

CFR 47 FCC PART 15 SUBPART C

TEST REPORT

For

LTE Smart Phone

FCC ID: 2ADINS6008L Model Name: S6008L, N12, NUU N12

REPORT NUMBER: 4791358150-1-RF-4

ISSUE DATE: August 22, 2024

Prepared for

Sun Cupid Technology (HK) Ltd. 16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	August 22, 2024	Initial Issue	

Summary of Test Results

Test Item	Clause	Limit/Requirement	Result
Antenna Requirement	N/A	FCC Part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	ANSI C63.10-2013, Clause 6.2	FCC Part 15.207	Pass
Conducted Output Power	ANSI C63.10-2013, Clause 11.9.2.3.1	FCC Part 15.247 (b)(3)	Pass
6dB Bandwidth and 99% Occupied Bandwidth	ANSI C63.10-2013, Clause 11.8.1	FCC Part 15.247 (a)(2)	Pass
Power Spectral Density	ANSI C63.10-2013, Clause 11.10.5	FCC Part 15.247 (e)	Pass
Conducted Band edge and spurious emission	ANSI C63.10-2013, Clause 11.11	FCC Part 15.247(d)	Pass
Radiated Band edge and Spurious Emission	ANSI C63.10-2013, Clause 11.12 & Clause 11.13	FCC Part 15.247 (d) FCC Part 15.205/15.209	Pass
Duty Cycle	ANSI C63.10-2013, Clause 11.6	None; for reporting purposes only.	Pass

*This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

*The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C> when <Simple Acceptance> decision rule is applied.

CONTENTS

1.	ATTESTATION OF TEST RESULTS6
2.	TEST METHODOLOGY
3.	FACILITIES AND ACCREDITATION
4.	CALIBRATION AND UNCERTAINTY
4	.1. MEASURING INSTRUMENT CALIBRATION
4	2. MEASUREMENT UNCERTAINTY
5.	EQUIPMENT UNDER TEST9
5	0.1. DESCRIPTION OF EUT
5	2. CHANNEL LIST
5	3.3. MAXIMUM POWER
5	.4. TEST CHANNEL CONFIGURATION
5	5. THE WORSE CASE POWER SETTING PARAMETER
5	6. DESCRIPTION OF AVAILABLE ANTENNAS 12
5	7. SUPPORT UNITS FOR SYSTEM TEST 12
5	.8. SETUP DIAGRAM
6.	
0.	MEASURING EQUIPMENT AND SOFTWARE USED13
o. 7.	MEASURING EQUIPMENT AND SOFTWARE USED
7.	
7 . 7	ANTENNA PORT TEST RESULTS16
7 . 7 7	ANTENNA PORT TEST RESULTS 16 7.1. CONDUCTED OUTPUT POWER 16
7 . 7 7 7 7	ANTENNA PORT TEST RESULTS
7 . 7 7 7 7 7	ANTENNA PORT TEST RESULTS
7 . 7 7 7 7 7	ANTENNA PORT TEST RESULTS
7. 7 7 7 7 7 8.	ANTENNA PORT TEST RESULTS167.1.CONDUCTED OUTPUT POWER167.2.6DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH177.3.POWER SPECTRAL DENSITY197.4.CONDUCTED BAND EDGE AND SPURIOUS EMISSION217.5.DUTY CYCLE23
7. 7 7 7 7 7 7 8. 8	ANTENNA PORT TEST RESULTS161.CONDUCTED OUTPUT POWER162.6DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH173.POWER SPECTRAL DENSITY194.CONDUCTED BAND EDGE AND SPURIOUS EMISSION215.DUTY CYCLE23RADIATED TEST RESULTS24
7. 7 7 7 7 8. 8	ANTENNA PORT TEST RESULTS161.CONDUCTED OUTPUT POWER162.6DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH173.POWER SPECTRAL DENSITY192.4.CONDUCTED BAND EDGE AND SPURIOUS EMISSION212.5.DUTY CYCLE23RADIATED TEST RESULTS2.1.RESTRICTED BANDEDGE32
7. 7 7 7 7 8. 8 8 8	ANTENNA PORT TEST RESULTS161.CONDUCTED OUTPUT POWER162.6DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH173.POWER SPECTRAL DENSITY1924.CONDUCTED BAND EDGE AND SPURIOUS EMISSION2125.DUTY CYCLE23RADIATED TEST RESULTS24.RESTRICTED BANDEDGE22.SPURIOUS EMISSIONS(9 KHZ~30 MHZ)45
7. 7 7 7 7 8. 8 8 8 8 8 8 8 8	ANTENNA PORT TEST RESULTS161.CONDUCTED OUTPUT POWER162.6DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH173.POWER SPECTRAL DENSITY194.CONDUCTED BAND EDGE AND SPURIOUS EMISSION215.DUTY CYCLE23RADIATED TEST RESULTS24
7. 7 7 7 7 8. 8 8 8 8 8 8 8 8 8 8 8 8 8	ANTENNA PORT TEST RESULTS 16 1. CONDUCTED OUTPUT POWER 16 2. 6DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH 17 3. POWER SPECTRAL DENSITY 19 2.4. CONDUCTED BAND EDGE AND SPURIOUS EMISSION 21 2.5. DUTY CYCLE 23 RADIATED TEST RESULTS 24 2.1. RESTRICTED BANDEDGE 32 2.2. SPURIOUS EMISSIONS(9 KHZ~30 MHZ) 45 3.1. SPURIOUS EMISSIONS(30 MHZ~1 GHZ) 48 3.2. SPURIOUS EMISSIONS(1 GHZ~3 GHZ) 50
7. 7 7 7 7 8. 8 8 8 8 8 8 8 8 8 8 8 8 8	ANTENNA PORT TEST RESULTS 16 1. CONDUCTED OUTPUT POWER 16 2. 6DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH 17 3. POWER SPECTRAL DENSITY 19 4. CONDUCTED BAND EDGE AND SPURIOUS EMISSION 21 5. DUTY CYCLE 23 RADIATED TEST RESULTS 24 1. RESTRICTED BANDEDGE 32 2. SPURIOUS EMISSIONS(9 KHZ~30 MHZ) 45 3. SPURIOUS EMISSIONS(30 MHZ~1 GHZ) 48 3. SPURIOUS EMISSIONS(3 GHZ~18 GHZ) 50

77	TEST DATA	1
77	APPENDIX A:DUTY CYCLE	
79	APPENDIX B:MAXIMUM CONDUCTED OUTPUT POWER	
80	APPENDIX C:6DB BANDWIDTH	
	APPENDIX D:OCCUPIED CHANNEL BANDWIDTH	
88	APPENDIX E:MAXIMUM POWER SPECTRAL DENSITY LEVEL	
	APPENDIX F:BAND EDGE	
	APPENDIX G:CONDUCTED RF SPURIOUS EMISSION	

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	Sun Cupid Technology (HK) Ltd.
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan,
	Kowloon, Hong Kong

Manufacturer Information

Company Name:	Sun Cupid Technology (HK) Ltd.
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan,
	Kowloon. Hong Kong

EUT Information

LTE Smart Phone
S6008L
NUU
July 5, 2024
Normal
7377676
July 09, 2024 ~ August 2, 2024

APPLICABLE STANDARDS	
STANDARD TEST RESULTS	
CFR 47 FCC PART 15 SUBPART C Pass	

Prepared By:

Checked By:

kebo. zhung

Kebo Zhang Senior Project Engineer

James Qin Project Engineer

Approved By:

Aephenbus

Stephen Guo Operations Manager

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C, KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

A2LA (Certificate No.: 4102.01)
UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
has been assessed and proved to be in compliance with A2LA.
FCC (FCC Designation No.: CN1187)
UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Has been recognized to perform compliance testing on equipment subject
to the Commission's Declaration of Conformity (DoC) and Certification
rules
ISED (Company No.: 21320)
UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
has been registered and fully described in a report filed with ISED.
The Company Number is 21320 and the test lab Conformity Assessment
Body Identifier (CABID) is CN0046.
VCCI (Registration No.: G-20192, C-20153, T-20155 and R-20202)
UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
has been assessed and proved to be in compliance with VCCI, the
Membership No. is 3793.
Facility Name:
Chamber D, the VCCI registration No. is G-20192 and R-20202
Shielding Room B, the VCCI registration No. is C-20153 and T-20155

Note 1:

All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China.

Note 2:

The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3:

For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty
Conduction emission	3.62 dB
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)
Duty Cycle	±0.028%
DTS and 99% Occupied Bandwidth	±0.0196%
Maximum Conducted Output Power	±0.686 dB
Maximum Power Spectral Density Level	±0.743 dB
Conducted Band-edge Compliance	±1.328 dB
Conducted Unwanted Emissions In Non-restricted	±0.746 dB (9 kHz ~ 1 GHz)
Frequency Bands	±1.328dB (1 GHz ~ 26 GHz)
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.	

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	LTE Smart Phone
Model	S6008L
Series Model:	N12, NUU N12
Model Difference:	N12, NUU N12 have the same technical construction including circuit diagram, PCB Layout, components and component layout, all electrical construction and mechanical construction with S6008L. The difference lies only the model number. all these changes do not degrade the unwanted emissions of the certified product.

Frequency Band:	2400 MHz to 2483.5 MHz
Frequency Range:	2412 MHz to 2462 MHz
Support Standards:	CFR 47 FCC PART 15 SUBPART C
Type of Modulation:	IEEE 802.11b: DSSS(CCK, DQPSK, DBPSK) IEEE 802.11g/n: OFDM(64-QAM, 16-QAM, QPSK, BPSK)
Data Rate:	IEEE 802.11b: Up to 11 Mbps IEEE 802.11g: Up to 54 Mbps IEEE 802.11n: Up to MCS7
Radio Technology:	IEEE 802.11b/g/n HT20
Antenna Type:	FPC Antenna
Antenna Gain:	1.21 dBi
Normal Test Voltage:	DC 3.8 V
EUT Test software:	МТК

5.2. CHANNEL LIST

	Channel List For Bandwidth=20 MHz								
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
1	2412	4	2427	7	2442	10	2457		
2	2417	5	2432	8	2447	11	2462		
3	2422	6	2437	9	2452	/	/		

	Channel List For Bandwidth=40 MHz								
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
3	2422	5	2432	7	2442	9	2452		
4	2427	6	2437	8	2447	/	/		

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.3. MAXIMUM POWER

IEEE Std. 802.11	Frequency (MHz)	Channel Number	Maximum Conducted AVG Output Power (dBm)
b	2412 ~ 2462	1-11[11]	17.11
g	2412 ~ 2462	1-11[11]	13.57
n HT20	2412 ~ 2462	1-11[11]	13.59

5.4. TEST CHANNEL CONFIGURATION

IEEE Std. 802.11	Test Channel Number	Frequency	
b	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz	
g	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz	
n HT20	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz	

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band									
Test Software			MP Tool						
	Transmit			Test C	Channel				
Modulation Mode	Antenna	NCB: 20MHz			NCB: 40MHz				
Wode	Number	CH 1	CH 6	CH 11	CH 3	CH 6	CH 9		
802.11b	1	16	18	15		•			
802.11g	1	11	14	10	/				
802.11n HT20	1	12	13	10					

WORST-CASE CONFIGURATIONS

The EUT was tested in the following configuration(s):

Controlled in test mode using a software application on the EUT supplied by customer. The application was used to enable a continuous transmission and to select the mode, test channels, bandwidth, data rates as required.

Test channels referring to section 5.4.

Maximum power setting referring to section 5.5.

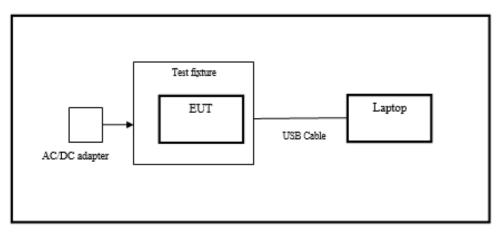
Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps 802.11g mode: 6 Mbps 802.11n HT20 mode: MCS0

802.11b/g/ n HT20 only support SISO mode.

The measured additional path loss was included in any path loss calculations for all RF cable used during tested.

5.6. DESCRIPTION OF AVAILABLE ANTENNAS


Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2412-2462	FPC antenna	1.21

Test Mode	Transmit and Receive Mode	Description
IEEE 802.11b	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11g	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11n HT20	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.

