|                                  | <b>TEST REP</b>                                                                                                                                          | ORT        |              |       |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|-------|--|
| FCC ID :                         | 2AUARTKX14                                                                                                                                               |            |              |       |  |
| Test Report No:                  | TCT241009E017                                                                                                                                            |            |              |       |  |
| Date of issue:                   | Nov. 15, 2024                                                                                                                                            |            |              |       |  |
| Testing laboratory:              | SHENZHEN TONGCE T                                                                                                                                        | ESTING LAB |              |       |  |
| Testing location/ address:       | 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuha<br>Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103,<br>People's Republic of China |            |              |       |  |
| Applicant's name::               | THINKCAR TECH CO., I                                                                                                                                     | _TD.       |              |       |  |
| Address:                         | 2606, building 4, phase II, TiananYungu, Gangtou community, Bantian, Longgang District, Shenzhen, China                                                  |            |              |       |  |
| Manufacturer's name :            | THINKCAR TECH CO., I                                                                                                                                     | _TD.       |              |       |  |
| Address:                         | 2606, building 4, phase II, TiananYungu, Gangtou community, Bantian, Longgang District, Shenzhen, China                                                  |            |              |       |  |
| Standard(s)                      | FCC CFR Title 47 Part 15 Subpart C Section 15.247<br>FCC KDB 558074 D01 15.247 Meas Guidance v05r02<br>ANSI C63.10:2020                                  |            |              |       |  |
| Product Name::                   | AI Automotive Diagnostic                                                                                                                                 | c Tool     |              |       |  |
| Trade Mark:                      | THINKCAR, XHINKCAR                                                                                                                                       | , MUCAR    |              |       |  |
| Model/Type reference :           | TKX14                                                                                                                                                    |            |              |       |  |
| Rating(s):                       | Refer to EUT description                                                                                                                                 | of page 3  | 6            |       |  |
| Date of receipt of test item     | Oct. 09, 2024                                                                                                                                            | C          |              |       |  |
| Date (s) of performance of test: | Oct. 09, 2024 ~ Nov. 15, 2024                                                                                                                            |            |              |       |  |
| Tested by (+signature) :         | Onnado YE                                                                                                                                                | Onna       | 0 KAONGC     | E THE |  |
| Check by (+signature) :          | Beryl ZHAO                                                                                                                                               | Bart       | 水<br>愛<br>TC | TING  |  |
| Approved by (+signature):        | Tomsin                                                                                                                                                   | Tom        | Sm #s        | 54    |  |

TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

# **Table of Contents**

TCT 通测检测 TESTING CENTRE TECHNOLOGY

| 1. General Product Information               |    |
|----------------------------------------------|----|
| 1.1. EUT description                         | 3  |
| 1.2. Model(s) list                           |    |
| 1.3. Operation Frequency                     |    |
| 2. Test Result Summary                       | 5  |
| 3. General Information                       |    |
| 3.1. Test environment and mode               | 6  |
| 3.2. Description of Support Units            | 7  |
| 4. Facilities and Accreditations             |    |
| 4.1. Facilities                              |    |
| 4.2. Location                                | 8  |
| 4.3. Measurement Uncertainty                 | 8  |
| 5. Test Results and Measurement Data         | 9  |
| 5.1. Antenna requirement                     | 9  |
| 5.2. Conducted Emission                      |    |
| 5.3. Conducted Output Power                  | 14 |
| 5.4. 20dB Occupy Bandwidth                   |    |
| 5.5. Carrier Frequencies Separation          | 16 |
| 5.6. Hopping Channel Number                  | 17 |
| 5.7. Dwell Time                              |    |
| 5.8. Pseudorandom Frequency Hopping Sequence |    |
| 5.9. Conducted Band Edge Measurement         | 20 |
| 5.10.Conducted Spurious Emission Measurement |    |
| 5.11.Radiated Spurious Emission Measurement  | 22 |
| Appendix A: Test Result of Conducted Test    |    |
| Appendix B: Photographs of Test Setup        |    |
| Appendix C: Photographs of EUT               |    |



# **1. General Product Information**

# 1.1. EUT description

| Product Name                              | :                   | AI Automo                                                            | otive Diagno   | ostic Tool                                            | $(\mathbf{c}^{*})$            |                 | (3)         |
|-------------------------------------------|---------------------|----------------------------------------------------------------------|----------------|-------------------------------------------------------|-------------------------------|-----------------|-------------|
| Model/Type refere                         | ence:               | TKX14                                                                |                |                                                       |                               |                 |             |
| Sample Number                             | ·····:              | TCT24100                                                             | )9E017-01(     | )1                                                    |                               |                 |             |
| Bluetooth Versior                         | າ:                  | V5.1(This                                                            | report is fo   | r BDR+ED                                              | R)                            | S S             |             |
| Operation Freque                          | ncy:                | 2402MHz                                                              | ~2480MHz       |                                                       |                               |                 |             |
| Fransfer Rate                             | :                   | 1/2/3 Mbit                                                           | s/s            |                                                       | $\langle \mathcal{O} \rangle$ |                 |             |
| Number of Chann                           | el:                 | 79                                                                   |                |                                                       |                               |                 |             |
| Modulation Type.                          | :                   | GFSK, π/4                                                            | 1-DQPSK,       | BDPSK                                                 |                               |                 |             |
| Modulation Techr                          | nology:             | FHSS                                                                 |                |                                                       |                               |                 |             |
| Antenna Type                              | :                   | PIFA Ante                                                            | nna            |                                                       |                               |                 |             |
| Antenna Gain                              | :                   | 2.79dBi                                                              |                |                                                       |                               |                 |             |
| Rating(s)                                 | :                   | MODEL: F<br>Input: AC<br>Output: DO<br>1<br>Total: 67.0<br>Recharges | able Li-ion    | 50-60Hz, 2<br>A/ 9.0V, 3.<br>20.0V, 3.3<br>Battery DC | 0A/ DC 12<br>35A<br>7.6V      |                 | Ì           |
| lote: The antenna gair<br>this parameter. | n listed in this re | eport is provid                                                      | led by applica | ant, and the f                                        | test laboratoi                | ry is not respo | onsible for |
| 1.2. Model(s)                             | ) list              |                                                                      |                |                                                       |                               |                 |             |
| None.                                     |                     |                                                                      |                |                                                       |                               |                 |             |
|                                           |                     |                                                                      |                |                                                       |                               |                 |             |
|                                           |                     |                                                                      |                |                                                       |                               |                 |             |
|                                           |                     |                                                                      |                |                                                       |                               | Page            | 3 of 88     |

Report No.: TCT241009E017

# 1.3. Operation Frequency

TCT通测检测 TESTING CENTRE TECHNOLOGY

| Channel | Frequency    | Channel    | Frequency    | Channel    | Frequency   | Channel | Frequency |
|---------|--------------|------------|--------------|------------|-------------|---------|-----------|
| 0       | 2402MHz      | 20         | 2422MHz      | 40         | 2442MHz     | 60      | 2462MHz   |
| G )1    | 2403MHz      | 21         | 2423MHz      | 41         | 2443MHz     | 61      | 2463MHz   |
| U       |              | ·          |              | ·          |             | ·       |           |
| 10      | 2412MHz      | 30         | 2432MHz      | 50         | 2452MHz     | 70      | 2472MHz   |
| 11      | 2413MHz      | 31         | 2433MHz      | 51         | 2453MHz     | 71      | 2473MHz   |
|         | S            |            | <b>.</b>     |            | S           |         |           |
| 18      | 2420MHz      | 38         | 2440MHz      | 58         | 2460MHz     | 78      | 2480MHz   |
| 19      | 2421MHz      | - 39       | 2441MHz      | - 59       | 2461MHz     |         | -         |
| Remark: | Channel 0, 3 | 39 & 78 ha | ave been tes | sted for G | GFSK. π/4-D | QPSK. 8 | DPSK      |

Remark: Channel 0, 39 & 78 have been tested for GFSK,  $\pi/4$ -DQPSK, 8DPSP modulation mode.



