

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.5 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.5 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.17 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.4 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	52.4 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	6.22 W/kg

Certificate No: D2450V2-853_Jul20

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.6 Ω + 4.9 jΩ	
Return Loss	- 23.9 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.9 Ω + 5.6 jΩ	
Return Loss	- 25.0 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	
Liectrical Delay (one direction)	1.162 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
manalablared by	SPEAG

Certificate No: D2450V2-853_Jul20

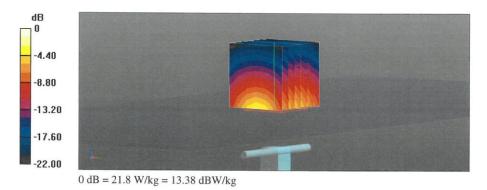
Page 4 of 8

Date: 21.07.2020

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:853

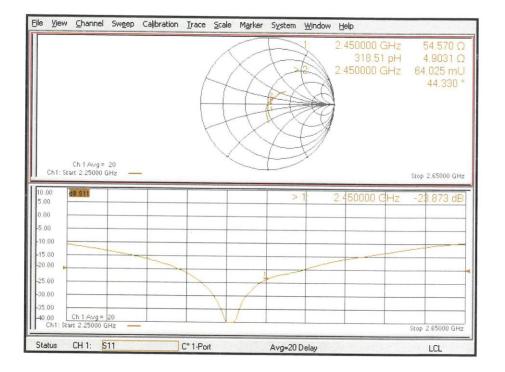

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.84 S/m; ϵ_r = 38.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.74, 7.74, 7.74) @ 2450 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 118.2 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 26.2 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.17 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 51.1% Maximum value of SAR (measured) = 21.8 W/kg


Certificate No: D2450V2-853_Jul20

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-853_Jul20

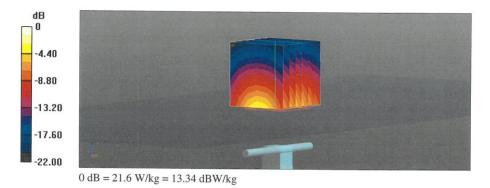
Page 6 of 8

Date: 21.07.2020

DASY5 Validation Report for Body TSL

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:853

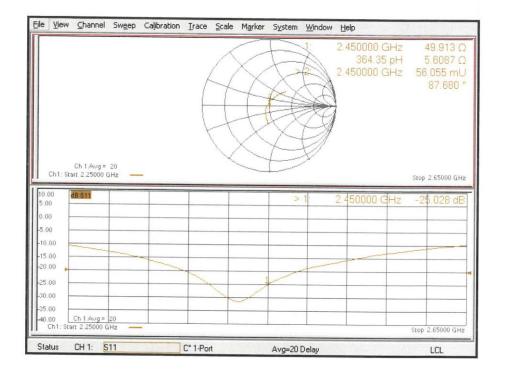

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.02$ S/m; $\varepsilon_r = 51.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.82, 7.82, 7.82) @ 2450 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 111.1 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 25.7 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.22 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 52.9% Maximum value of SAR (measured) = 21.6 W/kg


