

TEST REPORT

Report No.	CISRR24112113504
Project No.	CISR241121135
FCC ID	2AIT9-PG-C10
Applicant	SZ PGST CO., LTD
Address	No.9 Building, Huafu Industrial Park, Huachang Road, Longhua District,Shenzhen, Guangdong, China
Manufacturer	SZ PGST CO., LTD
Address	No.9 Building, Huafu Industrial Park, Huachang Road, Longhua District,Shenzhen, Guangdong, China
Product Name	Detector of Carbon Monoxide
Trade Mark	
Model/Type reference	PG-C10
Listed Model(s)	PG-C11, PG-C12
Standard	Part 15 Subpart C Section 15.231
Test date	November 22, 2024~ November 27, 2024
Issue date	November 28, 2024
Test result	Complied

Kory Auong

Prepared by: Rory Huang

GenryLong

Approved by: Genry Long

The test results relate only to the tested samples.

The test report should not be reproduced except in full without the written approval of Shenzhen Bangce Testing Technology Co., Ltd.

Contents

1. REPORT VERSION	3
2. SUMMARY OF TEST RESULT4	1
3. SUMMARY	5
3.1. Product Description 4 3.2. Radio Specification Description 4 3.3. Modification of EUT 4 3.4. Testing Site 4 3.5. Field Strength Calculation 4 3.6. DISTURBANCE Calculation 6	5 6 6 6
4. TEST CONFIGURATION	7
4.1. Test frequency list	7 7 7 8 8
5. TEST CONDITIONS AND RESULTS)
5.1. Antenna Requirement 10 5.2. AC Conducted Emission 17 5.3. 20 dB Bandwidth 12 5.4. Radiated Spurious Emission 13 5.5. Transmitter Deactivation Time 14 5.6. Duty cycle Factor 15	1 2 3 8
6. TEST SETUP PHOTOS)
7. EXTERNAL AND INTERNAL PHOTOS21	ł
7.1External photos	

1. <u>REPORT VERSION</u>

Version No.	Issue date	Description
00	November 28, 2024	Original

2. SUMMARY OF TEST RESULT

Report clause	Test Item	Standard Requirement	Result
5.1	Antenna Requirement	15.203	PASS
5.2	AC Conducted Emission	15.207	N/A
5.3	20 dB Bandwidth	15.231(c)	PASS
5.4	Radiated Spurious Emission	15.231 (a)/15.205/15.209	PASS
5.5	Transmitter Deactivation Time	15.231	PASS
5.6	Duty cycle Factor	15.231	PASS

Note:

- The measurement uncertainty is not included in the test result.

3. <u>SUMMARY</u>

3.1. Product Description

Main unit information:	
Product Name:	Detector of Carbon Monoxide
Trade Mark:	
Model No.:	PG-C10
Listed Model(s):	PG-C11, PG-C12
Power supply:	DC 3V
Hardware version:	V1.0
Software version:	V1.0

3.2. Radio Specification Description

Technology:	SRD
Modulation:	ASK
Operation frequency:	433.9MHz
Channel Number:	1
Antenna type:	PCB Antenna
Antenna gain:	0dBi

3.3. Modification of EUT

No modifications are made to the EUT during all test items.

3.4. Testing Site

Laboratory Name	Shenzhen Bangce Testing Technology Co., Ltd.	
Laboratory Location	101, building 10, Yunli Intelligent Park, Shutianpu community, Matian Street, Guangming District, Shenzhen, Guangdong, China	
FCC registration number	736346	

3.5. Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS (dBuV/m) = RA (dBuV) + AF (dB/m) + CL (dB) - AG (dB)

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

3.6. DISTURBANCE Calculation

The AC mains conducted disturbance is calculated by adding the 10dB Pulse Limiter and Cable Factor and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

CD (dBuV) = RA (dBuV) + PL (dB) + CL (dB)

Where CD = Conducted Disturbance	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	PL = 10 dB Pulse Limiter Factor

4. TEST CONFIGURATION

4.1. Test frequency list

Channel	Frequency (MHz)
CH1	433.9

4.2. Test mode

ning channel to realize	EUT continuous		
The engineering prototype is provided with key switching channel to realize EUT continuous transmission.Power setting Default.			
Test Mode	Modulation		
TX-CH1	ASK		
Charging			
TX-CH1	ASK		
Normal link			
	Charging		

