

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZE201003703

FCC REPORT (BLE)

Applicant: Swagtek

Address of Applicant: 10205 NW 19th St. Suite 101, Miami, FL, 33172

Equipment Under Test (EUT)

Product Name: 5.7 inch 3G Smart Phone

Model No.: X57A, NEO, W57A

Trade mark: LOGIC, iSWAG, UNONU

FCC ID: 055573120

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 16 Oct., 2020

Date of Test: 17 Oct., to 05 Nov., 2020

Date of report issued: 06 Nov., 2020

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	06 Nov., 2020	Original

Tested by:	Mike ou	Date:	06 Nov., 2020	
	Test Engineer			

Reviewed by: Date: 06 Nov., 2020

Project Engineer

3 Contents

			Page
1	cov	ER PAGE	1
2	VFR	SION	2
3		ITENTS	
4	TES	T SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	_
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	8
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1 6.6.2	0	
	6.7	SPURIOUS EMISSION	
	6.7.1		
	6.7.2		
7	TES	T SETUP PHOTO	
8		CONSTRUCTIONAL DETAILS	
Ī			
Α	PPENDIX	A - BLE	29

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

ANSI C63.4-2014
ANSI C63.10-2013

KDB 558074 D01 <u>15.247 Meas Guidance v05r02</u>

5 General Information

5.1 Client Information

Applicant:	Swagtek	
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172	
Manufacturer:	Swagtek	
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172	
Factory:	Swagtek	
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172	

5.2 General Description of E.U.T.

3.2 General Description	1 01 2:0:11
Product Name:	5.7 inch 3G Smart Phone
Model No.:	X57A, NEO, W57A
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-2.5 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2350mAh
AC adapter:	Model: A31A-050100U-US1
	Input: AC100-240V, 50/60Hz, 0.2A
	Output: DC 5.0V, 1000mA
Remark:	Model No.: X57A, NEO, W57A, were identical inside, the electrical circuit design, layout, components used and internal wiring.
	LOGIC model corresponds to the trademark X57A.
	iSWAG model correspond to the trademark NEO.
	UNONU model corresponds to the trademark W57A.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

Report No: JYTSZE201003703

5.3 Test environment and mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Transmitting mode	Keep the EUT in continuous transmitting with modulation		

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-21-2020	07-20-2021	
Loop Antenna	SCHWARZBECK	FMZB1519B	044	03-07-2020	03-06-2021	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-20-2020	06-19-2021	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020	
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919b)	
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021	
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021	
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021	
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A	
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0		

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	07-17-2021
Cable	HP	10503A	N/A	03-05-2020	03-04-2021
EMI Test Software	AUDIX	E3	Version: 6.110919b		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

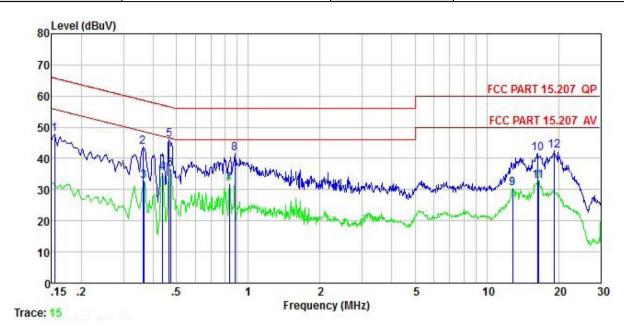
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

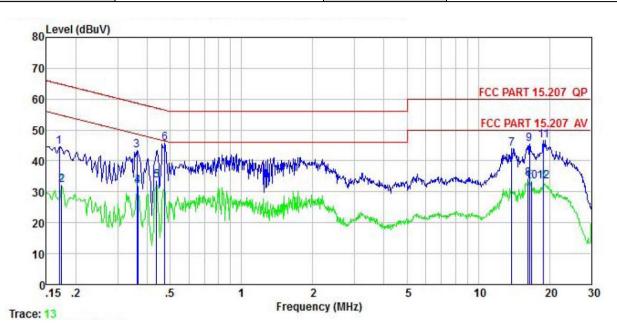
The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is -2.5 dBi.