Page 4 of 88

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



# 2. Test Result Summary

| Requirement                         | CFR 47 Section      | Result |
|-------------------------------------|---------------------|--------|
| Antenna Requirement                 | §15.203/§15.247 (c) | PASS   |
| AC Power Line Conducted<br>Emission | §15.207             | PASS   |
| Conducted Peak Output<br>Power      | §15.247 (b)(1)      | PASS   |
| 20dB Occupied Bandwidth             | §15.247 (a)(1)      | PASS   |
| Carrier Frequencies<br>Separation   | §15.247 (a)(1)      | PASS   |
| Hopping Channel Number              | §15.247 (a)(1)      | PASS   |
| Dwell Time                          | §15.247 (a)(1)      | PASS   |
| Radiated Emission                   | §15.205/§15.209     | PASS   |
| Band Edge                           | §15.247(d)          | PASS   |

#### Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 5 of 88

# 3. General Information

## 3.1. Test environment and mode

| Operating Environment: |                    |                   |  |  |  |
|------------------------|--------------------|-------------------|--|--|--|
| Condition              | Conducted Emission | Radiated Emission |  |  |  |
| Temperature:           | 23.1 °C            | 25.3 °C           |  |  |  |
| Humidity:              | 53 % RH            | 55 % RH           |  |  |  |
| Atmospheric Pressure:  | 1010 mbar          | 1010 mbar         |  |  |  |
| Test Software:         |                    |                   |  |  |  |

| Software Information: | SecureCRT | C. |  |
|-----------------------|-----------|----|--|
| Power Level:          | Default   |    |  |

Test Mode:

Engineer mode:

Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case( Z axis) are shown in Test Results of the following pages. DH1 DH3 DH5 all have been tested, only worse case DH1 is reported.


# 3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Equipment | Model No. | Serial No. | FCC ID | Trade Name |
|-----------|-----------|------------|--------|------------|
|           | 1         |            | /      |            |

#### Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.





# 4. Facilities and Accreditations

## 4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A
- SHENZHEN TONGCE TESTING LAB
- CAB identifier: CN0031

The testing lab has been registered by Innovation, Science and Economic Development Canada for radio equipment testing.

## 4.2. Location

## SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

## 4.3. Measurement Uncertainty

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

| No. | Item                                    | MU        |
|-----|-----------------------------------------|-----------|
| 1   | Conducted Emission                      | ± 3.10 dB |
| 2   | RF power, conducted                     | ± 0.12 dB |
| 3   | Spurious emissions, conducted           | ± 0.11 dB |
| 4   | All emissions, radiated(<1 GHz)         | ± 4.56 dB |
| 5   | All emissions, radiated(1 GHz - 18 GHz) | ± 4.22 dB |
| 6   | All emissions, radiated(18 GHz- 40 GHz) | ± 4.36 dB |



# 5. Test Results and Measurement Data

## 5.1. Antenna requirement

#### Standard requirement: FCC Part15 C Section 15.203 /247(c)

#### 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

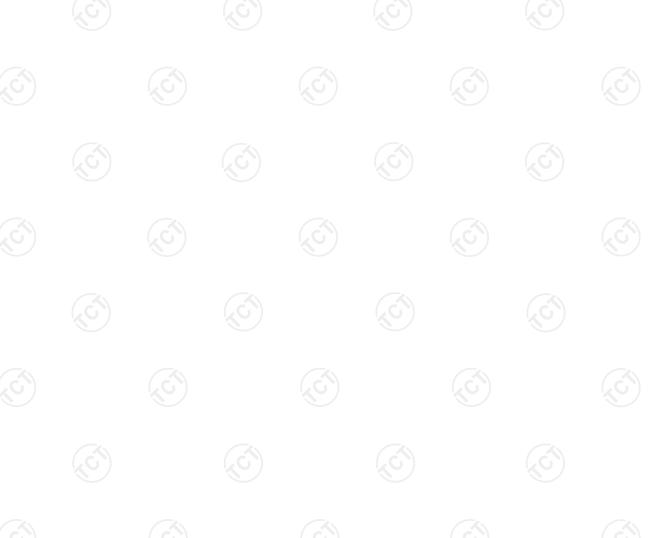
#### E.U.T Antenna:

The Bluetooth antenna is PIFA antenna which permanently attached, and the best case gain of the antenna is 2.79dBi.



