		16 16
	<u> v1.0</u>	Report No.: DACE240827002RF001
	DAG	
	Guangzhou	Grandview Creative Technology Co.,Ltd
	Produ	ct Name: Wireless remote control
		Test Model(s).: GF123-5
C		
	Report Reference No.	: DACE240827002RF001
	FCC ID	: 2BCQBGF123-5
0	Applicant's Name	: Guangzhou Grandview Creative Technology Co.,Ltd
	Address	: No.43 S, Guomao Ave. Hualong, Panyu, Guangzhou, Guangdong, P.R.C
	Testing Laboratory	: Shenzhen DACE Testing Technology Co., Ltd.
	Address	 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
	Test Specification Standard	: 47 CFR Part 15.231
	Date of Receipt	: August 27, 2024
6	Date of Test	: August 27, 2024 to September 25, 2024
6	Data of Issue	: September 25, 2024
	Result 🔷	: Pass
1~	Testing Technology Co., Ltd. Thi	roduced except in full, without the written approval of Shenzhen DACE document may be altered or revised by Shenzhen DACE Testing Technology Il be noted in the revision section of the document. The test results in the mple
	× 19	

1

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

V1.0

Report No.: DACE240827002RF001

Ce.

Revision History Of Report

Version	Description	REPORT No.	Issue Date
V1.0	Original	DACE240827002RF001	September 18, 2024
	- xe	6	
		J.	

NOTE1:

DAG

DAC

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Ne

ø

Approved by:

Machael Mo / Manager

KN3

1

Machael

24C

 Compiled by:
 Supervised by:

 Keren Huang
 Ben Tang / Project Engineer

)De

 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 2 of 29

)De

DAG

CONTENTS

	Report No.: DACE240827002RF001
CONTE	NTS 🗾
1 TEST SUMMARY	
1 1 TEST STANDARDS	
2 GENERAL INFORMATION	
2.1 CLIENT INFORMATION 2.2 DESCRIPTION OF DEVICE (EUT)	
	5
3 EVALUATION RESULTS (EVALUATION)	
	8
	-
4 RADIO SPECTRUM MATTER TEST RESULTS (RF)	
4.1.1 E.U.T. Operation:	
4.1.2 Test Setup Diagram:	
•	
4.4 RADIATED EMISSION (BELOW 1GHZ)	
4.5 RADIATED EMISSION (ABOVE 1GHZ)	20
4.5.1 E.U.T. Operation:	
5 TEST SETUP PHOTOS	
6 PHOTOS OF THE EUT	

DAG

DAE

DAG

e

G

TEST SUMMARY 1

1.1 Test Standards

DAG

DAG

DAG

)DE

DΔC

The tests were performed according to following standards:

47 CFR Part 15.231: Periodic operation in the band 40.66-40.70 MHz and above 70 MHz

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.231		47 CFR 15.203	Pass
20dB Bandwidth	47 CFR Part 15.231	ANSI C63.10-2013, section 6.9.2	47 CFR 15.231(c)	Pass
Dwell Time	47 CFR Part 15.231	ANSI C63.10-2013, Section 7.4	47 CFR 15.231(a)(1) & (a)(2)	Pass
Duty Cycle	47 CFR Part 15.231	ANSI C63.10-2013, Section 7.5	47 CFR 15.231(b) & (e)	Pass
Radiated Emission (below 1GHz)	47 CFR Part 15.231	ANSI C63.10-2013, Section 6.5	47 CFR 15.231	Pass
Radiated Emission (above 1GHz)	47 CFR Part 15.231	ANSI C63.10-2013, Section 6.6	47 CFR 15.231	Pass

NE

24C

)De

74E

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)De

)DE

GENERAL INF	ORMATION C
Client Information	
Applicant's Name	: Guangzhou Grandview Creative Technology Co.,Ltd
Address	: No.43 S, Guomao Ave. Hualong, Panyu, Guangzhou, Guangdong,P.R.C
Manufacturer	: Guangzhou Grandview Creative Technology Co.,Ltd
Address	: No.43 S, Guomao Ave. Hualong, Panyu, Guangzhou, Guangdong,P.R.C
Description of Dev	
Product Name:	Wireless remote control
Model/Type reference:	GF123-5
Series Model:	GF123-3
Model Difference:	The product has many models, only the model name is different, and the oth parts such as the circuit principle, pcb and electrical structure are the same.