6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:	Limit (dBu\/)			
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithn	n of the frequency.		
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 			
Test setup:	Reference	Plane		
	AUX Equipment E.U.1 Test table/Insulation plane Remark E.U.T. Equipment Under Test	EMI Receiver	– AC power	
	LISN: Line Impedence Stabilization Ne Test table height=0.8m			
Test Instruments:	Refer to section 5.9 for details	}		
Test mode:	Refer to section 5.3 for details	i		
Test results:	Passed			

Measurement Data:

Product name:	5.7 inch 3G Smart Phone	Product model:	X57A
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

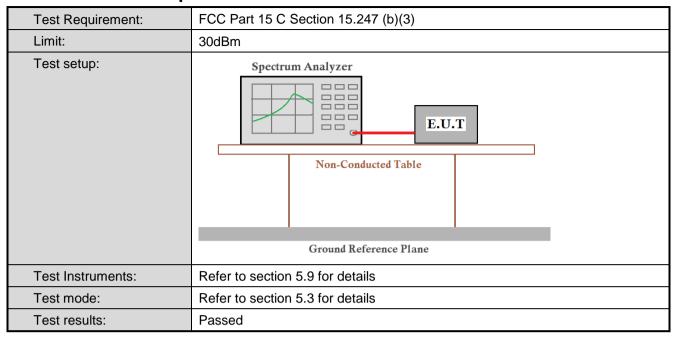

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∀	₫B	₫B	₫B	dBu₹	dBu₹	dB	
1	0.154	37.72	-0.57	-0.06	10.78	47.87	65.78	-17.91	QP
2	0.361	33.34	-0.51	0.17	10.73	43.73	58.69	-14.96	QP
3	0.365	22.48	-0.50	0.21	10.73	32.92	48.61	-15.69	Average
1 2 3 4 5 6 7 8 9	0.437	25.07	-0.46	0.11	10.74	35.46	47.11	-11.65	Average
5	0.466	35.80	-0.44	-0.12	10.75	45.99	56.58	-10.59	QP
6	0.471	26.50	-0.44	-0.15	10.75	36.66	46.49	-9.83	Average
7	0.835	21.64	-0.57	0.01	10.82	31.90	46.00	-14.10	Average
8	0.880	31.17	-0.59	0.15	10.83	41.56	56.00	-14.44	QP
9	12.852	17.12	-0.71	2.95	10.92	30.28	50.00	-19.72	Average
10	16.312	28.51	-0.74	2.83	10.91	41.51	60.00	-18.49	QP
11	16.486	19.94	-0.75	2.76	10.91	32.86	50.00	-17.14	Average
12	19.224	31.01	-0.84	1.28	10.93	42.38	60.00	-17.62	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

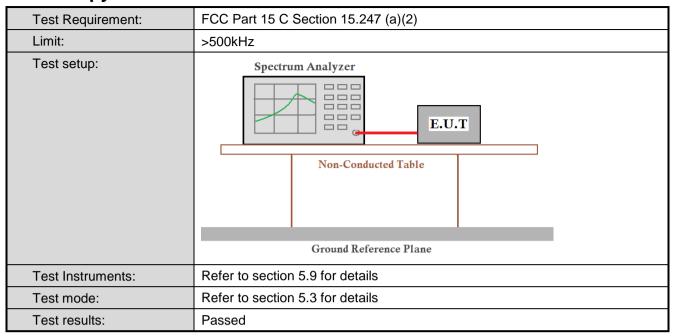
Product name:	5.7 inch 3G Smart Phone	Product model:	X57A
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∇	<u>dB</u>	₫B	₫B	dBu₹	dBu√	dB	
1	0.170	34.39	-0.68	0.01	10.77	44.49	64.94	-20.45	QP
1 2 3	0.174	22.06	-0.68	0.00	10.77	32.15	54.77	-22.62	Average
	0.361	33.31	-0.64	-0.03	10.73	43.37	58.69	-15.32	QP
4 5 6	0.365	21.96	-0.64	-0.04	10.73	32.01	48.61	-16.60	Average
5	0.437	23.61	-0.64	-0.02	10.74	33.69	47.11	-13.42	Average
	0.474	35.72	-0.65	0.01	10.75	45.83	56.45	-10.62	QP
7	13.841	31.08	-0.81	2.78	10.91	43.96	60.00	-16.04	QP
8 9	16.226	21.74	-0.93	2.38	10.91	34.10	50.00	-15.90	Average
9	16.486	33.31	-0.96	2.21	10.91	45.47	60.00	-14.53	QP
10	16.750	21.30	-0.98	2.05	10.91	33.28	50.00	-16.72	Average
11	18.920	35.97	-1.19	0.81	10.92	46.51	60.00	-13.49	QP
12	18.920	22.70	-1.19	0.81	10.92	33.24	50.00	-16.76	Average