Certificate No: D2450V2-853_Jul20

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-853_Jul20

Page 8 of 8

5G Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Sector and the sector of the sector of the sector of the	ו)	Certificate No	: D5GHzV2-1060_Jul20
ALIBRATION C	ERTIFICATE		
bject	D5GHzV2 - SN:1	060	
	01 011 00 5		
alibration procedure(s)	QA CAL-22.v5 Calibration Proce	dure for SAR Validation Sources	between 3-10 GHz
alibration date:	July 27, 2020		
he measurements and the uncert	ainties with confidence p	onal standards, which realize the physical un robability are given on the following pages an y facility: environment temperature $(22 \pm 3)^{\circ}($	d are part of the certificate.
rimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
ower sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
ower sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
eference 20 dB Attenuator	SN: BH9394 (20k)	31-Mar-20 (No. 217-03106)	Apr-21
pe-N mismatch combination	SN: 310982 / 06327	31-Mar-20 (No. 217-03104)	Apr-21
	SN: 3503	31-Dec-19 (No. EX3-3503_Dec19)	
eference Probe EX3DV4			Dec-20
	SN: 601	27-Dec-19 (No. DAE4-601_Dec19)	Dec-20 Dec-20
AE4 econdary Standards	ID #	27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house)	
NE4 econdary Standards ower meter E4419B	ID # SN: GB39512475	Check Date (in house) 30-Oct-14 (in house check Feb-19)	Dec-20 Scheduled Check In house check: Oct-20
AE4 econdary Standards ower meter E4419B ower sensor HP 8481A	ID # SN: GB39512475 SN: US37292783	Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18)	Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20
AE4 econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A	ID # SN: GB39512475 SN: US37292783 SN: MY41092317	Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18)	Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
AE4 econdary Standards ower meter E4419B ower sensor HP 8481A wer sensor HP 8481A F generator R&S SMT-06	ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972	Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18)	Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
AE4 econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06	ID # SN: GB39512475 SN: US37292783 SN: MY41092317	Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18)	Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
AE4 econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06 etwork Analyzer Agilent E8358A	ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) Function	Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
leference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A iF generator R&S SMT-06 letwork Analyzer Agilent E8358A alibrated by:	ID # SN: GB39512475 SN: US37292783 SN: US37292783 SN: 100972 SN: 100972 SN: US41080477	Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19)	Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
AE4 econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06 etwork Analyzer Agilent E8358A	ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) Function	Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 Signature

Certificate No: D5GHzV2-1060_Jul20

Page 1 of 23

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

S

S

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless C) communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1060 Jul20

Page 2 of 23

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5250 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 ± 6 %	4.47 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.94 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.1 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.26 W/kg

Certificate No: D5GHzV2-1060_Jul20

Page 3 of 23

Head TSL parameters at 5250 MHz

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 ± 6 %	4.52 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.08 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.5 W/kg ± 19.9 % (k=2)
	aandikiaa	
SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.30 W/kg

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.3 ± 6 %	4.57 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jul20

Page 4 of 23

Head TSL parameters at 5500 MHz

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.0 ± 6 %	4.77 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.66 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	86.2 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.42 W/kg

Head TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.9 ± 6 %	4.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.6 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jul20

Page 5 of 23

Head TSL parameters at 5750 MHz

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	5.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.09 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.4 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.29 W/kg

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.6 ± 6 %	5.09 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.7 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jul20

Page 6 of 23

Body TSL parameters at 5200 MHz

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.8 ± 6 %	5.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.30 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	72.7 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.04 W/kg

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

The following parameters and baloarations were appri-	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.7 ± 6 %	5.53 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.8 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jul20

Page 7 of 23

Body TSL parameters at 5300 MHz

The following parameters and calculations were appli	ed.		
	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.6 ± 6 %	5.60 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.36 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.3 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.06 W/kg

Body TSL parameters at 5500 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.2 ± 6 %	5.87 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.86 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.3 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.17 W/kg

Certificate No: D5GHzV2-1060_Jul20

Page 8 of 23

Body TSL parameters at 5600 MHz

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.0 ± 6 %	6.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.72 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.8 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.15 W/kg

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

<u>.</u>	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8 ± 6 %	6.22 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	cm ³ (10 g) of Body TSL condition	
SAR measured	100 mW input power	2.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.0 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jul20

Page 9 of 23

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.7 ± 6 %	6.29 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.42 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.3 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jul20

Page 10 of 23

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	48.8 Ω - 6.5 jΩ	
Return Loss	- 23.6 dB	

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	48.0 Ω - 4.6 jΩ	
Return Loss	- 25.7 dB	

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	47.2 Ω - 3.5 jΩ	
Return Loss	- 26.7 dB	

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	49.8 Ω - 3.6 jΩ	
Return Loss	- 28.8 dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	54.4 Ω + 0.4 jΩ
Return Loss	- 27.5 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	52.1 Ω - 1.3 jΩ	
Return Loss	- 32.3 dB	

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	51.2 Ω - 3.1 jΩ	
Return Loss	- 29.6 dB	

Certificate No: D5GHzV2-1060_Jul20

Page 11 of 23

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	48.4 Ω - 5.5 jΩ	
Return Loss	- 24.6 dB	

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	47.2 Ω - 3.2 jΩ	
Return Loss	- 27.1 dB	

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	47.0 Ω - 2.0 jΩ
Return Loss	- 28.5 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	50.6 Ω - 2.4 jΩ	
Return Loss	- 32.3 dB	