 The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

4.3. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Item	Equipment name	Trade Name	Model No.
1			

4.4. Test sample information

Туре	sample no.
Engineer sample	CISR241121135-S01
Normal sample	CISR241121135-S02

4.5. Testing environmental condition

Туре	Requirement	Actual
Temperature:	15~35°C	25°C
Relative Humidity:	25~75%	50%
Air Pressure:	860~1060mbar	1000mbar

4.6. Statement of the measurement uncertainty

No.	Test Items	Measurement Uncertainty
1	AC Conducted Emission	1.63dB
2	Power Spectral Density	1.34dB
3	20dB Bandwidth	0.002%
4	Duty cycle	-
5	Conducted Band Edge and Spurious Emission	1.93dB
6	Radiated Band Edge Emission	3.76dB for 30MHz-1GHz
0	Radiated Band Edge Emission	3.80dB for above 1GHz
7	Radiated Spurious Emission	3.76dB for 30MHz-1GHz
		3.80dB for above 1GHz

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.7. Equipment Used during the Test

Equipment	Manufacture	Model No.	Serial No.	Last cal.	Cal Interval
9*6*6 anechoic chamber	SKET	9.3*6.3*6	N/A	2024.09.01	3Year
Spectrum analyzer	Agilent	N9020A	MY50530263	2024.01.08	1Year
Receiver	ROHDE&SCHWARZ	ESCI	100853	2024.01.08	1Year
Spectrum analyzer	R&S	FSV-40N	/	2024.01.08	1Year
Bilog Antenna	Schwarzbeck	VULB 9163	1463	2023.01.09	2Year
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2487	2023.01.09	2Year
Active Loop Antenna	SCHWARZBECK	FMZB 1519B	1	2023.01.09	2Year
RF Cable	Tonscend	Cable 1	/	2024.01.08	1Year
RF Cable	Tonscend	Cable 2	/	2024.01.08	1Year
RF Cable	SKET	Cable 3	/	2024.01.08	1Year
Pre-amplifier	Tonscend	TAP9K3G32	AP21G806153	2024.01.08	1Year
Pre-amplifier	Tonscend	TAP01018050	AP22E806229	2024.01.08	1Year
L.I.S.N.#1	Schwarzbeck	NSLK8127	/	2024.01.08	1Year
L.I.S.N.#2	ROHDE&SCHWARZ	ENV216	1	2024.01.08	1Year
Horn Antenna	SCHWARZBECK	BBHA9170	1130	2023.01.09	2 Year
Preamplifier	Tonscend	TAP18040048	AP21C806126	2024.01.08	1Year
variable-frequency power source	Pinhong	PH1110	1	2024.01.08	1Year
6dB Attenuator	SKET	DC-6G	/	N/A	N/A
Artificial power network	Schwarzbeck	NSLK8127	8127-01096	2024.01.08	1Year
EMI Test Receiver	Rohde&schwarz	ESCI7	100853	2024.01.08	1Year
8-wire Impedance Stabilization Network	Schwarzbeck	NTFM 8158	8158-00337	2024.01.08	1Year
Artificial power network	Schwarzbeck	ENV216	1	2024.01.08	1Year
Antenna tower	SKET	Bk-4AT-BS	AT2021040101- V1	N/A	N/A

5. TEST CONDITIONS AND RESULTS

5.1. Antenna Requirement

Standard Applicable	FCC CFR Title 47 Part 15 Subpart C Section 15.203:
	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the response-ble party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.
	FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):
	(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively
	for fixed. Point-to-point operations may employ transmitting antennas with
	directional gain greater than 6dBi provided the maximum conducted output
	power of the intentional radiator is reduced by 1 dB for every 3 dB that the
	directional gain of the antenna exceeds 6dBi.
<u>Description</u>	The EUT antenna is PCB Antenna (0dBi), the directional gain of the antenna less than 6dBi. It comply with the standard requirement. In case of replacement of broken antenna the same antenna type must be used.Antenna structure please refer to the EUT internal photographs antenna photo.