Notes:

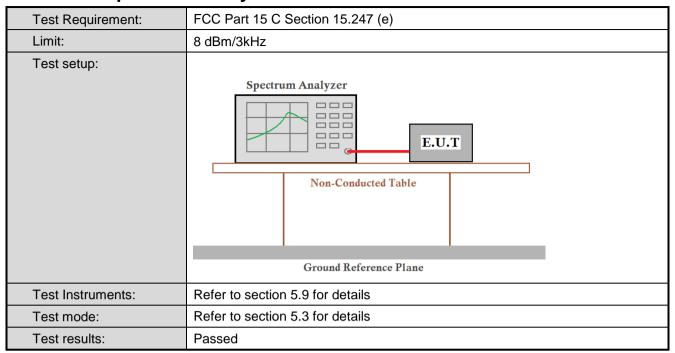
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.3 Conducted Output Power



Measurement Data: Refer to Appendix A - BLE

6.4 Occupy Bandwidth



Measurement Data: Refer to Appendix A - BLE

6.5 Power Spectral Density

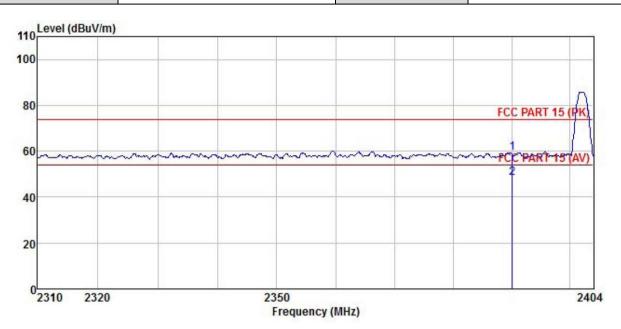
Measurement Data: Refer to Appendix A - BLE

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

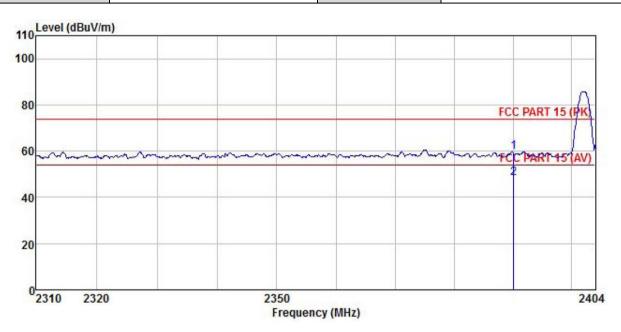
Measurement Data: Refer to Appendix A - BLE