Certificate No: D5GHzV2-1060_Jul20

Page 12 of 23

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	54.5 Ω + 0.4 jΩ	
Return Loss	- 27.3 dB	

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	52.5 Ω - 0.8 jΩ	
Return Loss	- 32.0 dB	

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	52.1 Ω - 2.4 jΩ	
Return Loss	- 30.0 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.200 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manalastarea by		

Certificate No: D5GHzV2-1060_Jul20

Page 13 of 23

DASY5 Validation Report for Head TSL

Date: 20.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; σ = 4.47 S/m; ε_r = 35.4; ρ = 1000 kg/m³, Medium parameters used: f = 5250 MHz; σ = 4.52 S/m; ε_r = 35.4; ρ = 1000 kg/m³, Medium parameters used: f = 5300 MHz; σ = 4.57 S/m; ε_r = 35.3; ρ = 1000 kg/m³, Medium parameters used: f = 5500 MHz; σ = 4.77 S/m; ε_r = 35; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.88 S/m; ε_r = 34.9; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 5.03 S/m; ε_r = 34.7; ρ = 1000 kg/m³ , Medium parameters used: f = 5800 MHz; σ = 5.09 S/m; ε_r = 34.6; ρ = 1000 kg/m³

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.49, 5.49, 5.49) @ 5300 MHz, ConvF(5.25, 5.25, 5.25) @ 5500 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.61 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 28.4 W/kg SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.26 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.7% Maximum value of SAR (measured) = 18.2 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 79.07 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.30 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 69.5% Maximum value of SAR (measured) = 18.4 W/kg

Certificate No: D5GHzV2-1060_Jul20

Page 14 of 23

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.56 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 29.6 W/kg SAR(1 g) = 8.22 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 68.3% Maximum value of SAR (measured) = 19.0 W/kg

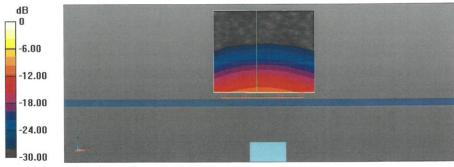
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.44 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 33.9 W/kg SAR(1 g) = 8.66 W/kg; SAR(10 g) = 2.42 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.9% Maximum value of SAR (measured) = 20.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.89 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 31.6 W/kg SAR(1 g) = 8.37 W/kg; SAR(10 g) = 2.37 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 66.8% Maximum value of SAR (measured) = 20.2 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.69 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 32.1 W/kg SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.29 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 65%

Maximum value of SAR (measured) = 19.9 W/kg

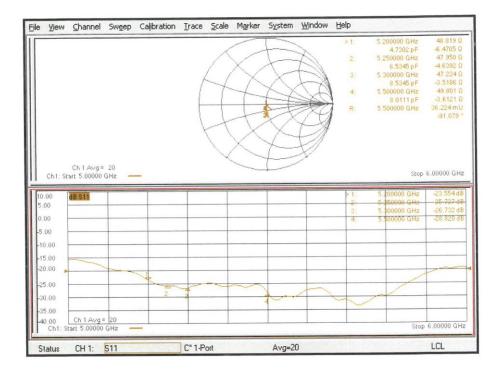
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.77 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 32.8 W/kg SAR(1 g) = 8.16 W/kg; SAR(10 g) = 2.28 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 64.8% Maximum value of SAR (measured) = 20.1 W/kg

Certificate No: D5GHzV2-1060_Jul20

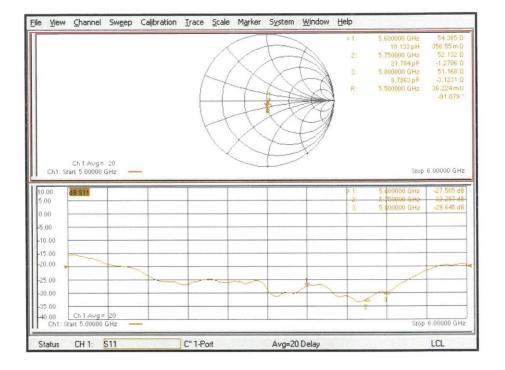
Page 15 of 23

0 dB = 20.7 W/kg = 13.16 dBW/kg


Certificate No: D5GHzV2-1060_Jul20

Page 16 of 23

Impedance Measurement Plot for Head TSL (5200, 5250, 5300, 5500 MHz)


