 | 715.3 | 24.0 | 3.67 | 27.67 | - | 37.00 | | 16-QAM | 23017 | 699.7 | 23.5 | 3.67 | 27.17 | - | 37.00 | | | 23095 | 707.5 | 23.8 | 3.67 | 27.47 | - | 37.00 | | | 23173 | 715.3 | 24.3 | 3.67 | 27.97 | - | 37.00 | | QPSK | 23017 | 699.7 | 23.4 | 3.67 | - | 24.92 | 30.00 | | | 23095 | 707.5 | 23.8 | 3.67 | - | 25.32 | 30.00 | | | 23173 | 715.3 | 24.0 | 3.67 | - | 25.52 | 30.00 | | 16-QAM | 23017 | 699.7 | 23.5 | 3.67 | - | 25.02 | 30.00 | | | 23095 | 707.5 | 23.8 | 3.67 | - | 25.32 | 30.00 | | | 23173 | 715.3 | 24.3 | 3.67 | - | 25.82 | 30.00 | | LTE Band 4 Uplink (1710 MHz – 1755 MHz) 1.4MHz BW | | | | | | | | |---|---------|--------------------|---------------------------|--------------------------|---------------|--------------|----------------| | Modulation | Channel | Frequency
(MHz) | Average
Power
(dBm) | Antenna
Gain
(dBi) | EIRP
(dBm) | ERP
(dBm) | Limit
(dBm) | | | 19957 | 1710.7 | 23.9 | 6.74 | 30.64 | - | 37.00 | | QPSK | 20175 | 1732.5 | 23.8 | 6.74 | 30.54 | - | 37.00 | | | 20393 | 1754.3 | 23.5 | 6.74 | 30.24 | - | 37.00 | | 16-QAM | 19957 | 1710.7 | 23.9 | 6.74 | 30.64 | - | 37.00 | | | 20175 | 1732.5 | 23.8 | 6.74 | 30.54 | - | 37.00 | | | 20393 | 1754.3 | 23.5 | 6.74 | 30.24 | - | 37.00 | | QPSK | 19957 | 1710.7 | 23.9 | 6.74 | - | 28.49 | 30.00 | | | 20175 | 1732.5 | 23.8 | 6.74 | - | 28.39 | 30.00 | | | 20393 | 1754.3 | 23.5 | 6.74 | - | 28.09 | 30.00 | | 16-QAM | 19957 | 1710.7 | 23.9 | 6.74 | - | 28.49 | 30.00 | | | 20175 | 1732.5 | 23.8 | 6.74 | - | 28.39 | 30.00 | | | 20393 | 1754.3 | 23.5 | 6.74 | - | 28.09 | 30.00 | | LTE Band 13 Uplink (777 MHz -787MHz) 1.4MHz BW | | | | | | | | |--|---------|--------------------|---------------------------|--------------------------|---------------|--------------|----------------| | Modulation | Channel | Frequency
(MHz) | Average
Power
(dBm) | Antenna
Gain
(dBi) | EIRP
(dBm) | ERP
(dBm) | Limit
(dBm) | | | 23187 | 777.7 | 23.4 | 3.94 | 27.34 | - | 37.00 | | QPSK | 23230 | 782.0 | 23.8 | 3.94 | 27.74 | - | 37.00 | | | 23273 | 786.3 | 24.0 | 3.94 | 27.94 | - | 37.00 | | | 23187 | 777.7 | 23.5 | 3.94 | 27.44 | - | 37.00 | | 16-QAM | 23230 | 782.0 | 23.8 | 3.94 | 27.74 | - | 37.00 | | | 23273 | 786.3 | 24.3 | 3.94 | 28.24 | - | 37.00 | | QPSK | 23187 | 777.7 | 23.4 | 3.94 | - | 25.19 | 30.00 | | | 23230 | 782.0 | 23.8 | 3.94 | - | 25.59 | 30.00 | | | 23273 | 786.3 | 24.0 | 3.94 | - | 25.79 | 30.00 | | 16-QAM | 23187 | 777.7 | 23.5 | 3.94 | - | 25.29 | 30.00 | | | 23230 | 782.0 | 23.8 | 3.94 | - | 25.59 | 30.00 | | | 23273 | 786.3 | 24.3 | 3.94 | - | 26.09 | 30.00 | #### 2.3 OCCUPIED BANDWIDTH #### 2.3.1 Specification Reference FCC 47 CFR Part 2. Clause 2.1049 FCC 47 CFR Part 27, Clause 27.53(h) RSS-GEN Issue 4, Clause 6.6 #### 2.3.2 Standard Applicable FCC 47 CFR Part 27, Clause 27.53 The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. RSS-GEN Issue 4, Clause 6.6 The emission bandwidth (x dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth in the range of 1% to 5% of the anticipated emission bandwidth, and a video bandwidth at least 3x the resolution bandwidth. #### 2.3.3 Equipment Under Test and Modification State Serial No: 357591080022319 and 352753090010743/ Default Test Configuration # 2.3.4 Date of Test/Initial of test personnel who performed the test May 25, October 20 and 27, 2017/FSC ### 2.3.5 Test Equipment Used The major items of test equipment used for the above tests are identified in Section 3.1. #### 2.3.6 Environmental Conditions Test performed at TÜV SÜD America Inc. Rancho Bernardo facility. Ambient Temperature 25.3 - 25.8°C Relative Humidity 41.0 - 46.5 % ATM Pressure 98.6 - 99.0 kPa # 2.3.7 Additional Observations - This is a conducted test. Both 26dB bandwidth and 99% bandwidth presented. - Only the middle channels presented. - The span is between two and five times the anticipated OBW. - The RBW is set to 1% of the OBW while the VBW is ≥3X RBW. - For CAT NB1 measurement, RBW was set to 1% of the span. - The detector is peak and the trace mode is max hold. - The SA built-in emission bandwidth measurement feature is utilized. The power level setting is set to 99% - For 26 dB BW, the "n dB down' feature of the SA was used as a marker function. # 2.3.8 Test Results (Reporting Purposes Only) | Band | Modulation | Channel | Frequency
(MHz) | OBW
(MHz) | -26dB BW
(MHz) | |------|------------|---------|--------------------|--------------|-------------------| | 4 | QPSK | 20175 | 1732.5 | 1.2372 | 1.29 | | | 16-QAM | 20175 | 1732.5 | 1.1268 | 1.29 | | 12 | QPSK | 23095 | 707.5 | 1.1364 | 1.40 | | | 16-QAM | 23095 | 707.5 | 1.1376 | 1.35 | | 13 | QPSK | 23230 | 782.0 | 1.1388 | 1.41 | | | 16-QAM | 23230 | 782.0 | 1.2132 | 1.35 | #### 2.4 PEAK-AVERAGE RATIO #### 2.4.1 Specification Reference FCC 47 CFR Part 27, Clause 27.50 (d)(5) RSS-130, Clause 4.4 RSS-139, Clause 6.5 # 2.4.2 Standard Applicable RSS-130, Clause 4.4 and RSS-139, Clause 6.5 In addition, the peak-to-average power ratio (PAPR) of the transmitter shall not exceed 13 dB for morethan 0.1% of the time and shall use a signal corresponding to the highest PAPR during periods of continuous transmission. FCC 47 CFR Part 27, Clause 27.50 (d)(5) Equipment employed must be authorized in accordance with the provisions of §24.51. Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (d)(6) of this section. In measuring transmissions in