-	parts such as the circuit principle, pcb and	d electrical structure are the same.
Trade Mark:	Grandview	
Power Supply:	DC3.0V	
Operation Frequency:	868MHz	. C
Number of Channels:	1	200
Modulation Type:	ASK	V
Antenna Type:	PCB Antenna	
Antenna Gain:	0dBi	
Hardware Version:	V1.0	.e
Software Version:	V1.0	200

2.3 Description of Test Modes

No	Title	Description
TM1	Transmitting	868MHz

)AC

,De

2.4 Description of Support Units

NE

The EUT was tested as an independent device.

C

2.5 Equipments Used During The Test

DγG

	20dB Bandwidth Dwell Time					
	Duty Cycle					
	Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
	RF Test Software	TACHOY	RTS-01	V1.0.0	/	/
	Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10
	RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	1	DAG
	Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
	Signal Generator	Keysight	N5181A	MY48180415	2023-11-09	2024-11-08
	Signal Generator	Keysight	N5182A	MY50143455	2023-11-09	2024-11-08
	Spectrum Analyzer	Keysight	N9020A	MY53420323	2023-12-12	2024-12-11
		3	C			
Field Strength of The Fundamental Signal Radiated Emission (below 1GHz) Radiated Emission (above 1GHz)				5	AC	
	Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
	EMI Test software	Farad	EZ -EMC	V1.1.42	/	/
	Positioning Controller	/	MF-7802	1	/	EI
	Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04
	Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04
	Loop antenna	ZHINAN	ZN30900C	ZN30900C	2024-06-14	2026-06-13
	Cable(LF)#2	Schwarzbeck	/		2024-02-19	2025-02-18
	Cable(LF)#1	Schwarzbeck		1	2024-02-19	2025-02-18
	Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-03-20	2025-03-19
	Cable(HF)#1	Schwarzbeck	SYV-50-3-1	/	2024-03-20	2025-03-19
	Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2024-06-12	2025-06-11
	Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2024-06-12	2025-06-11
	Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
	Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2024-06-12	2025-06-11
	Test Receiver	R&S 🕡	ESCI 3	1166.5950K03 -101431-Jq	2024-06-13	2025-06-12
	Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12
	Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2023-05-21	2025-05-20
-			1			

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23010613

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

Page 6 of 29

DA

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty	
Occupied Bandwidth	±3.63%	
Duty cycle	±3.1%	
Radiated Emission (Below 1GHz)	±5.79dB	
Radiated Emission (Above 1GHz)	±5.46dB	
Note: (1) This uncertainty represents an expanded uncertainty confidence level using a coverage factor of k=2.	expressed at approximately the 95%	

2.7 Identification of Testing Laboratory

Company Name: Shenzhen DACE Testing Technology Co., Ltd.		
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China	
Phone Number:	+86-13267178997	
Fax Number:	86-755-29113252	
Identification of the Responsible Testing Location		
Company Name: Shenzhen DACE Testing Technology Co., Ltd.		
Address: 102, Building H1, & 1/F., Building H, Hongfa Science & Technolo Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhe Guangdong, China		
Phone Number: +86-13267178997		
Fax Number: 86-755-29113252		
FCC Registration Number: 0032847402		
Designation Number: CN1342		
Test Firm Registration No.:	778666	
A2LA Certificate Number: 6270.01		

2.8 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) We hereby declare that the laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant. the laboratory is not responsible for the accuracy of the information provided by the client. When the information provided by the customer may affect the effectiveness of the results, the responsibility lies with the customer, and the laboratory does not assume any responsibility.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Evaluation Results (Evaluation) 3

3.1 Antenna requirement

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

V

1

)DE

Test Requirement:

DΔG

e

)AC

AC

)AC

NC

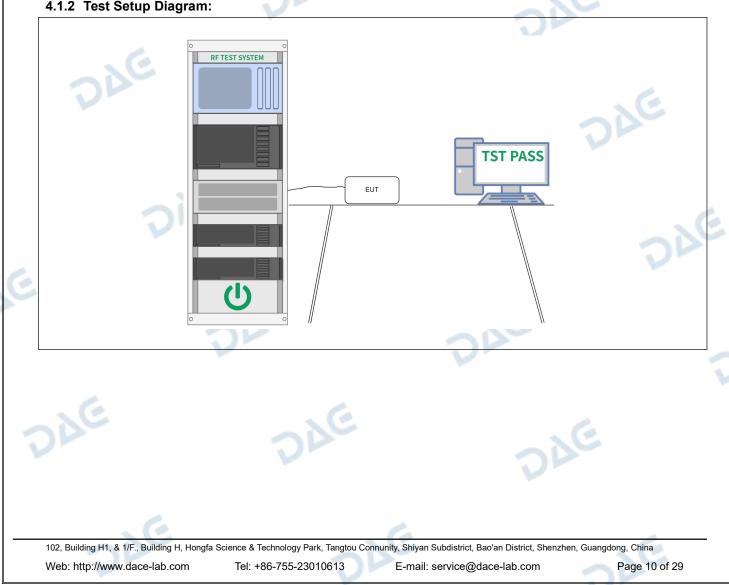
1

-

Radio Spectrum Matter Test Results (RF) 4

4.1 20dB Bandwidth

DΔC


Test Requirement:	47 CFR 15.231(c)
Test Limit:	The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.
Test Method:	ANSI C63.10-2013, section 6.9.2
Procedure:	 a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and
	 video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral
	 envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the
	 -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold.
	 g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer market to the
	 highest level of the displayed trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum
	analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j). j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "íxx dB down amplitude" determined in step h). If a marker is below this "-xx dB down amplitude"
, fo	value, then it shall be as close as possible to this value. The occupied bandwidth is the

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

		200
<u> Оде — </u>	V1.0	Report No.: DACE240827002RF0
. (-	fraguanay	
	frequency difference between the two mark frequency of the	kers. Alternatively, set a marker at the lowest
	envelope of the spectral display, dB down	, such that the marker is at or slightly below the "ixx
	amplitude" determined in step h) marker to the). Reset the marker-delta function and move the
	other side of the emission until the reference	he delta marker amplitude is at the same level as
	marker amplitude. The marker-d emission	lelta frequency reading at this point is the specified
	bandwidth.	
	k) The occupied bandwidth shall instrument	l be reported by providing plot(s) of the measuring
	display; the plot axes and the sc Tabular data may	cale units per division shall be clearly labeled.
	be reported in addition to the plo	ot(s).

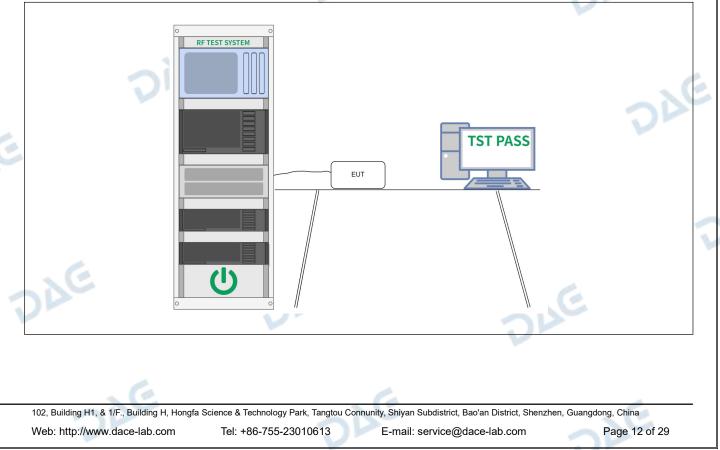
4.1.1 E.U.T. Operation:

Operating Envir	onment:					
Temperature:	22.2 °C		Humidity:	55 %	Atmospheric Pressure:	101 kPa
Pretest mode:		TM1		6		
Final test mode	:	TM1	-	C.		C.
442 Test Cat						

4	4.1.3 Test Data: Condition	Antenna	Frequency (MHz)	20dB BW(kHz)	limit(MHz)	Result
F	NVNT	ANT1	868	878.4	1.0848	Pass
	LX.	Keysight Spectrum Analyzer - Occupied BW RL RF 50 Q AC Center Freq 868.000000 MI	IZ Center Freq: 868.000000 MHz Trig: Free Run Avg Ho #Atten: 10 dB	ALIGN AUTO 03:42:15 PM Sep 24, 202 Radio Std: None Id:>10/10 Radio Device: BTS	Frequency	
		0 dB/div Ref 15.00 dBm og 500 150 250 350 450 550 550 550 550 550 550 5		Margan Jawan MAN MI	Center Freq 868.00000 MHz	
		Center 868 MHz Res BW 100 kHz Occupied Bandwidth 41	#VBW 300 kHz Total Power 8.28 kHz	Span 1 MH Sweep 1 m 2.84 dBm	s 100.000 kHz Auto Man	
	LE	4 I Transmit Freq Error x dB Bandwidth	-23.508 kHz % of OBW Pov 878.4 kHz x dB	wer 99.00 % -26.00 dB	Freq Offset 0 Hz	
	M	SG		STATUS		

Report No.: DACE240827002RF001

4.2 Dwell Time


DΔC

Test Requirement:	47 CFR 15.231(a)(1) & (a)(2)
Test Limit:	(1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.
20	(2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.
Test Method:	ANSI C63.10-2013, Section 7.4
Procedure:	 For evaluation of periodic operation characteristics, the following procedure may be used: a) Trigger the spectrum analyzer sweep on the RF waveform of the unlicensed wireless device. b) Set the spectrum analyzer sweep time greater than the specified time for periodic operation. c) Manually activate and deactivate the unlicensed wireless device and confirm that it ceases transmission within the specified time of deactivation. d) Document the test results.
7e	 e) Verify and document that periodic transmissions at regular predetermined intervals do not exist, except where regulatory requirements allow polling or supervision transmissions, including data, to determine system integrity. Compliance is addressed by an attestation supported by the equipment theory of operation.

