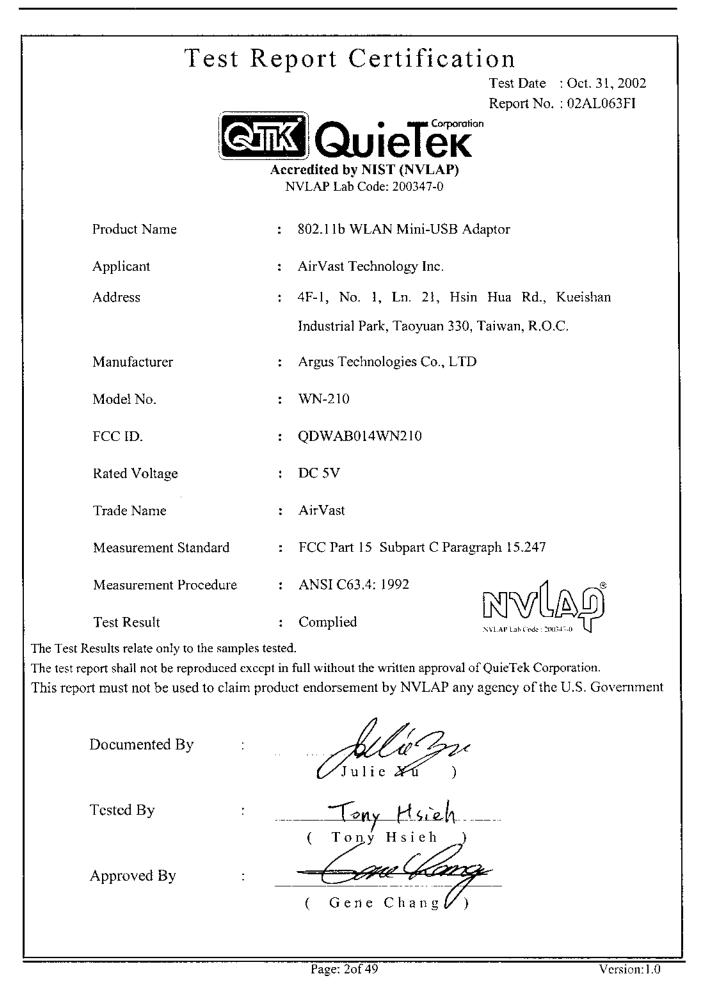


Product Name : 802.11b WLAN Mini-USB Adaptor Model No.: WN-210 FCC ID.: QDWAB014WN210

Applicant : AirVast Technology Inc.

Address : 4F-1, No. 1, Ln. 21, Hsin Hua Rd., Kueishan Industrial Park, Taoyuan 330, Taiwan, R.O.C.


Date of Receip	t :	Oct. 25, 2002
Date of Test	:	Oct. 31, 2002
Report No.	:	02AL063FI

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

QuieTek

Report No. 02AL063FI

TABLE OF CONTENTS

De	scription	Page
1.	GENERAL INFORMATION	5
1.1.	EUT Description	
1.2.	Operational Description	
1.3.	Tested System Datails	
1.4.	Configuration of Tested System	
1.5.	EUT Exercise Software	
1.6.	Test Facility	
2.	Conducted Emission	
2.1.	Test Equipment	
2.2.	Test Setup	
2.3.	Limits	
2.4.	Test Procedure	
2.5		
2.6.	Test Result of Conducted Emission	
3.	Peak Power Output	14
3.1.	Test Equipment	
3.2.	Test Setup	
3.3.	Limits	
3.4.	Test Result of Peak Power Output	
4.	RF Exposure Evaluation	16
4.1.	Fries Formula	
4.2.	EUT Operation condition	
4.3.	Test Result of RF Exposure Evaluation	
5.	Radiated Emission	
5.1.	Test Equipment	
5.2.	Test Setup	
5.3.	Limits	
5.4.	Test Procedure	
5.5.	Test Result of Radiated Emission	
6.	Band Edge	
6.1.	Test Equipment	
6.2.	Test Setup	
6.3.	Limits	
6.4.	Test Procedure	
6.5.	Test Result of Band Edge	
7.	Occupied Bandwidth	
7.1.	Test Equipment	
7.2.	Test Setup	
7.3.	Limits	
7.4.	Test Result of Occupied Bandwidth	
8.	Power Density	
	D 2 640	

8.1.	Test Equipment	
8.2.	Test Setup	
8.3.	Limits	
8.4.	Test Result of Power Density	44
9.	EMI Reduction Method During Compliance Testing	47
Attachment 1:	EUT Test Photographs	

Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	:	802.11b WLAN Mini-USB Adaptor
Trade Name	:	AirVast
FCC ID.	:	QDWAB014WN210
Model No.	:	WN-210
Frequency Range	:	2400 MHz to 2483.5MHz
Channel Number	:	11
		11Mbps and 5.5Mbps: CCK; 2Mbps: DQPSK
Chip Rate	:	1Mbps: DBPSK
Type of Modulation	:	Direct Sequence Spread Spectrum
Antenna type	:	Printed
Antenna Gain	:	1.1dBi
Operator Selection of	:	By software
Operating Frequency		
USB Cable	:	Non-shielded, 1.5m, one ferrite core bonded
Frequency of Each Chann	nel	

Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 1:	2412 MHz	Channel 5:	2432 MHz	Channel 9:	2452 MHz
Channel 2:	2417 MHz	Channel 6:	2437 MHz	Channel 10:	2457 MHz
Channel 3:	2422 MHz	Channel 7:	2442 MHz	Channel 11:	2462 MHz
Channel 4:	2427 MHz	Channel 8:	2447 MHz		

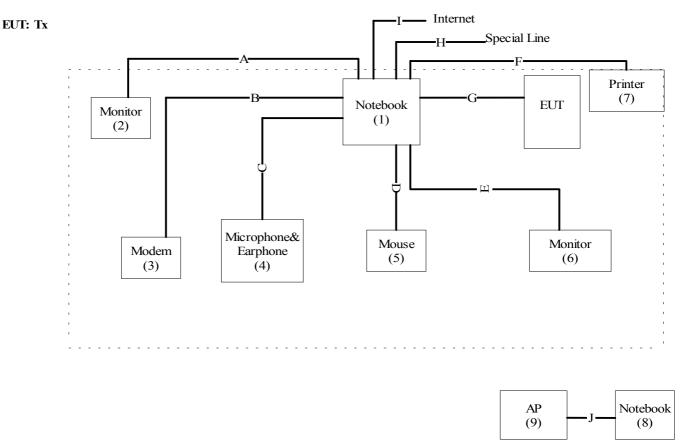
- 1. This device is a 2.4GHz 802.11b WLAN Mini-USB Adaptor included a 2.4GHz receiving function, a 2.4GHz transmitting function.
- 2. Regards to the frequency band operation; two rate that were included the lowest > middle and highest frequency of channel were selected to perform the test, then shown on this report.
- 3. These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15 Subpart C Paragraph 15.247 for spread spectrum devices.
- 4. This device is a composite device in accordance with Part 15 regulations. The function receiving was measured and made a test report that the report number is 02AL063F under Declaration of Conformity.

1.2. Operational Description

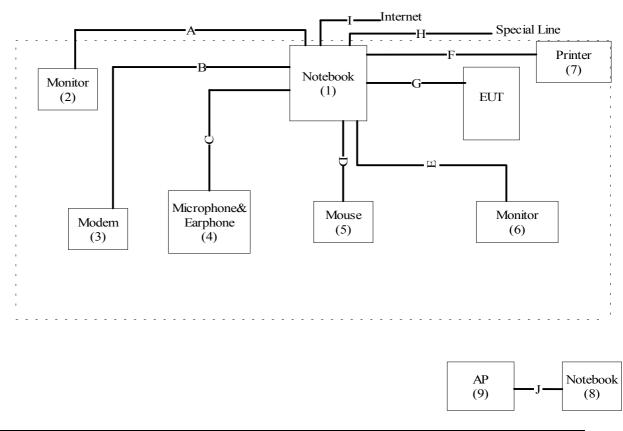
EUT is a 802.11b WLAN Mini-USB Adaptor with 11 channels. This device provided four kind of transmitting speed 1,2,5.5 and 11Mbps. The device of RF carrier is DQPSK, DB PSK and CCK.