this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB. # 2.4.3 Equipment Under Test and Modification State Serial No: 357591080022319 and 352753090010743/ Default Test Configuration #### 2.4.4 Date of Test/Initial of test personnel who performed the test June 01, October 20 and 27, 2017/FSC # 2.4.5 Test Equipment Used The major items of test equipment used for the above tests are identified in Section 3.1. # 2.4.6 Environmental Conditions Test performed at TÜV SÜD America Inc. Rancho Bernardo facility. Ambient Temperature 25.3 - 25.5°C Relative Humidity 41.0 - 49.9 % ATM Pressure 98.6 - 98.7 kPa #### 2.4.7 Additional Observations - This is a conducted test. Guidance is per Section 5.7 of KDB971168 (D01 Power Meas License Digital Systems v03). - Procedure is per Section 5.7.1 of KDB971168. - RBW was set to maximum the SA can support (minimum requirement is ≥ signal's occupied bandwidth of 1.4 MHz) - Measurement interval was set to 1ms (10000 samples). - Measurement was done using the Spectrum Analyzer's Complementary Cumulative Distribution Function (CCDF) measurement profile. The built-in function is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth (crest factor or peak-to-average ratio) The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signals spends at or above the level defines the probability for that particular power level. - The maximum PAPR level associated with a probability of 0.1% was recorded. - There are no measured PAR levels greater than 13dB. EUT complies. # 2.4.8 Test Results | Band | Modulation | Channel | Frequency
(MHz) | PAR
(dB) | |--------------|------------|---------|--------------------|-------------| | | QPSK | 23017 | 699.7 | 5.60 | | | | 23095 | 707.5 | 5.58 | | LTE Band 12 | | 23173 | 715.3 | 6.28 | | (1.4 MHz BW) | | 23017 | 699.7 | 5.70 | | | 16QAM | 23095 | 707.5 | 5.70 | | | | 23173 | 715.3 | 5.54 | | | QPSK | 19957 | 1710.7 | 5.70 | | | | 20175 | 1732.5 | 5.66 | | LTE Band 4 | | 20393 | 1754.3 | 5.96 | | (1.4 MHz BW) | 16QAM | 19957 | 1710.7 | 5.58 | | | | 20175 | 1732.5 | 5.62 | | | | 20393 | 1754.3 | 5.70 | | | QPSK | 23187 | 777.7 | 5.90 | | | | 23230 | 782.0 | 5.94 | | LTE Band 13 | | 23273 | 786.3 | 5.90 | | (1.4 MHz BW) | 16QAM | 23187 | 777.7 | 5.94 | | | | 23230 | 782.0 | 5.72 | | | | 23273 | 786.3 | 5.90 | # 2.4.9 Sample Test Plots #### 2.5 BAND EDGE # 2.5.1 Specification Reference FCC 47 CFR Part 2, Clause 2.1051 FCC 47 CFR Part 27, Clause 27.53(g) and (h) RSS-130, Clause 4.6 RSS-139, Clause 6.6 ### 2.5.2 Standard Applicable FCC 47 CFR Part 27, Clause 27.53 (g) (g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed. FCC 47 CFR Part 27, Clause 27.53 (h) - (h) AWS emission limits—(1) General protection levels. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB - (3) Measurement procedure. (i) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. ### 2.5.3 Equipment Under Test and Modification State Serial No: 357591080022319 and 352753090010743/ Default Test Configuration ### 2.5.4 Date of Test/Initial of test personnel who performed the test May 31 and October 23, 2017 /FSC # 2.5.5 Test Equipment Used The major items of test equipment used for the above tests are identified in Section 3.1. ### 2.5.6 Environmental Conditions Test performed at TÜV SÜD America Inc. Rancho Bernardo facility. Ambient Temperature $25.5 - 25.9 \,^{\circ}\text{C}$ Relative Humidity 30.1 - 37.3%ATM Pressure $99.0 - 99.2 \,^{\circ}\text{kPa}$ #### 2.5.7 Additional Observations - This is a conducted test. Test guidance is per Section 6.0 of KDB971168 (D01 Power Meas License Digital Systems v03). - Corresponding offset was used for the external attenuator and cable used. - The center frequency of the spectrum is the band edge frequency (699 MHz -716 MHz for Band 12, 1710 MHz 1755 MHz for Band 4 and 777 MHz -787MHz for Band 13). - RBW was set to 30 kHz and VBW to 3X RBW (approx. due to SA limitation) for Band12 and Band 13. - RBW was set to 1% of the EBW or OBW (whichever is worst) with VBW 3X RBW for Band 4. - Trace Mode was Max Hold using Peak Detector for worst case test configuration. - Resulting band edge measurements were verified against the manufacturer tune-up procedure with positive results. - EUT complies. #### 2.5.8 Test Results #### 2.6 CONDUCTED SPURIOUS EMISSIONS #### 2.6.1 Specification Reference FCC 47 CFR Part 2, Clause 2.1051 FCC 47 CFR Part 27, Clause 27.53(g) and (h) RSS-130, Clause 4.6 RSS-139, Clause 6.6 ### 2.6.2 Standard Applicable FCC 47 CFR Part 27, Clause 27.53 (g) (g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed. FCC 47 CFR Part 27, Clause 27.53 (h) - (h) AWS emission limits—(1) General protection levels. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB - (3) Measurement procedure. (i) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power ### 2.6.3 Equipment Under Test and Modification State Serial No: 357591080022319 and 352753090010743/ Default Test Configuration ### 2.6.4 Date of Test/Initial of test personnel who performed the test May 31, October 23 and 27, 2017 /FSC # 2.6.5 Test Equipment Used The major items of test equipment used for the above tests are identified in Section 3.1. ### 2.6.6 Environmental Conditions Test performed at TÜV SÜD America Inc. Rancho Bernardo facility. Ambient Temperature $25.5 - 25.9 \,^{\circ}\text{C}$ Relative Humidity 30.1 - 37.3%ATM Pressure $99.0 - 99.2 \,^{\circ}\text{kPa}$ #### 2.6.7 Additional Observations - This is a conducted test. - Corresponding offset was used for the external attenuator and cable used. - The spectrum was searched from 9 kHz to 8GHz. 9kHz to 100kHz was separate verification (not presented). - The Spurious Emissions Measurement function of the SA was used for this test. - Measurement guidance is per Clause 6 of KDB971168 D01 v03. - Conducted Spurious emissions verification were performed using 1MHz RBW for both bands (worst case). - EUT complies. #### 2.6.8 Test Results #### 2.7 FIELD STRENGTH OF SPURIOUS RADIATION #### 2.7.1 Specification Reference Clause 7 of KDB971168 D01 v03 ### 2.7.2 Standard Applicable When antenna-port conducted measurements are performed to demonstrate compliance to the applicable unwanted emission limits, a separate radiated measurement is required to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Note that when radiated measurements are performed to demonstrate compliance to the unwanted emission limits (e.g., an EUT with integral transmit antenna), this measurement is not required. These measurements may be performed with the transmit antenna port(s) terminated. Unless otherwise specified in the applicable rule section, the same limits applicable to spurious (unwanted) emissions at the antenna terminals also apply to radiated spurious emissions.. #### 2.7.3 Equipment Under Test and Modification State Serial No: 357591080022319 and
352753090010743/ Default Test Configuration # 2.7.4 Date of Test/Initial of test personnel who performed the test June 02, October 23 and November 01, 2017 /FSC # 2.7.5 Test Equipment Used The major items of test equipment used for the above tests are identified in Section 3.1. #### 2.7.6 Environmental Conditions Test performed at TÜV SÜD America Inc. Rancho Bernardo facility. Ambient Temperature 25.5 - 26.6 °C Relative Humidity 30.1 - 49.5% ATM Pressure 98.6 - 99.2 kPa # 2.7.7 Additional Observations - This is a radiated measurement to detect spurious emissions that may be radiated directly from the cabinet of the EUT. - Only the worst case channel/band presented to show compliance. - Antenna port of the EUT was terminated with a suitable 50Ω load. - Any emissions within 6db of the limit will be proven by substitution method as per Unwanted Emissions: Radiated Spurious method of measurement of ANSI/TIA/EIA-603-C 2004, August 17, 2004. However no such emissions observed. • Measurement was done using EMC32 automated software. Reported level is the actual level with all the correction factors factored in. Correction Factor column is for informational purposes only. See Section 2.7.8 for sample computation. # 2.7.8 Sample Computation (Radiated Emission) | Measuring equipment raw measu | rement (dbμV) @ 30 MHz | | 24.4 | |--------------------------------|----------------------------|-------|-------| | | Asset# 1066 (cable) | 0.3 | | | | Asset# 1172 (cable) | 0.3 | | | Correction Factor (dB) | Asset# 1016 (preamplifier) | -30.7 | -12.6 | | | Asset# 1175(cable) | 0.3 | | | | Asset# 1033 (antenna) | 17.2 | | | Reported QuasiPeak Final Measu | 11.8 | | | # 2.7.9 Test Results See attached plots. # 2.7.10 Test Results Below 1GHz (Band 12 Worst Case Configuration) # Quasi Peak Data | Frequency
(MHz) | QuasiPeak
(dBμV/m) | Meas.
Time
(ms) | Bandwidth
(kHz) | Height
(cm) | Polarization | Azimuth
(deg) | Corr.
(dB) | Margin
(dB) | Limit
(dBµV/m) | |--------------------|-----------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------| | 30.240000 | 17.2 | 1000.0 | 120.000 | 213.0 | Н | 15.0 | -6.1 | 67.2 | 84.4 | | 40.607214 | 10.4 | 1000.0 | 120.000 | 116.0 | V | 77.0 | -12.6 | 74.0 | 84.4 | | 71.021643 | 12.5 | 1000.0 | 120.000 | 100.0 | V | 37.0 | -16.9 | 71.9 | 84.4 | | 87.636633 | 9.6 | 1000.0 | 120.000 | 100.0 | V | 29.0 | -16.3 | 74.8 | 84.4 | | 620.981884 | 27.7 | 1000.0 | 120.000 | 100.0 | V | 4.0 | 1.5 | 56.7 | 84.4 | | 794.651784 | 32.2 | 1000.0 | 120.000 | 115.0 | V | 15.0 | 3.9 | 52.2 | 84.4 | **Test Notes:** Only worst case channel presented for cabinet spurious emissions verification. # 2.7.11 Test Results Above 1GHz (Band 12 Worst Case Configuration) ### **Peak Data** | Frequency
(MHz) | MaxPeak
(dBμV/m) | Meas.
Time
(ms) | Bandwidth
(kHz) | Height
(cm) | Polarization | Azimuth
(deg) | Corr.
(dB) | Margin
(dB) | Limit
(dBµV/m) | |--------------------|---------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------| | 1414.917635 | 45.8 | 1000.0 | 1000.000 | 343.0 | V | 82.0 | -7.9 | 38.6 | 84.4 | | 1924.539679 | 36.8 | 1000.0 | 1000.000 | 388.0 | Н | 78.0 | -4.9 | 47.6 | 84.4 | | 4034.964128 | 41.7 | 1000.0 | 1000.000 | 389.0 | Н | 139.0 | 2.6 | 42.7 | 84.4 | | 6861.819439 | 45.6 | 1000.0 | 1000.000 | 302.0 | V | 96.0 | 7.8 | 38.8 | 84.4 | | 6959.223848 | 47.5 | 1000.0 | 1000.000 | 250.0 | V | 11.0 | 8.5 | 36.9 | 84.4 | | 12208.516834 | 49.9 | 1000.0 | 1000.000 | 150.0 | V | 20.0 | 16.1 | 34.5 | 84.4 | | 17998.900000 | 58.3 | 1000.0 | 1000.000 | 250.0 | V | 87.0 | 28.1 | 26.1 | 84.4 | # **Average Data** | Frequency
(MHz) | Average
(dBμV/m) | Meas.
Time
(ms) | Bandwidth
(kHz) | Height
(cm) | Polarization | Azimuth
(deg) | Corr.
