

GSM 1900 Test Report for RH-6

Test Report no.: Number of pages: DTX10436-EN

7

Date of Report: Customer's

Test engineer:

29-10-2004 Thomas Rei

Thomas Reitmayer

Contact person:
Responsible

Ruben Hansen

Testing laboratory:

TCC Copenhagen Nokia Danmark A/S

Frederikskaj

DK-1790 Copenhagen V

Denmark

Tel. +45 33 29 29 29 Fax. +45 33 29 20 01

FCC Reg. # 99059, June 2003 IC File # 4820, January 2004 IC File # 4820-1, February 2004 Client:

Nokia Corporation Lise Meitner Strasse 10

89081 ULM GERMANY

Tel. +49 731 1754 0 Fax. +49 731 1754 6800

Tested devices/ accessories: Phone; RH-6, Battery; BL-4C

Supplement reports:

Testing has been carried out in accordance with:

The tests listed in this report have been done to demonstrate compliance with the applicable requirements in FCC rules Part 24 and IC standard RSS-133.

Documentation:

The test report must always be reproduced in full; reproduction of an excerpt only is subject to written approval of the testing laboratory. The documentation of the testing performed on the tested devices is archived for 15 years at TCC Copenhagen.

Test Results:

The EUT complies with the requirements in respect of all parameters subject to the test. The test results relate only to devices specified in this document

Date and signatures for the contents: 29-10-2004

Allan Franch Henriksen Test engineer

CONTENTS

1.	Summary of test results	3
2.	EUT Information	3
2.1.	EUT description	3
3.	EUT Test Setup	3
4.	Applicable Standards	3
5.	Radiated RF output	
5.1. 5.2.	· - · · · ·	4 5
5.3. 5.4.	EUT operation modeLimit	5 5
5.5.	Results	5
6.	Test equipment	7
6.1.	Radiated measurements	7

1. Summary of test results

Section in CFR 47	Section in RSS-133		Result
§2.1046 (a)	6.2	Conducted RF output	-
§24.232 (b)	6.2	Radiated RF output	PASS
§2.1049 (h)	5.6	99% occupied bandwidth	-
§24.238 (a)	6.3	Bandedge compliance	-
§24.238 (a), §2.1051	6.3	Spurious emissions at antenna terminals	-
§24.238 (a), §2.1053	6.3	Spurious radiated emission	-
§24.235, §2.1055 (a)(1)(b)	7	Frequency stability, temperature variation	-
§24.235, §2.1055 (d)(1)(2)	7	Frequency stability, voltage variation	-

PASS Pass FAIL Fail

X Measured, but there is no applicable performance criteria

NA Not Applicable
- Not Measured

2. EUT Information

Product	Туре	SN	HW	MV	SW	DUT
Phone	RH-6	004400/34/179659/5	9003	-	5.08	234747
Battery	BL-4C	0670386363807	-	-	-	234431
		L101931238597				

2.1. EUT description

The EUT is a dual band (900MHz/1800MHz/1900MHz) GSM mobile phone featuring a fold-out touch pad.

The EUT was not modified during the tests.

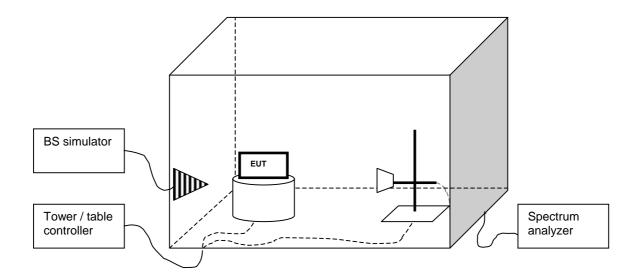
3. EUT Test Setup

For each test the EUT was exercised to find the worst case of operation modes and device configuration.

The test setup photograph is in an Appendix to this Test Report.

4. Applicable Standards

The tests were performed in guidance of CFR 47, part 24 and part 2, ANSI/TIA/EIA-603-A and RSS-133. Deviations, modifications or clarifications (if any) to above mentioned documents are written in each section under "Test method" for each test case.



5. Radiated RF output

EUT	RH-6 dut#234747		
Accessories	BR-5C dut#234617		
Temp, Humidity, Air Pressure	20.4 °C	45.0 RH%	1003 mbar
Date of measurement	Oct. 25 th 2004		
FCC rule part	§24.232 (b)		
RSS-133 section	6.2		
Measured by	Jesper Nielsen		

5.1. Test setup

The EUT was set on a non-conductive turn table, 80 cm high, in a semi-anechoic chamber with a reflective ground plane. In the corner of the chamber was a communication antenna, which was connected to the BS simulator located in the operaters control room. The radiated power from the EUT was measured with an antenna fixed to a antenna tower. The tower and turn table were remotely controlled to turn the EUT, change the antenna polarization and hoist/lower the antenna. The scan height was from 1 to 4 meter. The measured signal was routed from the measuring antenna to the spectrum analyzer. The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns. The measuring distance was 3 meter.