The device adapts direct sequence spread spectrum modulation. The Connector antenna was scolded on PCB provides diversity function to improve the receiving function.

This Broadband Wireless Router is an IEEE 802.11b Wireless LAN adapter. It allows your computer to connect to a wireless network and to share resources, such as files or printers without being bound to the network wires. Operation in 2.4GHz Direst Sequence Spread Spectrum (DSSS) radio transmission, the Broadband Wireless Router transfers data at speeds up to 64/128-bit Wired Equivalent Protection (WEP) algorithm is used. In addition, its standard compliance ensures that it can communicate with any IEEE 802.11b network.


1.3. Tested System Datails

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:


	Product	Manufacturer	Model No.	Serial No.	FCC ID.	Power Cord
(1)	Notebook	DELL	PP01L	N/A	DoC	Non-shielded, 1.8m
(2)	Monitor	ADI	CM703	038054T10203876A	DoC	Non-shielded, 1.8m
(3)	Modem	ACEEX	DM-1414	0102027557	IFAXDM1414	Non-shielded, 1.8m
(4)	Microphone& Earphone	ТОКТО	SX-MI	N/A	DoC	N/A
(5)	Mouse	HITACHI	PC-KM1300	N/A	JNZ201213	N/A
(6)	Monitor	SONY	PVM-14M2U	2105742	DoC	Non-shielded, 1.8m
(7)	Printer	EPSON	Color 680	023913	DoC	Non-shielded, 1.8m
(8)	Notebook	DELL	PP01L	N/A	DoC	Non-shielded, 1.8m
(9)	AP	ASUS	AC300	N/A	DoC	Non-shielded, 1.8m

Signa	al Cable Type	Signal cable Description
A.	Monitor Cable	Shielded, 1.8m, a ferrite core bonded.
B.	Modem Cable	Shielded, 1.5m
C.	Microphone & Earphone Cable	Non-shielded, 1.8m.
D.	Mouse Cable	Non-shielded, 1.0m.
E.	Monitor Cable	Shielded, 1.2m
F.	Printer Cable	Shielded, 1.7m
G.	USB Cable	Shielded, 1.5m, a ferrite core bonded.
H.	Telecom Cable	Non-shielded, 6.0m.
I.	LAN Cable	Non-shielded, 6.0m.
J.	LAN Cable	Non-shielded, 1.0m.

1.4. Configuration of Tested System

EUT: Rx

1.5. EUT Exercise Software

- 1.4.1 Setup the EUT and simulators as shown on 1.3.
- 1.4.2 Turn on the power of all equipment.
- 1.4.3 Notebook PC reads data from disk.
- 1.4.4 Data will be transmitted through EUT.
- 1.4.5 The transmit status will be shown on the monitor.
- 1.4.6 Repeat the above procedure 1.4.3 to 1.4.5

1.6. Test Facility

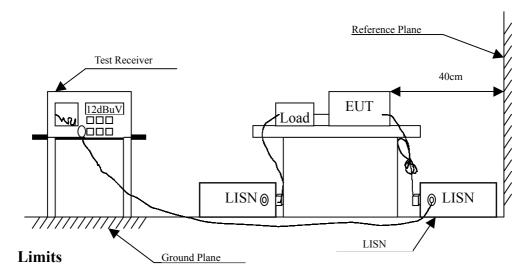
Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

Site Description:	June 22, 2001 File on	
	Federal Communications Commission	
	FCC Engineering Laboratory	
	7435 Oakland Mills Road	
	Columbia, MD 21046	
	Reference 31040/SIT1300F2	
	July 03, 2001 Accreditation on NVLAP	NVEN Lab Code: 2005550
	NVLAP Lab Code: 200533-0	
Site Name:	Quietek Corporation	
Site Address:	No. 5-22, Ruei-Shu Valley, Ruei-Ping Tsuen, Lin-Kou Shiang, Taipei, Taiwan, R.O.C. TEL: 886-2-8601-3788 / FAX : 886-2-8601-37 E-Mail : <u>service@quietek.com</u>	789

2. Conducted Emission

2.1. Test Equipment


The following test equipment are used during the conducted emission test:

Item	Instrument	Manufacturer	Type No./Serial No	Last Cal.	Remark
1	Test Receiver	R & S	ESCS 30/825442/17	May, 2002	
2	L.I.S.N.	R & S	ESH3-Z5/825016/6	May, 2002	EUT
3	L.I.S.N.	Kyoritsu	KNW-407/8-1420-3	May, 2002	Peripherals
4	Pulse Limiter	R & S	ESH3-Z2	N/A	
5	No.2 Shielded Roo	m		N/A	

Note: All equipment upon which need to calibrated are with calibration period of 1 year.

2.2. Test Setup

2.3.

FCC Par	FCC Part 15 Paragraph 15.207 (dBuV)		
Frequency	Limits		
MHz	Quasi-peak	Average	
0.15 - 0.5	66 to 56	56 to 46	
0.5-5	56	46	
5 - 30	60	50	

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4:1992 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

2.5.

2.6. Test Result of Conducted Emission

Product	:	802.11b WLAN Mini-USB Adaptor
Test Item	:	Conducted Emission Test
Test Site	:	No.4 Shielded Room
Power Line	:	Line 1
Test Mode	:	Normal Operation

Frequency	Cable	LISN Factor	Reading	Emission	Limits
MHz	Loss dB	Factor dB	Level dBuV	Level dBuV	dBuV
Quasi-Pe	eak Detect	======== tor			
*0.181	0.21	0.10	48.04	48.35	64.43
0.240	0.21	0.10	40.10	40.41	62.10
0.297	0.21	0.10	34.63	34.94	60.32
3.815	0.17	0.16	29.40	29.73	56.00
7.103	0.33	0.19	26.79	27.30	60.00
19.138	0.34	0.44	23.82	24.60	60.00
Average	Detector				
0.181	0.21	0.10	38.90	39.21	54.44
0.240	0.21	0.10	30.80	31.11	52.10
0.297	0.21	0.10	28.10	28.41	50.33
3.815	0.17	0.16	19.70	20.03	46.00
7.103	0.33	0.19	7.60	8.11	50.00
19.138	0.34	0.44	19.20	19.98	50.00

Remarks :

1.All Readings below 1GHz are Quasi-Peak and Average value.

2." * " means that this data is the worst emission level.

3.Emission Level = Reading Level + LISN Factor + Cable Loss.

QuieTer

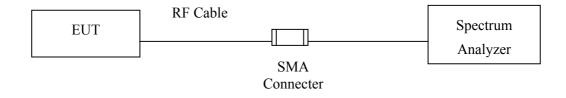
Product Test Item Test Site Power Line Test Mode	: Co : No : Lin	2.11b WLA inducted Em o.4 Shielded ne 2 ormal Opera	Room		
Frequency	Cable Loss	LISN Factor	Reading Level	Emission Level	Limits
MHz	dB	dB	dBuV	dBuV	dBuV
Quasi-Pe	ak Detect	======================================			
*0.177	0.21	0.10	48.65	48.96	64.61
0.240	0.21	0.10	38.97	39.28	62.10
0.298	0.21	0.10	33.33	33.64	60.29
3.576	0.23	0.16	28.02	28.40	56.00
7.107	0.33	0.19	26.73	27.24	60.00
14.205	0.30	0.33	27.88	28.51	60.00
Average	Detector				
0.177	0.21	0.10	40.40	40.71	54.63
0.240	0.21	0.10	29.40	29.71	52.10
0.298	0.21	0.10	25.10	25.41	50.30
3.576	0.23	0.16	22.20	22.58	46.00
7.107	0.33	0.19	8.20	8.71	50.00
14.206	0.30	0.33	12.20	12.83	50.00

Remarks :

- 1. All Readings below 1GHz are Quasi-Peak and Average value.
- 2. "*" means that this data is the worst emission level.
- 3. Emission Level = Reading Level + LISN Factor + Cable Loss.