(dB) | Margin
(dB) | Limit
(dBμV/m) | |--------------------|---------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------| | 1414.917635 | 38.0 | 1000.0 | 1000.000 | 343.0 | V | 82.0 | -7.9 | 46.4 | 84.4 | | 1924.539679 | 23.9 | 1000.0 | 1000.000 | 388.0 | Н | 78.0 | -4.9 | 60.5 | 84.4 | | 4034.964128 | 28.9 | 1000.0 | 1000.000 | 389.0 | Н | 139.0 | 2.6 | 55.5 | 84.4 | | 6861.819439 | 33.2 | 1000.0 | 1000.000 | 302.0 | V | 96.0 | 7.8 | 51.2 | 84.4 | | 6959.223848 | 34.8 | 1000.0 | 1000.000 | 250.0 | V | 11.0 | 8.5 | 49.6 | 84.4 | | 12208.516834 | 37.2 | 1000.0 | 1000.000 | 150.0 | V | 20.0 | 16.1 | 47.2 | 84.4 | | 17998.900000 | 45.5 | 1000.0 | 1000.000 | 250.0 | V | 87.0 | 28.1 | 38.9 | 84.4 | ### **Substitution Data** | Frequency
(MHz) | Field
Strength @
3 meters
(dbµV/m) | Cable Loss
(dB) | Substitution
Antenna
Gain
(dBi) | Signal
Generator
Level
(dBm) | Substitution Data SGL+AG-CL (dBm) | Limit
(dBm) | Compliance | |--------------------|---|--------------------|--|---------------------------------------|-----------------------------------|----------------|------------| | | | | | | | | | **Test Notes:** Substitution data not required since margin is >20dB compared to the -13dBm limit (converted to field strength @ 3 meters). # 2.7.12 Test Results Below 1GHz (Band 4 Worst Case Configuration) # Quasi Peak Data | Frequency
(MHz) | QuasiPeak
(dBμV/m) | Meas.
Time
(ms) | Bandwidth
(kHz) | Height
(cm) | Polarization | Azimuth
(deg) | Corr.
(dB) | Margin
(dB) | Limit
(dBµV/m) | |--------------------|-----------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------| | 30.440000 | 16.4 | 1000.0 | 120.000 | 214.0 | Н | 18.0 | -6.2 | 68.0 | 84.4 | | 71.341643 | 12.0 | 1000.0 | 120.000 | 100.0 | V | 25.0 | -16.9 | 72.4 | 84.4 | | 120.498838 | 12.8 | 1000.0 | 120.000 | 100.0 | V | 19.0 | -15.8 | 71.6 | 84.4 | | 122.466613 | 14.3 | 1000.0 | 120.000 | 105.0 | V | 13.0 | -15.9 | 70.1 | 84.4 | | 688.657956 | 21.5 | 1000.0 | 120.000 | 155.0 | V | 15.0 | 2.6 | 62.9 | 84.4 | | 959.098357 | 24.7 | 1000.0 | 120.000 | 100.0 | Н | 151.0 | 6.4 | 59.7 | 84.4 | **Test Notes:** Only worst case channel presented for cabinet spurious emissions verification. # 2.7.13 Test Results Above 1GHz (Band 4 Worst Case Configuration) # **Peak Data** | Data | | | | | | | | | | | |-------------------|-----|---------------------|-----------------------|--------------------|----------------|--------------|---------------|---------------|----------------|-------------------| | Frequenc
(MHz) | су | MaxPeak
(dBμV/m) | Meas.
Time
(ms) | Bandwidth
(kHz) | Height
(cm) | Polarization | Azimuth (deg) | Corr.
(dB) | Margin
(dB) | Limit
(dBµV/m) | | 1170.8406 | 581 | 37.0 | 1000.0 | 1000.000 | 100.0 | V | 135.0 | -8.3 | 47.4 | 84.4 | | 3455.2058 | 312 | 39.7 | 1000.0 | 1000.000 | 328.0 | V | 19.0 | -0.2 | 44.7 | 84.4 | | 6852.6194 | 139 | 45.9 | 1000.0 | 1000.000 | 200.0 | Н | 296.0 | 7.8 | 38.5 | 84.4 | | 6958.4238 | 348 | 47.7 | 1000.0 | 1000.000 | 350.0 | V | 74.0 | 8.5 | 36.7 | 84.4 | | 12957.215 | 832 | 51.0 | 1000.0 | 1000.000 | 138.0 | V | 257.0 | 17.3 | 33.4 | 84.4 | | 17996.100 | 000 | 59.5 | 1000.0 | 1000.000 | 400.0 | V | 60.0 | 28.1 | 24.9 | 84.4 | # **Average Data** | Frequency
(MHz) | Average
(dBμV/m) | Meas.
Time
(ms) | Bandwidth
(kHz) | Height
(cm) | Polarization | Azimuth
(deg) | Corr.
(dB) | Margin
(dB) | Limit
(dBµV/m) | |--------------------|---------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------| | 1170.840681 | 23.4 | 1000.0 | 1000.000 | 100.0 | V | 135.0 | -8.3 | 61.0 | 84.4 | | 3455.205812 | 26.7 | 1000.0 | 1000.000 | 328.0 | V | 19.0 | -0.2 | 57.7 | 84.4 | | 6852.619439 | 33.3 | 1000.0 | 1000.000 | 200.0 | Н | 296.0 | 7.8 | 51.1 | 84.4 | | 6958.423848 | 34.9 | 1000.0 | 1000.000 | 350.0 | V | 74.0 | 8.5 | 49.5 | 84.4 | | 12957.215832 | 38.0 | 1000.0 | 1000.000 | 138.0 | V | 257.0 | 17.3 | 46.4 | 84.4 | | 17996.100000 | 46.6 | 1000.0 | 1000.000 | 400.0 | V | 60.0 | 28.1 | 37.8 | 84.4 | ### **Substitution Data** | Frequency
(MHz) | Field
Strength @
3 meters
(dbµV/m) | Cable Loss
(dB) | Substitution
Antenna
Gain
(dBi) | Signal
Generator
Level
(dBm) | Substitution Data SGL+AG-CL (dBm) | Limit
(dBm) | Compliance | |--------------------|---|--------------------|--|---------------------------------------|-----------------------------------|----------------|------------| | | | | | | | | | **Test Notes:** Substitution data not required since margin is >20dB compared to the -13dBm limit (converted to field strength @ 3 meters). # 2.7.14 Test Results Below 1GHz (Band 13 Worst Case Configuration) # Quasi Peak Data | Frequency
(MHz) | QuasiPeak
(dBμV/m) | Meas.
Time
(ms) | Bandwidth
(kHz) | Height
(cm) | Polarization | Azimuth
(deg) | Corr.
(dB) | Margin
(dB) | Limit
(dBµV/m) | |--------------------|-----------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------| | 30.640000 | 19.5 | 1000.0 | 120.000 | 122.0 | V | -4.0 | -6.4 | 64.9 | 84.4 | | 58.794805 | 12.0 | 1000.0 | 120.000 | 300.0 | Н | -15.0 | -16.5 | 72.4 | 84.4 | | 67.432208 | 10.1 | 1000.0 | 120.000 | 146.0 | V | -10.0 | -17.1 | 74.3 | 84.4 | | 87.448312 | 14.5 | 1000.0 | 120.000 | 100.0 | V | -15.0 | -16.4 | 69.9 | 84.4 | | 117.741818 | 10.9 | 1000.0 | 120.000 | 200.0 | V | 351.0
 -15.8 | 73.5 | 84.4 | | 141.856623 | 7.3 | 1000.0 | 120.000 | 100.0 | V | 29.0 | -14.9 | 77.1 | 84.4 | | 520.378701 | 21.4 | 1000.0 | 120.000 | 100.0 | V | 262.0 | -0.8 | 63.0 | 84.4 | | 955.109091 | 23.9 | 1000.0 | 120.000 | 150.0 | V | 75.0 | 6.3 | 60.5 | 84.4 | **Test Notes:** Only worst case channel presented for cabinet spurious emissions verification. # 2.7.15 Test Results Above 1GHz (Band 13 Worst Case Configuration) ### **Peak Data** | ٠. | Julu | | | | | | | | | | |----|--------------------|---------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------| | | Frequency
(MHz) | MaxPeak
(dBμV/m) | Meas.