4.2.1 E.U.T. Operation:

Operating Enviror	nment:					
Temperature:	22.2 °C		Humidity:	55 %	Atmospheric Pressure:	101 kPa
Pretest mode:		TM1		6		
Final test mode:		TM1		-Nº		.e
4.2.2 Test Setup	o Diagrai	m:		J		20-

4.2.2 Test Setup Diagram:

Antenna ANT1	Frequency (MHz)			
ANTI		Dwell time(s)	limit(s)	Result
Keysight Spectrum Analyzer - Swept SA	868	0.09	5	Pass
RL RF 50 Ω AC enter Freg 868.000000 MHz	SENSE:PULSE	ALIGN AUTO 03:47:33 PM Sep 24, 202 /pe: Log-Pwr TRACE 2 3 4 old: 6/100 TYPE	Frequency	
PN IFG	40: Fast ↔ Trig: Free Run Avg Ho Gain:Low Atten: 26 dB	DETPINNN		
dB/div Ref 15.00 dBm		58.864 d	B	
1Δ2			Center Freq	
			868.000000 MHz	
00			Start Freq	
5.0			868.000000 MHz	
5.0			Stop Freq	
5.0			868.000000 MHz	
5.0			CF Step	
5.0 m. d. to at Literati V d. as A & U. M. d. as	ada tena mentar placifi di ada ada ada di paganten antar battana da teteka d	il dentitados a pala esta constala como enclosadores en	Auto Man	
			Freq Offset	
			0 Hz	
0			Scale Type	
enter 868.000000 MĤz	#\/B\A(1.0 MHz	Span 0 H	IZ Log <u>Lin</u>	
			20	
	dE/div Ref 15.00 dBm	IFGain:Low Atten: 28 dB Image: Atten: 28 dB Image: Atten: 28 dB	Alkers 20.00 Alkers 20.00 Al	If Galaxie Atten: 26 dB Center Freq S8.864 dB Bildly Ref 15.00 dBm Center Freq S88.00000 MHz Galaxie Galaxie Galaxie Start Freq S88.00000 MHz Galaxie Start Freq S88.00000 MHz Start Freq S88.00000 MHz Start Freq S88.0000 Start Start Freq S88.00000 MLz Start Freq S88.0000 Start Start Freq S88.00000 MLz Start Freq S88.0000 MLz Start Freq S88.00000 MLz Start Freq S88.00000 MLz <