Certificate No: D5GHzV2-1060_Jul20

Page 17 of 23

Impedance Measurement Plot for Head TSL (5600, 5750, 5800 MHz)

Certificate No: D5GHzV2-1060_Jul20

Page 18 of 23

DASY5 Validation Report for Body TSL

Date: 27.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5700 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; σ = 5.46 S/m; ϵ_r = 47.8; ρ = 1000 kg/m³, Medium parameters used: f = 5250 MHz; σ = 5.53 S/m; ϵ_r = 47.7; ρ = 1000 kg/m³, Medium parameters used: f = 5300 MHz; σ = 5.6 S/m; ϵ_r = 47.6; ρ = 1000 kg/m³, Medium parameters used: f = 5500 MHz; σ = 5.87 S/m; ϵ_r = 47.2; ρ = 1000 kg/m³, Medium parameters used: f = 5500 MHz; σ = 6.01 S/m; ϵ_r = 47; ρ = 1000 kg/m³, Medium parameters used: f = 5500 MHz; σ = 6.22 S/m; ϵ_r = 46.8; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 6.29 S/m; ϵ_r = 46.7; ρ = 1000 kg/m³

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.29, 5.29, 5.29) @ 5200 MHz, ConvF(5.26, 5.26, 5.26) @ 5250 MHz, ConvF(5.23, 5.23, 5.23) @ 5300 MHz, ConvF(4.84, 4.84, 4.84) @ 5500 MHz, ConvF(4.79, 4.79, 4.79) @ 5600 MHz, ConvF(4.66, 4.66, 4.66) @ 5750 MHz, ConvF(4.62, 4.62, 4.62) @ 5800 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.58 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 27.8 W/kg SAR(1 g) = 7.3 W/kg; SAR(10 g) = 2.04 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.4% Maximum value of SAR (measured) = 17.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.59 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 29.0 W/kg SAR(1 g) = 7.45 W/kg; SAR(10 g) = 2.09 W/kg Smallest distance from peaks to all points 3 dB below = 6.9 mm Ratio of SAR at M2 to SAR at M1 = 66.5% Maximum value of SAR (measured) = 17.4 W/kg

Certificate No: D5GHzV2-1060_Jul20

Page 19 of 23

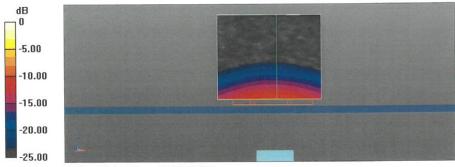
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.12 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 29.1 W/kg SAR(1 g) = 7.36 W/kg; SAR(10 g) = 2.06 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.1% Maximum value of SAR (measured) = 17.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.41 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 33.0 W/kg SAR(1 g) = 7.86 W/kg; SAR(10 g) = 2.17 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 64.2% Maximum value of SAR (measured) = 19.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.25 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 33.2 W/kg SAR(1 g) = 7.72 W/kg; SAR(10 g) = 2.15 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63.4% Maximum value of SAR (measured) = 18.7 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.67 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 34.2 W/kg SAR(1 g) = 7.61 W/kg; SAR(10 g) = 2.11 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 62% Maximum value of SAR (measured) = 18.7 W/kg

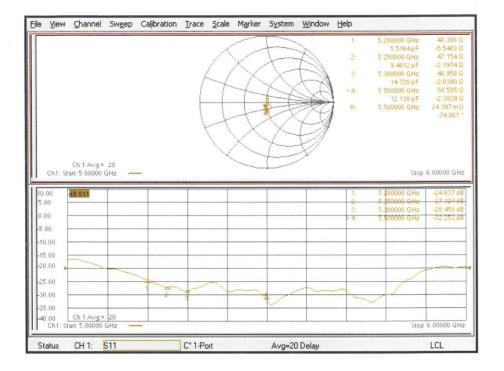
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.55 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 32.7 W/kg SAR(1 g) = 7.42 W/kg; SAR(10 g) = 2.04 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 62.5% Maximum value of SAR (measured) = 18.2 W/kg