3. Peak Power Output

3.1. Test Equipment


The following test equipments are used during the radiated emission tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Х	Spectrum Analyzer	Advantest	R3272 / 72421194	May, 2002

Note: 1. All equipment upon which need to calibrated are with calibration period of 1 year.2. Mark "X" test instruments are used to measure the final test results.

3.2. Test Setup

Conduction Power Measurement

3.3. Limits

The maximum peak power shall be less 1 Watt.

3.4. Test Result of Peak Power Output

Product	:	802.11b WLAN Mini-USB Adaptor
Test Item	:	Peak Power Output Data
Test Site	:	No.2 OATS
Test Mode	:	Normal Operation

Data Speed: 1Mbps

Channel No.	Frequency(MHz)	Measurement	Required Limit	Result
1	2410.80	11.64dBm	1Watt= 30 dBm	Pass
6	2435.80	10.42dBm	1Watt= 30 dBm	Pass
11	2460.80	8.13dBm	1Watt= 30 dBm	Pass

Data Speed: 11Mbps

Channel No.	Frequency (MHz)	Measurement	Required Limit	Result
1	2410.80	11.42dBm	1Watt= 30 dBm	Pass
6	2435.70	10.00dBm	1Watt= 30 dBm	Pass
11	2460.80	7.86dBm	1Watt= 30 dBm	Pass

4. **RF Exposure Evaluation**

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b) LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

		· · · · · · · · · · · · · · · · · · ·	/			
Frequency Range	Electric Field	Magnetic Field	Power Density	Average Time		
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm ²)	(Minutes)		
	(A) Limits for	Occupational/ Contr	ol Exposures			
300-1500			F/300	6		
1500-100,000			5	6		
	(B) Limits for General Population/ Uncontrolled Exposures					
300-1500			F/1500	6		
1500-100,000			1	30		

F= Frequency in MHz

4.1. Fries Formula

Fries transmission formula: $Pd = (Pout*G)/(4*pi*r^2)$

Where

Pd = power density in mW/cm² Pout = output power to antenna in mW G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm^2 . If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

4.2. **EUT Operation condition**

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

4.3. Test Result of RF Exposure Evaluation

Product	:	802.11b WLAN Mini-USB Adaptor
Test Item	:	RF Exposure Evaluation Data
Test Site	:	No.2 OATS
Test Mode	:	Normal Operation

4.3.1 Antenna Gain

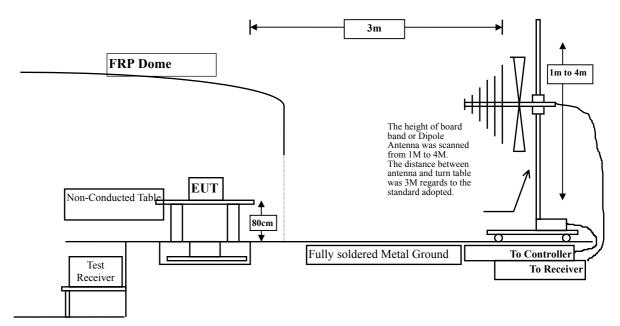
Antenna Gain: The maximum Gain measured in fully anechoic chamber is 2dBi.

4.5.2 Output 1 0w	4.3.2 Output Fower Into Antenna & KF Exposure Evaluation Distance							
Channel	Channel Frequency (MHz)	Output Power to Antenna	Minimum Allowable					
		(mW)	Distance					
1 (1Mbps)	2410.80	14.58814	1.280546199					
1 (11Mbps)	2410.80	13.86756	1.248519275					
6 (1Mbps)	2435.80	11.01539	1.112743975					
6 (11Mbps)	2435.70	10	1.060218191					
11 (1Mbps)	2460.80	6.501297	0.854860502					
11 (11Mbps)	2460.80	6.10942	0.828696017					

4.3.2 Output Power Into Antenna & RF Exposure Evaluation Distance

The distance r (4th column) calculated from the Fries transmission formula is far shorter than 20 cm separation requirement. So, RF exposure limit warning or SAR test are not required.

5. Radiated Emission


5.1. Test Equipment

The following test equipment are used during the radiated emission test:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 1		Test Receiver	R & S	ESCS 30 / 825442/14	May, 2002
		Spectrum Analyzer	Advantest	R3261C / 71720140	May, 2002
		Pre-Amplifier	HP	8447D/3307A01812	May, 2002
		Bilog Antenna	Chase	CBL6112B / 12452	Sep., 2002
		Horn Antenna	EM	EM6917 / 103325	May, 2002
Site # 2	Х	Test Receiver	R & S	ESCS 30 / 825442/17	May, 2002
	Х	Spectrum Analyzer	Advantest	R3261C / 71720609	May, 2002
	Х	Pre-Amplifier	HP	8447D/3307A01814	May, 2002
	Х	Bilog Antenna	Chase	CBL6112B / 2455	Sep., 2002
	Х	Horn Antenna	EM	EM6917 / 103325	May, 2002

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.2. Mark "X" test instruments are used to measure the final test results.

5.2. Test Setup

5.3. Limits

► General Radiated Emission Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits					
Frequency MHz	uV/m @3m	dBuV/m@3m			
30-88	100	40			
88-216	150	43.5			
216-960	200	46			
Above 960	500	54			

Remarks : 1. RF Voltage (dBuV) = 20 log RF Voltage (uV)

2. In the Above Table, the tighter limit applies at the band edges.

3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

5.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.4:1992 on radiated measurement.

The additional latch filter below 1GHz was used to measure the level of harmonics radiated emission during field dtrength of harmonics measurement.

The bandwidth below 1GHz setting on the field strength meter (R&S Test Receiver ESCS 30)is 120 kHz, above 1GHz are 1 MHz.

The frequency range from 30MHz to 10th harminics is checked.

5.5. Test Result of Radiated Emission

Product Test Item Test Site	 802.11b WLAN Mini-USB Adaptor Harmonic Radiated Emission Data No.2 OATS 						
Test Mode	: Ch Cable	annel 1 (Probe	PreAMP	Daadina	Emission	Morain	T imit
Frequency	Loss	Factor	PIEAMP	Reading Level	Emission Level	Margin	Limit
MHz	dB	dB/m	Db	dBuV	dBuV/m	dB	dBuV/m
Horizontal							
Peak Detector:							
4823.490	6.17	33.64	19.50	29.23	49.54	24.46	74.00
<7235.414	7.33	36.77	18.34	24.54	50.30	23.70	74.00
<9646.824	8.73	38.25	15.86	20.68	51.80	22.20	74.00
Average Detect	tor:						
Vertical							
Peak Detector:							
4823.870	6.17	33.64	19.50	29.98	50.29	23.71	74.00
<7235.677	7.33	36.77	18.34	24.60	50.36	23.64	74.00
<9646.981	8.73	38.25	15.86	20.94	52.06	21.94	74.00

Average Detector:

--Note:

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. Receiver setting (Peak Detector) : RBW:1MHz; VBW:1MHz; Span:100MHz °
- 3. Emission Level = Reading Level + Probe Factor + Cable Loss- PreAMP.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

Product:Test Item:Test Site:Test Mode:Frequency	Har No. Cha	802.11b WLAN Mini-USB Adaptor Harmonic Radiated Emission Data No.2 OATS Channel 6 (1 Mbps) Cable Probe PreAMP Reading Emission Margin Limit								
	Loss	Factor		Level	Level					
MHz	dB	dB/m	dB	dBuV	dBuV/m	dB	dBuV/m			
======= Horizontal Peak Detector	 •									
4875.970	6.21	33.77	19.50	28.98	49.47	24.53	74.00			
<7313.815	7.37	36.98	18.27	24.62	50.70	23.30	74.00			
<9751.762	8.87	38.35	15.82	20.20	51.60	22.40	74.00			
Average Detec Vertical	Average Detector: 									
Peak Detector	:									
4875.841	6.21	33.77	19.50	29.06	49.55	24.45	74.00			
<7313.818	7.37	36.98	18.27	25.32	51.40	22.60	74.00			
<9751.724	8.87	38.35	15.82	20.76	52.16	21.84	74.00			