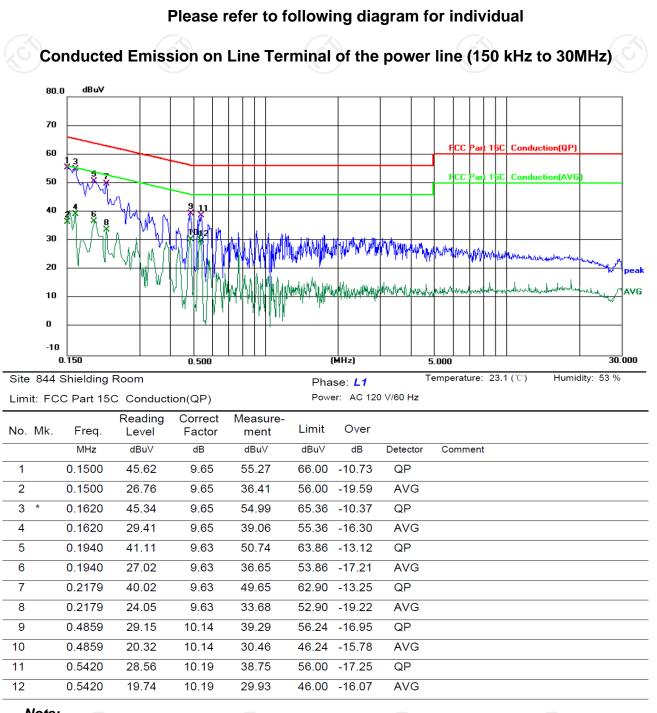
Antenna

## 5.2. Conducted Emission


## 5.2.1. Test Specification

| Test Requirement:             | FCC Part15 C Section                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.207                                                                                                                                                                                                                                         |                                                                                                                                                                                          |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:                  | ANSI C63.10:2020                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                |                                                                                                                                                                                          |
| Frequency Range:              | 150 kHz to 30 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                                          |
| Receiver setup:               | RBW=9 kHz, VBW=30                                                                                                                                                                                                                                                                                                                                                                                                                                    | kHz, Sweep time                                                                                                                                                                                                                                | e=auto                                                                                                                                                                                   |
|                               | Frequency range                                                                                                                                                                                                                                                                                                                                                                                                                                      | Limit (                                                                                                                                                                                                                                        | dBuV)                                                                                                                                                                                    |
|                               | (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quasi-peak                                                                                                                                                                                                                                     | Áverage                                                                                                                                                                                  |
| Limits:                       | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                             | 66 to 56*                                                                                                                                                                                                                                      | 56 to 46*                                                                                                                                                                                |
|                               | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56                                                                                                                                                                                                                                             | 46                                                                                                                                                                                       |
|                               | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 60                                                                                                                                                                                                                                             | 50                                                                                                                                                                                       |
|                               | Referenc                                                                                                                                                                                                                                                                                                                                                                                                                                             | e Plane                                                                                                                                                                                                                                        |                                                                                                                                                                                          |
| Test Setup:                   | E.U.T AC powe<br>Test table/Insulation plane                                                                                                                                                                                                                                                                                                                                                                                                         | Filter                                                                                                                                                                                                                                         | r _— AC power                                                                                                                                                                            |
|                               | E.U.T: Equipment Under Test<br>LISN: Line Impedence Stabilization No<br>Test table height=0.8m                                                                                                                                                                                                                                                                                                                                                       | etwork                                                                                                                                                                                                                                         |                                                                                                                                                                                          |
| Test Mode:                    | LISN: Line Impedence Stabilization No                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                          |
| Test Mode:<br>Test Procedure: | <ul> <li>LISN: Line Impedence Stabilization Na<br/>Test table height=0.8m</li> <li>Charging + Transmittin</li> <li>The E.U.T is conne<br/>impedance stabiliz<br/>provides a 50ohm/5<br/>measuring equipme</li> <li>The peripheral device<br/>power through a Ll<br/>coupling impedance<br/>refer to the block<br/>photographs).</li> <li>Both sides of A.C.<br/>conducted interferent<br/>emission, the relative<br/>the interface cables</li> </ul> | ng Mode<br>octed to an adapte<br>ation network<br>50uH coupling im<br>nt.<br>ces are also conne<br>ISN that provides<br>with 50ohm tern<br>diagram of the<br>line are checke<br>nce. In order to fin<br>e positions of equi<br>must be changed | (L.I.S.N.). Thi<br>ppedance for the<br>ected to the mai<br>s a 500hm/50ul<br>nination. (Pleas<br>test setup an<br>ed for maximur<br>nd the maximur<br>ipment and all of<br>according to  |
|                               | <ul> <li>LISN: Line Impedence Stabilization Na<br/>Test table height=0.8m</li> <li>Charging + Transmittin</li> <li>The E.U.T is connelimpedance stabilizing provides a 500hm/5<br/>measuring equipme</li> <li>The peripheral device power through a Line coupling impedance reference to the block photographs).</li> <li>Both sides of A.C. conducted interference emission, the relative</li> </ul>                                                | ng Mode<br>octed to an adapte<br>ation network<br>50uH coupling im<br>nt.<br>ces are also conne<br>ISN that provides<br>with 50ohm tern<br>diagram of the<br>line are checke<br>nce. In order to fin<br>e positions of equi<br>must be changed | (L.I.S.N.). Thi<br>pedance for the<br>ected to the mains<br>a 500hm/50ut<br>nination. (Please<br>test setup and<br>ed for maximum<br>nd the maximum<br>ipment and all of<br>according to |

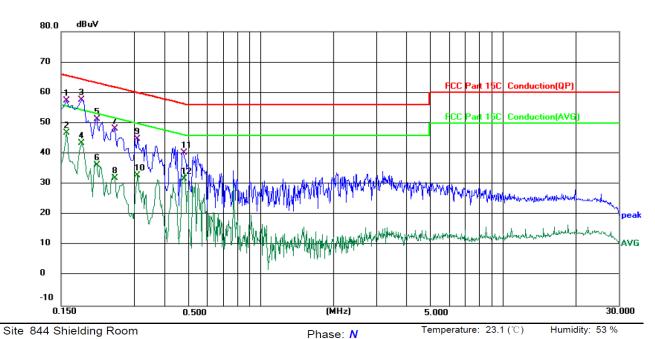
Page 10 of 88


#### 5.2.2. Test Instruments

| Equipment         | Manufacturer | Model     | Serial Number | Calibration Due |
|-------------------|--------------|-----------|---------------|-----------------|
| EMI Test Receiver | R&S          | ESCI3     | 100898        | Jun. 26, 2025   |
| LISN              | Schwarzbeck  | NSLK 8126 | 8126453       | Jan. 31, 2025   |
| Attenuator        | N/A          | 10dB      | 164080        | Jun. 26, 2025   |
| Line-5            | тст          | CE-05     | /             | Jun. 26, 2025   |
| EMI Test Software | EZ_EMC       | EMEC-3A1  | 1.1.4.2       | 1               |



Page 11 of 88


#### 5.2.3. Test data



#### Note:

Freq. = Emission frequency in MHz Reading level  $(dB\mu V)$  = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement  $(dB\mu V)$  = Reading level  $(dB\mu V)$  + Corr. Factor (dB)Limit  $(dB\mu V)$  = Limit stated in standard Margin (dB) = Measurement  $(dB\mu V)$  – Limits  $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average \* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Page 12 of 88



Power: AC 120 V/60 Hz

#### Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Limit: FCC Part 15C Conduction(QP)

CT通测检测 TESTING CENTRE TECHNOLOGY

Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV dBuV dB Detector Comment QP 1 0.1580 47.72 9.65 57.37 65.57 -8.20 2 0.1580 37.25 9.65 46.90 55.57 -8.67 AVG 3 \* 0.1819 47.90 9.64 57.54 64.40 -6.86 QP 0.1819 33.77 54.40 -10.99 AVG 9.64 43.41 4 5 0.2100 41.78 9.63 51.41 63.21 -11.80 QP 0.2100 26.57 36.20 53.21 -17.01 AVG 6 9.63 7 0.2500 38.56 9.63 48.19 61.76 -13.57 QP 8 0.2500 22.25 9.63 31.88 51.76 -19.88 AVG 0.3100 59.97 -15.22 QP 35.11 44.75 9 9.64 10 0.3100 23.17 9.64 32.81 49.97 -17.16 AVG 0.4779 QP 11 30.26 10.13 40.39 56.38 -15.99 12 0.4779 10.13 46.38 -14.67 AVG 21.58 31.71

#### Note1:

Freq. = Emission frequency in MHz Reading level ( $dB\mu V$ ) = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement ( $dB\mu V$ ) = Reading level ( $dB\mu V$ ) + Corr. Factor (dB) Limit ( $dB\mu V$ ) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$ 

Q.P. =Quasi-Peak AVG =average

\* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

#### Note2:

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Highest channel and 8DPSK) was submitted only.



# 5.3. Conducted Output Power

## 5.3.1. Test Specification

| Test Requirement: | FCC Part15 C Section 15.247 (b)(1)                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                                             |
| Limit:            | Section 15.247 (b) The maximum peak conducted output<br>power of the intentional radiator shall not exceed the<br>following: (1) For frequency hopping systems operating<br>in the 2400-2483.5 MHz band employing at least 75<br>non-overlapping hopping channels, and all frequency<br>hopping systems in the 5725-5850 MHz band: 1 watt.<br>For all other frequency hopping systems in the<br>2400-2483.5 MHz band 0.125 watts. |
| Test Setup:       | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                             |
| Test Mode:        | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                 |
| Test Procedure:   | Use the following spectrum analyzer settings:<br>Span = approximately 5 times the 20 dB bandwidth,<br>centered on a hopping channel<br>RBW > the 20 dB bandwidth of the emission being<br>measured VBW ≥ RBW<br>Sweep = auto<br>Detector function = peak<br>Trace = max hold<br>Allow the trace to stabilize.<br>Use the marker-to-peak function to set the marker to the<br>peak of the emission.                                |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                              |

#### 5.3.2. Test Instruments

| Name                 | Manufacturer | Model No. | Serial Number | <b>Calibration Due</b> |
|----------------------|--------------|-----------|---------------|------------------------|
| Spectrum<br>Analyzer | Agilent      | N9020A    | MY49100619    | Jun. 26, 2025          |
| Combiner Box         | Ascentest    | AT890-RFB |               |                        |