D

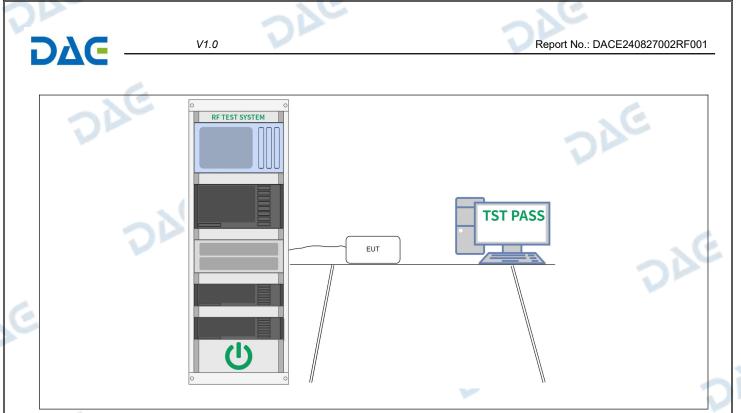
4.3 Duty Cycle

DAC

4.3 Duty Cycle	
Test Requirement:	47 CFR 15.231(b) & (e)
Test Limit:	No limit, only for Report Use.
Test Method:	ANSI C63.10-2013, Section 7.5
Procedure:	 a) Adjust and configure any EUT switches, controls, or input data streams to ensure that the EUT is transmitting or encoded to obtain the "worst-case" pulse ON time. b) Couple the final radio frequency output signal to the input of a spectrum analyzer. This may be performed by a radiated, direct connection (i.e., conducted) or by a "near-field" coupling method. The signal received shall be of sufficient level to trigger adequately the spectrum analyzer sweep display. NOTE—If the bandwidth of the pulse is greater than the RBW of the spectrum
	analyzer, then a similar measurement may be performed using a wideband digital storage oscilloscope (DSO).
	c) Adjust the center frequency of the spectrum analyzer to the center of the RF signal.d) Set the spectrum analyzer for ZERO SPAN.
DE	 e) Adjust the SWEEP TIME to obtain at least a 100 ms period of time on the horizontal display axis of the spectrum analyzer. f) If the pulse train is periodic (i.e., consists of a series of pulses that repeat in a characteristic pattern over a constant time period), and the period (T) is less than or equal to 100 ms, then: 1) Set the TRIGGER on the spectrum analyzer to capture at least one period of the
DAE	pulse train, including any blanking intervals. 2) Determine the total maximum pulse "ON time" (t_{ON}) over one period of the pulse train. An example of a periodic pulse train and the associated period is shown in Figure 14. If the pulse train contains pulses of different widths, then t_{ON} is determined by summing the duration of all of the pulses within the pulse train [i.e., $t_{ON} = \Sigma(t1 + t2 +tn)]$.
Dra	3) The duty cycle is then determined by dividing the total maximum "ON time" by the period of the pulse train (t_{ON}/T) . g) If the pulse train is nonperiodic or is periodic with a period that exceeds 100 ms, or as an alternative to step f), then:
20	 Set the TRIGGER on the spectrum analyzer to capture the greatest amount of pulse "ON time" over 100 ms. Find the 100 ms period that contains the maximum "on time"; this may require summing the duration of multiple pulses as described in step f2). Determine the duty cycle by dividing the total maximum "ON time" by 100 ms (t_{ON} /100 ms).

4.3.1 E.U.T. Operation:

e

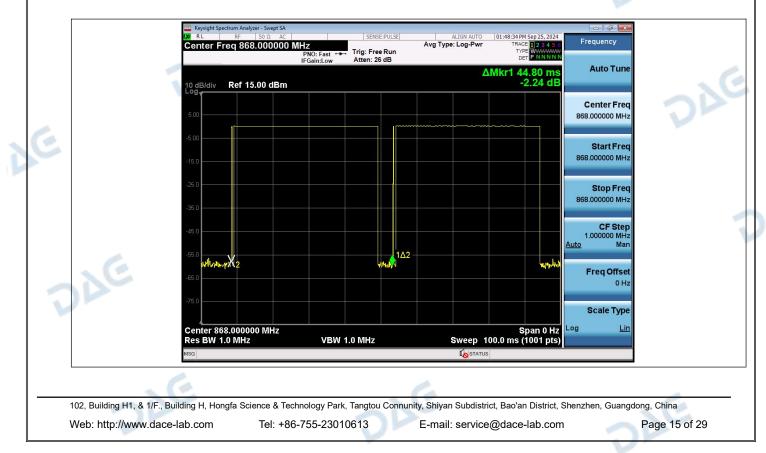

Operating Enviro	onment:				
Operating Environment: Temperature: 22.2 °C Humidity: 55 % Atmospheric Pressure: 101 kPa Pretest mode: TM1 Final test mode: TM1 4.3.2 Test Setup Diagram:	101 kPa				
Pretest mode:		TM1	SC	6	
Final test mode:		TM1	D-	200	
4.3.2 Test Setu	p Diagra	m:			

DAG

 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 14 of 29

NE



4.3.3 Test Data:

Frequency (MHz)	Type of Pulse	Width of Pulse (ms)	Quantity of Pulse	Transmission Time (ms)	Total Time (Ton) (ms)
868	Pulse 1	39.85	1	39.85	39.965
000	Pulse 1	0.115	1	0.115	59.905

Frequency (MHz)	Test Period (Tp)	Total Time (Ton)	Duty Cycle	Duty Cycle Factor
868	ms	ms	%	dB
000	44.8	39.965	89.2	-0.99

Remark: Duty Cycle Factor=20*log(Duty Cycle)

DΔC V1.0 Report No.: DACE240827002RF001 Keysight Spectrum Analyzer - Swept SA 03:59:19 PM Sep 24, 2024 Avg Type: Log-Pwr Frequency Center Freq 868.000000 MHz Trig: Free Run Atten: 26 dB NO: Fast Auto Tune ΔMkr^{*} -39.85 ms -0.18 dB Ref 15.00 dBm Didis **Center Freq** 868.000000 MHz 1<u>∆</u>2 X2 Start Freq 868.000000 MHz -Stop Freq 868.000000 MHz **CF Step** 0000 MHz Man 1.000000 1 Auto Why happy by self and Freq Offset 0 Hz Scale Type 1 Center 868.000000 MHz Res BW 1.0 MHz Span 0 Hz Sweep 50.00 ms (1001 pts) Lin Log #VBW 1.0 MHz 1 IL ST.
 Keysight Spectrum Analyzer - Swept SA