Average Detector:

- -

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. Receiver setting (Peak Detector) : RBW:1MHz; VBW:1MHz; Span:100MHz •
- 3. Emission Level = Reading Level + Probe Factor + Cable Loss- PreAMP.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

Product:Test Item:Test Site:Test Mode:	Test Item:Harmonic Radiated Emission DataTest Site:No.2 OATS								
Frequency	Cable	Probe	PreAMP	Reading	Emission	Margin	Limit		
	Loss	Factor		Level	Level				
MHz	dB	dB/m	dB	dBuV	dBuV/m	dB	dBuV/m		
4924.018	6.23	33.90	19.49	29.31	49.96	24.04	74.00		
<7386.059		37.14	19.49	24.63	49.90 50.97	23.03	74.00		
<9847.979	8.97	38.44	15.70	19.69	51.40	22.60	74.00		
Average Detecto	or:								
Vertical									
Peak Detector:									
4924.069	6.23	33.90	19.49	29.68	50.33	23.67	74.00		
<7386.056	7.42	37.14	18.22	24.76	51.10	22.90	74.00		
<9847.974	8.97	38.44	15.70	20.11	51.82	22.18	74.00		

Average Detector:

--Note:

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. Receiver setting (Peak Detector) : RBW:1MHz; VBW:1MHz; Span:100MHz •
- 3. Emission Level = Reading Level + Probe Factor + Cable Loss- PreAMP.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

QuieTer

Product Test Item Test Site	:]	802.11b WLAN Mini-USB Adaptor Harmonic Radiated Emission Data No.2 OATS							
Test Mode	: (Channel	1 (11 Mbps	s)					
Frequency	Cable	Probe	PreAMP	Reading	Emission	Margin	Limit		
	Loss	Factor		Level	Level				
MHz	dB	dB/m	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal									
Peak Detector:									
4824.031	6.17	33.64	19.50	30.07	50.38	23.62	74.00		
<7236.093	7.33	36.77	18.34	25.94	51.70	22.30	74.00		
<9648.031	8.73	38.25	15.86	20.98	52.10	21.90	74.00		
Average Detecto	or:								
Vertical									
Peak Detector:									
4824.095	6.17	33.64	19.50	29.51	49.82	24.18	74.00		
<7236.091	7.33	36.77	18.34	25.02	50.78	23.22	74.00		
<9648.042	8.73	38.25	15.86	20.77	51.89	22.11	74.00		

Average Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. Receiver setting (Peak Detector) : RBW:1MHz; VBW:1MHz; Span:100MHz °
- 3. Emission Level = Reading Level + Probe Factor + Cable Loss- PreAMP.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

Product Test Item Test Site Test Mode	Item : Harmonic Radiated Emission Data Site : No.2 OATS									
Frequency	Cable	Probe	PreAMP	Reading	Emission	Margin	Limit			
	Loss	Factor		Level	Level					
MHz	dB	dB/m	dB	dBuV	dBuV/m	dB	dBuV/m			
======================================										
Peak Detector:										
4874.820	6.21	33.77	19.50	29.06	49.55	24.45	74.00			
<7312.340	7.37	36.98	18.27	25.96	52.04	21.96	74.00			
<9749.672	8.87	38.35	15.82	20.36	51.76	22.24	74.00			
Average Detect	or:									
Vertical										
Peak Detector:										
4874.881	6.21	33.77	19.50	29.07	49.56	24.44	74.00			
<7312.420	7.37	36.98	18.27	24.84	50.92	23.08	74.00			
<9749.678	8.87	38.35	15.82	21.00	52.40	21.60	74.00			

Average Detector:

- -

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. Receiver setting (Peak Detector) : RBW:1MHz; VBW:1MHz; Span:100MHz •
- 3. Emission Level = Reading Level + Probe Factor + Cable Loss- PreAMP.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

Product Test Item Test Site Test Mode	: H : N	Harmonic Radiated Emission Data No.2 OATS								
Frequency	Cable	Probe	PreAMP	Reading	Emission	Margin	Limit			
	Loss	Factor		Level	Level					
MHz	dB	dB/m	dB	dBuV	dBuV/m	dB	dBuV/m			
======================================										
Peak Detector:										
4925.609	6.23	33.90	19.49	29.76	50.41	23.59	74.00			
<7388.367	7.42	37.14	18.22	24.60	50.94	23.06	74.00			
<9851.127	8.97	38.44	15.70	19.57	51.28	22.72	74.00			
Average Detect	tor:									
Vertical										
Peak Detector:										
4925.615	6.23	33.90	19.49	30.26	50.91	23.09	74.00			
<7388.341	7.42	37.14	18.22	24.96	51.30	22.70	74.00			
<9851.135	8.97	38.44	15.70	20.17	51.88	22.12	74.00			

Average Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. Receiver setting (Peak Detector) : RBW:1MHz; VBW:1MHz; Span:100MHz •
- 3. Emission Level = Reading Level + Probe Factor + Cable Loss- PreAMP.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

QuieTer

	Product	: 802	802.11b WLAN Mini-USB Adaptor								
	Test Item	: Ge	neral Rad	liated Em	ission Data	ı					
	Test Site	: No	.2 OATS								
	Test Mode	: Ch	annel 1 (1 Mbps)							
	Frequency	Cable	Probe	PreAMI	P Reading	Emission	Margin	Limit			
		Loss	Factor		Level	Level					
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dB	dBuV/m			
= Hor	izontal										
	52.485	0.99	6.64	0.00	16.84	24.47	15.53	40.00			
	152.485	1.51	10.20	0.00	16.37	28.08	15.42	43.50			
	188.279	1.69	8.00	0.00	16.44	26.13	17.37	43.50			
	214.854	1.82	7.97	0.00	18.20	27.99	15.51	43.50			
	348.674	2.51	13.15	0.00	16.90	32.56	13.44	46.00			
	433.745	2.95	15.75	0.00	12.70	31.40	14.60	46.00			
	*714.254	4.40	18.28	0.00	10.20	32.87	13.13	46.00			

Vertical

*71.495	1.08	6.60	0.00	18.27	25.95	14.05	40.00	
132.487	1.40	10.55	0.00	15.20	27.15	16.35	43.50	
166.840	1.57	8.47	0.00	17.24	27.28	16.22	43.50	
272.648	2.12	12.12	0.00	15.20	29.43	16.57	46.00	
396.784	2.77	15.89	0.00	11.47	30.12	15.88	46.00	
526.142	3.43	16.81	0.00	10.24	30.48	15.52	46.00	

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. Emission Level = Reading Level + Probe Factor + Cable Loss- PreAMP.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

	Product Test Item Test Site	: Ge	802.11b WLAN Mini-USB Adaptor General Radiated Emission Data No.2 OATS						
	Test Mode	: Ch	annel 6 (1 Mbps)					
	Frequency	Cable	Probe	PreAM	P Reading	Emission	Margin	Limit	
		Loss	Factor		Level	Level			
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dB	dBuV/m	
Hor	izontal								
	67.495	1.07	5.99	0.00	16.47	23.53	16.47	40.00	
	128.660	1.37	11.59	0.00	14.99	27.95	15.55	43.50	
	162.347	1.56	9.19	0.00	15.99	26.74	16.76	43.50	
	300.631	2.26	12.46	0.00	13.70	28.42	17.58	46.00	
	458.734	3.08	16.58	0.00	11.68	31.35	14.65	46.00	
	*586.947	3.75	17.92	0.00	12.47	34.13	11.87	46.00	
Vert	tical								
	80.347	1.14	7.22	0.00	15.29	23.65	16.35	40.00	
	119.347	1.33	10.39	0.00	14.22	25.95	17.55	43.50	
	188.614	1.69	8.01	0.00	13.84	23.54	19.96	43.50	
	*248.712	2.00	11.53	0.00	18.20	31.73	14.27	46.00	
	344.715	2.49	12.82	0.00	16.20	31.51	14.49	46.00	
	459.627	3.08	16.42	0.00	11.87	31.37	14.63	46.00	