6.6.2 Radiated Emission Method

Test Requirement:		FCC Part 15 C Section 15.205 and 15.209						
Test Frequency Range:	2310 MHz to 2	2390 MHz and	2483.5MHz to 2	2500 MHz				
Test Distance:	3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
·	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
		RMS	1MHz	3MHz	Average Value			
Limit:	Frequer	Frequency Limit (dBuV/m @3m) Re						
	Above 10	GHz —	54.00 74.00		verage Value Peak Value			
Test Procedure:	the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horiz make the 4. For each case and meters are to find the 5. The test-I Specified 6. If the emit the limit so of the EU have 10 ce	ad at a 3 meter ine the position was set 3 meter which was more manached height is varied to determine zontal and verification measurement then the anterest of the rota table maximum reareceiver system. Bandwidth with ssion level of the pecified, then T would be red margin would be mar	the top of a rot camber. The tan of the highest ers away from the unted on the top aried from one rest the maximum vical polarization is ission, the EUT in a was turned from was set to Peath Maximum Hol he EUT in peak testing could be ported. Otherwis	ating table 1. ble was rotat radiation. he interference of a variable meter to four value of the fi s of the anter was arrange of heights from of degrees ak Detect Fund Mode. mode was 1 stopped and the the emissione by one un	5 meters above ed 360 degrees ce-receiving e-height antenna meters above eld strength. In a are set to d to its worst in 1 meter to 4 is to 360 degrees inction and 0 dB lower than I the peak values ons that did not sing peak, quasi-			
Test setup:	AE (T	Test Receiver	Horn Antenna 3m 1 Reference Plane	Antenna Tower				
Test Instruments:	Refer to section	on 5.9 for detai	ls					
Test mode:	Refer to section	on 5.3 for detail	ls					
Test results:	Passed							

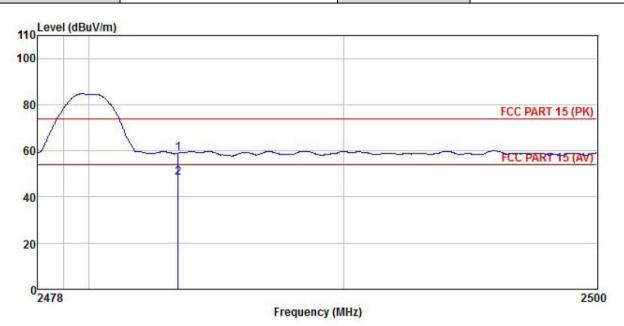
Product Name:	5.7 inch 3G Smart Phone	Product Model:	X57A
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



	Freq			ReadAntenna Cable Aux Preamp eq Level Factor Loss Factor Factor						
	MHz	dBu∀	<u>dB</u> /m	₫B	dB	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1 2	2390,000 2390,000									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

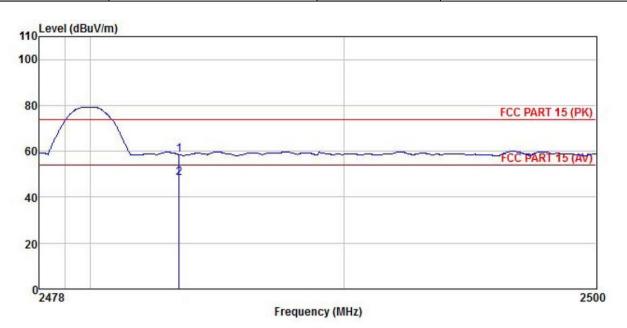
Product Name:	5.7 inch 3G Smart Phone	Product Model:	X57A
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



	Freq			ReadAntenna Cable Aux Pre evel Factor Loss Factor Fac						Remark
	MHz	dBu∜	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	5.7 inch 3G Smart Phone	Product Model:	X57A
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



	Freq	Read Freq Level				Preamp Factor				
	MHz	dBu₹	— <u>d</u> B/m		<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
1 2	2483.500 2483.500	25.69 14.99	27.27 27.27	4.38 4.38	1.70 1.70	0.00 0.00	59.04 48.34	74.00 54.00	-14.96 -5.66	Peak Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	5.7 inch 3G Smart Phone	Product Model:	X57A
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