Certificate No: D5GHzV2-1060_Jul20

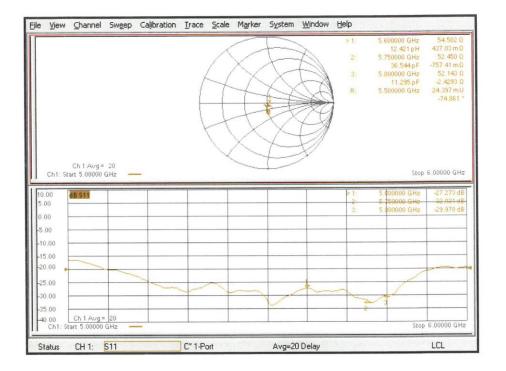
Page 20 of 23

0 dB = 19.0 W/kg = 12.79 dBW/kg


Certificate No: D5GHzV2-1060_Jul20

Page 21 of 23

Impedance Measurement Plot for Body TSL (5200, 5250, 5300, 5500 MHz)


Certificate No: D5GHzV2-1060_Jul20

Page 22 of 23

Impedance Measurement Plot for Body TSL (5600, 5750, 5800 MHz)

Certificate No: D5GHzV2-1060_Jul20

Page 23 of 23

		Distance	SAR test scene
Top <u>sar</u> sensor trigger	Back (mm)	20	Body <u>sar</u> back side
Bottom <u>sar</u> sensor trigger	Back (mm)	20	Body <u>sar</u> back side
Top <u>sar</u> sensor trigger	Front(mm)	13	Body <u>sar</u> front side
Bottom <u>sar</u> sensor trigger	Front(mm)	13	Body <u>sar</u> front side
Bottom <u>sar</u> sensor trigger	Bottom(mm)	20	Body <u>sar</u> bottom side
Bottom <u>sar</u> sensor trigger	screen facing observer Side R(mm)	7	Body <u>sar</u> right side
Top <u>sar</u> sensor trigger	Top(mm)	18	Body <u>sar</u> top side
Top <u>sar</u> sensor trigger	screen facing observer Side L (mm)	11	Body <u>sar</u> left side
Top and <u>bottomsar</u> sensor trigger	Back (mm)	20	body <u>sar</u> back side
Top and <u>bottomsar</u> sensor trigger	Front (mm)	13	body <u>sar</u> front side
Receiver trigger	Front(mm)	١	Head <u>sar</u> 4 place

ANNEX I Sensor Triggering Data Summary

According to the above description, this device was tested by the manufacturer to determine the SAR sensor triggering distances for the front, rear, bottom edge and top edge of the device. The measured power state within \pm 10mm of the triggering points (or until touching the phantom) is included for rear and each applicable edge.

To ensure all production units are compliant it is necessary to test SAR at a distance 1mm less than the smallest distance from the device and SAR phantom with the device at maximum output power without power reduction.

We tested the power and got the different proximity sensor triggering distances for rear, front, bottom edge and top edge. But the manufacturer has declared 20mm (rear) / 13mm (front) /18(Top) /20mm (bottom) are the most conservative triggering distance for main antenna. Therefore base on the most conservative triggering distances as above, additional SAR measurements were required at 19mm (rear) / 12mm (front) /17/(Top)/ 19mm (bottom) for main antenna.

Rear Edge

Moving device toward the phantom:

The power state												
Distance [mm]	25	24	23	22	21	20	19	18	17	16	15	
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low	

Moving device away from the phantom:

The power state												
Distance [mm]	15	16	17	18	19	20	21	22	23	24	25	
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal	

Front Edge

Moving device toward the phantom:

The power state											
Distance [mm]	18	17	16	15	14	13	12	11	10	9	8
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

Moving device away from the phantom:

The power state												
Distance [mm]	8	9	10	11	12	13	14	15	16	17	18	
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal	

Top Edge

Moving device toward the phantom:

The power state											
Distance [mm]	23	22	21	20	19	18	17	16	15	14	13
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

Moving device away from the phantom:

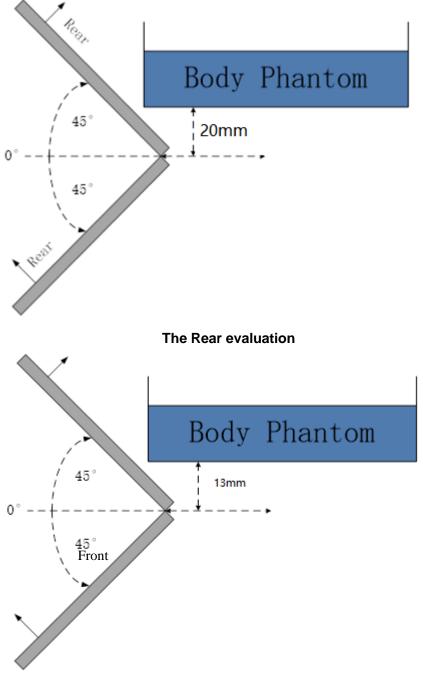
The power state											
Distance [mm]	13	14	15	16	17	18	19	20	21	22	23
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