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. Emission Level = Reading Level + Probe Factor + Cable Loss- PreAMP.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

Product Test Item Test Site Test Mode	: Gen : No.	802.11b WLAN Mini-USB Adaptor General Radiated Emission Data No.2 OATS Channel 11 (1 Mbps)								
Frequency	Cable	Probe I	PreAMP	Reading	Emission	Margin	Limit			
	Loss	Factor		Level	Level					
MHz	dB	dB/m	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal										
52.684	0.99	6.64	0.00	15.84	23.47	16.53	40.00			
140.576	1.44	10.98	0.00	17.23	29.65	13.85	43.50			
172.151	1.60	8.93	0.00	16.24	26.77	16.73	43.50			
280.945	2.17	12.02	0.00	14.70	28.89	17.11	46.00			
483.462	3.22	16.65	0.00	11.64	31.51	14.49	46.00			
*630.011	3.96	18.63	0.00	10.47	33.05	12.95	46.00			
Vertical										
86.947	1.16	8.06	0.00	18.24	27.46	12.54	40.00			
113.998	1.31	10.85	0.00	15.70	27.86	15.64	43.50			
178.547	1.64	8.28	0.00	14.76	24.68	18.82	43.50			
260.844	2.06	13.10	0.00	16.04	31.20	14.80	46.00			
395.475	2.75	15.79	0.00	13.47	32.01	13.99	46.00			
*562.366	3.61	19.05	0.00	12.65	35.32	10.68	46.00			

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. Emission Level = Reading Level + Probe Factor + Cable Loss- PreAMP.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

I	Product	: 802.11b WLAN Mini-USB Adaptor									
-	Fest Item	: Ge	: General Radiated Emission Data								
	Fest Site	: No	.2 OATS								
7	Fest Mode	: Ch	: Channel 1 (11 Mbps)								
]	Frequency	Cable	Probe	PreAMP	Reading	Emission	Margin	Limit			
		Loss	Factor		Level	Level					
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dB	dBuV/m			
Ho	orizontal										
	76.885	1.11	7.32	0.00	16.76	25.18	14.82	40.00			
	126.348	1.36	11.57	0.00	13.44	26.37	17.13	43.50			
	166.495	1.57	9.09	0.00	15.02	25.68	17.82	43.50			
	271.648	2.12	11.93	0.00	17.40	31.45	14.55	46.00			
	351.267	2.53	13.07	0.00	13.69	29.28	16.72	46.00			
	*476.253	3.16	16.86	0.00	11.89	31.91	14.09	46.00			
Ve	rtical										
	48.595	0.96	7.00	0.00	16.74	24.71	15.29	40.00			
	138.525	1.43	10.30	0.00	14.77	26.49	17.01	43.50			
	175.334	1.61	8.52	0.00	14.99	25.12	18.38	43.50			
	204.884	1.77	8.56	0.00	17.25	27.58	15.92	43.50			
	312.481	2.33	12.33	0.00	13.95	28.60	17.40	46.00			
	431.817	2.95	17.36	0.00	12.47	32.78	13.22	46.00			
	*588.412	3.75	19.61	0.00	10.20	33.55	12.45	46.00			

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. Emission Level = Reading Level + Probe Factor + Cable Loss- PreAMP.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

]]	Product:Test Item:Test Site:Test Mode:	 802.11b WLAN Mini-USB Adaptor General Radiated Emission Data No.2 OATS Channel 6 (11 Mbps) 							
	Frequency	Cable	Probe	PreAMI	P Reading	Emission	Margin	Limit	
		Loss	Factor		Level	Level			
_	MHz	dB	dB/m	dB	dBuV	dBuV/m	dB	dBuV/m	
Ho	rizontal								
	64.412	1.04	5.73	0.00	18.24	25.01	14.99	40.00	
	148.226	1.48	10.54	0.00	16.72	28.74	14.76	43.50	
	194.887	1.72	8.05	0.00	17.24	27.01	16.49	43.50	
	211.647	1.81	8.29	0.00	12.84	22.95	20.55	43.50	
	*375.247	2.65	14.20	0.00	16.99	33.84	12.16	46.00	
	462.770	3.10	16.62	0.00	11.40	31.12	14.88	46.00	
Ve	rtical								
	82.226	1.14	7.53	0.00	17.45	26.12	13.88	40.00	
	118.495	1.32	10.49	0.00	12.48	24.29	19.21	43.50	
	241.744	1.96	11.06	0.00	16.24	29.25	16.75	46.00	
	371.541	2.63	14.87	0.00	15.20	32.70	13.30	46.00	
	446.723	3.02	17.05	0.00	11.84	31.91	14.09	46.00	
	*762.150	4.65	20.40	0.00	9.84	34.89	11.11	46.00	

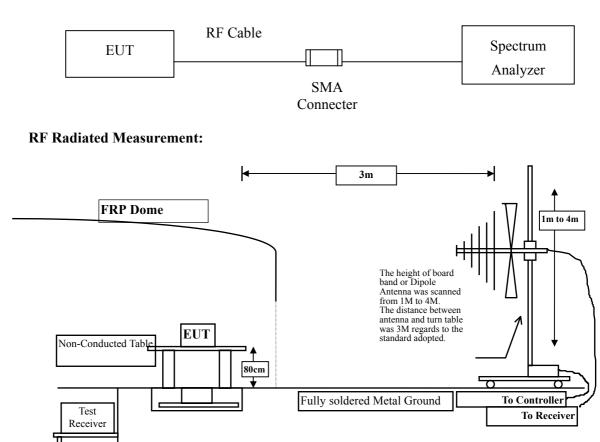
- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. Emission Level = Reading Level + Probe Factor + Cable Loss- PreAMP.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

-	Test Item : Test Site :	 802.11b WLAN Mini-USB Adaptor General Radiated Emission Data No.2 OATS 							
_	Fest Mode :								
	Frequency	Cable	Probe	PreAM	P Reading	Emission	Margin	Limit	
		Loss	Factor		Level	Level			
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dB	dBuV/m	
Ho	orizontal								
	131.848	1.40	11.69	0.00	13.48	26.57	16.93	43.50	
	174.148	1.61	8.76	0.00	12.88	23.25	20.25	43.50	
	248.576	2.00	11.46	0.00	16.94	30.40	15.60	46.00	
	362.570	2.59	13.83	0.00	14.27	30.70	15.30	46.00	
	418.756	2.87	15.90	0.00	12.05	30.82	15.18	46.00	
	*681.475	4.24	18.57	0.00	9.65	32.45	13.55	46.00	
Ve	rtical								
	84.244	1.15	7.66	0.00	16.24	25.05	14.95	40.00	
	162.477	1.56	8.47	0.00	16.78	26.81	16.69	43.50	
	308.454	2.31	12.17	0.00	13.45	27.93	18.07	46.00	
	319.248	2.35	12.51	0.00	16.24	31.10	14.90	46.00	
	462.740	3.10	16.47	0.00	10.48	30.04	15.96	46.00	
	*546.991	3.53	18.72	0.00	11.75	34.01	11.99	46.00	

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. Emission Level = Reading Level + Probe Factor + Cable Loss- PreAMP.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

6. Band Edge

6.1. Test Equipment


The following test equipments are used during the band edge tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Х	Spectrum Analyzer	Advantest	R3272 / 72421194	May, 2002
Х	Test Receiver	R & S	ESCS 30 / 825442/14	May, 2002
Х	Spectrum Analyzer	Advantest	R3261C / 71720140	May, 2002
Х	Pre-Amplifier	HP	8447D/3307A01812	May, 2002
Х	Bilog Antenna	Chase	CBL6112B / 12452	Sep., 2002
Х	Horn Antenna	EM	EM6917 / 103325	May, 2002

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.2. Mark "X" test instruments are used to measure the final test results.