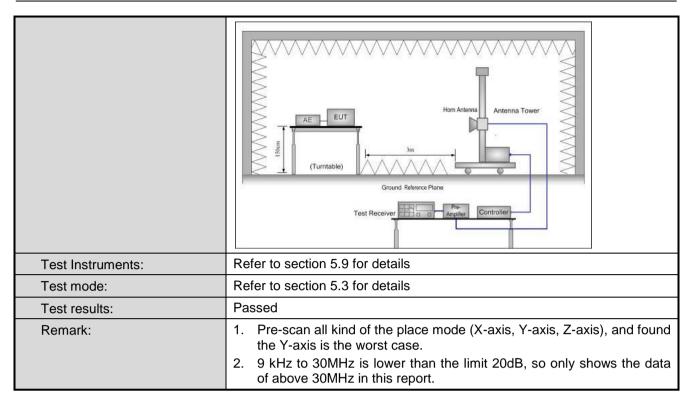
	Freq		Antenna Factor						
	MHz	dBu∜	dB/m	 <u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

6.7 Spurious Emission

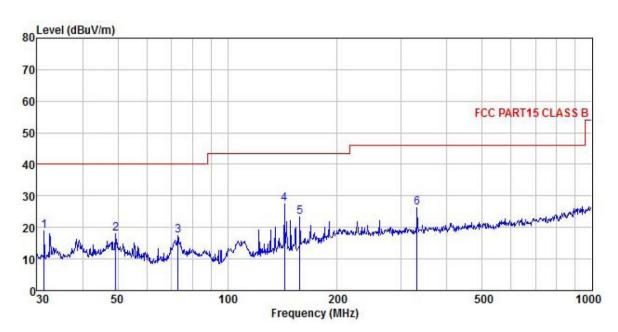
6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Limit:	n any 100 kHz bandwidth outside the frequency band in which the spread pectrum intentional radiator is operating, the radio frequency power that is roduced by the intentional radiator shall be at least 20 dB below that in the 00 kHz bandwidth within the band that contains the highest level of the esired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.9 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							


Measurement Data: Refer to Appendix A - BLE

6.7.2 Radiated Emission Method

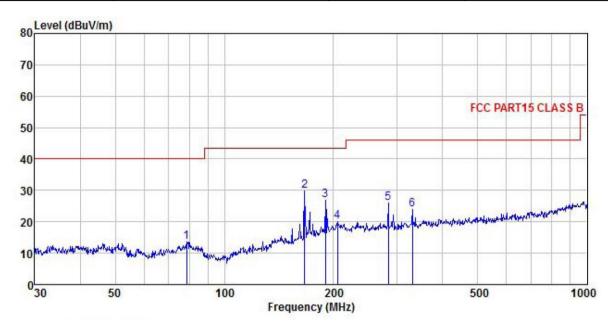
Test Requirement:	FCC Part 15 C	Section 15.20	05 and 15.209				
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m						
Receiver setup:	Frequency	Detector	RBW	VB	sW	Remark	
	30MHz-1GHz	Quasi-peak	120KHz	3001	KHz	Quasi-peak Value	
	Above 4CLI-	Peak	1MHz	3M	Hz		
	Above 1GHz	RMS	1MHz	3M	Hz	Average Value	
Limit:	Frequency	/ L	imit (dBuV/m @	3m)		Remark	
	30MHz-88M	Hz	40.0		Quasi-peak Value		
	88MHz-216N	/IHz	43.5		C	Quasi-peak Value	
	216MHz-960I	MHz	46.0			Quasi-peak Value	
	960MHz-1G	Hz	54.0		C	Quasi-peak Value	
	Above 1GH	lz	54.0			Average Value	
			74.0		L	Peak Value table 0.8m(below	
	highest rad 2. The EUT antenna, w tower. 3. The antenn the ground Both horize make the n 4. For each s case and t meters and to find the n 5. The test-re Specified E 6. If the emiss the limit sp of the EUT have 10 dE	liation. was set 3 r which was mo na height is I to determine ontal and veneasurement suspected er hen the ante I the rota tab maximum rea eceiver syste Sandwidth wit sion level of ecified, then would be re margin wou	neters away unted on the same waried from one the maximutical polarization. The same was tuned ading. The was turned ading. The was set the EUT in petesting could be ported. Other lid be re-tested	from the top of a ne met um valutions of EUT was do not be from 0 to Pealold Morak more stop wise the done be	ne intervariant of the areas arranged areas areas degree de areas ped areas	the position of the efference-receiving ble-height antenna four meters above the field strength. Antenna are set to anged to its worst from 1 meter to 4 ees to 360 degrees tect Function and as 10 dB lower than and the peak values ssions that did not using peak, quasi-reported in a data	
Test setup:	EUT	4m 4m 0.8m 1m			Antenna Search Antenn Test ceiver —	1	