5.2. Test method

- a) The maximum power level was searched by moving the turn table and the measuring antenna and manipulating the EUT. This level (P_{EUT}) was recorded.
- b) The EUT was replaced with a substituting antenna.
- c) The substituting antenna was fed with the power (P_{Subst_TX}) giving a convenient reading on the spectrum analyzer. That reading (P_{Subst_RX}) on spectrum analyzer was recorded.

5.3. EUT operation mode

	GSM
EUT operation mode	TX on, 1 time slot transmission, GSM/GPRS modulation
EUT channel	512, 661, 810
EUT TX power level	0 (Max.)

5.4. Limit

EIRP [W]
≤2

5.5. Results

The formula below was used to calculate the EIRP of the EUT.

$$P_{EIRP[W]} = \frac{10^{(P_{Subst_TX}[dBm]^+(P_{EUT}[dBm]^-P_{Subst_RX}[dBm]) + G_{Substitute_antenna}[dBi]^-L_{Cable}[dB])/10}{1000}$$

where the variables are as follows:

 $\begin{array}{ll} P_{\text{EUT}\,[\text{dBm}]} & \text{Measured power level (from step a in 5.2) from the EUT} \\ P_{\text{Subst_TX}\,[\text{dBm}]} & \text{Power (from step c in 5.2) fed to the substituting antenna} \\ P_{\text{Subst_RX}\,[\text{dBm}]} & \text{Power (from step c in 5.2) received with the spectrum analyzer} \end{array}$

G_{Substitute antenna [dBi]} Gain of the substitutive antenna over isotropic radiator

Loss of the cable between signal generator and the substituting antenna

Mode: GSM 1900

EUT Channel	P eut [dBm]	P subst TX [dBm]	P subst RX [dBm]	Cable Loss [dB]	Ant. Gain [dBi]	EIRP [dBm]	EIRP [W]
512	-14.65	0	-48.4	5.96	1.6	29.39	0.869
661	-13.53	0	-48.2	6.17	1.1	29.6	0.912
810	-15.61	0	-50.55	6.6	0.8	29.14	0.820

6. Test equipment

Each test equipment is calibrated once a year, except antennas which are calibrated every second year.

6.1. Radiated measurements

Fautings and #	Faurinas aut	T	Coriol #	Manufacturan
Equipment #	Equipment	Туре	Serial #	Manufacturer
	EMI Test Receiver			
14993	9KHz-2750MHz	ESCS30	847124/001	Rohde&Schwarz
	Turntable Contoller			
15191	Unit	G-800SDX	ONO10000	YAESU
14900		HD100	100\552	HD GmbH
	Multi Device			
18792		2090	1606	ETS-EMCO
13829		4630-100	100/510	Comtest
	RF Preamplifier			
1 1000	100MHz-4GHz	A F.C.2. 0.04.0.0.4.0.0	F74404	Mita a /NIMAD Code
14963	(Metal Chassis)	AFS3-00100400	571131	Miteq/NMP Cph
13668	BiLog Antenna 30- 2000MHz	BiLog-CBL6112A	2259	Chase
13008	EMI Test Receiver	DILOG-CDL0112A	2239	Chase
18861	20Hz-26,5GHz	ESI	833362/004	Rohde&Schwarz
10001	Dual Log Periodic	LOI	000002/004	Rondeaconwarz
12679	Antenna 1-26.5 GHz	HL025		Rohde&Schwarz
.20.0	Ultra Broadband	1.2020		110110001001111012
	Antenna Ultralog 30-			
18860		HL562	100154	Rohde&Schwarz
18773	Shielded Chamber	RFD-100	2420	ETS-Lindgren
18774	Shielded Chamber	RFSD-F/A-100	2425	ETS-Lindgren
	High Pass Filter			
18324		WHJS3000-10SS	1	Wainwright
	Highpass Filter			
14114		WHK1000-12SS	1	Wainwright
	Highpass Filter			
	2000-4000MHz			Wainwright
13918		WHKS2000-10SS		Instruments
40007	Ultra Stable Notch	WRCA902.4-0.2/40-		Wainwright
13937	Filter 902,4MHz	6SS		Instruments
40000	Ultra Stable Notch	WRCD1747.5-		Wainwright
13936	Filter 1747,5MHz	0.2/40-10SS		Instruments
16633	Ultra Stable Notch	WRCD1880.0-		Wainwright
	Filter 1880,0MHz	0.2/40-10SS		Instruments