5.7. SUPPORT UNITS FOR SYSTEM TEST

The EUT has been tested as an independent unit

5.8. SETUP DIAGRAM

6. MEASURING EQUIPMENT AND SOFTWARE USED

	R&S TS 8997 Test System								
Equipment Manufa			turer	Model	No.	Serial No.	Last (Cal.	Due. Date
Power sensor, Power N	leter	R&S	5	OSP1	20	100921	Mar.25,	,2024	Mar.24,2025
Vector Signal Genera	tor	R&S	6	SMBV1	00A	261637	Oct.12,	2023	Oct.11, 2024
Signal Generator		R&S	6	SMB10	00A	178553	Oct.12,	2023	Oct.11, 2024
Signal Analyzer		R&S	6	FSV4	10	101118	Oct.12,	2023	Oct.11, 2024
				Softwa	re				
Description		Ν	Manuf	acturer		Nam	е		Version
For R&S TS 8997 Test	Syste	m Ro	hde 8	Schwai	Z	EMC	32		10.60.10
		То	nsen	d RF Te	st S	ystem			
Equipment	Man	ufacturer	Мос	del No.	S	Serial No. Last C		Cal.	Due. Date
Wideband Radio Communication Tester		R&S	CM	W500		155523 Oct.12, 2		2023	Oct.11, 2024
Wireless Connectivity Tester	I	R&S	СМ	W270	120	1.0002N75- 102	Sep.25,	2023	Sep.24, 2024
PXA Signal Analyzer	Ke	eysight	N9	030A	ΜY	⁄55410512	Oct.12,	2023	Oct.11, 2024
MXG Vector Signal Generator	Ke	eysight	N5	182B	ΜY	′56200284	Oct.12,	2023	Oct.11, 2024
MXG Vector Signal Generator	Ke	eysight	N5	172B	MY	⁄56200301	Oct.12,	2023	Oct.11, 2024
DC power supply	Ke	eysight	E3	642A	ΜY	′55159130	Oct.12,	2023	Oct.11, 2024
Temperature & Humidity Chamber	SAN	MOOD	SG-8	30-CC-2		2088	Oct.12,	2023	Oct.11, 2024
Attenuator	A	glient	lient 8495B		28	14a12853	Oct.12,	2023	Oct.11, 2024
RF Control Unit	То	onscend JS0		806-2	23E	380620666	Mar.25,	,2024	Mar.24,2025
				Softwa	re				
Description		Manufact	turer			Name			Version
Tonsend SRD Test Syst	tem	Tonser	nd	JS1	120-:	3 RF Test S	ystem		V3.2.22

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Conducted Emissions								
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date			
EMI Test Receiver	R&S	ESR3	101961	Oct.13, 2023	Oct.12, 2024			
Two-Line V- Network	R&S	ENV216	101983	Oct.13, 2023	Oct.12, 2024			
Artificial Mains Networks	Schwarzbeck	NSLK 8126	8126465	Oct.13, 2023	Oct.12, 2024			
	Software							
Description			Manufacturer	Name	Version			
Test Software	for Conducted	Emissions	Farad	EZ-EMC	Ver. UL-3A1			

	Radiated Emissions							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date			
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Oct.12, 2023	Oct.11, 2024			
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130960	Jun. 28, 2024	Jun. 27, 2027			
Preamplifier	HP	8447D	2944A09099	Oct.12, 2023	Oct.11, 2024			
EMI Measurement Receiver	R&S	ESR26	101377	Oct.12, 2023	Oct.11, 2024			
Horn Antenna	TDK	HRN-0118	130939	April 29, 2022	April 30, 2025			
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Oct.12, 2023	Oct.11, 2024			
Horn Antenna	Schwarzbeck	BBHA9170	856	Feb 28, 2022	Feb 28, 2025			
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Oct.12, 2023	Oct.11, 2024			
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Oct.12, 2023	Oct.11, 2024			
Loop antenna	Schwarzbeck	1519B	00008	Dec.14, 2021	Dec.13, 2024			
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Oct.12, 2023	Oct.11, 2024			
High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS	23	Oct.12, 2023	Oct.11, 2024			
Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS	4	Oct.12, 2023	Oct.11, 2024			
		So	ftware					
[Description		Manufacturer	Name	Version			
Test Software	for Radiated E	missions	Farad	EZ-EMC	Ver. UL-3A1			

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Other Instrument								
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date			
Temperature humidity probe	OMEGA	ITHX-SD-5	18470007	Oct.21, 2023	Oct.20, 2024			
Barometer	Yiyi	Baro	N/A	Oct.19, 2023	Oct.18, 2024			
Attenuator	Agilent	8495B	2814a12853	Oct.12, 2023	Oct.11, 2024			

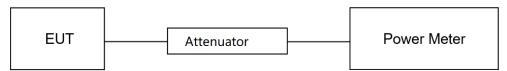
7. ANTENNA PORT TEST RESULTS

7.1. CONDUCTED OUTPUT POWER

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)			
CFR 47 FCC 15.247(b)(3)	AVG Output Power	1 watt or 30 dBm	2400-2483.5			

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 11.9.2.3.1.

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the average output power, after any corrections for external attenuators and cables.

The test result in dBm by adding [10 log (1 / D)], where D is the duty cycle.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2 ℃	Relative Humidity	51.7%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8V

TEST DATE / ENGINEER

Test Date July 10, 2024 Test By Walker Yuan

TEST RESULTS

Please refer to section "Test Data" - Appendix B

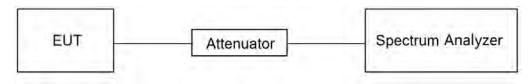
7.2. 6DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247(a)(2)	6 dB Bandwidth	≥ 500 kHz	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth.


Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Frequency Span	For 6 dB Bandwidth: Enough to capture all products of the modulation carrier emission For 99 % Occupied Bandwidth: Between 1.5 times and 5.0 times the OBW
Detector	Peak
IRR///	For 6 dB Bandwidth: 100 kHz For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
IV B W	For 6 dB Bandwidth: ≥3 × RBW For 99 % Occupied Bandwidth: ≥3 × RBW
Trace	Max hold
Sweep	Auto couple

a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.

b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2℃	Relative Humidity	51.7%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8V

TEST DATE / ENGINEER

Test Date	July 10, 2024	Test By	Walker Yuan
-----------	---------------	---------	-------------

TEST RESULTS

Please refer to section "Test Data" - Appendix C&D

7.3. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC §15.247 (e)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5

TEST PROCEDURE

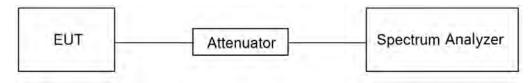
Refer to ANSI C63.10-2013 clause 11.10.4 for 802.11b.

Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	power averaging (rms)
RBW	3 kHz ≤ RBW ≤ 100 kHz
VBW	≥3 × RBW
Span	1.5 x OBW bandwidth
Trace	Employ trace averaging(rms)mode over a minimum of 100 traces
Sweep time	Manually set the sweep time to: \geq [10 \times (number of measurement points in sweep) \times (transmission symbol period)], but no less than the auto sweep time.

Refer to ANSI C63.10-2013 clause 11.10.5 for 802.11g/n HT20.

Center Frequency	The center frequency of the channel under test
Detector	power averaging (rms)
RBW	$3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$
VBW	≥3 × RBW
Span	1.5 x OBW bandwidth
Trace	Employ trace averaging(rms)mode over a minimum of 100 traces
Sweep time	Auto couple


Connect the EUT to the spectrum analyzer and use the following settings:

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2℃	Relative Humidity	51.7%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8V

TEST DATE / ENGINEER

Test Date	July 10, 2024	Test By	Walker Yuan
	•	-	

TEST RESULTS

Please refer to section "Test Data" - Appendix E

7.4. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C		
Section Test Item Limit		
CFR 47 FCC §15.247 (d)	Conducted Bandedge and Spurious Emissions	at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

TEST PROCEDURE

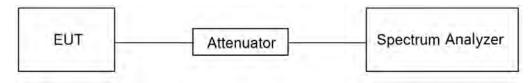
Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyzer and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:


Shah	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2℃	Relative Humidity	51.7%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8V

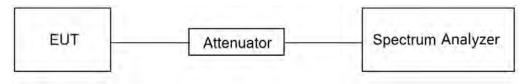
TEST DATE / ENGINEER

Test Date July 10, 2024 Test By Walker Yuan

TEST RESULTS

Please refer to section "Test Data" - Appendix G

7.5. DUTY CYCLE


LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2℃	Relative Humidity	51.7%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8V

TEST DATE / ENGINEER

Test Date July 10, 2024 Test By Walker Yuan	
---	--

TEST RESULTS

Please refer to section "Test Data" - Appendix A

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range	Field Strength Limit	Field Streng	
(MHz)	(uV/m) at 3 m	(dBuV/m) at 3 m	
		Quasi-P	eak
30 - 88	100	40	
88 - 216	150	43.5	
216 - 960	200	46	
Above 960	500	54	
Above 1000	500	Peak	Average
	300	74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz		
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyzer

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X kHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyzer

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

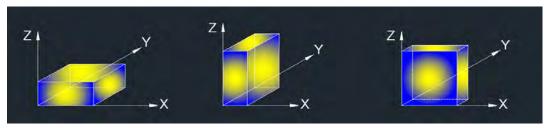
5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1 GHz

The setting of the spectrum analyzer

RBW	1 MHz
VBW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.


2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5 m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.5. ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Note 2: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.

For Restricted Bandedge:

Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. PK=Peak: Peak detector.

4. AV=Average: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.5.

6. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

7. Both horizontal and vertical have been tested, only the worst data was recorded in the report.

8. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious emission (9 kHz ~ 30 MHz): Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

4. All modes have been tested, but only the worst data was recorded in the report.

5. dBuA/m= dBuV/m- 20Log10[120π] = dBuV/m- 51.5

For Radiate Spurious Emission (30 MHz ~ 1 GHz): Note:

1. Result Level = Read Level + Correct Factor.

2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.

3. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious Emission (1 GHz ~ 3 GHz): Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.5.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious Emission (3 GHz ~ 18 GHz): Note:

1. Peak Result = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

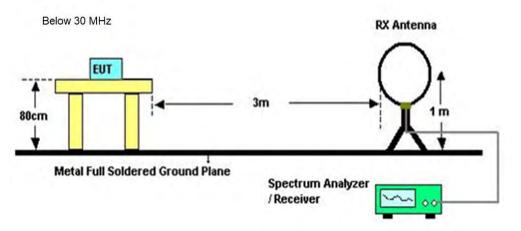
5. For the transmitting duration, please refer to clause 7.5.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

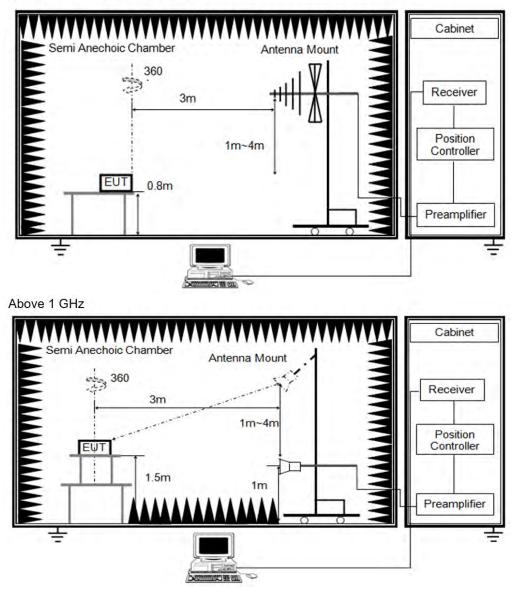
8. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious emission (18 GHz ~ 26 GHz): Note:


1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.