Time
(ms) | Bandwidth
(kHz) | Height
(cm) | Polarization | Azimuth
(deg) | Corr.
(dB) | Margin
(dB) | Limit
(dBµV/m) | | | 1254.866667 | 42.2 | 1000.0 | 1000.000 | 331.1 | Н | 159.0 | -5.4 | 42.2 | 84.4 | | | 1993.333333 | 45.1 | 1000.0 | 1000.000 | 250.6 | V | -8.0 | -2.0 | 39.3 | 84.4 | | | 3602.833333 | 43.6 | 1000.0 | 1000.000 | 202.3 | V | 198.0 | 1.7 | 40.8 | 84.4 | | | 5905.033333 | 46.0 | 1000.0 | 1000.000 | 373.0 | Н | 275.0 | 6.0 | 38.4 | 84.4 | | | 10991.833333 | 49.4 | 1000.0 | 1000.000 | 251.2 | Н | 166.0 | 12.1 | 35.0 | 84.4 | | | 16775.233333 | 54.4 | 1000.0 | 1000.000 | 367.0 | V | 343.0 | 19.1 | 30.0 | 84.4 | **Average Data** | Frequency
(MHz) | Average
(dBμV/m) | Meas.
Time
(ms) | Bandwidth
(kHz) | Height
(cm) | Polarization | Azimuth
(deg) | Corr.
(dB) | Margin
(dB) | Limit
(dBµV/m) | |--------------------|---------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------| | 1254.866667 | 28.2 | 1000.0 | 1000.000 | 331.1 | Н | 159.0 | -5.4 | 56.2 | 84.4 | | 1993.333333 | 29.2 | 1000.0 | 1000.000 | 250.6 | V | -8.0 | -2.0 | 55.2 | 84.4 | | 3602.833333 | 30.4 | 1000.0 | 1000.000 | 202.3 | V | 198.0 | 1.7 | 54.0 | 84.4 | | 5905.033333 | 32.5 | 1000.0 | 1000.000 | 373.0 | Н | 275.0 | 6.0 | 51.9 | 84.4 | | 10991.833333 | 36.1 | 1000.0 | 1000.000 | 251.2 | Н | 166.0 | 12.1 | 48.3 | 84.4 | | 16775.233333 | 41.0 | 1000.0 | 1000.000 | 367.0 | V | 343.0 | 19.1 | 43.4 | 84.4 | ### **Substitution Data** | | Frequency
(MHz) | Field Strength @ 3 meters (dbµV/m) | Cable Loss
(dB) | Substitution
Antenna
Gain
(dBi) | Signal
Generator
Level
(dBm) | Substitution Data SGL+AG-CL (dBm) | Limit
(dBm) | Compliance | |--|--------------------|------------------------------------|--------------------|--|---------------------------------------|-----------------------------------|----------------|------------| |--|--------------------|------------------------------------|--------------------|--|---------------------------------------|-----------------------------------|----------------|------------| **Test Notes:** Substitution data not required since margin is >20dB compared to the -13dBm limit (converted to field strength @ 3 meters). ### 2.8 FREQUENCY STABILITY #### 2.8.1 Specification Reference FCC 47 CFR Part 2, Clause 2.1055 FCC 47 CFR Part 27, Clause 27.54 RSS-130, Clause 4.3 RSS-139, Clause 6.4 ### 2.8.2 Standard Applicable FCC 47 CFR Part 27, Clause 27.54 The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation. RSS-130, Clause 4.3 The transmitter frequency stability limit shall be determined as follows: - (a) The frequency offset shall be measured according to the procedure described in RSS-Gen and recorded; - (b) Using a resolution bandwidth of 1% of the occupied bandwidth, a reference point at the unwanted emission level which complies with the attenuation of 43 + 10 log10 p (watts) on the emission mask of the lowest and highest channel shall be selected, and the frequency at these points shall be recorded as f_L and f_H respectively. The applicant shall ensure frequency stability by showing that f_L minus the frequency offset and f_H plus the frequency offset shall be within the frequency range in which the equipment is designed to operate. RSS-139, Clause 6.4 The frequency stability shall be sufficient to ensure that the occupied bandwidth stays within the operating frequency block when tested to the temperature and supply voltage variations specified in RSS-Gen. ### 2.8.3 Equipment Under Test and Modification State Serial No: 357591080022319 and 352753090010743 / Default Test Configuration # 2.8.4 Date of Test/Initial of test personnel who performed the test June 05 and October 23, 2017 /FSC ### 2.8.5 Test Equipment Used The major items of test equipment used for the above tests are identified in Section 3.1. #### 2.8.6 Environmental Conditions Test performed at TÜV SÜD America Inc. Rancho Bernardo facility. Ambient Temperature 25.5 - 26.3°C Relative Humidity 30.1 - 47.5% ATM Pressure 98.7 - 99.2 kPa #### 2.8.7 Additional Observations - This is a conducted test. The EUT was operated at 4.2VDC nominal voltage and was placed in the temperature chamber for the series of evaluations performed. - Test methodology is per Section 5.6 of ANSI C63.26-2015, American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services. - Voltage variations from Nominal Voltage of 4.2VDC were performed @ 20°C. - Reference measurements were performed on mid channels only. - The Temperature was set to 50°C and allowed to sit for 1 hour to allow the equipment and chamber temperature to stabilize. Once stabilized, the EUT was turned on and the measurement performed. The temperature was then decreased by 10°C steps and allowed to settle before taking the next set of measurements. - Voltage variation was also performed at 85% and 115% of the nominal voltage. - Frequency offsets were calculated based from the reference carrier @ 20°C nominal voltage. - Once the worst case frequency offset was determined, the offset was applied to FL and FH to verify compliance. - FL and FH are reference points at the unwanted emission level which complies with the attenuation of 43 + 10 log10 p (watts) on the emission mask of the lowest and highest channel. - Frequency stability compliance is determined by showing that fL minus the frequency offset and fH plus the frequency offset is within the frequency range in which the equipment is designed to operate. #### 2.8.8 Sample Calculations LTE Band 4: Reference Center Frequency @ 20°C: $=\frac{T1+T2}{2}$ T_2 and T_1 are Marker Points on the plot based on 99% OBW $= \frac{1731.9561 \text{ MHz} + 1733.0403 \text{ MHz}}{2}$ = 1732.4982 MHz Reference Center Frequency @ 50°C: $= \frac{1731.9453 \text{ MHz} + 1733.0289 \text{ MHz}}{2}$ = 1732.4871 MHz Therefore Frequency Deviation: = 1732.4982 MHz – 1732.4871 MHz = -0.0111 MHz Reference $F_L @ 20^{\circ}C$: 1710.067 MHz (based from Low Channel lower edge 99% OBW) Reference $F_H @ 20^{\circ}C$: 1754.904 MHz (based from High Channel upper edge 99% OBW) Using Frequency Deviation as the offset for both F_L and F_H , we get the following: F_L =1710.067 MHz - 0.0111 MHz = 1710.0559 MHz (within the 1710 MHz – 1755 MHz Band, complies) F_H =1754.904 MHz + 0.0111 MHz = 1754.9151 MHz (within the 1710 MHz – 1755 MHz Band, complies) # 2.8.9 Frequency Offsets Summary | LTE Band 12 | | | | | | |----------------|---|---|---------------------------|---------------------------------|--| | Temperature | F _L /T ₁