Measurement Data (worst case):

Below 1GHz:

Product Name:	5.7 inch 3G Smart Phone	Product Model:	X57A
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq		Antenna Factor			Preamp Factor		Limit Line	Over Limit	Remark
	MHz	dBu⊽	<u>dB</u> /m		<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	31.399	36.56	12.04	0.38	0.00	29.97	19.01	40.00	-20.99	QP
2	49.359	34.30	13.16	0.38	0.00	29.83	18.01	40.00	-21.99	QP
2	73.103	35.58	10.98	0.45	0.00	29.69	17.32	40.00	-22.68	QP
4	143.326	42.31	13.87	0.61	0.00	29.25	27.54	43.50	-15.96	QP
5	158.112	36.79	15.13	0.63	0.00	29.15	23.40	43.50	-20.10	QP
6	331.355	35.25	18.76	0.90	0.00	28.52	26.39	46.00	-19.61	QP

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product Name:	5.7 inch 3G Smart Phone	Product Model:	X57A
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor			Preamp Factor		Limit Line	Over Limit	Remark
	MHz	dBu∜		<u>d</u> B	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1	78.689 166.651	30.24 42.37	12.46 15.90	0.47 0.65					-26.48 -13.66	
2 3 4	189.739 204.955	37.63 29.70	17.40	0.70 0.73	0.00	28.90	26.83	43.50	-16.67 -23.55	QP
5		34.91 32.90	18.63 18.76	0.84 0.90	0.00	28.48	25.90	46.00	-20.10 -21.96	QP

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz

	Test channel: Lowest channel												
Detector: Peak Value													
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4804.00	49.17	30.78	6.80	2.44	41.81	47.38	74.00	-26.62	Vertical				
4804.00	48.91	30.78	6.80	2.44	41.81	47.12	74.00	-26.88	Horizontal				
				Detector:	Average Va	alue							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4804.00	41.67	30.78	6.80	2.44	41.81	39.88	54.00	-14.12	Vertical				
4804.00	40.54	30.78	6.80	2.44	41.81	38.75	54.00	-15.25	Horizontal				

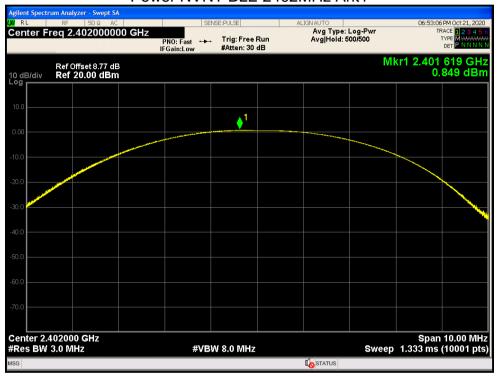
	Test channel: Middle channel												
	Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4884.00	49.33	30.96	6.86	2.47	41.84	47.78	74.00	-26.22	Vertical				
4884.00	49.24	30.96	6.86	2.47	41.84	47.69	74.00	-26.31	Horizontal				
				Detector:	: Average Va	alue							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4884.00	41.21	30.96	6.86	2.47	41.84	39.66	54.00	-14.34	Vertical				
4884.00	41.00	30.96	6.86	2.47	41.84	39.45	54.00	-14.55	Horizontal				

	Test channel: Highest channel													
Detector: Peak Value														
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4960.00	49.29	31.11	6.91	2.49	41.87	47.93	74.00	-26.07	Vertical					
4960.00	48.76	31.11	6.91	2.49	41.87	47.40	74.00	-26.60	Horizontal					
				Detector:	Average Va	alue								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4960.00	41.08	31.11	6.91	2.49	41.87	39.72	54.00	-14.28	Vertical					
4960.00	41.21	31.11	6.91	2.49	41.87	39.85	54.00	-14.15	Horizontal					