Bottom Edge

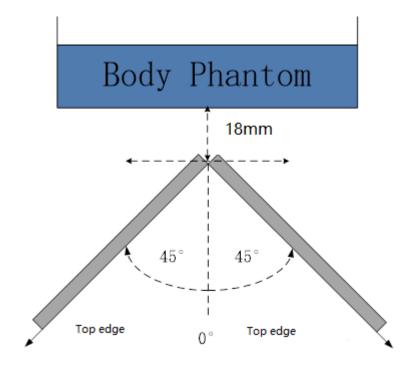
Moving device toward the phantom:

The power state											
Distance [mm]	25	24	23	22	21	20	19	18	17	16	15
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

Moving device away from the phantom:


The power state												
Distance [mm] 15 16 17 18 19 20 21 22 23 24 25											25	
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal	

©Copyright. All rights reserved by CTTL.


The influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distance by rotating the device around the edge next to the phantom in $\leq 10^{\circ}$ increments until the tablet is ±45° or more from the vertical position at 0°.

The Front edge evaluation

The Top edge evaluation

The Bottom edge evaluation

Based on the above evaluation, we come to the conclusion that the sensor triggering is not released and normal maximum output power is not restored within the $\pm 45^{\circ}$ range at the smallest sensor triggering test distance declared by manufacturer.

ANNEX J SAR Test Result

J.1 Tissue and Verification

Table J.1-1: Dielectric Performance of Head Tissue Simulating Liquid

Measurement Date (yyyy-mm-dd)	Туре	Frequency	Permittivity ε	Drift (%)	Conductivity σ (S/m)	Drift (%)
2021-1-16	Head	750 MHz	42.71	1.84	0.895	0.56

Measurement	Target value (W/kg)		ue (W/kg)	Measured	value(W/kg)	Deviation	
Date	Frequency	10 g 1 g		10 g 1 g		10 g	1 g
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average
2021-1-16	750 MHz	5.53	8.47	5.52	8.48	-0.18%	0.12%

Table J.1-2: System Validation of Head

J.2 Conducted Output Power

Table J.2-1: Maximum Power Reduction (MPR) for LTE

	Channel b	h configurati	on [RB]				
Modulation	1.4	3	5	10	15	20	MPR (dB)
	MHz	MHz	MHz	MHz	MHz	MHz	
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	1
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	1
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	2
64 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	2
64 QAM	> 5	> 4	> 8	> 12	> 16	> 18	3

Table J.2-2: The tune up for LTE

Band	Tune up			
LTE Band 14	25.5			

	<u>CAICT</u>	
No.1202	Z70403-SEN	/01

Band 14									
Bandwidth (MHz)	RB allocation RB offset (Start RB)	Frequency (MHz)	QPSK Actual output power (dBm)	16QAM Actual output power (dBm)	64QAM Actual output power (dBm)				
	1RB	795.5	24.44	23.26	22.84				
	High (24)	793	24.38	23.39	22.65				
		790.5	24.64	23.90	22.61				
	1RB	795.5	24.04	23.51	22.71				
	Middle (12)	793	24.26	23.30	22.80				
		790.5	24.52	23.59	22.69				
	1RB	795.5	24.46	23.48	22.91				
	Low (0)	793	24.23	23.44	22.73				
	LOW (0)	790.5	24.76	23.60	22.65				
	4000	795.5	23.30	22.35	21.65				
5 MHz	12RB High (13)	793	23.27	22.29	21.81				
	піўн (13)	790.5	23.18	22.36	21.73				
	4000	795.5	23.50	22.59	21.74				
	12RB Middle (6)	793	23.33	22.31	21.61				
		790.5	23.29	22.46	21.64				
	4000	795.5	23.61	22.67	21.68				
	12RB	793	23.31	22.32	21.63				
	Low (0)	790.5	23.30	22.47	21.71				
	0500	795.5	23.57	22.56	21.71				
	25RB	793	23.34	22.34	21.68				
	(0)	790.5	23.19	22.32	21.71				
	1RB High (49)	793	24.48	23.28	22.71				
	1RB Middle (24)	793	24.32	23.18	22.69				
	1RB Low (0)	793	24.58	23.47	22.91				
10 MHz	25RB High (25)	793	23.27	22.37	21.58				
	25RB Middle (12)	793	23.40	22.42	21.62				
	25RB Low (0)	793	23.39	22.43	21.63				
	50RB (0)	793	23.33	22.28	21.59				