Remark: The antenna gain is provided by the customer , if the data provided by the customer is not accurate, Shenzhen Bangce Testing Technology Co., Ltd. does not assume any responsibility.

5.2. AC Conducted Emission

Limit:	FCC CFR Title 47 Part 15 St	ubpart C Section 15	.207
		Limit (dBuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarith	m of the frequency.	
<u>Test configuration:</u>	0.4m EUT GR.P 0.8m	RECEIVER	
Test procedure:	 The EUT was setup accords. The EUT was placed on a raised 80 cm above the orgonal conducting plane was lood surfaces of EUT were at conducting surface. The EUT and simulators line impedances stabilization ohm /50uH coupling impedances stabilized ohm /50uH coupling impedances at LISN. (Refer to the block for the input power source) Each current-carrying condition of the input power source) The excess length of the receptacle were folded by bundle not exceeding 40 Conducted emissions were 0.15MHz to 30MHz using During the above scan manipulation. 	a platform of nominal conducting ground pla cated 40 cm to the re- least 80 cm from any are connected to the tion network (LISN). edance for the measu re also connected to a diagram of the test s nductor of the EUT p- r, was individually co s. power cord between ack and forth at the c cm in length. ere investigated over g a receiver bandwidt	size, 1 m by 1.5 m, ane. The vertical ar of the EUT. All other other grounded main power through a The LISN provides a 5 uring equipment. the main power throug setup and photographs ower cord, except the nnected through a LIS the EUT and the LISN enter of the lead to for the frequency range fre h of 9 kHz.
<u>Test mode:</u>	Refer to the clause 4.2		
Result:	Not Applicable		

- 1. Factor = LISN Factor + Cable Factor
- 2. Level= Reading + Factor
- 3. Margin= Level Limit

5.3. 20 dB Bandwidth

<u>Limit:</u>	The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.
Test configuration:	Spectrum Analyzer
	EUT Non-Conducted Table
	Ground Reference Plane
Test procedure:	 The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
	 Set to the maximum power setting and enable the EUT transmit continuously
	3. Use the following spectrum analyzer settings:
	Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a Test channel
	RBW \ge 1% of the 20 dB bandwidth, VBW \ge RBW
	Sweep = auto, Detector function = peak, Trace = max hold
	4. Measure and record the results in the test report.
Test mode:	Refer to the clause 4.2
<u>Result:</u>	Passed

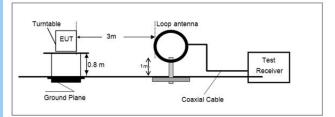
Center Frequency of operation(MHz)	Measured 20dB Bandwidth(kHz)	Limit(kHz)	Result
433.9	245.0	1084.75	PASS
VBW 1 10 dB/d1 10 g 10 0 10 0 1	Trig: Free R #FGainLow Trig: Free R #Atten: 10 d Ref 10.00 dBm 433.9 MHz N 30 kHz #VBW upied Bandwidth T 248.79 kHz smit Freq Error 13.479 kHz %	433.915000 MHz Radio Std: None a Avg Hold:>10/10 Radio Device: BTS Mkr1 433.915 MHz 9.8193 dBm Auto Auto Span 300 KHz	BW Res BW 30.000 kHz Man Video BW 100.00 kHz Man
MSG		STATUS	

5.4. Radiated Spurious Emission

Limit:

FCC CFR Title 47 Part 15 Subpart C Section 15.209

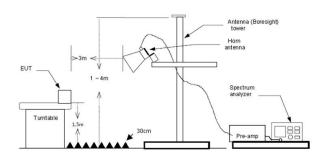
Frequency	Limit (dBuV/m)	Value
0.009 MHz ~0.49 MHz	2400/F(kHz) @300m	Quasi-peak
0.49 MHz ~ 1.705 MHz	24000/F(kHz) @30m	Quasi-peak
1.705 MHz ~30 MHz	30 @30m	Quasi-peak


Limit dBuV/m @3m = Limit dBuV/m @300m + 40*log(300/3

Limit dBuV/m @3m = Limit dBuV/m @30m +40*log(30/3)

Frequency	Limit (dBuV/m @3m)	Value
30MHz~88MHz	40.00	Quasi-peak
88MHz~216MHz	43.50	Quasi-peak
216MHz~960MHz	46.00	Quasi-peak
960MHz~1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
Above IGHZ	74.00	Peak