6.2. Test Setup

RF Conducted Measurement:

6.3. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

6.4. Test Procedure

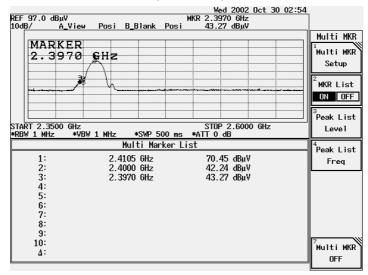
The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.4:1992 on radiated measurement.

The bandwidth below 1GHz setting on the field strength meter (R&S Test Receiver ESCS 30)is 120 kHz, above 1GHz are 1 MHz.

6.5. Test Result of Band Edge


Product	:	802.11b WLAN Mini-USB Adaptor
Test Item	:	Band Edge Data
Test Site	:	No.2 OATS
Test Mode	:	Channel 1 (1Mbps)

RF Radiated Measurement:

Channel No.	Frequency	Required Limit	Result	
Channel IVO.	(MHz)	(dBc)	Result	
1 (Horizontal)	<2400	>20	Pass	
1 (Vertical)	<2400	>20	Pass	

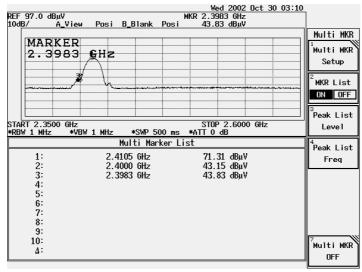
Figure Channel 1:

(Horizontal)

Figure Channel 1:

(Vertical)

REF 97.0 dB				MKE	Wed 2002	2 Oct 30 03	:00
	A_View	Posi	B_B1ank	Posi			
							Multi MKR
MAR		~ • •					Multi MKR
2.3	988)	<u>E</u> HZ	Ì				Setup
	/						
	X	<u> </u>					MKR List
							ON OFF
							3
START 2.350	0 GU-7	÷		-ii	STOP 2.600		Peak List
*RB₩ 1 MHz		1 MHz	*S₩P 5	i00 ms *A			Level
		M	lulti Mar	~ker List			Peak List
1:		2.41	08 GHz		72.08 dBu	v	Freq
2:		2.40	00 GHz		44.70 dBµ		Liteq
3:		2.39	188 GHz		44.79 dBµ	V	
4:							
5:							
6:							
7:							
8:							
9:							
10:							Multi MKR
<u>Δ</u> :							
							OFF


Product	:	802.11b WLAN Mini-USB Adaptor
Test Item	:	Band Edge Data
Test Site	:	No.2 OATS
Test Mode	:	Channel 1 (11Mbps)

RF Radiated Measurement:

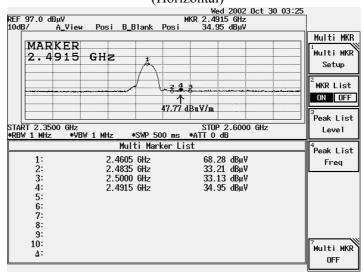
Channel No.	Frequency (MHz)	Required Limit (dBc)	Result
1 (Horizontal)	<2400	>20	Pass
1 (Vertical)	<2400	>20	Pass

Figure Channel 1:

(Horizontal)

Figure Channel 1:

(Vertical) Wed 2002 Oct 30 03:15 .3985 GHz REF 97.0 dBµV 10dB/ A_View Posi B_Blank Posi MKR 44.20 dBuV Multi MKR MARKER Multi MKR 2.3985 **€**Hz Setup MKR List ONOFF _____ Peak List START 2.3500 GHz *RBW 1 MHz *VBW 1 MHz STOP 2.6000 GHz *ATT 0 dB Level *SWP 500 ms Multi Marker List 4 Peak List 2.4108 GHz 2.4000 GHz 2.3985 GHz 71.52 dBµV 44.04 dBµV 44.20 dBµV 1: 2: 3: 4: 5: 6: 7: 8: 9: 10: Freq 7 Multi MKR Δ: OFF


Product	:	802.11b WLAN Mini-USB Adaptor
Test Item	:	Band Edge Data
Test Site	:	No.2 OATS
Test Mode	:	Channel 11 (1Mbps)

RF Radiated Measurement: (Peak Detector)

Channel No.	Frequency (MHz)	Reading Level (dBuV)	Probe Factor (dB/m)	Cable Loss (dB)	PreAMP (dB)	Emission Level (dBuV/m)	Limit (dBuV/m)	Result
11(Horizontal)	2491.5	34.95	28.70	4.10	19.97	47.77	74	Pass
11 (Vertical)	2484.3	34.46	28.66	4.10	19.98	47.23	74	Pass

Figure Channel 11:

(Horizontal)

Figure Channel 11:

Note: The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

Product	:	802.11b WLAN Mini-USB Adaptor
Test Item	:	Band Edge Data
Test Site	:	No.1 OATS
Test Mode	:	Channel 11 (11Mbps)

RF Radiated Measurement: (Peak Detector)

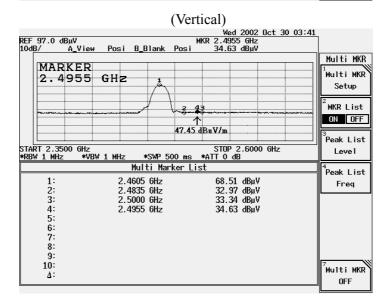

Channel No.	Frequency (MHz)	Reading Level (dBuV)	Probe Factor (dB/m)	Cable Loss (dB)	PreAMP (dB)	Emission Level (dBuV/m)	Limit (dBuV/m)	Result
11(Horizontal)	2486.8	34.50	28.70	4.10	19.98	47.31	74	Pass
11 (Vertical)	2495.5	34.63	28.70	4.10	19.97	47.45	74	Pass

Figure Channel 11:

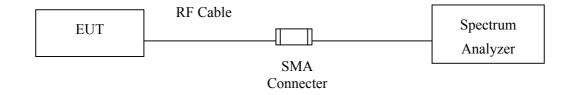
(Horizontal)