J.3 SAR Test Result

Table J.3-1: SAR Values (LTE Band14- Head)												
Ambient Temperature: 22.9 °C Liquid Temperature: 22.5°C												
Frequency				Test		Conduc	Max.	Maggurad	Departed	Measur	Report	Dowor
Ch.	MHz	Mode	Side	Positi on	Figure No.	ted Power (dBm)	tune-up Power (dBm)	Measured SAR(10g) (W/kg)	Reported SAR(10g)(W/kg)	ed SAR(1g) (W/kg)	ed SAR(1 g) (W/kg)	Power Drift (dB)
23330	793	1RB_Low	Left	Touch	Fig.1	24.58	25.50	0.179	0.22	0.230	0.28	-0.04
23330	793	1RB_Low	Left	Tilt	/	24.58	25.50	0.125	0.15	0.153	0.19	-0.02
23330	793	1RB_Low	Right	Touch	/	24.58	25.50	0.160	0.20	0.198	0.24	0.02
23330	793	1RB_Low	Right	Tilt	/	24.58	25.50	0.090	0.11	0.107	0.13	0.04
23330	793	25RB_ Mid	Left	Touch	/	23.40	24.50	0.118	0.15	0.146	0.19	0.06
23330	793	25RB_ Mid	Left	Tilt	/	23.40	24.50	0.070	0.09	0.084	0.11	0.04
23330	793	25RB_ Mid	Right	Touch	/	23.40	24.50	0.128	0.16	0.158	0.20	0.00
23330	793	25RB_ Mid	Right	Tilt	/	23.40	24.50	0.072	0.09	0.085	0.11	-0.02

Note1: The LTE mode is QPSK_10MHz.

Table J.3-2: SAR Values (LTE Band14 - Body)

	Ambient Temperature: 22.9 °C Liquid Temperature: 22.5°C											
Frequency					Conduct	Max.	Measured	Reported	Measured	Reported	Power	
		Mode	Test	Figure	ed	tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
Ch.	MHz		Position	No.	Power	Power	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)	
					(dBm)	(dBm)	(W/Ng)	(11/13)	(11/19)	(11/13)	(uD)	
23330	793	1RB_Low	Front	/	24.58	25.50	0.164	0.20	0.219	0.27	0.08	
23330	793	1RB_Low	Rear	Fig.2	24.58	25.50	0.368	0.45	0.483	0.60	-0.17	
23330	793	1RB_Low	Left	/	24.58	25.50	0.283	0.35	0.395	0.49	0.04	
23330	793	1RB_Low	Right	/	24.58	25.50	0.237	0.29	0.341	0.42	-0.04	
23330	793	1RB_Low	Bottom	/	24.58	25.50	0.062	0.08	0.116	0.14	0.11	
23330	793	25RB_ Mid	Front	/	23.40	24.50	0.131	0.17	0.177	0.23	-0.06	
23330	793	25RB_ Mid	Rear	/	23.40	24.50	0.289	0.37	0.380	0.49	0.11	
23330	793	25RB_ Mid	Left	/	23.40	24.50	0.205	0.26	0.295	0.38	-0.10	
23330	793	25RB_ Mid	Right	/	23.40	24.50	0.186	0.24	0.264	0.34	0.11	
23330	793	25RB_ Mid	Bottom	/	23.40	24.50	0.047	0.06	0.086	0.11	0.07	

Note1: The distance between the EUT and the phantom bottom is 10mm Note2: The LTE mode is QPSK_10MHz.