(MHz) | F _H /T ₂
(MHz) | Center Frequency
(MHz) | Frequency
Deviation
(MHz) | | | 50°C | 706.9579 | 708.0391 | 707.4985 | -0.001800 | | | 40°C | 706.957 | 708.0380 | 707.4975 | -0.000800 | | | 30°C | 706.9565 | 708.0375 | 707.497 | -0.000300 | | | 20°C (+15% NV) | 706.9561 | 708.0373 | 707.4967 | 0.000000 | | | 20°C (NV) | 706.9561 | 708.0373 | 707.4967 | 0.000000 | | | 20°C (-15% NV) | 706.9561 | 708.0373 | 707.4967 | 0.000000 | | | 10°C | 706.9565 | 708.0375 | 707.497 | -0.000300 | | | 0°C | 706.9572 | 708.0385 | 707.49785 | -0.001150 | | | -10°C | 706.9577 | 708.0380 | 707.49785 | -0.001150 | | | -20°C | 706.9561 | 708.0370 | 707.49655 | 0.000150 | | | -30°C | 706.9561 | 708.0373 | 707.4967 | 0.000000 | | | LTE Band 4 | | | | | | |----------------|---|-----------|---------------------------|---------------------------------|--| | Temperature | F _L /T ₁ F _H /T ₂ (MHz) | | Center Frequency
(MHz) | Frequency
Deviation
(MHz) | | | 50°C | 1731.9453 | 1733.0289 | 1732.4871 | 0.011100 | | | 40°C | 1731.946 | 1733.0412 | 1732.4936 | 0.004600 | | | 30°C | 1731.951 | 1733.0422 | 1732.4966 | 0.001600 | | | 20°C (+15% NV) | 1731.9561 | 1733.0403 | 1732.4982 | 0.000000 | | | 20°C (NV) | 1731.9561 | 1733.0403 | 1732.4982 | 0.000000 | | | 20°C (-15% NV) | 1731.9561 | 1733.0403 | 1732.4982 | 0.000000 | | | 10°C | 1731.9561 | 1733.0382 | 1732.49715 | 0.001050 | | | 0°C | 1731.962 | 1733.0394 | 1732.5007 | -0.002500 | | | -10°C | 1731.958 | 1733.0365 | 1732.49725 | 0.000950 | | | -20°C | 1731.958 | 1733.0373 | 1732.49765 | 0.000550 | | | -30°C | 1731.9543 | 1733.0373 | 1732.4958 | 0.002400 | | | LTE Band 13 | | | | | | |----------------|---|----------|---------------------------|---------------------------------|--| | Temperature | F _L /T ₁ F _H /T ₂ (MHz) | | Center Frequency
(MHz) | Frequency
Deviation
(MHz) | | | 50°C | 781.3253 | 782.6357 | 781.9805 | 0.02250 | | | 40°C | 781.3878 | 782.5923 | 781.9901 | 0.01295 | | | 30°C | 781.4144 | 782.5723 | 781.9934 | 0.00965 | | | 20°C (+15% NV) | 781.4249 | 782.5661 | 781.9955 | 0.00750 | | | 20°C (NV) | 781.4465 | 782.5541 | 782.0030 | 0.00000 | | | 20°C (-15% NV) | 781.4537 | 782.5481 | 782.0009 |
0.00210 | | | 10°C | 781.4540 | 782.5507 | 782.0024 | 0.00065 | | | 0°C | 781.4555 | 782.5547 | 782.0051 | -0.00210 | | | -10°C | 781.4543 | 782.5553 | 782.0048 | -0.00180 | | | -20°C | 781.4561 | 782.5535 | 782.0048 | -0.00180 | | | -30°C | 781.4555 | 782.5493 | 782.0024 | 0.00060 | | # 2.8.10 Frequency Offset Test Plots #### 2.9 POWER LINE CONDUCTED EMISSIONS #### 2.9.1 Specification Reference RSS-Gen 8.8 ### 2.9.2 Standard Applicable A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz-30 MHz, shall not exceed the limits in table below. Unless the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in table below. The more stringent limit applies at the frequency range boundaries. | | Conducted | limit (dBμV) | |-----------------------------|------------|--------------| | Frequency of emission (MHz) | Quasi-peak | Average** | | 0.15-0.5 | 66 to 56* | 56 to 46* | | 0.5–5 | 56 | 46 | | 5–30 | 60 | 50 | ^{*} The level decreases linearly with the logarithm of the frequency. ### 2.9.3 Equipment Under Test and Modification State Serial No: 352753090010743/ Default Test Configuration # 2.9.4 Date of Test/Initial of test personnel who performed the test May 24, 2017/FSC ### 2.9.5 Test Equipment Used The major items of test equipment used for the above tests are identified in Section 3.1. ### 2.9.6 Environmental Conditions Test performed at TÜV SÜD America Inc. Rancho Bernardo facility. $\begin{array}{lll} \mbox{Ambient Temperature} & 26.5\ \mbox{°C} \\ \mbox{Relative Humidity} & 45.0\ \% \\ \mbox{ATM Pressure} & 98.5\ \mbox{kPa} \end{array}$ ^{**} A linear average detector is required. #### 2.9.7 Additional Observations - The EUT is a module. Test was performed to show general compliance to RSS-Gen Power Line Conducted Emissions requirements. As a general rule, the EUT should be verified in the final host. It is the responsibility of the module integrator to verify compliance of the final host. - EUT was verified using the test configuration provided by the manufacturer (EUT on a development board powered by a support programmable power supply). - The EUT was transmitting worst case configuration with a representative antenna. - Measurement was done using EMC32 automated software. Reported level is the actual level with all the correction factors factored in. Correction Factor column is for informational purposes only. See Section 2.9.8 for sample computation. ### 2.9.8 Sample Computation (Conducted Emission – Quasi Peak) | Measuring equipment raw me | | 5.5 | | |-----------------------------|--------------------------------|------|------| | Compation Footon (dD) | Asset# 8607 (20 dB attenuator) | 19.9 | | | | Asset# 1177 (cable) | 0.15 | 20.7 | | Correction Factor (dB) | Asset# 1176 (cable) | 0.35 | 20.7 | | | Asset# 7567 (LISN) | 0.30 | | | Reported QuasiPeak Final Me | | 26.2 | | #### 2.9.9 Test Results Compliant. See attached plots and tables. # 2.9.10 Test Results - Conducted Emissions Line 1 ### Quasi Peak | Frequency
(MHz) | QuasiPeak
(dBμV) | Meas. Time
(ms) | Bandwidth
(kHz) | Filter | Line | Corr.