EF 97.0 dE	3V				м	KR 2.486		UCL 3	03:38	'
	A_View	Pos	;i B_B	llank	Posi					_
										Multi MK
MAR										¹ Multi MK
2.4	868	GH	2	1						Setup
				$ / \rangle$						Setup
				y	}					² MKR List
******			×		hand	k				100
				[<u> </u>					ON OF
				4	17.31 dBi	(¥/m				3
						L		!		Peak Lis
TINT O OF										
		ษ 1 พะ	17 *	SWD 5	00 me	STOP) GHz		Level
		₩ 1 MH				*ATT 0 d) GHz		4
TART 2.350 RBW 1 MHz			Mult	ti Mar	i00 ms rker Lis	*ATT 0 d :t	В) GHz		4
RBW 1 MHz		;	Mul† 2.4608	ti Mar GHz		*ATT 0 d :t 69.00	B) dBµV) GHz		4
RBW 1 MHz			Mul 2.4608 2.4835	ti Mar GHz GHz		*ATT 0 d t 69.00 33.98	В) dBµV 3 dBµV) GHz		Peak Lis
RBW 1 MHz 1: 2: 3:			<u>Mul</u> 2.4608 2.4835 2.5000	<u>ti Mar</u> GHz GHz GHz		*ATT 0 d it 69.00 33.98 33.13	В) dBµV 3 dBµV 3 dBµV) GHz		Peak Lis
RBW 1 MHz 1: 2: 3: 4:			Mul 2.4608 2.4835	<u>ti Mar</u> GHz GHz GHz		*ATT 0 d it 69.00 33.98 33.13	В) dBµV 3 dBµV) GHz		Peak Lis
RBW 1 MHz 1: 2: 3: 4: 5:			<u>Mul</u> 2.4608 2.4835 2.5000	<u>ti Mar</u> GHz GHz GHz		*ATT 0 d it 69.00 33.98 33.13	В) dBµV 3 dBµV 3 dBµV) GHz		Peak Lis
RBW 1 MHz 1: 2: 3: 4: 5: 6:			<u>Mul</u> 2.4608 2.4835 2.5000	<u>ti Mar</u> GHz GHz GHz		*ATT 0 d it 69.00 33.98 33.13	В) dBµV 3 dBµV 3 dBµV) GHz		Peak Lis
RBW 1 MHz 1: 2: 3: 4: 5: 6: 7:			<u>Mul</u> 2.4608 2.4835 2.5000	<u>ti Mar</u> GHz GHz GHz		*ATT 0 d it 69.00 33.98 33.13	В) dBµV 3 dBµV 3 dBµV) GHz		Peak Lis
RBW 1 MHz 1: 2: 3: 4: 5: 6: 7: 8:			<u>Mul</u> 2.4608 2.4835 2.5000	<u>ti Mar</u> GHz GHz GHz		*ATT 0 d it 69.00 33.98 33.13	В) dBµV 3 dBµV 3 dBµV) GHz		Peak Lis
RBW 1 MHz 1: 2: 3: 4: 5: 6: 7: 8: 9:			<u>Mul</u> 2.4608 2.4835 2.5000	<u>ti Mar</u> GHz GHz GHz		*ATT 0 d it 69.00 33.98 33.13	В) dBµV 3 dBµV 3 dBµV) GHz		= ⁴ Peak Lis Freq
RBW 1 MHz 1: 2: 3: 4: 5: 6: 7: 8:			<u>Mul</u> 2.4608 2.4835 2.5000	<u>ti Mar</u> GHz GHz GHz		*ATT 0 d it 69.00 33.98 33.13	В) dBµV 3 dBµV 3 dBµV) GHz		Peak Lis

Figure Channel 11:

Note: The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

7. Occupied Bandwidth


7.1. Test Equipment

The following test equipments are used during the radiated emission tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Х	Spectrum Analyzer	Advantest	R3272 / 72421194	May, 2002

Note: 1. All equipment upon which need to calibrated are with calibration period of 1 year.2. Mark "X" test instruments are used to measure the final test results.

7.2. Test Setup

7.3. Limits

The minimum bandwidth shall be at least 500kHz.

7.4. Test Result of Occupied Bandwidth

Product	:	802.11b WLAN Mini-USB Adaptor
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.2 OATS
Test Mode	:	Channel 1

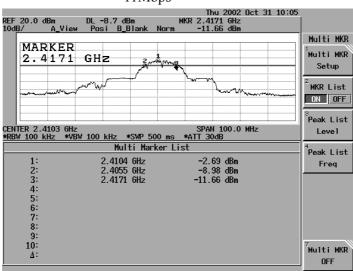
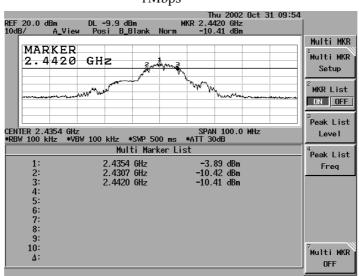

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1 (1Mbps)	2410.40	12400	>500	Pass
1 (11Mbps)	2410.40	11600	>500	Pass

Figure Channel 1:

1Mbps

Figure Channel 1:



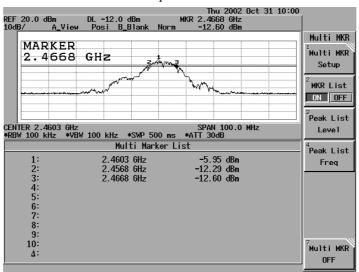
Product	:	802.11b WLAN Mini-USB Adaptor
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.2 OATS
Test Mode	:	Channel 6

Channel No.	Frequency	Measurement Level	Required Limit	Result
Channel No.	(MHz)	(kHz)	(kHz)	Kesuit
6 (1Mbps)	2435.40	11300	>500	Pass
6 (11Mbps)	2435.40	11100	>500	Pass

Figure Channel 6:

1Mbps

Figure Channel 6:


Multi M Setup
MHz Peak Li
Peak Li
Freq

Product	:	802.11b WLAN Mini-USB Adaptor
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.2 OATS
Test Mode	:	Channel 11

Channel No.	Frequency	Measurement Level	Required Limit	Result
Channel No.	(MHz)	(kHz)	(kHz)	Kesult
11 (1Mbps)	2460.30	10000	>500	Pass
11 (11Mbps)	2462.60	10200	>500	Pass

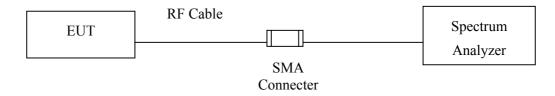
Figure Channel 11:

1Mbps

Figure Channel 11:

	DL -11.6 dBm w Posi B_Blank		13
MARKER	-		Multi MKF
	and a start of the	make when a second s	² MKR List
			Beak List
ENTER 2.4626 GH: RBW 100 kHz *VI	z <u>BW 100 kHz *SWP 50</u> Multi Mark		Level Peak List
1: 2: 3:	2.4626 GHz 2.4567 GHz 2.4669 GHz	-5.52 dBm -12.90 dBm -11.81 dBm	Freq
4: 5: 6:	2. 1000 012		
7: 8: 9:			
10: 			⁷ Multi MKF OFF

8. **Power Density**


8.1. Test Equipment

The following test equipments are used during the radiated emission tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Х	Spectrum Analyzer	Advantest	R3272 / 72421194	May, 2002

Note: 1. All equipment upon which need to calibrated are with calibration period of 1 year.2. Mark "X" test instruments are used to measure the final test results.

8.2. Test Setup

8.3. Limits

The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3kHz bandwidth.

8.4. Test Result of Power Density

Product	:	802.11b WLAN Mini-USB Adaptor
Test Item	:	Power Density Data
Test Site	:	No.2 OATS
Test Mode	:	Channel 1

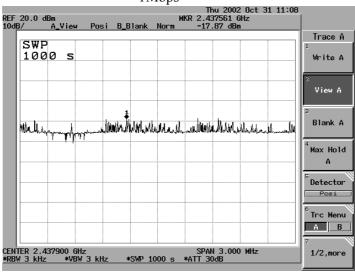
Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
1 (1Mbps)	2412.562	-16.59	< 8dBm	Pass
1 (11Mbps)	2410.560	-16.24	< 8dBm	Pass

Figure Channel 1:

1Mbps

MAR	KER	1								MKR-
			GHz							MKR+C
										2 MKR+R
aalbaa	Mu		, load him	nh.tha	hnhad	mhail	, hainte	MMMU	Marsh	з Peak≁
										₄ Peak✦F
		-								
										6 AMKR
										Spar 7

Figure Channel 1:


Thu 2002 Oct 31 11	53
REF 20.0 dBm MKR 2.410560 GHz 10dB/ A_View Posi B_Blank Norm -16.24 dBm	
	Trace A
SWP 1000 s	Write A
	2 View A
And the selection thank the have made and the selection of the selection o	Blank A
	⁴ Max Hold A
	Detector
	⁶ Trc Menu A B
	7
CENTER 2.412000 GHz SPAN 3.000 MHz *RBW 3 kHz *VBW 3 kHz *SWP 1000 s *ATT 30dB	1/2,more

Product	:	802.11b WLAN Mini-USB Adaptor
Test Item	:	Power Density Data
Test Site	:	No.2 OATS
Test Mode	:	Channel 6

Channel No.	Frequency	Measurement Level	Required Limit	Result
Channel No.	(MHz)	(dBm)	(dBm)	Result
6 (1Mbps)	2437.561	-17.87	< 8dBm	Pass
6 (11Mbps)	2435.560	-17.30	< 8dBm	Pass