Test configuration:

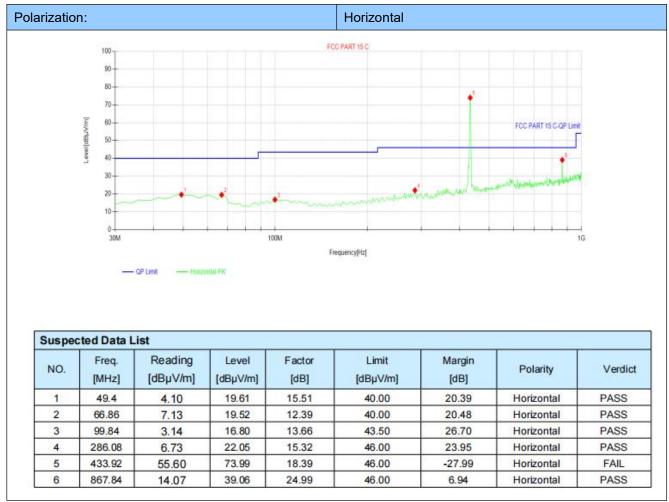

9kHz~30MHz

30 MHz ~ 1 GHz

Above 1 GHz

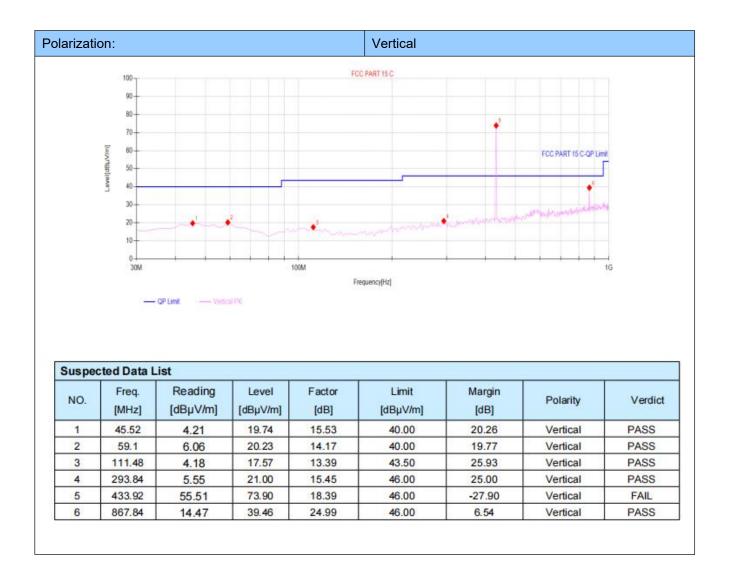
Test procedure:	1. The EUT was setup and tested according to ANSI C63.10.
	2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
	The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
	4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
	 Set to the maximum power setting and enable the EUT transmit continuously.
	6. Use the following spectrum analyzer settings
	 Span shall wide enough to fully capture the emission being measured;
	b) Below 1 GHz:
	RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;
	If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
	 c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement
	 d) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement
Test mode:	Refer to the clause 4.2
Result:	Passed
<u></u>	

Note:


- 1) Level= Reading + Factor/Transd; Factor/Transd =Antenna Factor+ Cable Loss- Preamp Factor
- 2) Margin = Limit Level
- Average measurement was not performed if peak level is lower than average limit(54 dBuV/m) for above 1GHz.
- 4) The other emission levels were very low against the limit.
- 5) This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.

<u>For 9 kHz ~ 30 MHz</u>

The EUT was pre-scanned this frequency band, found the radiated level 20dB lower than the limit, so don't show data on this report.