(dB) | Margin -
QPK
(dB) | Limit -
QPK
(dBμV) | |--------------------|---------------------|--------------------|--------------------|--------|------|---------------|-------------------------|--------------------------| | 0.195000 | 30.6 | 1000.0 | 9.000 | Off | L1 | 20.1 | 33.1 | 63.7 | | 0.433500 | 27.3 | 1000.0 | 9.000 | Off | L1 | 20.0 | 29.8 | 57.1 | | 0.892500 | 25.8 | 1000.0 | 9.000 | Off | L1 | 20.0 | 30.2 | 56.0 | | 3.651000 | 23.6 | 1000.0 | 9.000 | Off | L1 | 20.1 | 32.4 | 56.0 | | 12.165000 | 36.9 | 1000.0 | 9.000 | Off | L1 | 20.2 | 23.1 | 60.0 | | 14.253000 | 42.8 | 1000.0 | 9.000 | Off | L1 | 20.3 | 17.2 | 60.0 | #### **Average** | Frequency
(MHz) | Average
(dBμV) | Meas. Time
(ms) | Bandwidth
(kHz) | Filter | Line | Corr.
(dB) | Margin -
Ave
(dB) | Limit - Ave
(dBμV) | |--------------------|-------------------|--------------------|--------------------|--------|------|---------------|-------------------------|-----------------------| | 0.267000 | 22.6 | 1000.0 | 9.000 | Off | L1 | 20.0 | 28.4 | 51.0 | | 0.442500 | 21.6 | 1000.0 | 9.000 | Off | L1 | 20.0 | 25.4 | 46.9 | | 0.987000 | 21.3 | 1000.0 | 9.000 | Off | L1 | 20.0 | 24.7 | 46.0 | | 3.021000 | 17.7 | 1000.0 | 9.000 | Off | L1 | 20.1 | 28.3 | 46.0 | | 12.349500 | 34.7 | 1000.0 | 9.000 | Off | L1 | 20.2 | 15.3 | 50.0 | | 14.253000 | 41.5 | 1000.0 | 9.000 | Off | L1 | 20.3 | 8.5 | 50.0 | #### 2.9.11 Test Results - Conducted Emissions Line 2 #### **Quasi Peak** | Frequency
(MHz) | QuasiPeak
(dBμV) | Meas. Time
(ms) | Bandwidth
(kHz) | Filter | Line | Corr.
(dB) | Margin -
QPK
(dB) | Limit -
QPK
(dBµV) | |--------------------|---------------------|--------------------|--------------------|--------|------|---------------|-------------------------|--------------------------| | 0.424500 | 27.4 | 1000.0 | 9.000 | Off | N | 20.0 | 29.8 | 57.3 | | 1.234500 | 25.0 | 1000.0 | 9.000 | Off | N | 20.0 | 31.0 | 56.0 | | 3.475500 | 23.4 | 1000.0 | 9.000 | Off | N | 20.1 | 32.6 | 56.0 | | 11.044500 | 21.4 | 1000.0 | 9.000 | Off | N | 20.2 | 38.6 | 60.0 | | 14.298000 | 34.5 | 1000.0 | 9.000 | Off | N | 20.2 | 25.5 | 60.0 | | 17.295000 | 31.9 | 1000.0 | 9.000 | Off | N | 20.3 | 28.1 | 60.0 | #### Average | Frequency
(MHz) | Average
(dBμV) | Meas. Time
(ms) | Bandwidth
(kHz) | Filter | Line | Corr.
(dB) | Margin -
Ave
(dB) | Limit - Ave
(dBμV) | |--------------------|-------------------|--------------------|--------------------|--------|------|---------------|-------------------------|-----------------------| | 0.294000 | 22.4 | 1000.0 | 9.000 | Off | N | 20.0 | 27.7 | 50.2 | | 0.987000 | 21.2 | 1000.0 | 9.000 | Off | N | 20.0 | 24.8 | 46.0 | | 2.184000 | 17.7 | 1000.0 | 9.000 | Off | N | 20.1 | 28.3 | 46.0 | | 11.076000 | 15.8 | 1000.0 | 9.000 | Off | N | 20.2 | 34.2 | 50.0 | | 14.437500 | 32.3 | 1000.0 | 9.000 | Off | N | 20.2 | 17.7 | 50.0 | | 17.313000 | 27.6 | 1000.0 | 9.000 | Off | N | 20.4 | 22.4 | 50.0 | # **SECTION 3** **TEST EQUIPMENT USED** # 3.1 TEST EQUIPMENT USED List of absolute measuring and other principal items of test equipment. | ID Number
(SDGE/SDRB) | Test Equipment | Туре | Serial Number | Manufacturer | Cal Date | Cal Due Date | |--------------------------|--|-------------------------|--------------------|----------------------------|----------------|--------------| | Antenna Conduc | ted Port Setup | | | | | | | 7606 | USB RF Power Sensor | RadiPower
RPR3006W | 14I00048SNO
048 | DARE!! Instruments | 11/30/16 | 11/30/17 | | 7582 | Signal/Spectrum
Analyzer | FSW26 | 101614 | Rhode & Schwarz | 12/14/17 | 12/14/18 | | 7608 | Vector Signal Generator | SMBV100A | 259021 | Rhode & Schwarz | 09/19/17 | 09/19/19 | | 8825 | 20dB Attenuator | 46-20-34 | BK5773 | Weinschel Corp. | Verified by 75 | 582 and 7608 | | 8832 | 20dB Attenuator | 34-20-34 | BP4150 | MCE/Weinschel | Verified by 75 | 582 and 7608 | | Radiated Emission | ons | | | | | | | 1033 | Bilog Antenna | 3142C | 00044556 | EMCO | 11/20/17 | 11/20/19 | | 1040 | EMI Test Receiver | ESIB40 | 100292 | Rhode & Schwarz | 10/25/17 | 10/25/18 | | 1016 | Pre-amplifier | PAM-0202 | 187 | PAM | 02/09/17 | 02/09/18 | | 7631 | Double-ridged waveguide horn antenna | 3117 | 00205418 | ETS-Lindgren | 08/03/17 | 08/03/18 | | 1049 | EMI Test Receiver | ESU | 100133 | Rhode & Schwarz | 07/13/17 | 07/13/18 | | 8628 | Pre-amplifier | QLJ 01182835-JO | 8986002 | QuinStar Technologies Inc. | 02/09/17 | 02/09/18 | | 7608 | Vector Signal Generator | SMBV100A | 259021 | Rhode & Schwarz | 09/19/17 | 09/19/19 | | 7611 | Signal/Spectrum
Analyzer | FSW26 | 102017 | Rhode & Schwarz | 04/25/17 | 04/25/18 | | AC Conducted Er | missions | | | | | | | 1049 | EMI Test Receiver | ESU | 100133 | Rhode & Schwarz | 04/26/17 | 04/26/18 | | 7568 | LISN | FCC-LISN-50-25-