 RL
 RF
 50 Ω
 ΔC
 03:58:27 PM Sep 24, 2024 ALIGN AUTO Frequency Center Freq 868.000000 MHz 1 2 3 4 5 WWWWWWW PNNNN Trig: Free Run Atten: 26 dB TYP PNO: Fast IFGain:Low Auto Tune -115.0 µs -7.06 dE ΔMkr1 Ref 15.00 dBm 10 dB/div **Center Freq** ø 868.000000 MHz Start Freq 868.000000 MHz Stop Freq 868.000000 MHz CF Step 1.000000 MHz Man Auto . Mah. I. Freq Offset 0 Hz Scale Type

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

#VBW 1.0 MHz

)AC

Span 0 Hz Sweep 5.000 ms (1001 pts)

Log

DAG

Lin

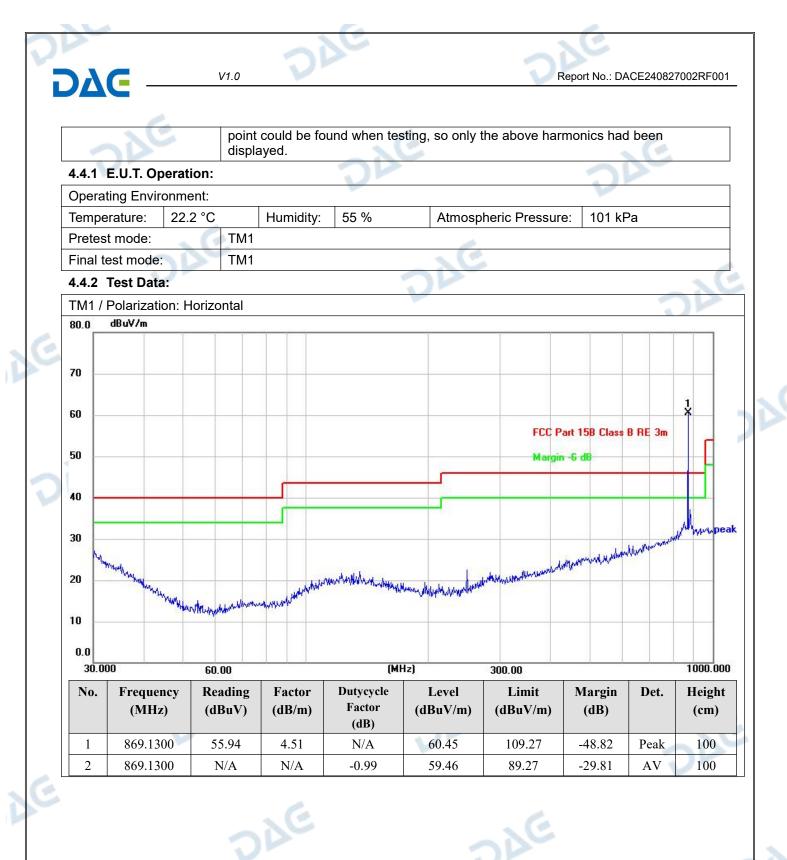
Center 868.000000 MHz Res BW 1.0 MHz

1

DAG

Report No.: DACE240827002RF001

4.4 Radiated Emission (below 1GHz)


DΔC

Test Requirement:	47 CFR 15.231		
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	54-72 MHz, 76-88 MHz, these frequency bands is and 15.241. In the emission table abo The emission limits show employing a CISPR quas 110–490 kHz and above	r this section shall not be locate 174-216 MHz or 470-806 MHz s permitted under other section ove, the tighter limit applies at t in the above table are based si-peak detector except for the 1000 MHz. Radiated emission ents employing an average det	. However, operation withins s of this part, e.g., §§ 15.2 he band edges. I on measurements frequency bands 9–90 kH limits in these three band
Fest Method:	ANSI C63.10-2013, Sect	ion 6.5	
	degrees to determine the b. The EUT was set 3 or which was mounted on th c. The antenna height is determine the maximum polarizations of the anten d. For each suspected en the antenna was tuned to below 30MHz, the antenn was turned from 0 degre e. The test-receiver syste Bandwidth with Maximum f. If the emission level of specified, then testing co reported. Otherwise the of tested one by one using data sheet. g. Test the EUT in the low h. The radiation measure Transmitting mode, and to i. Repeat above procedu Remark: 1. Level= Read Level+ C 2. Scan from 9kHz to 300 points marked on above testing, so only above points	meter semi-anechoic chamber. e position of the highest radiation 10 meters away from the interf he top of a variable-height anter varied from one meter to four r value of the field strength. Both ma are set to make the measu mission, the EUT was arranged on heights from 1 meter to 4 met na was tuned to heights 1 meter es to 360 degrees to find the mean was set to Peak Detect Fund in Hold Mode. the EUT in peak mode was 10 ould be stopped and the peak v emissions that did not have 10 quasi-peak method as specifie west channel, the middle channer ements are performed in X, Y, Z found the X axis positioning whe res until all frequencies measu table Loss+ Antenna Factor- Pr MHz, the disturbance below 30 plots are the highest emissions ints had been displayed. The a tor which are attenuated more	on. ference-receiving antennation neters above the ground to neters above the ground to neters above the ground to neters above the ground to rement. I to its worst case and the ters (for the test frequency er) and the rotatable table haximum reading. action and Specified dB lower than the limit alues of the EUT would be dB margin would be re- d and then reported in a nel, the Highest channel. A axis positioning for ich it is the worst case. red was complete. reamp Factor MHz was very low. The s could be found when amplitude of spurious
	need not be reported.		