For 30 MHz ~ 1000 MHz

	Fundamental and Harmonics Result						
Frequency	Peak Level	AV Factor(dBµV/m)	Average Level	Limit(dBµV/m)	Limit(dBµV/m)	Conclusion	
(MHz)	(dBµV/m)	(see Section 5.4)	(dBµV/m)	(average)	(Peak)	Conclusion	
433.9	73.99	-12.57	61.42	75.64	95.64	PASS	
866.1	39.06	-12.57	26.49	55.64	75.64	PASS	

Fundamental and Harmonics Result						
Frequency	Peak Level	AV Factor(dBµV/m)	Average Level	Limit(dBµV/m)	Limit(dBµV/m)	Conclusion
(MHz)	(dBµV/m)	(see Section 5.4)	(dBµV/m)	(average)	(Peak)	Conclusion
433.9	73.90	-12.57	61.33	75.64	95.64	PASS
866.1	39.46	-12.57	26.89	55.64	75.64	PASS

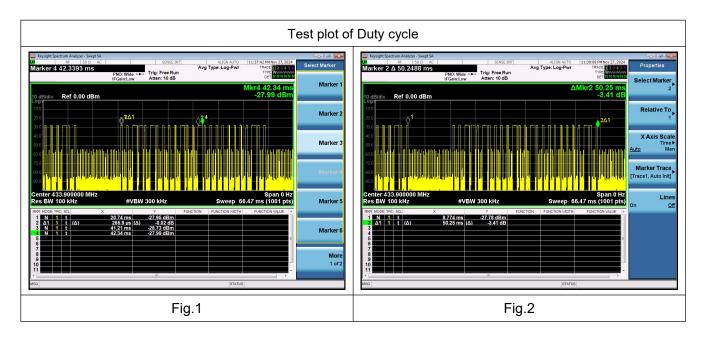
For 1 GHz ~ 4 GHz

Test channel: 433.9MHz										
Freq. (MHz)	Reading (dBuv)	Ant. Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Remark	Polarity
1204.00	70.57	28.62	4.08	38.62	-5.92	64.65	74	9.35	Peak	Horizontal
1204.00	51.53	28.62	4.08	38.62	-5.92	45.61	54	8.39	Average	Horizontal
1204.00	68.73	28.62	4.08	38.62	-5.92	62.81	74	11.19	Peak	Vertical
1204.00	50.38	28.62	4.08	38.62	-5.92	44.46	54	9.54	Average	Vertical

5.5. Transmitter Deactivation Time

<u>Limit:</u>	Devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.	
<u>Test configuration:</u>	Spectrum Analyzer EUT Non-Conducted Table Ground Reference Plane	
Test procedure:	Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.	
Test mode:	Refer to the clause 4.2	
<u>Result:</u>	Passed	

	Test F	Results		
Frequency (MHz)	Activation Time(s)	Limit: not more than 5 seconds of being released (s)	Conclusion	
433.9	1.97	5	PASS	
00 Marker 2 Δ 10 dB/div F 10.0 F -20.0 F -30.0 F -40.0 F -50.0 F -60.0 F -80.0 F -80.0 <th>PNO: Wide Trig: Free Run IFGain:Low Trig: Free Run Atten: 10 dB Provide Trig: Free Run Atten: 10 dB Pro</th> <th>Avg Hold: 6/100 Type Det Det Det Det Det Det Det Det Det De</th> <th>Properties elect Marker 2 Relative To 1 X Axis Scale Time b Man Marker Trace ace1, Auto Init] Lines Off</th>	PNO: Wide Trig: Free Run IFGain:Low Trig: Free Run Atten: 10 dB Provide Trig: Free Run Atten: 10 dB Pro	Avg Hold: 6/100 Type Det Det Det Det Det Det Det Det Det De	Properties elect Marker 2 Relative To 1 X Axis Scale Time b Man Marker Trace ace1, Auto Init] Lines Off	