2-10 | 120305 | Fischer Custom Comm. | 11/05/16 | 11/05/17 | | 8822 | 20dB Attenuator | 34-20-34 | N/A | MCE / Weinschel | 03/08/17 | 03/08/18 | | 8824 | 20dB Attenuator | 34-20-34 | N/A | MCE / Weinschel | 03/08/17 | 03/08/18 | | Miscellaneous | | | | | | | | 6708 | Multimeter | 34401A | US36086974 | Hewlett Packard | 07/05/17 | 07/05/18 | | 7554 | Barometer/Temperature
/Humidity Transmitter | iBTHX-W | 0400706 | Omega | 01/17/17 | 01/17/18 | | 7539 | DC Power Supply | 6434B | 1140A01866 | Hewlett Packard | Verified | by 6708 | | | Test Software | EMC32 | V8.53 | Rhode & Schwarz | N, | /A | | | 1 | 1 | 1 | l | | | ## 3.2 MEASUREMENT UNCERTAINTY For a 95% confidence level, the measurement uncertainties for defined systems are: # 3.2.1 Conducted Antenna Port Measurement | | Contribution | Probability
Distribution
Type | Probability
Distribution xi | Standard
Uncertainty
u(xi) | [u(xi)]2 | |---|----------------------------|-------------------------------------|--------------------------------|----------------------------------|----------| | 1 | Receiver/Spectrum Analyzer | Rectangular | 0.08 | 0.05 | 0.00 | | 2 | Cables | Rectangular | 0.30 | 0.17 | 0.03 | | 4 | EUT Setup | Rectangular | 0.50 | 0.29 | 0.08 | | | | | Combined | l Uncertainty (uշ): | 0.34 | | | | | Co | verage Factor (k): | 1.96 | | | | | Expar | nded Uncertainty: | 0.67 | ## 3.2.2 AC Conducted Emissions | | Contribution | Probability
Distribution
Type | Probability
Distribution x _i | Standard
Uncertainty
u(x _i
) | [u(x _i)]² | |---|----------------------------|-------------------------------------|--|---|-----------------------| | 1 | Receiver/Spectrum Analyzer | Rectangular | 0.36 | 0.21 | 0.04 | | 2 | Cables | Rectangular | 0.50 | 0.29 | 0.08 | | 3 | LISN | Rectangular | 0.66 | 0.38 | 0.15 | | 4 | Attenuator | Rectangular | 0.30 | 0.17 | 0.03 | | 5 | EUT Setup | Rectangular | 1.00 | 0.58 | 0.33 | | | | | Combined | l Uncertainty (u₀): | 0.80 | | | | | Co | verage Factor (k): | 2 | | | | | Expar | nded Uncertainty: | 1.59 | ## 3.2.3 Radiated Measurements (Below 1GHz) | | Contribution | Probability
Distribution
Type | Probability
Distribution x _i | Standard
Uncertainty
u(x _i) | [u(x _i)]² | |---|----------------------------|-------------------------------------|--|---|-----------------------| | 1 | Receiver/Spectrum Analyzer | Rectangular | 0.45 | 0.26 | 0.07 | | 2 | Cables | Rectangular | 0.50 | 0.29 | 0.08 | | 3 | Preamp | Rectangular | 0.50 | 0.29 | 0.08 | | 4 | Antenna | Rectangular | 0.75 | 0.43 | 0.19 | | 5 | Site | Triangular | 3.52 | 1.44 | 2.07 | | 6 | EUT Setup | Rectangular | 1.00 | 0.58 | 0.33 | | | | | Combined | l Uncertainty (uշ): | 1.68 | | | | | Co | verage Factor (k): | 2 | | | | | Expar | nded Uncertainty: | 3.36 | ## 3.2.4 Radiated Measurements (Above 1GHz) | | Contribution | Probability
Distribution
Type | Probability
Distribution x _i | Standard
Uncertainty
u(x _i) | [u(x _i)]² | |---|----------------------------|-------------------------------------|--|---|-----------------------| | 1 | Receiver/Spectrum Analyzer | Rectangular | 0.57 | 0.33 | 0.11 | | 2 | Cables | Rectangular | 0.70 | 0.40 | 0.16 | | 3 | Preamp | Rectangular | 0.50 | 0.29 | 0.08 | | 4 | Antenna | Rectangular | 0.37 | 0.21 | 0.05 | | 5 | Site | Triangular | 3.00 | 1.22 | 1.50 | | 6 | EUT Setup | Rectangular | 1.00 | 0.58 | 0.33 | | | | | Combined | l Uncertainty (uշ): | 1.49 | | | | | Co | verage Factor (k): | 2 | | | | | Expar | nded Uncertainty: | 2.99 | # **SECTION 4** ## **DIAGRAM OF TEST SETUP** ## 4.1 TEST SETUP DIAGRAM Radiated Emission Test Setup (Below 1GHz) Radiated Emission Test Setup (Above 1GHz) Substitution Test Method (Above 1GHz, if applicable) **Frequency Stability Test Configuration** **Conducted Emissions Test Configuration (if applicable)** ## **SECTION 5** ACCREDITATION, DISCLAIMERS AND COPYRIGHT ### 5.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT TÜV SÜD America Inc.'s reports apply only to the specific sample tested under stated test conditions. It is the manufacturer's responsibility to assure the continued compliance of production units of this model. TÜV SÜD America, Inc. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD America, Inc.'s issued reports. This report is the confidential property of the client. As a mutual protection to our clients, the public and TÜV SÜD America, Inc., extracts from the test report shall not be reproduced, except in full without TÜV SÜD America, Inc.'s written approval. This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the federal government. TÜV SÜD America, Inc. and its professional staff hold government and professional organization certifications for AAMI, ACIL, AEA, ANSI, IEEE, A2LA, NIST and VCCI.