4. All modes have been tested, but only the worst data was recorded in the report.

TEST SETUP

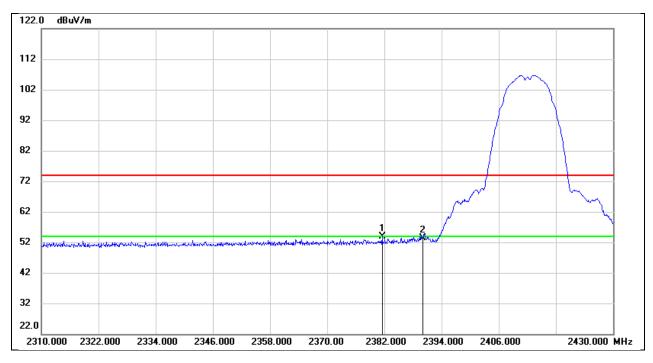
Below 1 GHz and above 30 MHz

TEST ENVIRONMENT

Temperature	21.6 ℃	Relative Humidity	58.6%
Atmosphere Pressure	101kPa	Test Voltage	

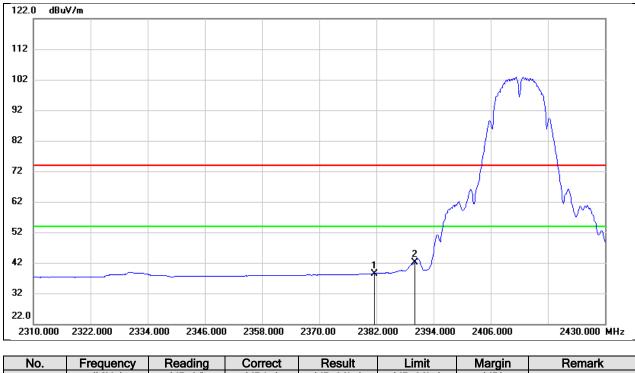
TEST DATE / ENGINEER

Test Date	August 2, 2024	Test By	Mason Wang
-----------	----------------	---------	------------

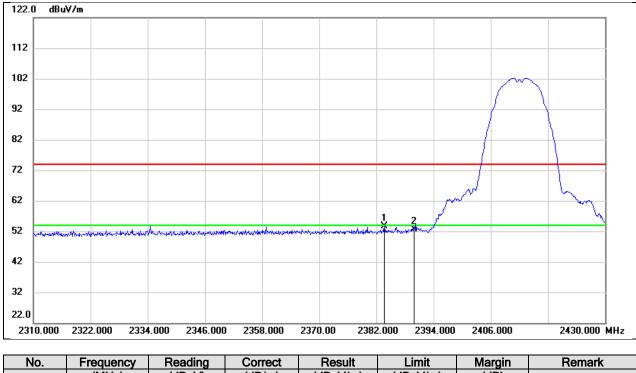

TEST RESULTS

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

8.1. RESTRICTED BANDEDGE


Test Mode:	802.11b PK	Frequency(MHz):	2412
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

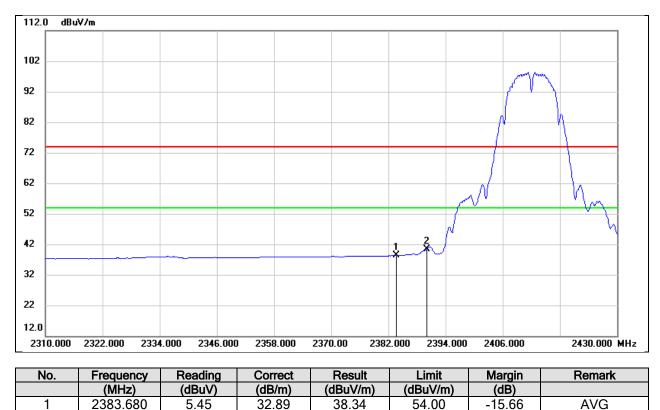
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2381.520	20.94	32.88	53.82	74.00	-20.18	peak
2	2390.000	20.43	32.92	53.35	74.00	-20.65	peak


Test Mode:	802.11b AV	Frequency(MHz):	2412
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

INU.	Frequency	Reaulity	Conect	Result	LITTIL	warym	Nellialk
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2381.520	5.53	32.88	38.41	54.00	-15.59	AVG
2	2390.000	9.25	32.92	42.17	54.00	-11.83	AVG

Test Mode:	802.11b PK	Frequency(MHz):	2412
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

L	110.	ricquolicy	ricualing	00100	rtoouit		margin	rtomark
		(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
	1	2383.680	20.63	32.89	53.52	74.00	-20.48	peak
	2	2390.000	19.76	32.92	52.68	74.00	-21.32	peak


2

2390.000

7.46

32.92

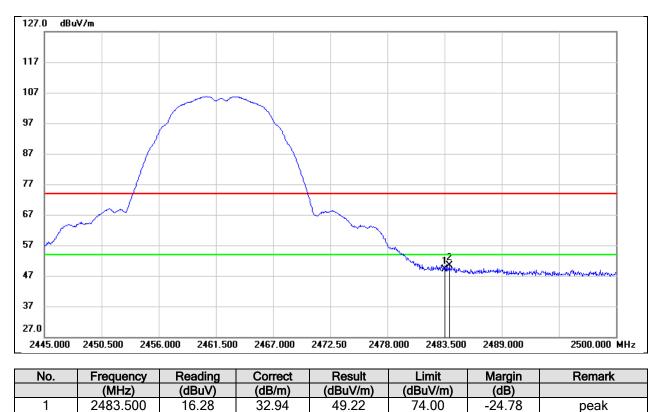
Test Mode:	802.11b AV	Frequency(MHz):	2412
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

40.38

54.00

-13.62

AVG


2

2483.940

17.35

32.94

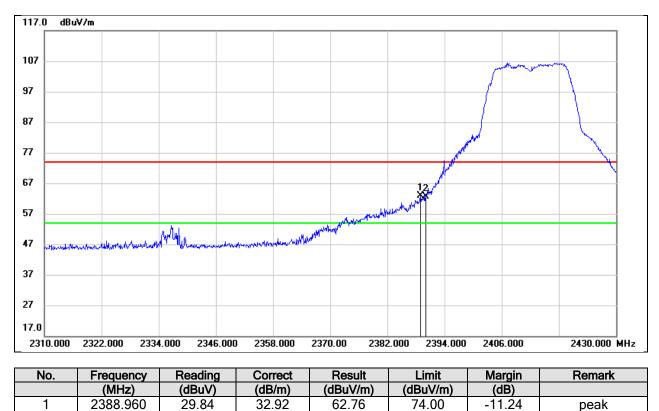
Test Mode:	802.11b PK	Frequency(MHz):	2462
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

50.29

74.00

-23.71

peak


2

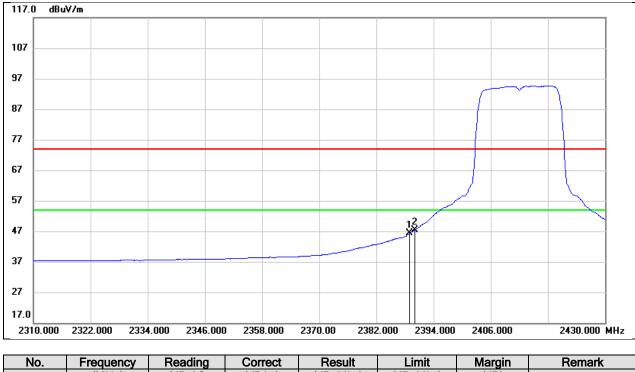
2390.000

29.81

32.92

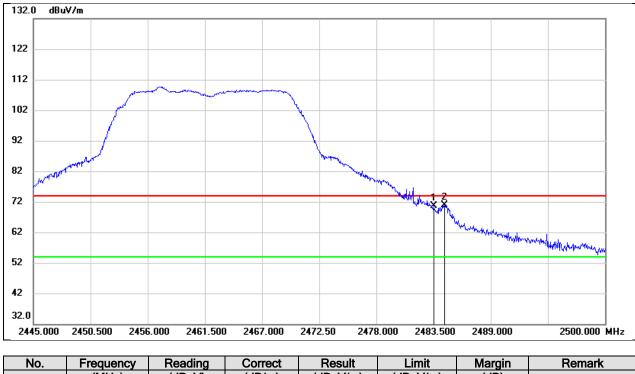
Test Mode:	802.11g PK	Frequency(MHz):	2412
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

62.73


74.00

-11.27

peak


Test Mode:	802.11g AV	Frequency(MHz):	2412
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

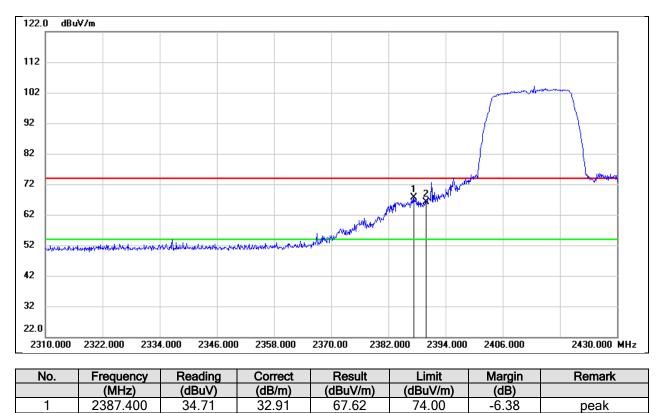
NU.	Frequency	Reaulity	Conect	Result	LIIIIL	warym	Nellialk
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2388.960	13.40	32.92	46.32	54.00	-7.68	AVG
2	2390.000	14.51	32.92	47.43	54.00	-6.57	AVG

Test Mode:	802.11g PK	Frequency(MHz):	2462
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

NO.	Trequency	rteauing	Conect	Result	LITTIC	warym	Tremark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	37.75	32.94	70.69	74.00	-3.31	peak
2	2484.545	37.99	32.94	70.93	74.00	-3.07	peak

Test Mode:	802.11g AV	Frequency(MHz):	2462
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

140.	riequency	riteauling	Oonect	rtoouit	LIIIIL	wargin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	20.03	32.94	52.97	54.00	-1.03	AVG
2	2484.545	18.47	32.94	51.41	54.00	-2.59	AVG


2

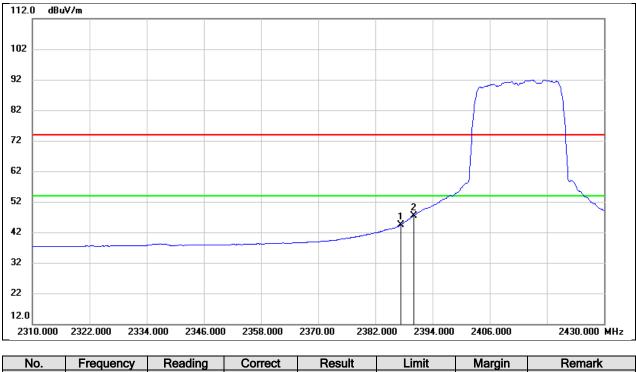
2390.000

33.14

32.92

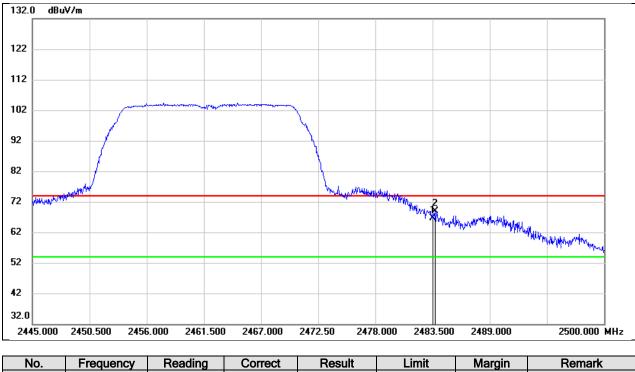
Test Mode:	802.11n HT20 PK	Frequency(MHz):	2412
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

66.06

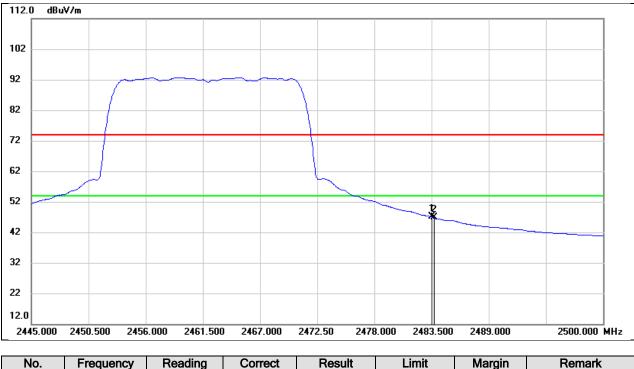

74.00

-7.94

peak


Test Mode:	802.11n HT20 AV	Frequency(MHz):	2412
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

INO.	Frequency	Reading	Conect	Result		wargin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2387.400	11.57	32.91	44.48	54.00	-9.52	AVG
2	2390.000	14.50	32.92	47.42	54.00	-6.58	AVG


Test Mode:	802.11n HT20 PK	Frequency(MHz):	2462
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