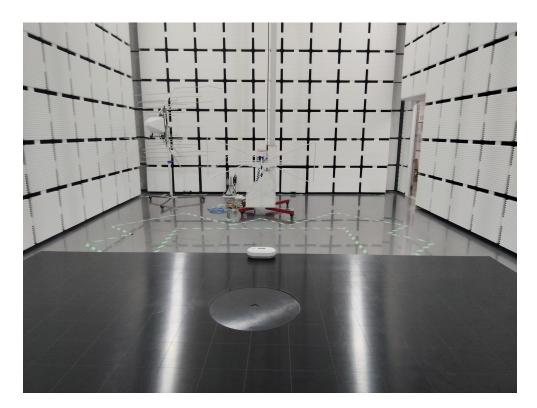


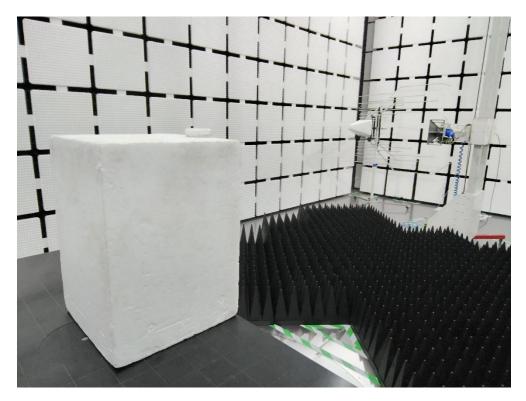
5.6. Duty cycle Factor

Limit:	No dedicated limit specified in the Rules.
Test configuration:	Spectrum Analyzer EUT Non-Conducted Table
<u>Test procedure:</u>	 Ground Reference Plane 1. Place the EUT on the table and set it in transmitting mode. 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. 3. Set centre frequency of spectrum analyzer=operating frequency. 4. Set the spectrum analyzer as RBW=100kHz, VBW=300kHz, Span=0Hz, Adjust Sweep=Auto. 5. Repeat above procedures until all frequency measured was complete.
Test mode:	Refer to the clause 4.2
Result:	Passed

Test Data

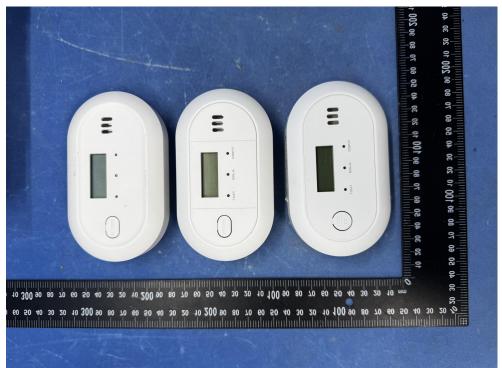
Ton = 0.265*19+1.13*6=11.81(ms) Tp = 50.25(ms) The duty cycle=11.81/50.25=23.50% Average Correction Factory = 20log (Ton/Tp) =20log (0.2350) = -12.57dB





6. TEST SETUP PHOTOS

Radiated measurements Below 1GHz:

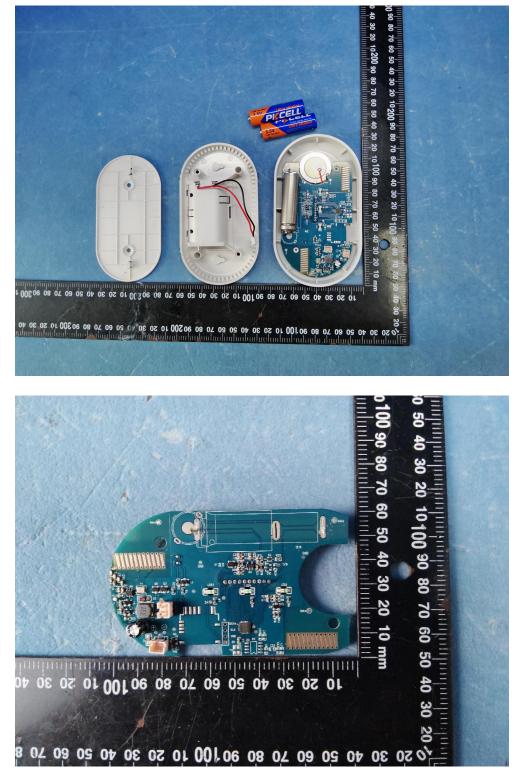

Above 1GHz:

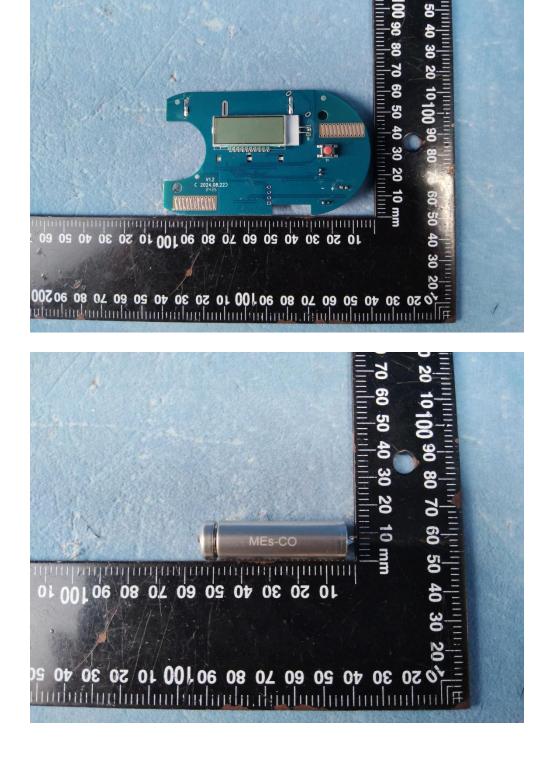
7. EXTERNAL AND INTERNAL PHOTOS

7.1External photos

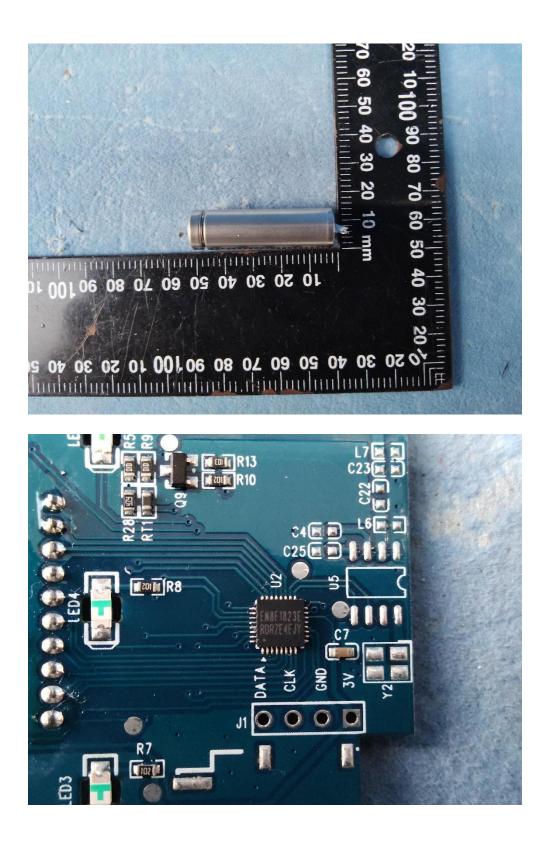
10 20 30 40 20 60 10 80 30100 10 20 30 40 20 60 10 80 30 50

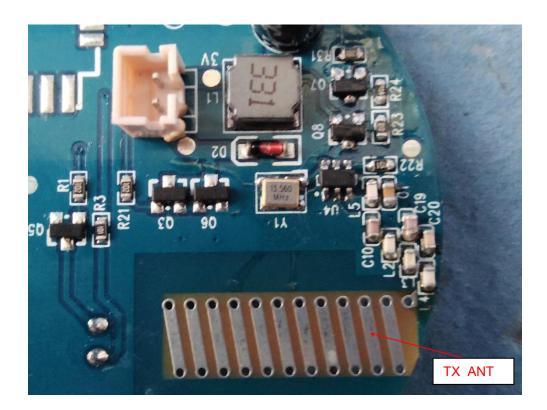
20 30 40 20 60 10 80 30 100 10 20 30 40 20 90 10 20 30 30 200 10 20

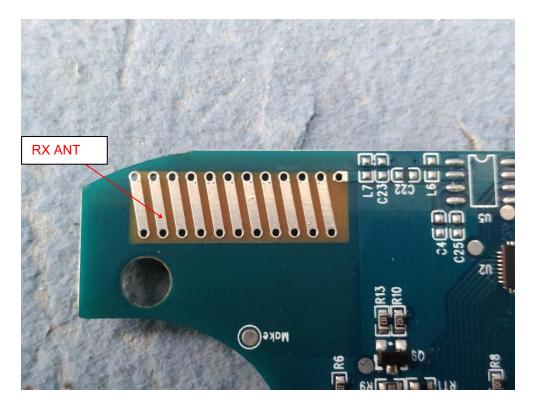




7.2 Internal photos






8

-----End of the report-----