Figure Channel 6:

Figure Channel 6:

EF 20.0 d	ID as			P	Th	u 2002 Oct 5560 GHz	t 31 12:56	1
.0dB/		Posi B	B_Blank			30 dBm		
								Trace A
SWF 100)0 s							1 Write A
								2 View A
mim	holeste n	hte warden the state	Malynym	- -		human	n. H. with M.	з Blank A
								⁴ Max Hold A
								5 Detector
								Posi 6_
								Trc Menu
ENTER 2.4 RBW 3 kHz			*SWP 1	000 s		3.000 MHz dB	2	7 1/2,more

Product	:	802.11b WLAN Mini-USB Adaptor
Test Item	:	Density Data
Test Site	:	No.2 OATS
Test Mode	:	Channel 11

Channel No.	Frequency	Measurement Level	Required Limit	Result	
Channel No.	(MHz)	(dBm)	(dBm)	Result	
11 (1Mbps)	2461.337	-19.70	< 8dBm	Pass	
11 (11Mbps)	2461.337	-19.56	< 8dBm	Pass	

Figure Channel 11:

1Mbps

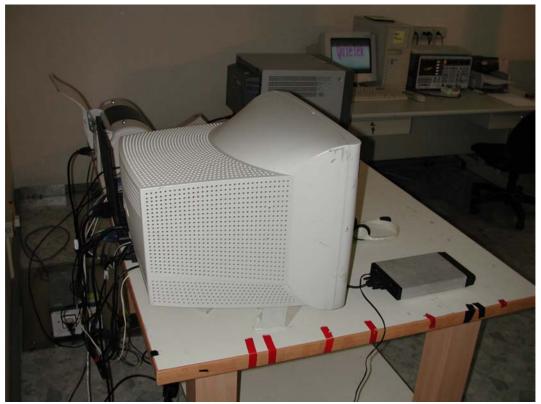
								 MKR-3
MAR 2.4		GHz						1 MKR+C
								2 MKR → R
hlehal	Maril	 h-ling	r-myny ^l yngr		unden Hait	h. H. M. L. M	l.m.yll	 з Peak++
				-			1	4 Peak ∳ R
								6 AMKR
								Span

Figure Channel 11:

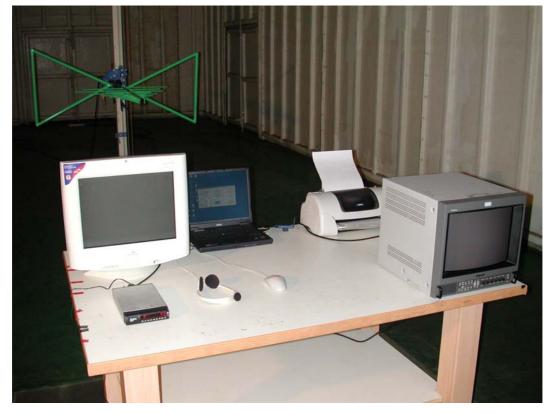
20.0 dBm B/ A_View	Posi B_Blank	MKR 2.461337 GHz Norm -19.56 dBm	
CUID			Trace A
SWP 1000 s			Write A
			2 View A
Hulidhandhandhanallina	the design of the second secon	yay	Blank A
	1 . h . h . h . h . h . h . h . h . h .	1	⁴ Max Hold
			A
			Detector
			Posi
			⁶ Trc Menu
			AB
TER 2.462063 GH		SPAN 3.000 MHz	7

9. EMI Reduction Method During Compliance Testing

No modification was made during testing.


Attachment 1: EUT Test Photographs

Attachment 1: EUT Test Setup Photographs


Front View of Conducted Test

Back View of Conducted Test

Front View of Radiated Test

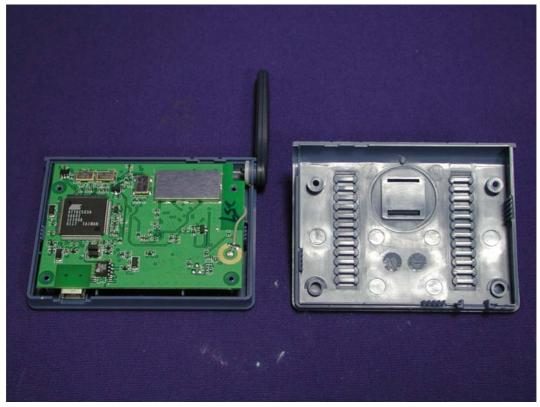
Back View of Radiated Test

Front View of High Frequency Radiated Test

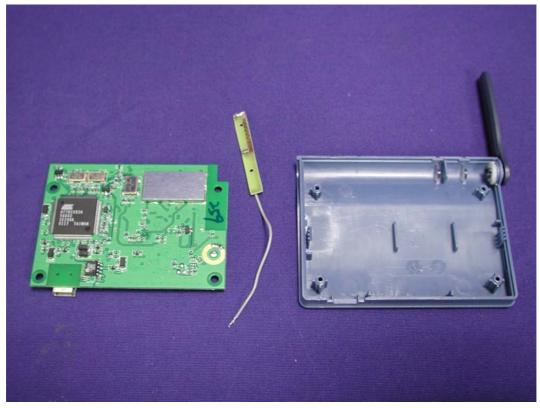
Attachment 2: EUT Detailed Photographs

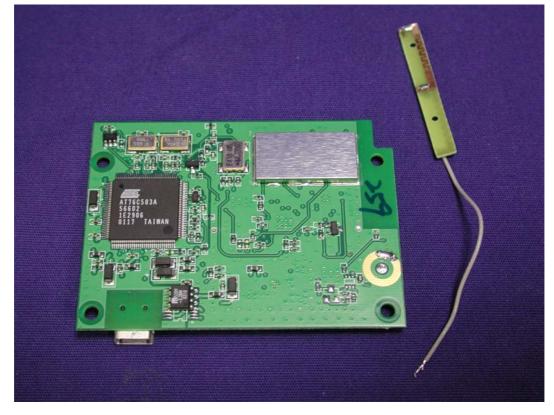
Attachment 2 : EUT Detailed Photographs

(1) EUT Photo

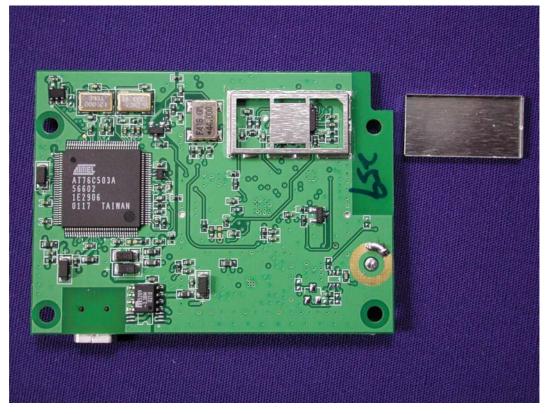

(2) EUT Photo

(3) EUT Photo


(4) EUT Photo


(5) EUT Photo

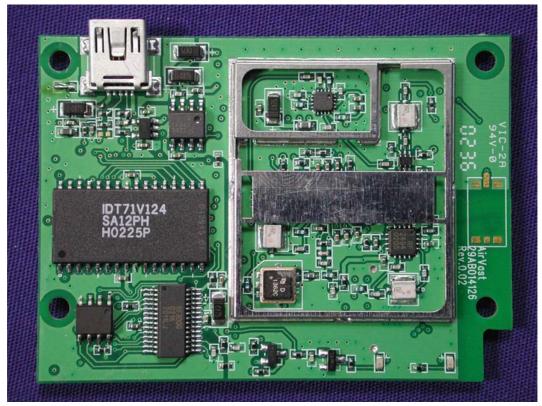
(6) EUT Photo


(7) EUT Photo

(8) EUT Photo

(9) EUT Photo

(10) EUT Photo


(11) EUT Photo

(12) EUT Photo

(13) EUT Photo