## 5.4. 20dB Occupy Bandwidth

## 5.4.1. Test Specification

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Limit:            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Test Setup:       | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Test Mode:        | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Test Procedure:   | <ol> <li>The RF output of EUT was connected to the spectrum<br/>analyzer by RF cable. The path loss was<br/>compensated to the results for each measurement.</li> <li>Set to the maximum power setting and enable the<br/>EUT transmit continuously.</li> <li>Use the following spectrum analyzer settings for 20dB<br/>Bandwidth measurement.<br/>Span = approximately 2 to 5 times the 20 dB<br/>bandwidth, centered on a hopping channel;<br/>1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW;<br/>Sweep = auto; Detector function = peak; Trace = max<br/>hold.</li> <li>Measure and record the results in the test report.</li> </ol> |
| Test Result:      | PASS S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### 5.4.2. Test Instruments

| Name                 | Manufacturer | Model No. | Serial Number | <b>Calibration Due</b> |
|----------------------|--------------|-----------|---------------|------------------------|
| Spectrum<br>Analyzer | Agilent      | N9020A    | MY49100619    | Jun. 26, 2025          |
| Combiner Box         | Ascentest    | AT890-RFB |               | /                      |





## 5.5. Carrier Frequencies Separation

## 5.5.1. Test Specification

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Limit:            | Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.                                                                                                                                                                                                                                                                     |
| Test Setup:       | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Test Mode:        | Hopping mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Test Procedure:   | <ol> <li>The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.</li> <li>Set to the maximum power setting and enable the EUT transmit continuously.</li> <li>Enable the EUT hopping function.</li> <li>Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold.</li> <li>Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.</li> </ol> |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

## 5.5.2. Test Instruments

|              |              | 1         | 20            |                        |
|--------------|--------------|-----------|---------------|------------------------|
| Name         | Manufacturer | Model No. | Serial Number | <b>Calibration Due</b> |
| Spectrum     | Agilent      | N9020A    | MY49100619    | Jun. 26, 2025          |
| Combiner Box | Ascentest    | AT890-RFB |               | /                      |

Page 16 of 88

# 5.6. Hopping Channel Number

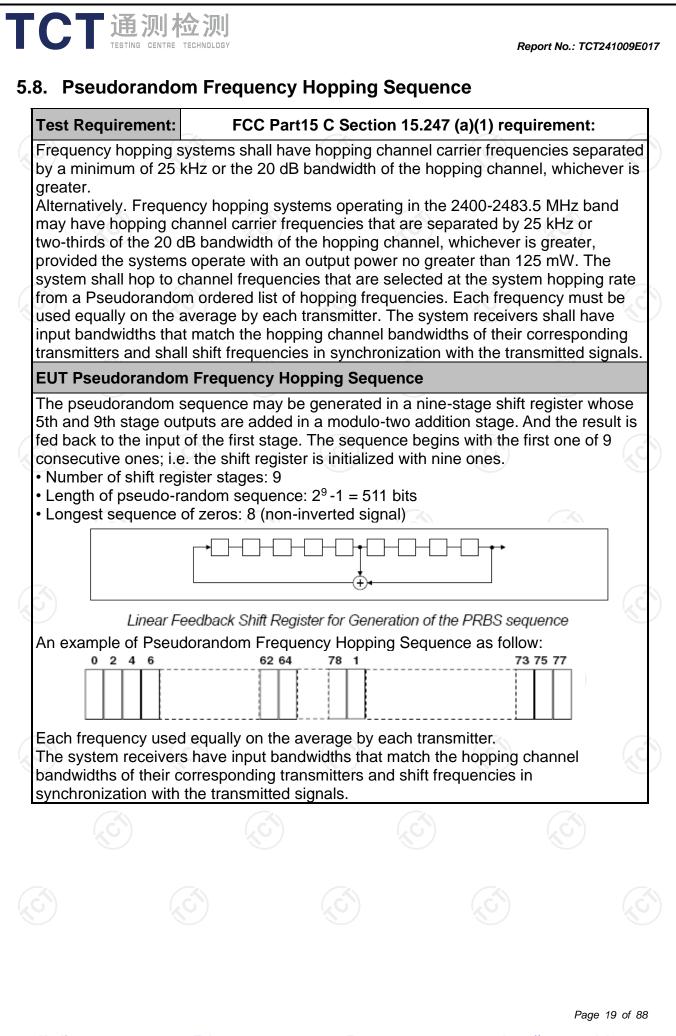
## 5.6.1. Test Specification

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Limit:            | Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test Setup:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test Mode:        | Hopping mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Test Procedure:   | <ol> <li>The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.</li> <li>Set to the maximum power setting and enable the EUT transmit continuously.</li> <li>Enable the EUT hopping function.</li> <li>Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold.</li> <li>The number of hopping frequency used is defined as the number of total channel.</li> <li>Record the measurement data in report.</li> </ol> |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

#### 5.6.2. Test Instruments

| Name                 | Manufacturer | Model No. | Serial Number | Calibration Due |
|----------------------|--------------|-----------|---------------|-----------------|
| Spectrum<br>Analyzer | Agilent      | N9020A    | MY49100619    | Jun. 26, 2025   |
| Combiner Box         | Ascentest    | AT890-RFB | /             | 1               |

## 5.7.1. Test Specification


TCT 通测检测 TESTING CENTRE TECHNOLOGY

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Limit:            | The average time of occupancy on any channel shall not<br>be greater than 0.4 seconds within a period of 0.4<br>seconds multiplied by the number of hopping channels<br>employed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Test Setup:       | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Test Mode:        | Hopping mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Test Procedure:   | <ol> <li>The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.</li> <li>Set to the maximum power setting and enable the EUT transmit continuously.</li> <li>Enable the EUT hopping function.</li> <li>Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set &gt;&gt; 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.</li> <li>Measure and record the results in the test report.</li> </ol> |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

#### 5.7.2. Test Instruments

| Name                 | Manufacturer | Model No. | Serial Number | <b>Calibration Due</b> |
|----------------------|--------------|-----------|---------------|------------------------|
| Spectrum<br>Analyzer | Agilent      | N9020A    | MY49100619    | Jun. 26, 2025          |
| Combiner Box         | Ascentest    | AT890-RFB |               |                        |

Page 18 of 88





# 5.9. Conducted Band Edge Measurement

## 5.9.1. Test Specification

| FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| In any 100 kHz bandwidth outside the intentional<br>radiation frequency band, the radio frequency power<br>shall be at least 20 dB below the highest level of the<br>radiated power. In addition, radiated emissions which fall<br>in the restricted bands must also comply with the<br>radiated emission limits.                                                                                                                                                                                                                                                                    |
| Spectrum Analyzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ol> <li>Set to the maximum power setting and enable the<br/>EUT transmit continuously.</li> <li>Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300<br/>kHz (≥RBW). Band edge emissions must be at least<br/>20 dB down from the highest emission level within<br/>the authorized band as measured with a 100kHz<br/>RBW. The attenuation shall be 30 dB instead of 20<br/>dB when RMS conducted output power procedure is<br/>used.</li> <li>Enable hopping function of the EUT and then repeat<br/>step 2 and 3.</li> <li>Measure and record the results in the test report.</li> </ol> |
| PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

## 5.9.2. Test Instruments

| Name                 | Manufacturer | Model No. | Serial Number | <b>Calibration Due</b> |
|----------------------|--------------|-----------|---------------|------------------------|
| Spectrum<br>Analyzer | Agilent      | N9020A    | MY49100619    | Jun. 26, 2025          |
| Combiner Box         | Ascentest    | AT890-RFB | <b>S</b> 1    |                        |