L	INU.	Frequency	Reading	Conect	Result	LIIIIL	Maryin	Reilidik
		(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
	1	2483.500	33.76	32.94	66.70	74.00	-7.30	peak
	2	2483.720	35.92	32.94	68.86	74.00	-5.14	peak

Test Mode:	802.11n HT20 AV	Frequency(MHz):	2462
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

NO.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	14.14	32.94	47.08	54.00	-6.92	AVG
2	2483.720	13.92	32.94	46.86	54.00	-7.14	AVG

0.150

2412

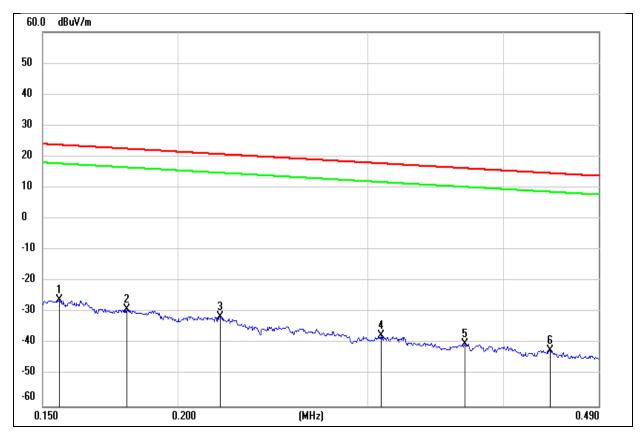
Test Mode:

0.009

Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz
60.0 dBuV/m			
50			
40			
30			
20			
0			
-10			
-20			
-30 -30 -40	3 month and the second		c
-50		a manufacture and the second s	the state of the s
-60			

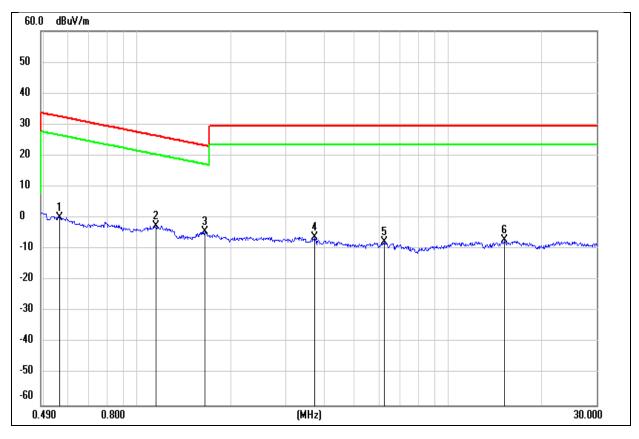
Frequency(MHz):

8.2. SPURIOUS EMISSIONS(9 KHZ~30 MHZ)


802.11b

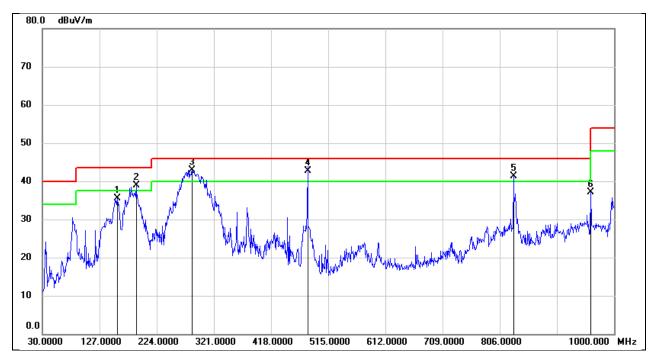
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0100	76.22	-101.40	-25.18	47.60	-72.78	peak
2	0.0131	72.97	-101.38	-28.41	45.25	-73.66	peak
3	0.0206	69.42	-101.35	-31.93	41.32	-73.25	peak
4	0.0417	64.08	-101.44	-37.36	35.20	-72.56	peak
5	0.0675	61.64	-101.56	-39.92	31.02	-70.94	peak
6	0.0981	58.27	-101.78	-43.51	27.77	-71.28	peak

(MHz)

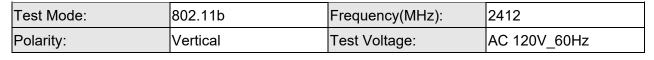

Test Mode:	802.11b	Frequency(MHz):	2412
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

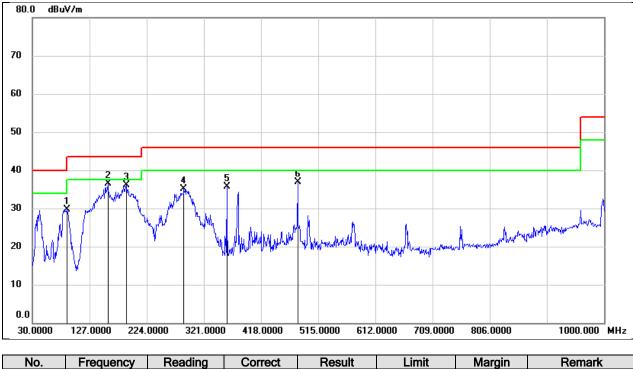
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1554	75.77	-101.65	-25.88	23.77	-49.65	peak
2	0.1794	72.77	-101.68	-28.91	22.53	-51.44	peak
3	0.2190	70.27	-101.75	-31.48	20.79	-52.27	peak
4	0.3084	64.45	-101.86	-37.41	17.82	-55.23	peak
5	0.3684	61.98	-101.93	-39.95	16.27	-56.22	peak
6	0.4415	59.85	-102.01	-42.16	14.70	-56.86	peak

Test Mode:	802.11b	Frequency(MHz):	2412
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

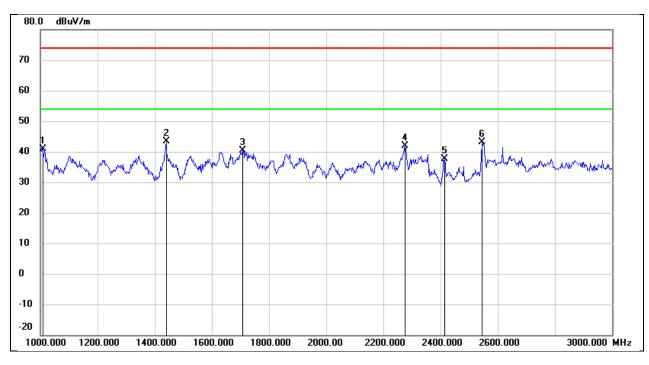


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.5635	62.37	-62.08	0.29	32.59	-32.30	peak
2	1.1484	59.62	-62.21	-2.59	26.40	-28.99	peak
3	1.6491	57.55	-61.98	-4.43	23.26	-27.69	peak
4	3.7100	55.20	-61.41	-6.21	29.54	-35.75	peak
5	6.2445	53.63	-61.32	-7.69	29.54	-37.23	peak
6	15.1859	54.05	-61.01	-6.96	29.54	-36.50	peak


8.1. SPURIOUS EMISSIONS(30 MHZ~1 GHZ)

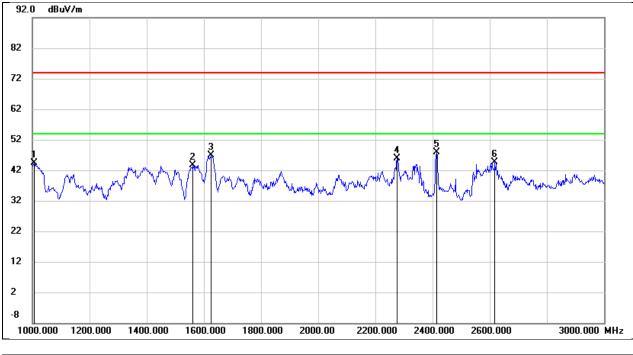

Test Mode:	802.11b	Frequency(MHz):	2412
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	157.0700	48.41	-12.99	35.42	43.50	-8.08	QP
2	189.0800	51.11	-12.20	38.91	43.50	-4.59	QP
3	284.1400	55.46	-12.49	42.97	46.00	-3.03	QP
4	480.0800	51.00	-8.30	42.70	46.00	-3.30	QP
5	829.2800	44.18	-2.87	41.31	46.00	-4.69	QP
6	960.2300	38.57	-1.48	37.09	54.00	-16.91	QP

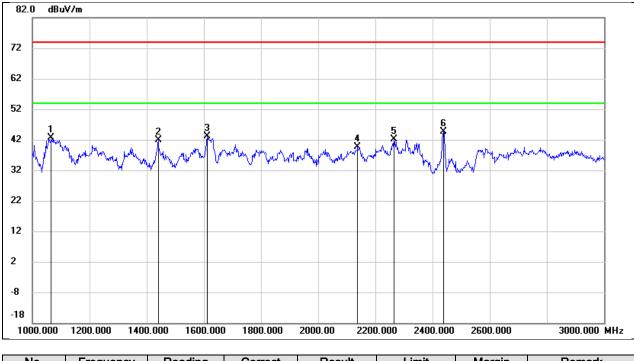


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	88.2000	46.53	-16.82	29.71	43.50	-13.79	QP
2	158.0399	49.43	-12.92	36.51	43.50	-6.99	QP
3	189.0800	48.35	-12.20	36.15	43.50	-7.35	QP
4	287.0500	47.39	-12.29	35.10	46.00	-10.90	QP
5	359.8000	45.26	-9.60	35.66	46.00	-10.34	QP
6	480.0800	45.25	-8.30	36.95	46.00	-9.05	QP

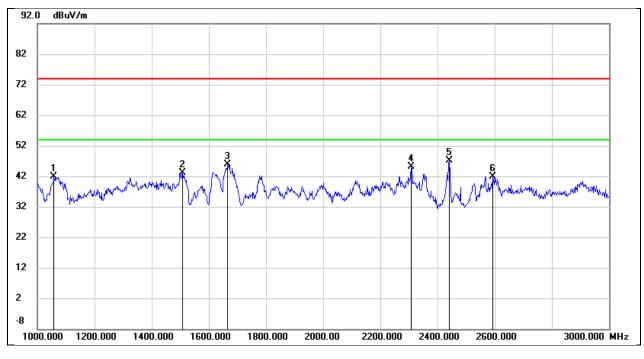
8.2. SPURIOUS EMISSIONS(1 GHZ~3 GHZ)


Test Mode:	802.11b	Frequency(MHz):	2412
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

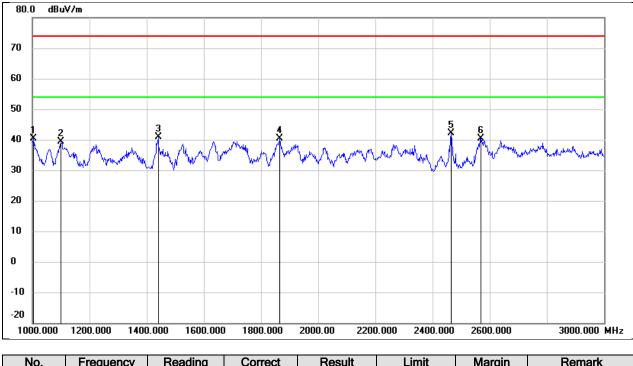
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1010.000	55.30	-14.33	40.97	74.00	-33.03	peak
2	1440.000	55.47	-12.14	43.33	74.00	-30.67	peak
3	1708.000	51.07	-10.67	40.40	74.00	-33.60	peak
4	2276.000	50.31	-8.32	41.99	74.00	-32.01	peak
5	2414.000	45.03	-7.41	37.62	74.00	-36.38	peak
6	2544.000	50.69	-7.58	43.11	74.00	-30.89	peak


Test Mode:	802.11b	Frequency(MHz):	2412
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

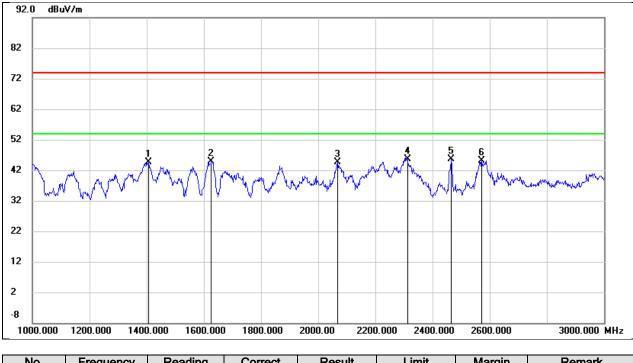
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1006.000	58.70	-14.36	44.34	74.00	-29.66	peak
2	1562.000	54.95	-11.39	43.56	74.00	-30.44	peak
3	1626.000	57.85	-11.05	46.80	74.00	-27.20	peak
4	2276.000	54.15	-8.32	45.83	74.00	-28.17	peak
5	2414.000	55.20	-7.41	47.79	74.00	-26.21	peak
6	2618.000	52.24	-7.61	44.63	74.00	-29.37	peak