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Page 18 of 29 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

NE

DAG

)AC

V1.0

Report No.: DACE240827002RF001

Se

DAG

DAG

)DE

24C

)De

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Page 19 of 29 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

Report No.: DACE240827002RF001

4.5 Radiated Emission (above 1GHz)

DΔC

fest Requirement:	47 CFR 15.231		
ēst Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	54-72 MHz, 76-88 MHz, these frequency bands is and 15.241. In the emission table abo The emission limits show employing a CISPR quas 110–490 kHz and above	r this section shall not be locat 174-216 MHz or 470-806 MHz s permitted under other section ove, the tighter limit applies at t in the above table are based si-peak detector except for the 1000 MHz. Radiated emission ents employing an average de	. However, operation with s of this part, e.g., §§ 15.2 he band edges. d on measurements frequency bands 9–90 kH limits in these three band
Fest Method:	ANSI C63.10-2013, Sect		
	 b. The EUT was set 3 me was mounted on the top c. The antenna height is determine the maximum polarizations of the anter d. For each suspected et the antenna was tuned to below 30MHz, the anten was turned from 0 degre e. The test-receiver syste Bandwidth with Maximur f. If the emission level of specified, then testing co reported. Otherwise the of tested one by one using a data sheet. g. Test the EUT in the low h. The radiation measure 	the EUT in peak mode was 10 buld be stopped and the peak v emissions that did not have 10 peak or average method as sp west channel, the middle channe ements are performed in X, Y, 2	ee-receiving antenna, which ower. meters above the ground to h horizontal and vertical irement. d to its worst case and the ters (for the test frequency eer) and the rotatable table naximum reading. notion and Specified dB lower than the limit ralues of the EUT would be dB margin would be re- recified and then reported nel, the Highest channel. Z axis positioning for
	 i. Repeat above procedu Remark: 1. Level= Read Level+ C 2. Scan from 18GHz to 4 points marked on above 	found the X axis positioning where which all frequencies measures able Loss+ Antenna Factor- P OGHz, the disturbance above plots are the highest emissions into had been displayed. The abla was a structure of the highest emission with the structure of the structure of the structure of the highest emission with the structure of the structure	red was complete. reamp Factor 18GHz was very low. The s could be found when

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 20 of 29

	G –		V1.0				·	:: DACE240827	
			exceed under an than the 4. The d	the maxim ny conditio average li listurbance point could	um permitted n of modulat imit, only the above 18G	ver, the peak field l average limits s ion. For the emiss peak measureme Iz were very low nen testing, so on	pecified above b sions whose pea ent is shown in tl and the harmon	y more than Ik level is low ne report. ics were the	20 dB /er
4.5.1	E.U.T. Op	eration:				- 6			
Operat	ing Enviro	nment:							-
Tempe	rature:	22.2 °C	Н	umidity:	55 %	Atmospheric	Pressure: 10 ²	1 kPa 🥢	ND.
Pretest	t mode:		TM1					V	
Final te	est mode:		TM1						
4.5.2	Test Data:	:							
TM1 / I	Polarizatio	n: Horizo	ontal			-	G		
100.0	dBuV/m			1	1			ji T	
90									
80 -									
70							FUL P	art 15C (Peak)	_
/0									
60 -		J							
		- <u>î</u>		2×	3			art 15C (AV)	
50					a property way allow	and a second and a	windowskin the second streams	with the construction of the second	anter error b
40 30	under an and the second of	numerous	and transferred provident	whether the second second	A				
20									
10 -									
0.0									
1000.					000.000 (MHa		4500.000 5000.0		
No.	Freque (MH:	-	Reading (dBuV)	Factor (dB/m)	Dutycyc Factor (dB)	e Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det
1	1735.0	00	62.63	-5.49	N/A	57.14	80.8	-23.66	peal
2	1735.0	00	N/A	N/A	-0.99	56.15	60.8	-4.65	AVG
3	2605.0	00	53.74	-2.57	N/A	51.17	80.8	-29.63	peal
4	2605.0	00	N/A	N/A	-0.99	50.18	60.8	-10.62	AVG
5	3475.0	00	51.40	0.31	N/A	51.71	80.8	-29.09	peal
6 *	3475.0	00	N/A	N/A	-0.99	50.72	60.8	-10.08	AVG
7	4340.0	00	48.68	2.36	N/A	51.04	80.8	-29.76	peal
	4340.0		N/A	N/A	-0.99	50.05	60.8	-10.75	AV