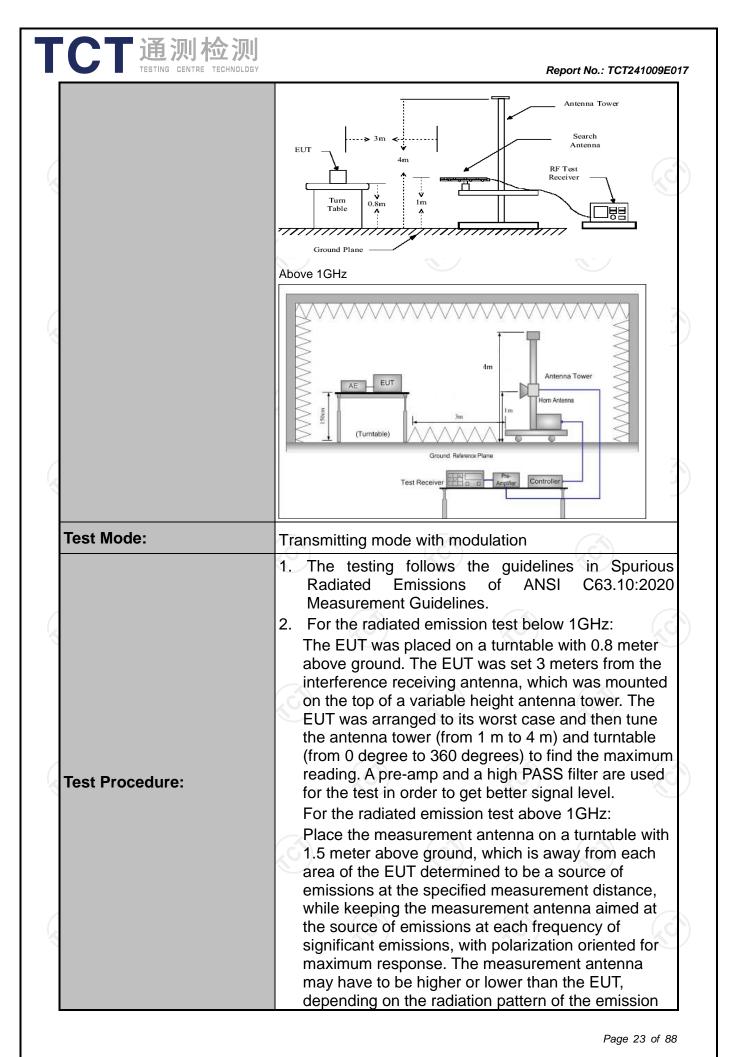
# 5.10. Conducted Spurious Emission Measurement

## 5.10.1. Test Specification

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Limit:            | In any 100 kHz bandwidth outside the intentional<br>radiation frequency band, the radio frequency power<br>shall be at least 20 dB below the highest level of the<br>radiated power. In addition, radiated emissions which fall<br>in the restricted bands must also comply with the<br>radiated emission limits.                                                                                                                                                                                                                                                                                                                                                                      |
| Test Setup:       | Spectrum Analyzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test Mode:        | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test Procedure:   | <ol> <li>The RF output of EUT was connected to the<br/>spectrum analyzer by RF cable. The path loss was<br/>compensated to the results for each measurement.</li> <li>Set to the maximum power setting and enable the<br/>EUT transmit continuously.</li> <li>Set RBW = 100 kHz, VBW = 300kHz, scan up<br/>through 10th harmonic. All harmonics / spurs must be<br/>at least 20 dB down from the highest emission level<br/>within the authorized band as measured with a 100<br/>kHz RBW.</li> <li>Measure and record the results in the test report.</li> <li>The RF fundamental frequency should be excluded<br/>against the limit line in the operating frequency band.</li> </ol> |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

## 5.10.2. Test Instruments

|                      |              |           |               | L.C.C                  |
|----------------------|--------------|-----------|---------------|------------------------|
| Name                 | Manufacturer | Model No. | Serial Number | <b>Calibration Due</b> |
| Spectrum<br>Analyzer | Agilent      | N9020A    | MY49100619    | Jun. 26, 2025          |
| Combiner Box         | Ascentest    | AT890-RFB |               |                        |


Page 21 of 88



#### 5.11.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

|                       | FCC Part15              | C Section                                           | 15.209            |                            |        |                             |
|-----------------------|-------------------------|-----------------------------------------------------|-------------------|----------------------------|--------|-----------------------------|
| Test Method:          | ANSI C63.10             | ):2020                                              |                   |                            |        |                             |
| Frequency Range:      | 9 kHz to 25 (           | GHz                                                 | Z                 |                            |        | i)                          |
| Measurement Distance: | 3 m                     |                                                     | 9                 |                            | R.     | )                           |
| Antenna Polarization: | Horizontal &            | Vertical                                            |                   |                            |        |                             |
|                       | Frequency               | Detector                                            | RBW               | VBW                        |        | Remark                      |
|                       | 9kHz- 150kHz            | Quasi-peak                                          | 200Hz             | 1kHz                       | Quas   | i-peak Value                |
| Receiver Setup:       | 150kHz-<br>30MHz        | Quasi-peak                                          | k 9kHz            | 30kHz                      | Quas   | i-peak Value                |
|                       | 30MHz-1GHz              | Quasi-peak                                          | 120KHz            | 300KHz                     | Quas   | i-peak Value                |
|                       | Above 1GHz              | Peak                                                | 1MHz              | 3MHz                       |        | eak Value                   |
|                       | Above TGTIZ             | Peak                                                | 1MHz              | 10Hz                       | Ave    | rage Value                  |
|                       |                         |                                                     | Field Str         | ength                      | Mea    | asurement                   |
|                       | Frequen                 | су                                                  | (microvolts       | /meter)                    | Dista  | nce (meters)                |
|                       | 0.009-0.4               | 490                                                 | 2400/F(I          |                            |        | 300                         |
|                       | 0.490-1.7               |                                                     | 24000/F           | (KHz)                      |        | 30                          |
|                       | 1.705-3                 |                                                     | 30                |                            |        | 30                          |
|                       | 30-88                   | 1                                                   | 100               |                            |        | 3                           |
| Limit:                | 88-216                  |                                                     | 150               |                            | 16     | 3                           |
| Linit.                | 216-96<br>Above 9       |                                                     | <u>200</u><br>500 |                            |        | 3                           |
|                       | Frequency<br>Above 1GH: | (micro                                              | 500<br>500        | Distan<br>(meter<br>3<br>3 |        | Detector<br>Average<br>Peak |
| Test setup:           | 0.Sm                    | ssions below<br>stance = 3m<br>Turn table<br>Ground |                   |                            | Comput |                             |
|                       | 30MHz to 1GHz           |                                                     |                   |                            |        |                             |



Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

|               | receiving the maximum<br>measurement antention<br>maximizes the emission<br>antenna elevation for<br>restricted to a range<br>above the ground or<br>3. Set to the maximum<br>EUT transmit contin<br>4. Use the following sp<br>(1) Span shall wide<br>emission being<br>(2) Set RBW=120 k<br>for f>1GHz ; VB<br>Sweep = auto;<br>= max hold for<br>(3) For average ma<br>correction factor<br>15.35(c). Duty of | na elevation shall be<br>sions. The measurem<br>of maximum emissions<br>of heights of from 1 r<br>reference ground pla<br>m power setting and<br>huously.<br>bectrum analyzer setti<br>e enough to fully captu<br>measured;<br>kHz for f < 1 GHz, RB<br>W≥RBW;<br>Detector function = p<br>peak<br>easurement: use duty | that which<br>ent<br>s shall be<br>n to 4 m<br>ane.<br>enable the<br>ings:<br>ure the<br>W=1MHz<br>beak; Trace<br>y cycle |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|               | Where N1 is no<br>length of type<br>Average Emiss<br>Level + 20*log<br>Corrected Read                                                                                                                                                                                                                                                                                                                            | umber of type 1 pulse<br>1 pulses, etc.<br>sion Level = Peak Em<br>(Duty cycle)<br>ling: Antenna Factor +                                                                                                                                                                                                               | es, L1 is<br>hission<br>+ Cable                                                                                           |
| Test results: | Where N1 is no<br>length of type<br>Average Emiss<br>Level + 20*log<br>Corrected Read                                                                                                                                                                                                                                                                                                                            | umber of type 1 pulse<br>1 pulses, etc.<br>sion Level = Peak Em<br>(Duty cycle)                                                                                                                                                                                                                                         | es, L1 is<br>hission<br>+ Cable                                                                                           |
| Test results: | Where N1 is no<br>length of type<br>Average Emiss<br>Level + 20*log<br>Corrected Read<br>Loss + Read Le                                                                                                                                                                                                                                                                                                          | umber of type 1 pulse<br>1 pulses, etc.<br>sion Level = Peak Em<br>(Duty cycle)<br>ling: Antenna Factor +                                                                                                                                                                                                               | es, L1 is<br>hission<br>+ Cable                                                                                           |
| Test results: | Where N1 is no<br>length of type<br>Average Emiss<br>Level + 20*log<br>Corrected Read<br>Loss + Read Le                                                                                                                                                                                                                                                                                                          | umber of type 1 pulse<br>1 pulses, etc.<br>sion Level = Peak Em<br>(Duty cycle)<br>ling: Antenna Factor +                                                                                                                                                                                                               | es, L1 is<br>hission<br>+ Cable                                                                                           |
| Test results: | Where N1 is no<br>length of type<br>Average Emiss<br>Level + 20*log<br>Corrected Read<br>Loss + Read Le                                                                                                                                                                                                                                                                                                          | umber of type 1 pulse<br>1 pulses, etc.<br>sion Level = Peak Em<br>(Duty cycle)<br>ling: Antenna Factor +                                                                                                                                                                                                               | es, L1 is<br>hission<br>+ Cable                                                                                           |



## 5.11.2. Test Instruments

TCT 通测检测 TESTING CENTRE TECHNOLOGY

| Manufacturer | Radiated Emission Test Site (966)       Name of     Serial                                                                                                   |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|              | Model                                                                                                                                                        | Serial<br>Number                                                                                                                                                                                               | Calibration<br>Due                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
| R&S          | ESCI7                                                                                                                                                        | 100529                                                                                                                                                                                                         | Jan. 31, 2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| R&S          | FSQ40                                                                                                                                                        | 200061                                                                                                                                                                                                         | Jun. 26, 2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| HP           | 8447D                                                                                                                                                        | 2727A05017                                                                                                                                                                                                     | Jun. 26, 2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| SKET         | LNPA_0118G-<br>45                                                                                                                                            | SK202101210<br>2                                                                                                                                                                                               | Jan. 31, 2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| SKET         | LNPA_1840G-<br>50                                                                                                                                            | SK202109203<br>500                                                                                                                                                                                             | Jan. 31, 2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| Schwarzbeck  | FMZB1519B                                                                                                                                                    | 00191                                                                                                                                                                                                          | Jun. 26, 2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| Schwarzbeck  | VULB9163                                                                                                                                                     | 340                                                                                                                                                                                                            | Jun. 28, 2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| Schwarzbeck  | BBHA 9120D                                                                                                                                                   | 631                                                                                                                                                                                                            | Jun. 28, 2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| Schwarzbeck  | BBHA 9170                                                                                                                                                    | 00956                                                                                                                                                                                                          | Feb. 02, 2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| SKET         | RE-03-D                                                                                                                                                      | /                                                                                                                                                                                                              | Jun. 26, 2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| SKET         | RE-03-M                                                                                                                                                      | 1                                                                                                                                                                                                              | Jun. 26, 2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| SKET         | RE-03-L                                                                                                                                                      | /                                                                                                                                                                                                              | Jun. 26, 2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| SKET         | RE-04-D                                                                                                                                                      |                                                                                                                                                                                                                | Jun. 26, 2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| SKET         | RE-04-M                                                                                                                                                      | /                                                                                                                                                                                                              | Jun. 26, 2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| SKET         | RE-04-L                                                                                                                                                      | /                                                                                                                                                                                                              | Jun. 26, 2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| Keleto       | RE-AM                                                                                                                                                        | 21                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
| EZ_EMC       | FA-03A2 RE+                                                                                                                                                  | 1.1.4.2                                                                                                                                                                                                        | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|              | R&S<br>HP<br>SKET<br>SKET<br>SChwarzbeck<br>Schwarzbeck<br>Schwarzbeck<br>Schwarzbeck<br>Schwarzbeck<br>SKET<br>SKET<br>SKET<br>SKET<br>SKET<br>SKET<br>SKET | R&SFSQ40HP8447DSKETLNPA_0118G-<br>45SKETLNPA_1840G-<br>50SchwarzbeckFMZB1519BSchwarzbeckFMZB1519BSchwarzbeckBBHA 9120DSchwarzbeckBBHA 9170SKETRE-03-DSKETRE-03-DSKETRE-03-LSKETRE-04-DSKETRE-04-LKeletoRE-04-L | R&S         FSQ40         200061           HP         8447D         2727A05017           SKET         LNPA_0118G-<br>45         SK202101210<br>2           SKET         LNPA_1840G-<br>50         SK202109203<br>500           Schwarzbeck         FMZB1519B         00191           Schwarzbeck         FMZB1519B         00191           Schwarzbeck         BBHA 9120D         631           Schwarzbeck         BBHA 9170         00956           SKET         RE-03-D         /           SKET         RE-03-M         /           SKET         RE-03-L         /           SKET         RE-04-D         /           SKET         RE-04-M         /           SKET         RE-04-M         /           SKET         RE-04-M         / |  |  |  |  |  |  |  |  |





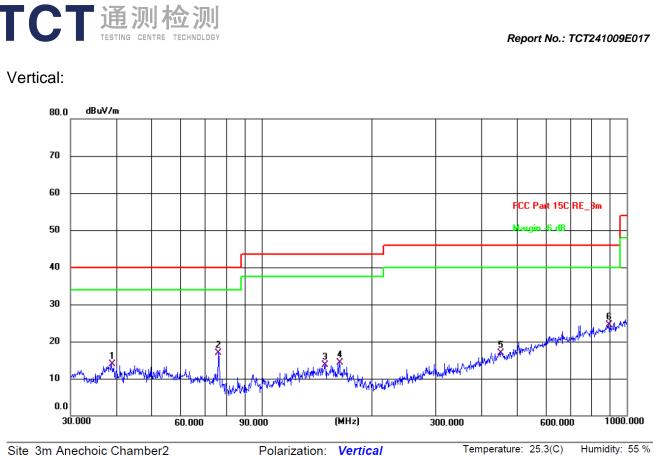


Page 25 of 88



#### 5.11.3. Test Data

#### Please refer to following diagram for individual




Site 3m Anechoic Chamber2 Limit: ECC Part 15C RE 3m

Polarization: Horizontal

| Ļim | it: F | CC Part 15C F      | RE_3m             |                  |                   |                   | Power:         | DC 7.6 V | ,   |        |
|-----|-------|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|--------|
| N   | lo.   | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F | Remark |
| ·   | 1     | 46.0162            | 31.94             | -18.67           | 13.27             | 40.00             | -26.73         | QP       | Ρ   |        |
|     | 2     | 53.6931            | 32.11             | -18.98           | 13.13             | 40.00             | -26.87         | QP       | Ρ   |        |
|     | 3     | 131.2965           | 31.01             | -18.38           | 12.63             | 43.50             | -30.87         | QP       | Ρ   |        |
| 4   | 4     | 155.3643           | 30.46             | -16.94           | 13.52             | 43.50             | -29.98         | QP       | Ρ   |        |
| (   | 5     | 468.8762           | 30.20             | -13.09           | 17.11             | 46.00             | -28.89         | QP       | Ρ   |        |
| 6   | ) *   | 701.7610           | 31.54             | -8.70            | 22.84             | 46.00             | -23.16         | QP       | Ρ   |        |