Test Mode:	802.11b	Frequency(MHz):	2437
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1066.000	56.41	-13.83	42.58	74.00	-31.42	peak
2	1440.000	53.97	-12.14	41.83	74.00	-32.17	peak
3	1612.000	54.14	-11.11	43.03	74.00	-30.97	peak
4	2138.000	48.89	-9.26	39.63	74.00	-34.37	peak
5	2266.000	50.48	-8.39	42.09	74.00	-31.91	peak
6	2438.000	51.98	-7.43	44.55	74.00	-29.45	peak

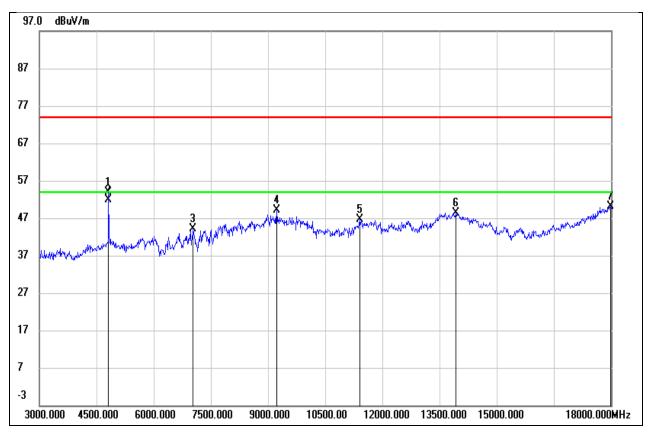

Test Mode:	802.11b	Frequency(MHz):	2437
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1058.000	55.67	-13.89	41.78	74.00	-32.22	peak
2	1508.000	54.70	-11.69	43.01	74.00	-30.99	peak
3	1666.000	56.86	-10.86	46.00	74.00	-28.00	peak
4	2308.000	53.13	-8.08	45.05	74.00	-28.95	peak
5	2440.000	54.46	-7.44	47.02	74.00	-26.98	peak
6	2592.000	49.65	-7.67	41.98	74.00	-32.02	peak


Test Mode:	802.11b	Frequency(MHz):	2462
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

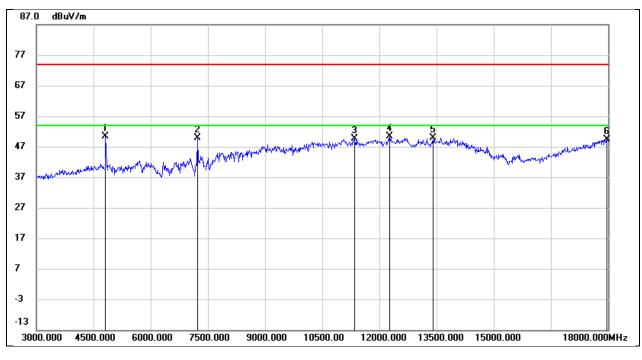
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1004.000	54.67	-14.38	40.29	74.00	-33.71	peak
2	1100.000	52.94	-13.53	39.41	74.00	-34.59	peak
3	1440.000	52.94	-12.14	40.80	74.00	-33.20	peak
4	1866.000	50.57	-10.20	40.37	74.00	-33.63	peak
5	2464.000	49.68	-7.47	42.21	74.00	-31.79	peak
6	2570.000	47.95	-7.62	40.33	74.00	-33.67	peak

Test Mode:	802.11b	Frequency(MHz):	2462
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

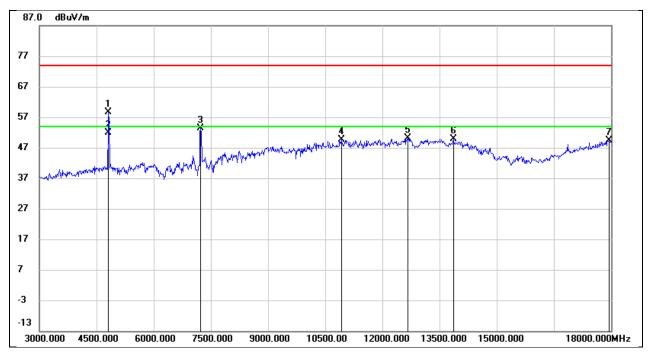


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1406.000	57.07	-12.37	44.70	74.00	-29.30	peak
2	1626.000	55.96	-11.05	44.91	74.00	-29.09	peak
3	2068.000	54.21	-9.69	44.52	74.00	-29.48	peak
4	2312.000	53.67	-8.05	45.62	74.00	-28.38	peak
5	2466.000	53.07	-7.46	45.61	74.00	-28.39	peak
6	2572.000	52.82	-7.63	45.19	74.00	-28.81	peak

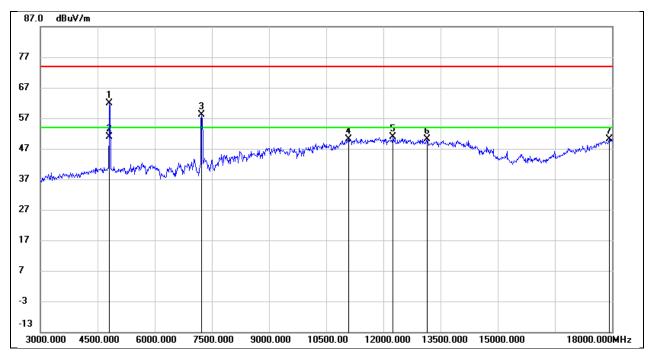
8.3. SPURIOUS EMISSIONS(3 GHZ~18 GHZ)


Test Mode:	802.11b	Frequency(MHz):	2412
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4815.000	53.26	0.65	53.91	74.00	-20.09	peak
2	4815.000	51.15	0.65	51.80	54.00	-2.20	AVG
3	7035.000	36.62	7.39	44.01	74.00	-29.99	peak
4	9225.000	38.99	10.17	49.16	74.00	-24.84	peak
5	11400.000	30.46	16.28	46.74	74.00	-27.26	peak
6	13935.000	25.86	22.59	48.45	74.00	-25.55	peak
7	17985.000	21.87	28.25	50.12	74.00	-23.88	peak

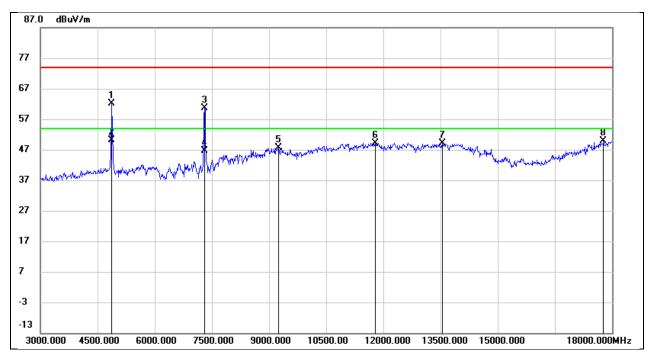

Test Mode:	802.11b	Frequency(MHz):	2412
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4815.000	49.87	0.49	50.36	74.00	-23.64	peak
2	7230.000	43.36	6.45	49.81	74.00	-24.19	peak
3	11355.000	33.36	16.27	49.63	74.00	-24.37	peak
4	12270.000	31.90	18.55	50.45	74.00	-23.55	peak
5	13410.000	28.29	21.48	49.77	74.00	-24.23	peak
6	17970.000	22.78	26.72	49.50	74.00	-24.50	peak


Test Mode:	802.11g	Frequency(MHz):	2412
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

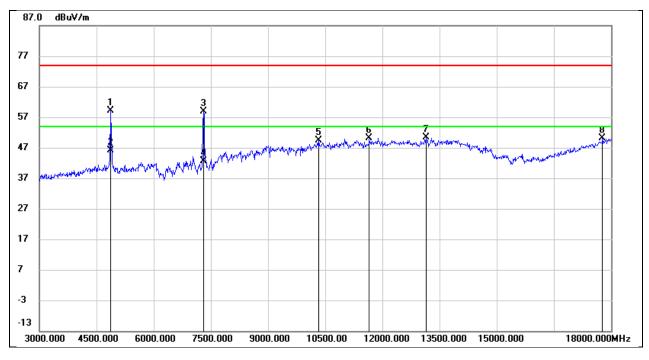
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4815.000	58.06	0.49	58.55	74.00	-15.45	peak
2	4815.000	51.33	0.49	51.82	54.00	-2.18	AVG
3	7230.000	46.81	6.45	53.26	74.00	-20.74	peak
4	10920.000	35.09	14.54	49.63	74.00	-24.37	peak
5	12660.000	31.66	18.49	50.15	74.00	-23.85	peak
6	13860.000	27.15	22.68	49.83	74.00	-24.17	peak
7	17955.000	22.82	26.66	49.48	74.00	-24.52	peak

Test Mode:	802.11g	Frequency(MHz):	2412
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

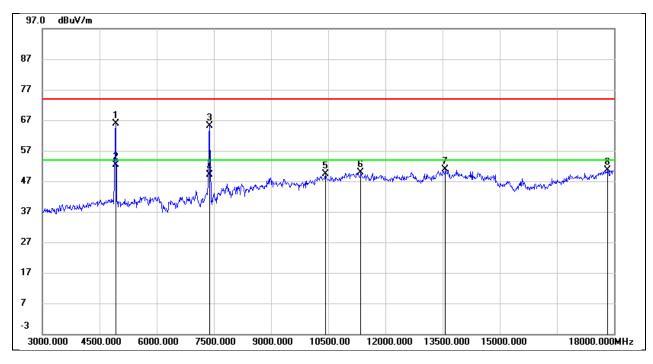


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4815.000	61.45	0.49	61.94	74.00	-12.06	peak
2	4815.000	50.35	0.49	50.84	54.00	-3.16	AVG
3*	7230.000	51.77	6.45	58.22	74.00	-15.78	peak
4	11085.000	35.06	15.11	50.17	74.00	-23.83	peak
5	12255.000	32.50	18.50	51.00	74.00	-23.00	peak
6	13140.000	30.36	19.80	50.16	74.00	-23.84	peak
7	17925.000	23.55	26.55	50.10	74.00	-23.90	peak

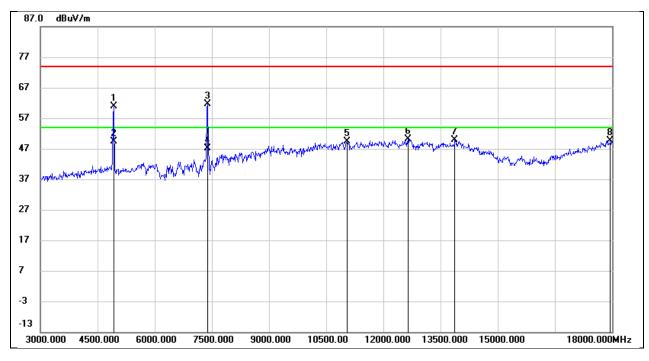
* not restricted band


Test Mode:	802.11g	Frequency(MHz):	2437
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

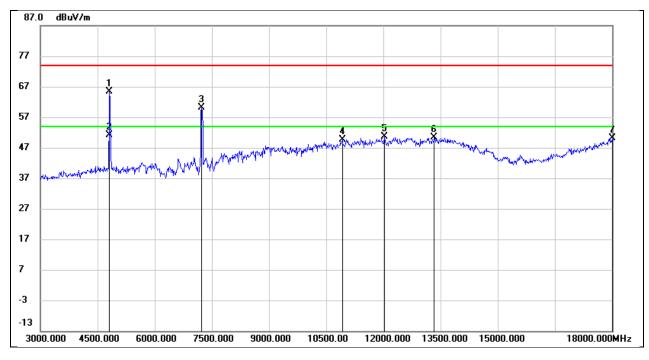
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4860.000	61.60	0.57	62.17	74.00	-11.83	peak
2	4860.000	49.59	0.57	50.16	54.00	-3.84	AVG
3	7305.000	53.77	6.89	60.66	74.00	-13.34	peak
4	7305.000	39.63	6.89	46.52	54.00	-7.48	AVG
5	9255.000	37.58	10.14	47.72	74.00	-26.28	peak
6	11790.000	31.63	17.60	49.23	74.00	-24.77	peak
7	13545.000	27.47	21.68	49.15	74.00	-24.85	peak
8	17775.000	24.05	25.86	49.91	74.00	-24.09	peak