Remark:

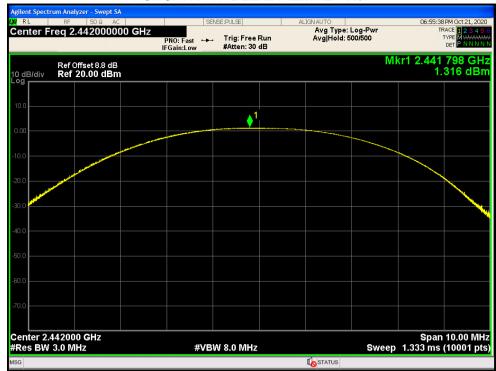
^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

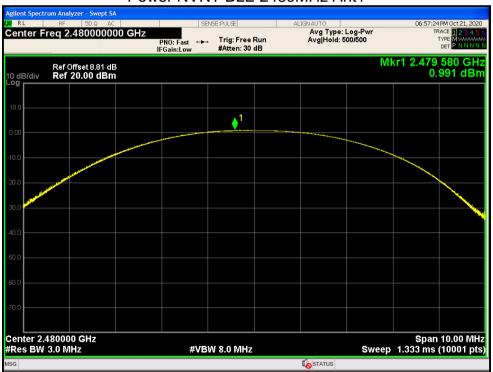


Appendix A - BLE Test Data

Maximum Conducted Output Power


Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	0.849	(db) 0	0.849	30	Pass
NVNT	BLE	2442	Ant1	1.316	0	1.316	30	Pass
NVNT	BLE	2480	Ant1	0.991	0	0.991	30	Pass

Power NVNT BLE 2402MHz Ant1



Power NVNT BLE 2442MHz Ant1

Power NVNT BLE 2480MHz Ant1

-6dB Bandwidth

odb Bariamani						
Condition	Condition Mode Frequency (MHz)		Antenna -6 dB Bandwidth (MHz)		Limit -6 dB Bandwidth (MHz)	Verdict
		(IVI□Z)		(IVITZ)	(IVITZ)	
NVNT	BLE	2402	Ant1	0.662	0.5	Pass
NVNT	BLE	2442	Ant1	0.662	0.5	Pass
NVNT	BLE	2480	Ant1	0.661	0.5	Pass

-6dB Bandwidth NVNT BLE 2402MHz Ant1

-6dB Bandwidth NVNT BLE 2442MHz Ant1

-6dB Bandwidth NVNT BLE 2480MHz Ant1

Occupied Channel Bandwidth

		•				
Condition Mode		Mode	Frequency (MHz)	Antenna	99% OBW (MHz)	
	NVNT	BLE	2402	Ant1	1.031557347	
	NVNT	BLE	2442	Ant1	1.030120231	
	NVNT	BLE	2480	Ant1	1.032615281	