Page 26 of 88



Polarization: Vertical

Power: DC 7.6 V

Limit: FCC Part 15C RE\_3m

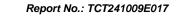
| 1 |     |                    |                   |                  |                   |                   |                |          |     |        |
|---|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|--------|
|   | No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F | Remark |
| Γ | 1   | 38.8878            | 32.31             | -18.50           | 13.81             | 40.00             | -26.19         | QP       | Ρ   |        |
| Γ | 2   | 76.2442            | 38.29             | -21.35           | 16.94             | 40.00             | -23.06         | QP       | Ρ   |        |
| Γ | 3   | 149.4857           | 30.97             | -17.36           | 13.61             | 43.50             | -29.89         | QP       | Ρ   |        |
| Γ | 4   | 163.1818           | 31.78             | -17.38           | 14.40             | 43.50             | -29.10         | QP       | Ρ   |        |
|   | 5   | 451.1350           | 30.49             | -13.50           | 16.99             | 46.00             | -29.01         | QP       | Ρ   |        |
|   | 6 * | 890.7278           | 30.72             | -6.25            | 24.47             | 46.00             | -21.53         | QP       | Ρ   |        |

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

2. Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Highest channel and 8DPSK) was submitted only. 3. Freq. = Emission frequency in MHz

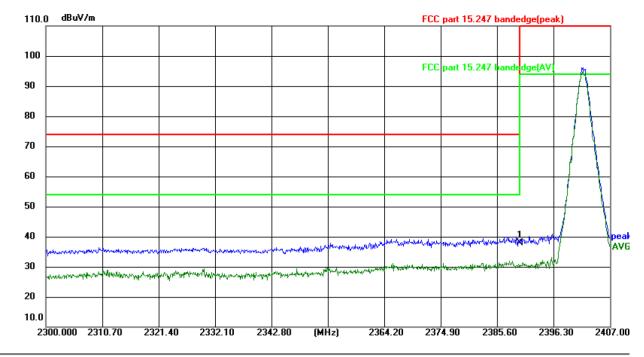
Measurement  $(dB\mu V/m) = Reading \, level \, (dB\mu V) + Corr. Factor \, (dB)$ Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

Limit  $(dB\mu V/m) = Limit$  stated in standard


Over  $(dB) = Measurement (dB\mu V/m) - Limits (dB\mu V/m)$ 

\* is meaning the worst frequency has been tested in the test frequency range.

Page 27 of 88


Report No.: TCT241009E017 Test Result of Radiated Spurious at Band edges Lowest channel 2402: Horizontal: 110.0 dBuV/m FCC part 15.247 bandedge(peak) 100 andedge(AV FCC part 15.247 90 80 70 60 50 40 XM All the second of eak AVG 30 web, the web and the state the second states and the March att popula monder month harry mound 20 10.0 2321.40 2300.000 2310.70 2332.10 2342.80 (MHz) 2364.20 2374.90 2385.60 2396.30 2407.00 Temperature: 24.8(℃) Humidity: 51 % Site: 3m Anechoic Chamber Polarization: Horizontal Limit: FCC part 15.247 bandedge(peak) Power:DC 7.6V Reading Factor Level Limit Margin Frequency P/F No. Detector Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 1 \* 2390.000 53.09 -16.70 36.39 74.00 -37.61 Ρ peak Page 28 of 88

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



#### Vertical:

TCT通测检测 TESTING CENTRE TECHNOLOGY



 Site: 3m Anechoic Chamber
 Polarization:
 Vertical
 Temperature: 24.8(°C)
 Humidity: 51 %

 Limit: FCC part 15.247bandedge(peak)
 Power:DC 7.6V
 Power:DC 7.6V

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) |        | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F | Remark |
|-----|--------------------|-------------------|--------|-------------------|-------------------|----------------|----------|-----|--------|
| 1 * | 2390.000           | 54.51             | -16.70 | 37.81             | 74.00             | -36.19         | peak     | Ρ   |        |



Page 29 of 88

Report No.: TCT241009E017 Highest channel 2480: Horizontal: dBuV/m 110.0 100 90 80 FCC part 15.247 ndedge(peak) 70 60 FCC part 15.247 bandedge(AV 50 40 annu Muha 30 representation and more many the What when when ave als de market 20 10.0 2475.000 2478.00 2481.00 2484.00 2487.00 (MHz) 2493.00 2496.00 2499.00 2502.00 2505.00 Temperature: 24.8(℃) Humidity: 51 % Site: 3m Anechoic Chamber Polarization: Horizontal Limit: FCC part 15.247 bandedge(peak) Power:DC 7.6V Reading Factor Level Limit Frequency Margin Detector P/F No. Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 1 \* 2483.500 62.42 -16.65 45.77 74.00 -28.23 Ρ peak Page 30 of 88