J.4 MAIN TEST INSTRUMENTS

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	E5071C	MY46110673	January 14, 2021	One year
02	Power meter	NRP2			
03	Power sensor	NRP-Z91	101547	May 12, 2020	One year
04	Signal Generator	E4438C	MY49071430	February 25, 2020	One Year
05	Amplifier	60S1G4	0331848	No Calibration	Requested
06	BTS	CMW500	129942	February 10, 2020	One year
07	E-field Probe	SPEAG EX3DV4	7307	May 29, 2020	One year
08	DAE	SPEAG DAE4	536	November 6, 2020	One year
09	Dipole Validation Kit	SPEAG D750V3	1017	July 24,2020	One year

J.5 Graph Results

LTE750-FDD14_CH23330 Left Cheek Date: 1/16/2021 Electronics: DAE4 Sn536 Medium: head 750 MHz Medium parameters used: f = 793 MHz; $\sigma = 0.925$ mho/m; $\epsilon r = 42.62$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE750-FDD14 793 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7307 ConvF(10.41,10.41,10.41)

Area Scan (81x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.281 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=2mm, dy=2mm, dz=5mm

Reference Value = 6.835 V/m; Power Drift = -0.04 dBPeak SAR (extrapolated) = 0.308 W/kgSAR(1 g) = 0.230 W/kg; SAR(10 g) = 0.179 W/kgMaximum value of SAR (measured) = 0.281 W/kg

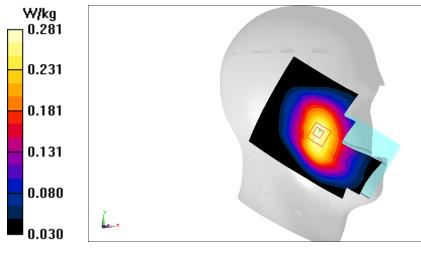


Fig A.1

LTE750-FDD14_CH23330 Rear

Date: 1/16/2021 Electronics: DAE4 Sn536 Medium: head 750 MHz Medium parameters used: f = 793 MHz; σ = 0.925 mho/m; ϵ r = 42.62; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE750-FDD14 793 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7307 ConvF(10.41,10.41,10.41)

Area Scan (91x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.578 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=2mm, dy=2mm, dz=5mm

Reference Value = 26.75 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 0.666 W/kg SAR(1 g) = 0.483 W/kg; SAR(10 g) = 0.368 W/kg Maximum value of SAR (measured) = 0.593 W/kg

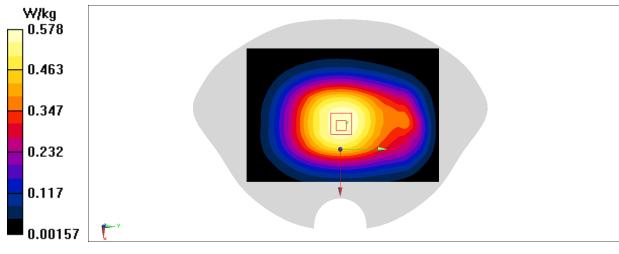
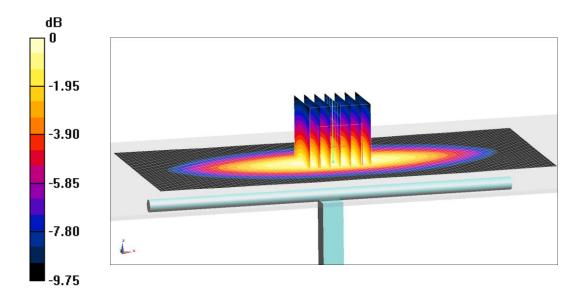


Fig A.2


J.6 System Verification Results

750 MHz

Date: 1/16/2021 Electronics: DAE4 Sn536 Medium: Head 750 MHz Medium parameters used: f = 750 MHz; σ =0.895 mho/m; ϵ_r = 42.71; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 750 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7307 ConvF(10.41,10.41,10.41)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000
mm
Reference Value = 60.47 V/m; Power Drift = -0.03
Fast SAR: SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.36 W/kg
Maximum value of SAR (interpolated) = 2.83 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value =60.47 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.26 W/kg SAR(1 g) = 2.12 W/kg; SAR(10 g) = 1.38 W/kg Maximum value of SAR (measured) = 2.91 W/kg

0 dB = 2.91 W/kg = 4.64 dB W/kg

Fig.B.1 validation 750 MHz 250mW