OBW NVNT BLE 2402MHz Ant1

OBW NVNT BLE 2442MHz Ant1

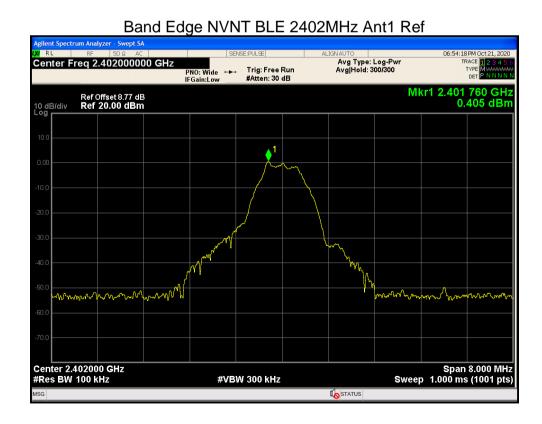
OBW NVNT BLE 2480MHz Ant1

Maximum Power Spectral Density Level

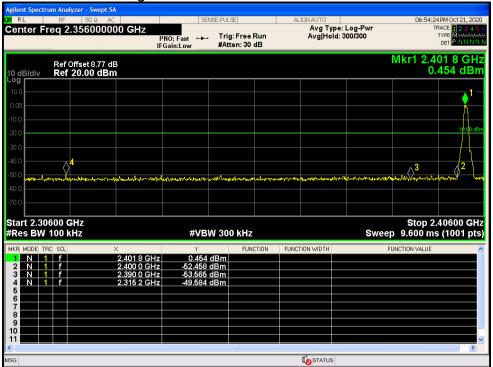
Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-14.623	8	Pass
NVNT	BLE	2442	Ant1	-14.156	8	Pass
NVNT	BLE	2480	Ant1	-14.466	8	Pass

PSD NVNT BLE 2402MHz Ant1

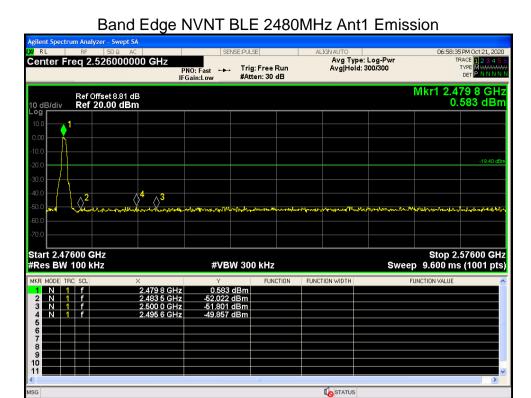
PSD NVNT BLE 2442MHz Ant1



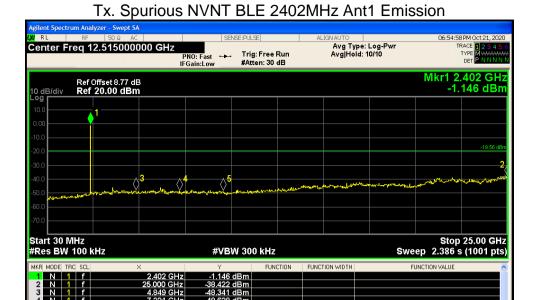
PSD NVNT BLE 2480MHz Ant1


Band Edge

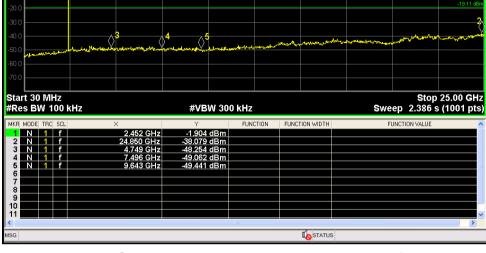
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-49.99	-20	Pass
NVNT	BLE	2480	Ant1	-50.45	-20	Pass



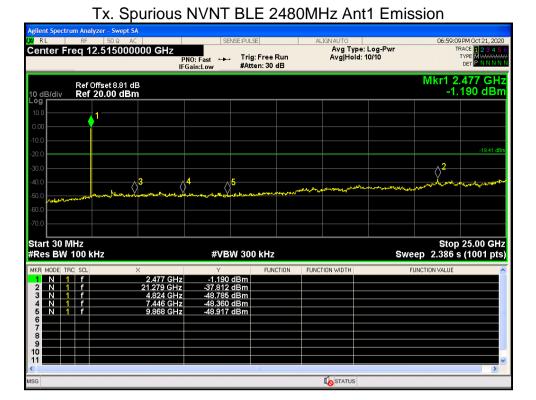
Band Edge NVNT BLE 2480MHz Ant1 Ref


Conducted RF Spurious Emission

Conducted III Opanicae Ennocion						
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-38.86	-20	Pass
NVNT	BLE	2442	Ant1	-38.96	-20	Pass
NVNT	BLE	2480	Ant1	-38.4	-20	Pass



STATUS



Tx. Spurious NVNT BLE 2480MHz Ant1 Ref

----End of report-----