Test Mode:	802.11g	Frequency(MHz):	2437
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4860.000	58.46	0.57	59.03	74.00	-14.97	peak
2	4860.000	45.67	0.57	46.24	54.00	-7.76	AVG
3	7305.000	52.02	6.89	58.91	74.00	-15.09	peak
4	7305.000	35.75	6.89	42.64	54.00	-11.36	AVG
5	10335.000	36.35	13.14	49.49	74.00	-24.51	peak
6	11655.000	32.88	17.18	50.06	74.00	-23.94	peak
7	13140.000	30.57	19.80	50.37	74.00	-23.63	peak
8	17775.000	24.24	25.86	50.10	74.00	-23.90	peak

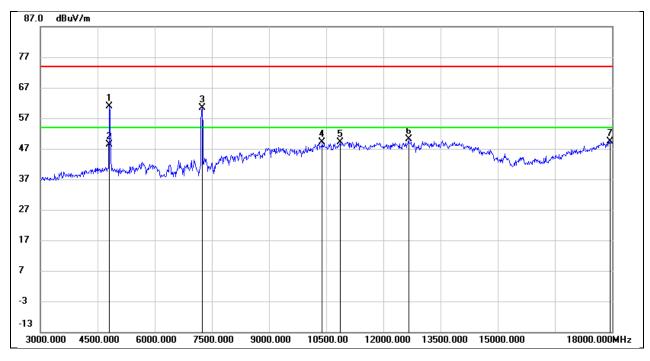

Test Mode:	802.11g	Frequency(MHz):	2462
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	65.22	0.69	65.91	74.00	-8.09	peak
2	4920.000	51.69	0.69	52.38	54.00	-1.62	AVG
3	7380.000	57.71	7.34	65.05	74.00	-8.95	peak
4	7380.000	41.87	7.34	49.21	54.00	-4.79	AVG
5	10425.000	35.90	13.51	49.41	74.00	-24.59	peak
6	11355.000	33.50	16.27	49.77	74.00	-24.23	peak
7	13575.000	29.13	21.67	50.80	74.00	-23.20	peak
8	17835.000	24.40	26.22	50.62	74.00	-23.38	peak


Test Mode:	802.11g	Frequency(MHz):	2462
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	60.15	0.69	60.84	74.00	-13.16	peak
2	4920.000	48.60	0.69	49.29	54.00	-4.71	AVG
3	7380.000	54.35	7.34	61.69	74.00	-12.31	peak
4	7380.000	39.77	7.34	47.11	54.00	-6.89	AVG
5	11055.000	34.42	15.04	49.46	74.00	-24.54	peak
6	12645.000	31.71	18.44	50.15	74.00	-23.85	peak
7	13875.000	27.11	22.68	49.79	74.00	-24.21	peak
8	17955.000	23.07	26.66	49.73	74.00	-24.27	peak

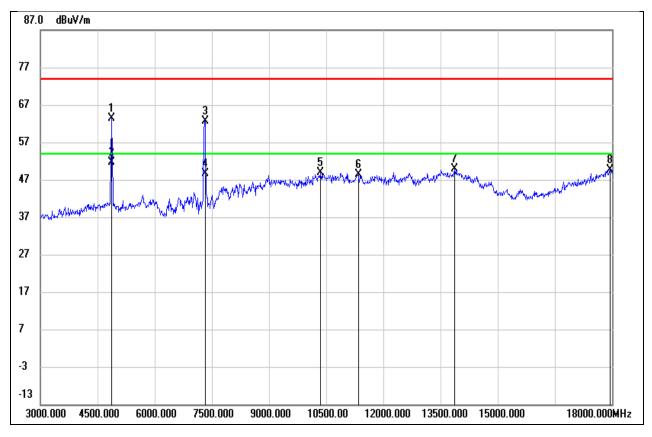
Test Mode:	802.11n HT20	Frequency(MHz):	2412
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4815.000	64.89	0.49	65.38	74.00	-8.62	peak
2	4815.000	50.65	0.49	51.14	54.00	-2.86	AVG
3*	7230.000	53.62	6.45	60.07	74.00	-13.93	peak
4	10920.000	35.20	14.54	49.74	74.00	-24.26	peak
5	12030.000	32.26	18.47	50.73	74.00	-23.27	peak
6	13335.000	29.25	21.02	50.27	74.00	-23.73	peak
7	18000.000	23.29	26.83	50.12	74.00	-23.88	peak

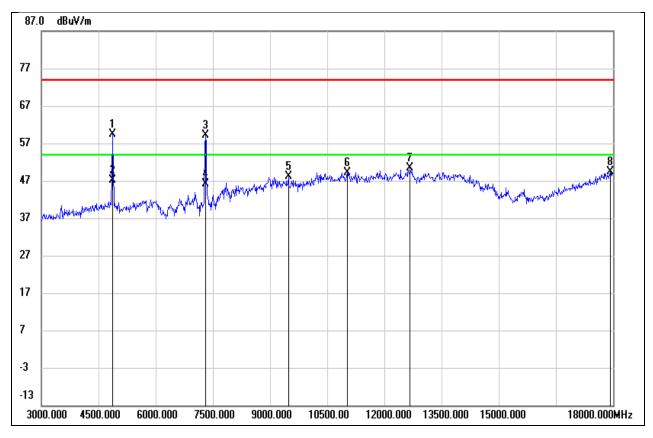
* not restricted band

Test Mode:	802.11n HT20	Frequency(MHz):	2412
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

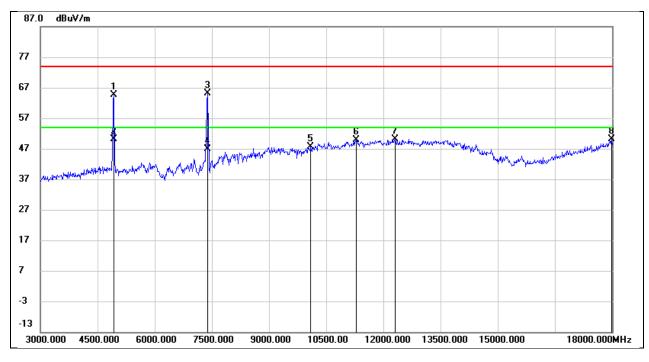


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4815.000	60.51	0.49	61.00	74.00	-13.00	peak
2	4815.000	47.86	0.49	48.35	54.00	-5.65	AVG
3*	7245.000	53.79	6.53	60.32	74.00	-13.68	peak
4	10395.000	35.66	13.43	49.09	74.00	-24.91	peak
5	10875.000	34.75	14.31	49.06	74.00	-24.94	peak
6	12660.000	31.56	18.49	50.05	74.00	-23.95	peak
7	17940.000	22.82	26.61	49.43	74.00	-24.57	peak

* not restricted band


Test Mode:	802.11n HT20	Frequency(MHz):	2437
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4860.000	62.86	0.57	63.43	74.00	-10.57	peak
2	4860.000	51.04	0.57	51.61	54.00	-2.39	AVG
3	7320.000	55.72	6.98	62.70	74.00	-11.30	peak
4	7320.000	41.62	6.98	48.60	54.00	-5.40	AVG
5	10350.000	35.73	13.21	48.94	74.00	-25.06	peak
6	11340.000	32.16	16.19	48.35	74.00	-25.65	peak
7	13875.000	27.19	22.68	49.87	74.00	-24.13	peak
8	17940.000	23.10	26.61	49.71	74.00	-24.29	peak

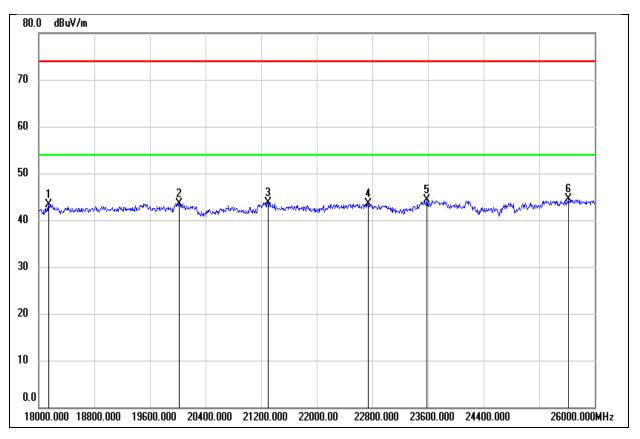

Test Mode:	802.11n HT20	Frequency(MHz):	2437
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4860.000	58.82	0.57	59.39	74.00	-14.61	peak
2	4860.000	46.55	0.57	47.12	54.00	-6.88	AVG
3	7305.000	52.16	6.89	59.05	74.00	-14.95	peak
4	7305.000	39.31	6.89	46.20	54.00	-7.80	AVG
5	9480.000	37.32	10.72	48.04	74.00	-25.96	peak
6	11025.000	34.16	14.97	49.13	74.00	-24.87	peak
7	12675.000	31.76	18.54	50.30	74.00	-23.70	peak
8	17925.000	22.79	26.55	49.34	74.00	-24.66	peak


Test Mode:	802.11n HT20	Frequency(MHz):	2462
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	63.91	0.69	64.60	74.00	-9.40	peak
2	4920.000	49.54	0.69	50.23	54.00	-3.77	AVG
3	7380.000	57.87	7.34	65.21	74.00	-8.79	peak
4	7380.000	39.63	7.34	46.97	54.00	-7.03	AVG
5	10095.000	35.08	12.48	47.56	74.00	-26.44	peak
6	11295.000	33.89	15.93	49.82	74.00	-24.18	peak
7	12300.000	31.54	18.65	50.19	74.00	-23.81	peak
8	17985.000	23.42	26.77	50.19	74.00	-23.81	peak

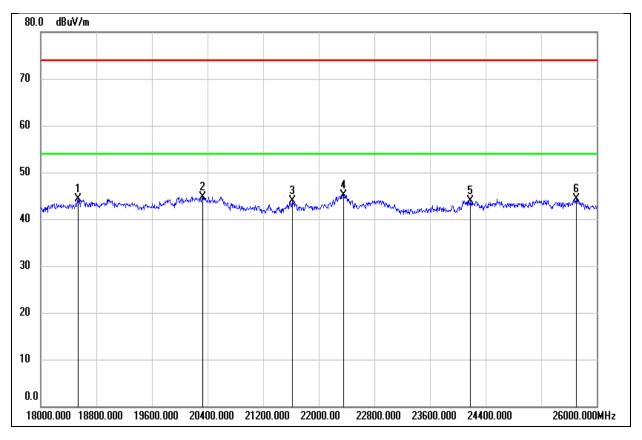
Test Mode:	802.11n HT20	Frequency(MHz):	2462
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	60.44	0.69	61.13	74.00	-12.87	peak
2	4920.000	47.81	0.69	48.50	54.00	-5.50	AVG
3	7380.000	55.21	7.34	62.55	74.00	-11.45	peak
4	7380.000	37.80	7.34	45.14	54.00	-8.86	AVG
5	11250.000	33.60	15.67	49.27	74.00	-24.73	peak
6	12510.000	31.25	18.51	49.76	74.00	-24.24	peak
7	13605.000	27.64	21.68	49.32	74.00	-24.68	peak
8	17970.000	23.29	26.72	50.01	74.00	-23.99	peak

8.4. SPURIOUS EMISSIONS(18 GHZ~26 GHZ)

Test Mode:	802.11b	Frequency(MHz):	2412
Polarity:	Horizontal	Test Voltage:	AC120V_60Hz



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18144.000	48.77	-5.48	43.29	74.00	-30.71	peak
2	20016.000	49.06	-5.47	43.59	74.00	-30.41	peak
3	21296.000	48.53	-4.75	43.78	74.00	-30.22	peak
4	22736.000	47.13	-3.70	43.43	74.00	-30.57	peak
5	23584.000	47.42	-3.15	44.27	74.00	-29.73	peak
6	25616.000	45.68	-1.24	44.44	74.00	-29.56	peak