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China 🌑 Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

V1.0

DΔC

2

DAG

٩.,

Report No.: DACE240827002RF001

_	Polarization: Ve	ertical		- C			6	
100.0	dBuV/m		1			1	XC	
90						-		
80						Ecc. P	150 (0 - 1)	
70					0	FLL P	art 15C (Peak)	
60			-		4	FCC P	art 15C (AV)	_
50	×		Ž	¥.	V	maper Marthager an prophable		Munarturk
230				uprover from the answer	and a superior and the first	and the second		
40		manneterman	www. A. both to the second					
30	e who was a strate	00,000						
20								
20								
10	000 1500.000	2000.000 25	00.000 300	0.000 (MHz)	4000.000 4	500.000 5000.0	00 5500.000) 6000.0
10 0.0	000 1500.000 Frequency (MHz)	2000.000 25 Reading (dBuV)	00.000 300 Factor (dB/m)	0.000 (MHz) Dutycycle Factor (dB)	4000.000 4 Level (dBuV/m)	500.000 5000.0 Limit (dBuV/m)	00 5500.000 Margin (dB)	
10 0.0 1000.0	Frequency	Reading	Factor	Dutycycle Factor	Level	Limit	Margin	Det
10 0.0 1000.0	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Dutycycle Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det
10 0.0 1000.0 No.	Frequency (MHz) 1735.000	Reading (dBuV) 58.17	Factor (dB/m) -5.49	Dutycycle Factor (dB) N/A	Level (dBuV/m) 52.68	Limit (dBuV/m) 80.8	Margin (dB) -23.66	Det peal AVC
10 0.0 1000.0 No. 1 2 *	Frequency (MHz) 1735.000 1735.000	Reading (dBuV)58.17N/A	Factor (dB/m) -5.49 N/A	Dutycycle Factor (dB) N/A -7.47	Level (dBuV/m) 52.68 51.69	Limit (dBuV/m) 80.8 60.8	Margin (dB) -23.66 -9.11	Det peal AV0 peal
10 0.0 1000.0 No. 1 2 * 3	Frequency (MHz) 1735.000 1735.000 2605.000	Reading (dBuV) 58.17 N/A 52.92	Factor (dB/m) -5.49 N/A -2.57	Dutycycle Factor (dB) N/A -7.47 N/A	Level (dBuV/m) 52.68 51.69 50.35	Limit (dBuV/m) 80.8 60.8 80.8	Margin (dB) -23.66 -9.11 -30.45	Det peal AVC peal
10 0.0 1000.0 No. 1 2 * 3 4	Frequency (MHz) 1735.000 1735.000 2605.000 2605.000	Reading (dBuV) 58.17 N/A 52.92 N/A	Factor (dB/m) -5.49 N/A -2.57 N/A	Dutycycle Factor (dB) N/A -7.47 N/A -7.47	Level (dBuV/m) 52.68 51.69 50.35 49.36	Limit (dBuV/m) 80.8 60.8 80.8 60.8 60.8	Margin (dB) -23.66 -9.11 -30.45 -11.44	0 6000.0 Det peal AV0 peal AV0 peal AV0 peal
10 0.0 1000.0 No. 1 2 * 3 4 5	Frequency (MHz) 1735.000 1735.000 2605.000 2605.000 3475.000	Reading (dBuV) 58.17 N/A 52.92 N/A 50.80	Factor (dB/m) -5.49 N/A -2.57 N/A 0.31	Dutycycle Factor (dB) N/A -7.47 N/A -7.47 N/A	Level (dBuV/m) 52.68 51.69 50.35 49.36 51.11	Limit (dBuV/m) 80.8 60.8 80.8 60.8 80.8 80.8	Margin (dB) -23.66 -9.11 -30.45 -11.44 -29.69	Det peal AVC peal AVC

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

DAG

DAE

DAG

Page 22 of 29