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Test Mode:	802.11b	Frequency(MHz):	2412
Polarity:	Vertical	Test Voltage:	AC120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18536.000	49.60	-5.27	44.33	74.00	-29.67	peak
2	20328.000	50.32	-5.53	44.79	74.00	-29.21	peak
3	21624.000	48.51	-4.51	44.00	74.00	-30.00	peak
4	22360.000	49.26	-4.07	45.19	74.00	-28.81	peak
5	24176.000	46.70	-2.80	43.90	74.00	-30.10	peak
6	25704.000	45.04	-0.83	44.21	74.00	-29.79	peak

9. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC part 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC part 15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

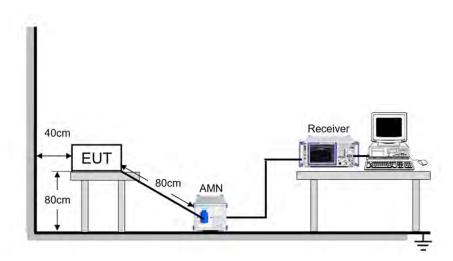
DESCRIPTION

Pass

10. AC POWER LINE CONDUCTED EMISSION

LIMITS

Please refer to CFR 47 FCC §15.207 (a)


FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

TEST PROCEDURE

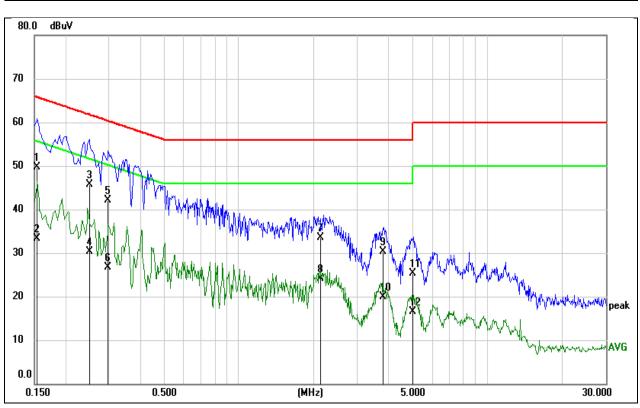
The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST SETUP

TEST ENVIRONMENT

Temperature	23 .1℃	Relative Humidity	52%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V_60Hz



TEST DATE / ENGINEER

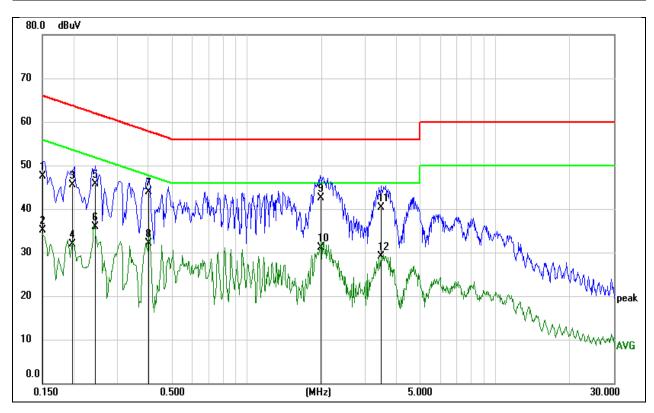
-			
Test Date	August 2, 2024	Test By	James Qin

TEST RESULTS

Test Mode:	802.11b	Frequency(MHz):	2412
Line:	Line		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1545	39.38	10.33	49.71	65.75	-16.04	QP
2	0.1545	23.06	10.33	33.39	55.75	-22.36	AVG
3	0.2498	35.41	10.24	45.65	61.76	-16.11	QP
4	0.2498	20.11	10.24	30.35	51.76	-21.41	AVG
5	0.2962	31.86	10.24	42.10	60.35	-18.25	QP
6	0.2962	16.39	10.24	26.63	50.35	-23.72	AVG
7	2.1409	23.47	9.96	33.43	56.00	-22.57	QP
8	2.1409	14.05	9.96	24.01	46.00	-21.99	AVG
9	3.7827	20.09	10.20	30.29	56.00	-25.71	QP
10	3.7827	9.73	10.20	19.93	46.00	-26.07	AVG
11	4.9898	15.07	10.26	25.33	56.00	-30.67	QP
12	4.9898	6.32	10.26	16.58	46.00	-29.42	AVG

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.


Note:

- 1. Result = Reading + Correct Factor.
- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).
- 4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

Note: All the modes have been tested, only the worst data was recorded in the report.

Test Mode:	802.11b	Frequency(MHz):	2412
Line:	Neutral		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1500	37.20	10.24	47.44	66.00	-18.56	QP
2	0.1500	24.85	10.24	35.09	56.00	-20.91	AVG
3	0.1980	35.42	10.14	45.56	63.69	-18.13	QP
4	0.1980	21.74	10.14	31.88	53.69	-21.81	AVG
5	0.2447	35.63	10.13	45.76	61.94	-16.18	QP
6	0.2447	25.79	10.13	35.92	51.94	-16.02	AVG
7	0.4024	33.80	10.07	43.87	57.80	-13.93	QP
8	0.4024	22.06	10.07	32.13	47.80	-15.67	AVG
9	1.9919	32.54	10.04	42.58	56.00	-13.42	QP
10	1.9919	21.11	10.04	31.15	46.00	-14.85	AVG
11	3.4674	30.08	10.25	40.33	56.00	-15.67	QP
12	3.4674	18.80	10.25	29.05	46.00	-16.95	AVG

Note:

- 1. Result = Reading + Correct Factor.
- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).
- 4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

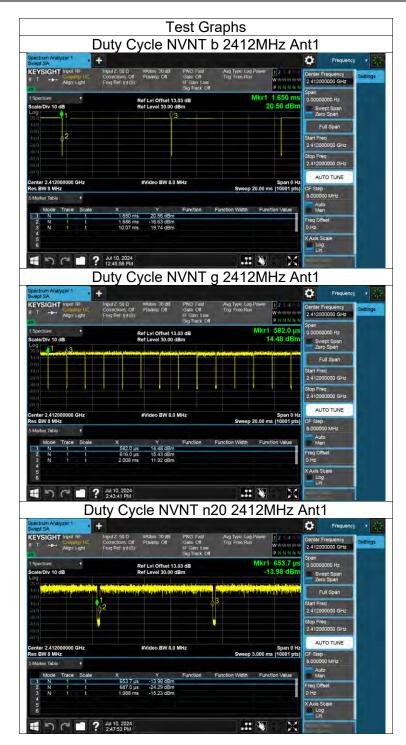
Note: All the modes have been tested, only the worst data was recorded in the report.

11. TEST DATA

11.1. APPENDIX A:DUTY CYCLE

Test Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
b	8.384	8.42	0.9957	99.57	0.02	-	0.01
g	1.39	1.43	0.9720	97.20	0.12	0.72	1
n20	1.3	1.33	0.9774	97.74	0.10	0.77	1

Note:


Duty Cycle Correction Factor=10log (1/x).

Where: x is Duty Cycle (Linear)

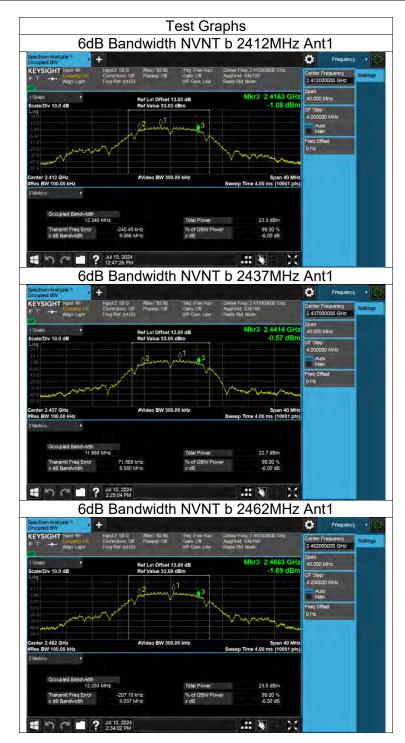
Where: T is On Time

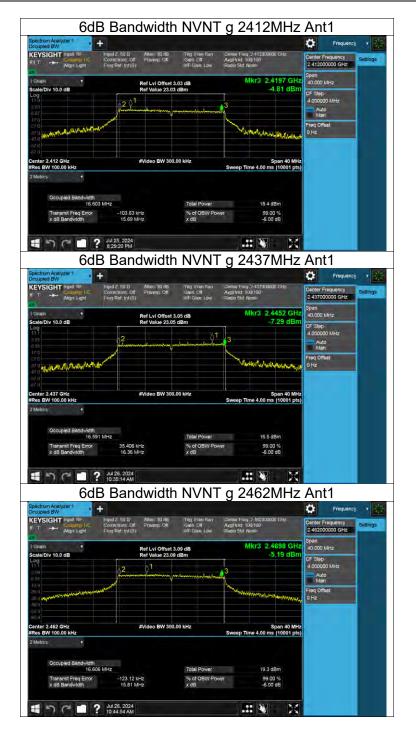
If that calculated VBW is not available on the analyzer then the next higher value should be used.

11.2. APPENDIX B:MAXIMUM CONDUCTED OUTPUT POWER

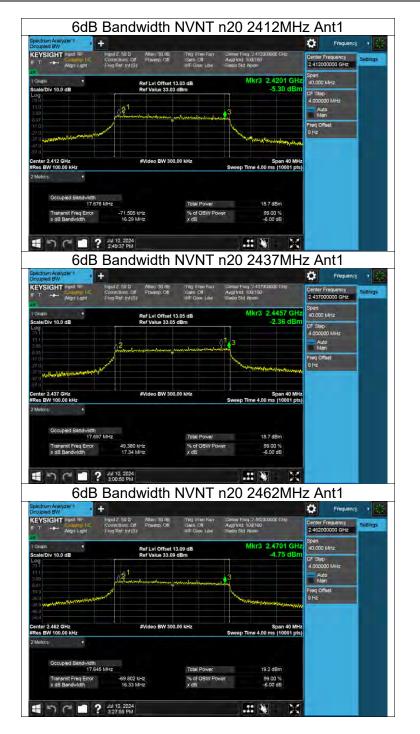
Mode	Frequency (MHz)	Antenna	Total Power (dBm)	Limit (dBm)	Verdict
b	2412	Ant1	17.11	30	Pass
b	2437	Ant1	16.22	30	Pass
b	2462	Ant1	17.06	30	Pass
g	2412	Ant1	13.14	30	Pass
g	2437	Ant1	13.57	30	Pass
g	2462	Ant1	13.45	30	Pass
n20	2412	Ant1	13.17	30	Pass
n20	2437	Ant1	13.04	30	Pass
n20	2462	Ant1	13.59	30	Pass

Note: 1. Conducted Power=Meas. Level+ Correction Factor


2. The Duty Cycle Factor (refer to section 7.5) had already compensated to the test data.

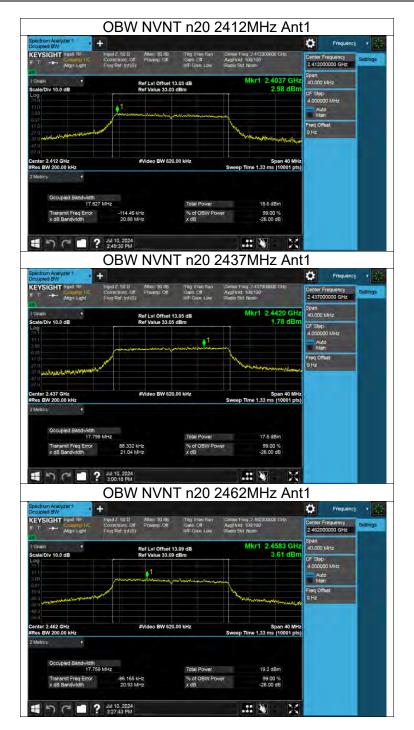

11.3. APPENDIX C:6DB BANDWIDTH

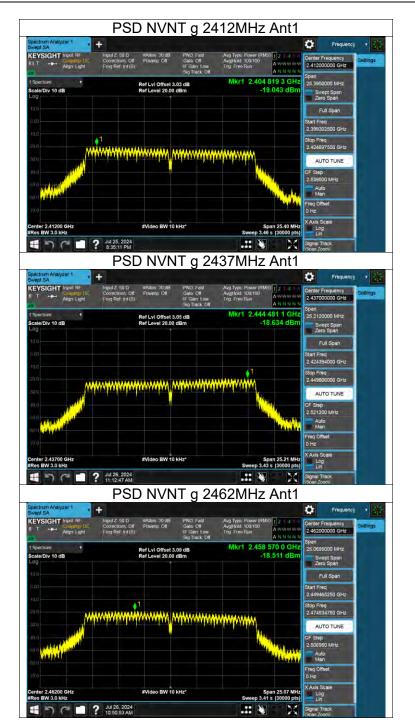
Mode	Frequency (MHz)	Antenna	6 dB Bandwidth (MHz)	Limit 6 dB Bandwidth (MHz)	Verdict
b	2412	Ant1	9.07	≥0.5	Pass
b	2437	Ant1	8.58	≥0.5	Pass
b	2462	Ant1	9.04	≥0.5	Pass
g	2412	Ant1	15.69	≥0.5	Pass
g	2437	Ant1	16.36	≥0.5	Pass
g	2462	Ant1	15.81	≥0.5	Pass
n20	2412	Ant1	16.29	≥0.5	Pass
n20	2437	Ant1	17.34	≥0.5	Pass
n20	2462	Ant1	16.33	≥0.5	Pass



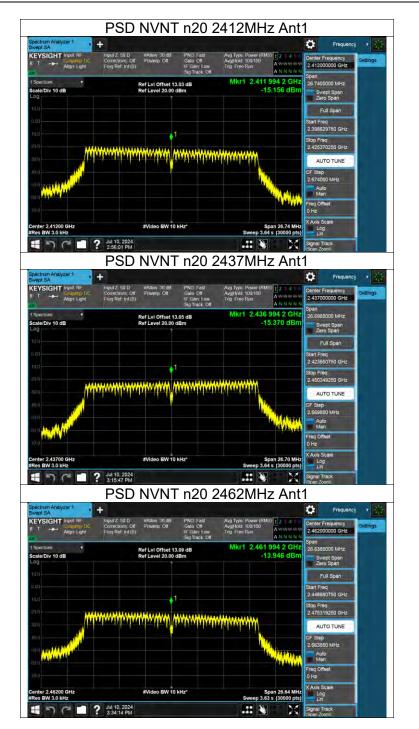
11.4. APPENDIX D: OCCUPIED CHANNEL BANDWIDTH

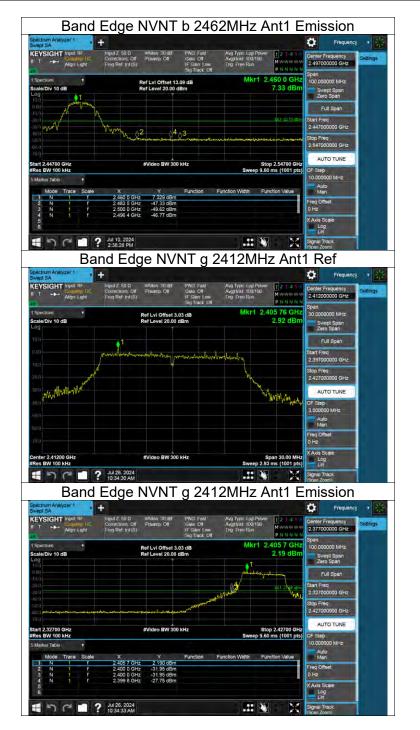
Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
b	2412	Ant1	12.335
b	2437	Ant1	11.904
b	2462	Ant1	12.332
g	2412	Ant1	16.93
g	2437	Ant1	16.808
g	2462	Ant1	16.713
n20	2412	Ant1	17.827
n20	2437	Ant1	17.799
n20	2462	Ant1	17.759



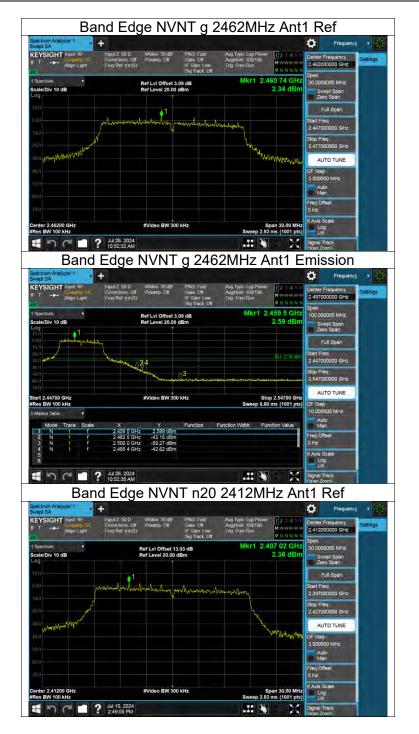

11.5. APPENDIX E:MAXIMUM POWER SPECTRAL DENSITY LEVEL

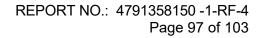
Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm/3kHz)	Duty Factor (dB)	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
b	2412	Ant1	-11.31	0	-11.31	8	Pass
b	2437	Ant1	-11.56	0	-11.56	8	Pass
b	2462	Ant1	-11.11	0	-11.11	8	Pass
g	2412	Ant1	-19.04	0.12	-18.92	8	Pass
g	2437	Ant1	-18.63	0.12	-18.51	8	Pass
g	2462	Ant1	-18.51	0.12	-18.39	8	Pass
n20	2412	Ant1	-15.16	0.1	-15.06	8	Pass
n20	2437	Ant1	-15.37	0.1	-15.27	8	Pass
n20	2462	Ant1	-13.95	0.1	-13.85	8	Pass

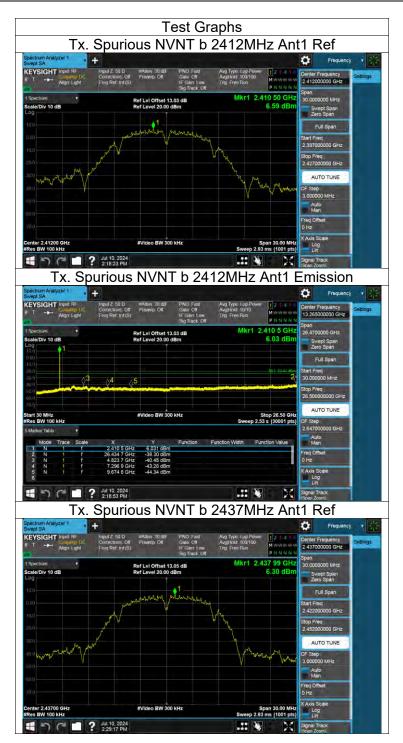


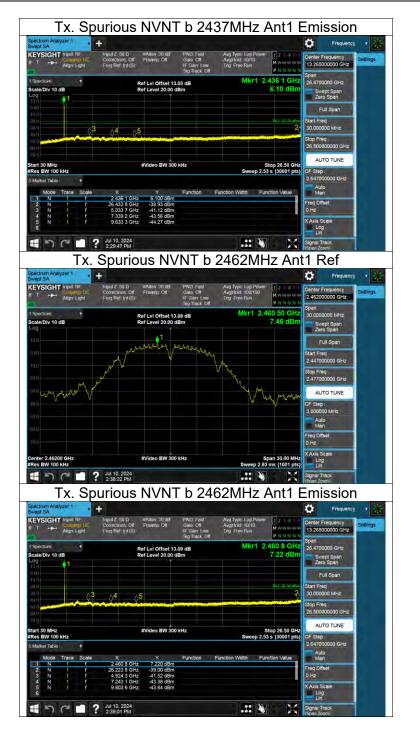

11.6. APPENDIX F:BAND EDGE

Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
b	2412	Ant1	-36.31	-30	Pass
b	2462	Ant1	-54.06	-30	Pass
g	2412	Ant1	-30.67	-30	Pass
g	2462	Ant1	-44.96	-30	Pass
n20	2412	Ant1	-30.45	-30	Pass
n20	2462	Ant1	-41.91	-30	Pass

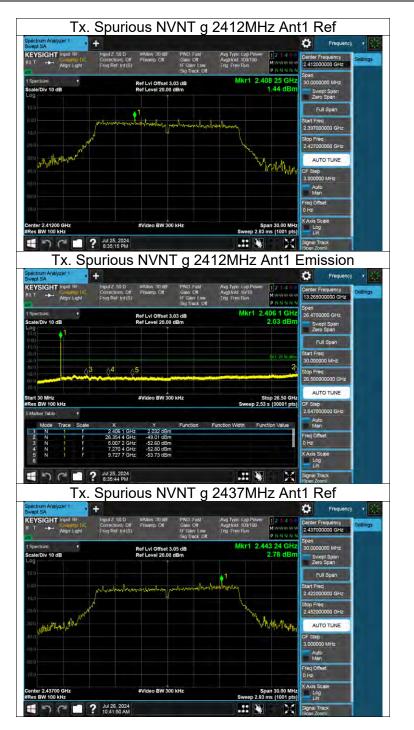


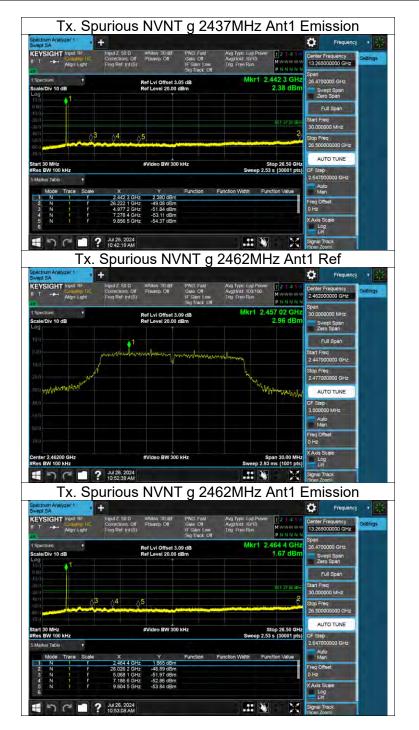


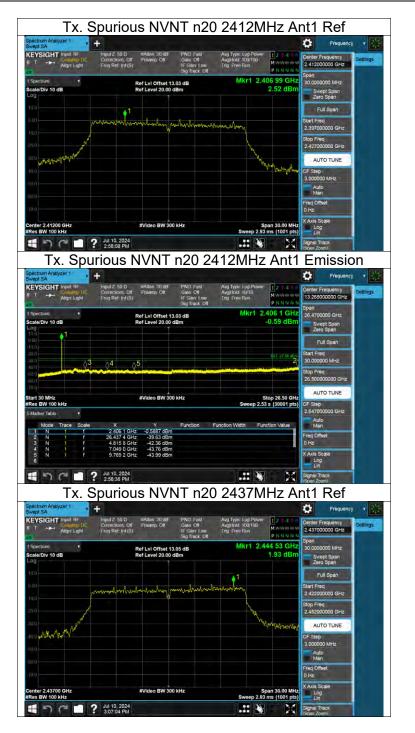


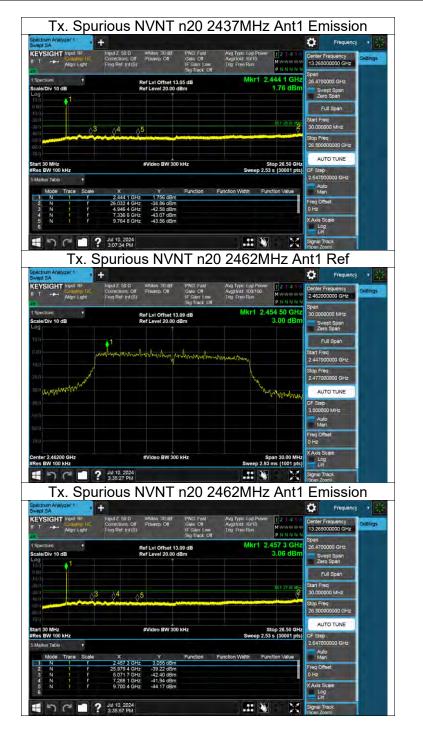

11.7. APPENDIX G:CONDUCTED RF SPURIOUS EMISSION

Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
b	2412	Ant1	-44.89	-30	Pass
b	2437	Ant1	-45.23	-30	Pass
b	2462	Ant1	-46.45	-30	Pass
g	2412	Ant1	-50.45	-30	Pass
g	2437	Ant1	-51.85	-30	Pass
g	2462	Ant1	-51.85	-30	Pass
n20	2412	Ant1	-42.14	-30	Pass
n20	2437	Ant1	-40.79	-30	Pass
n20	2462	Ant1	-42.22	-30	Pass









UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

END OF REPORT