|                 |                     |            |                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                 |                                           |                                                       |                                                                   | ) dBuV/m                                                               | 110.0                                |                                       |
|-----------------|---------------------|------------|--------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------|---------------------------------------|
|                 |                     |            |                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                 |                                           |                                                       |                                                                   |                                                                        | 110.0                                |                                       |
|                 |                     | +          |                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                 |                                           |                                                       |                                                                   |                                                                        | 100                                  | t                                     |
|                 |                     | +          |                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                 |                                           |                                                       |                                                                   |                                                                        | 90                                   | !                                     |
|                 |                     |            |                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                 |                                           |                                                       |                                                                   |                                                                        | 80                                   | ۱                                     |
|                 | dedge(peak)         | 17 ba      | part 15.247              | FLL               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                 |                                           |                                                       | <u> </u>                                                          | ,                                                                      | 70                                   | ;                                     |
|                 |                     |            |                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                 |                                           |                                                       |                                                                   |                                                                        | 60                                   | t                                     |
|                 | dedge(AV)           | 17 ba      | part 15.247              | FCC               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                 |                                           |                                                       |                                                                   |                                                                        | 50                                   |                                       |
|                 |                     |            |                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                 | N. C.                                     | 7                                                     |                                                                   |                                                                        |                                      |                                       |
| mbrehan         |                     | mm         |                          | *******           | ****-********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | land the state of the | Marrie Married                                  | Jan marine mer                            |                                                       |                                                                   | and the second second                                                  | 40                                   |                                       |
| Werenger way    | nordepartmental and | rWhited    | er Mundreph handered     | uphick-sympt      | where where the state of the st | william and                                                                                                      | ntanin Napadapad                                | "Vanhogrin                                |                                                       |                                                                   | <u></u>                                                                | 30                                   |                                       |
|                 |                     | +          |                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                 |                                           |                                                       |                                                                   |                                                                        | 20                                   |                                       |
|                 | I                   |            |                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                 |                                           | 1.00                                                  | 70 00 240                                                         | 475.000 247                                                            | 10.0                                 | 1                                     |
| 2505            | 0 2502.0            | 2499.      | 6.00 24                  | 249               | 493.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | iz) :                                                                                                            | 7.00 (MI                                        | 34.00 248                                 | 1.00 24                                               | 10.00 240                                                         | 473.000 247                                                            | 24                                   |                                       |
|                 |                     |            |                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                 |                                           | 31.00 24                                              |                                                                   |                                                                        |                                      |                                       |
| 250:<br>/: 51 % |                     |            | 16.00 24<br>1ture: 24.8( |                   | Те                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | al                                                                                                               | on: Vertic                                      | Polarizati                                |                                                       | Chamber                                                           | Anechoic (                                                             | 3m /                                 |                                       |
|                 |                     | B(℃)       |                          | mpera             | Те                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>al</b><br>ower:DC<br>Margin                                                                                   | on: <b>Vertic</b><br>Po<br>Limit                | Polarizati<br>)<br>Level                  | dge(peak<br>Factor                                    | Chamber<br>247 bande<br>Reading                                   | Anechoic (<br>C part 15.2<br><sup>.</sup> equency                      | 3m /<br>FC(                          | nit:                                  |
|                 |                     | B(℃)       | iture: 24.8(             | mpera<br>P/F      | Te<br>7.6V<br>Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>al</b><br>ower:DC<br>Margin<br>(dB)                                                                           | on: <b>Vertic</b><br>Po<br>Limit<br>(dBuV/m)    | Polarization<br>Level<br>(dBuV/m)         | dge(peak<br>Factor<br>(dB/m)                          | Chamber<br>247 bande<br>Reading<br>(dBuV)                         | Anechoic (<br>C part 15.2<br>requency<br>(MHz)                         | 3m /<br>FC(                          | nit:<br>o.                            |
| y: 51 %         | Humid               | B(℃)<br>rk | ture: 24.8(<br>Remarl    | mpera<br>P/F<br>P | Te<br>7.6V<br>Detector<br>peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | al<br>ower:DC<br>Margin<br>(dB)<br>-23.35                                                                        | on: Vertic<br>Pro<br>Limit<br>(dBuV/m)<br>74.00 | Polarizatio<br>Level<br>(dBuV/m)<br>50.65 | dge(peak<br>Factor<br>(dB/m)<br>-16.65                | Chamber<br>247 bande<br>Reading                                   | Anechoic (<br>C part 15.2<br>equency<br>(MHz)<br>483.500               | 3m /<br>FC(<br>Fr                    | nit:<br>o.<br>*                       |
| y: 51 %         | Humid               | B(℃)<br>rk | ture: 24.8(<br>Remarl    | mpera<br>P/F<br>P | Te<br>7.6V<br>Detector<br>peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | al<br>ower:DC<br>Margin<br>(dB)<br>-23.35                                                                        | on: Vertic<br>Pro<br>Limit<br>(dBuV/m)<br>74.00 | Polarizatio<br>Level<br>(dBuV/m)<br>50.65 | dge(peak<br>Factor<br>(dB/m)<br>-16.65<br>ducted in a | Chamber<br>247 bande<br>Reading<br>(dBuV)<br>67.30                | Anechoic (<br>C part 15.2<br>equency<br>(MHz)<br>483.500<br>asurements | 3m /<br>FCC<br>Fr<br>2<br><i>Mea</i> | nit:<br>o.<br>*                       |
| y: 51 %         | Humid               | B(℃)<br>rk | ture: 24.8(<br>Remarl    | mpera<br>P/F<br>P | Te<br>7.6V<br>Detector<br>peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | al<br>ower:DC<br>Margin<br>(dB)<br>-23.35                                                                        | on: Vertic<br>Pro<br>Limit<br>(dBuV/m)<br>74.00 | Polarizatio<br>Level<br>(dBuV/m)<br>50.65 | dge(peak<br>Factor<br>(dB/m)<br>-16.65<br>ducted in a | Chamber<br>247 bande<br>Reading<br>(dBuV)<br>67.30<br>s were cond | Anechoic (<br>C part 15.2<br>equency<br>(MHz)<br>483.500<br>asurements | 3m /<br>FCC<br>Fr<br>2<br><i>Mea</i> | nit:<br>o.<br>*                       |
| y: 51 %         | Humid               | B(℃)<br>rk | ture: 24.8(<br>Remarl    | mpera<br>P/F<br>P | Te<br>7.6V<br>Detector<br>peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | al<br>ower:DC<br>Margin<br>(dB)<br>-23.35                                                                        | on: Vertic<br>Pr<br>Limit<br>(dBuV/m)<br>74.00  | Polarizatio<br>Level<br>(dBuV/m)<br>50.65 | dge(peak<br>Factor<br>(dB/m)<br>-16.65<br>ducted in a | Chamber<br>247 bande<br>Reading<br>(dBuV)<br>67.30<br>s were cond | Anechoic (<br>C part 15.2<br>equency<br>(MHz)<br>483.500<br>asurements | 3m /<br>FCC<br>Fr<br>2<br><i>Mea</i> | nit:<br>o.<br>*                       |
| y: 51 %         | Humid               | B(℃)<br>rk | ture: 24.8(<br>Remarl    | mpera<br>P/F<br>P | Te<br>7.6V<br>Detector<br>peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | al<br>ower:DC<br>Margin<br>(dB)<br>-23.35                                                                        | on: Vertic<br>Pr<br>Limit<br>(dBuV/m)<br>74.00  | Polarizatio<br>Level<br>(dBuV/m)<br>50.65 | dge(peak<br>Factor<br>(dB/m)<br>-16.65<br>ducted in a | Chamber<br>247 bande<br>Reading<br>(dBuV)<br>67.30<br>s were cond | Anechoic (<br>C part 15.2<br>equency<br>(MHz)<br>483.500<br>asurements | 3m /<br>FCC<br>Fr<br>2<br><i>Mea</i> | nit:<br>p.<br>*<br><b>e<i>: l</i></b> |
| y: 51 %         | Humid               | B(℃)<br>rk | ture: 24.8(<br>Remarl    | mpera<br>P/F<br>P | Te<br>7.6V<br>Detector<br>peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | al<br>ower:DC<br>Margin<br>(dB)<br>-23.35                                                                        | on: Vertic<br>Pr<br>Limit<br>(dBuV/m)<br>74.00  | Polarizatio<br>Level<br>(dBuV/m)<br>50.65 | dge(peak<br>Factor<br>(dB/m)<br>-16.65<br>ducted in a | Chamber<br>247 bande<br>Reading<br>(dBuV)<br>67.30<br>s were cond | Anechoic (<br>C part 15.2<br>equency<br>(MHz)<br>483.500<br>asurements | 3m /<br>FCC<br>Fr<br>2<br><i>Mea</i> | nit:<br>p.<br>*<br><b>e<i>: l</i></b> |
| y: 51 %         | Humid               | B(℃)<br>rk | ture: 24.8(<br>Remarl    | mpera<br>P/F<br>P | Te<br>7.6V<br>Detector<br>peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | al<br>ower:DC<br>Margin<br>(dB)<br>-23.35                                                                        | on: Vertic<br>Pr<br>Limit<br>(dBuV/m)<br>74.00  | Polarizatio<br>Level<br>(dBuV/m)<br>50.65 | dge(peak<br>Factor<br>(dB/m)<br>-16.65<br>ducted in a | Chamber<br>247 bande<br>Reading<br>(dBuV)<br>67.30<br>s were cond | Anechoic (<br>C part 15.2<br>equency<br>(MHz)<br>483.500<br>asurements | 3m /<br>FCC<br>Fr<br>2<br><i>Mea</i> | nit:<br>o.<br>*                       |
| y: 51 %         | Humid               | B(℃)<br>rk | ture: 24.8(<br>Remarl    | mpera<br>P/F<br>P | Te<br>7.6V<br>Detector<br>peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | al<br>ower:DC<br>Margin<br>(dB)<br>-23.35                                                                        | on: Vertic<br>Pr<br>Limit<br>(dBuV/m)<br>74.00  | Polarizatio<br>Level<br>(dBuV/m)<br>50.65 | dge(peak<br>Factor<br>(dB/m)<br>-16.65<br>ducted in a | Chamber<br>247 bande<br>Reading<br>(dBuV)<br>67.30<br>s were cond | Anechoic (<br>C part 15.2<br>equency<br>(MHz)<br>483.500<br>asurements | 3m /<br>FCC<br>Fr<br>2<br><i>Mea</i> | nit:<br>o.<br>*                       |
| y: 51 %         | Humid               | B(℃)<br>rk | ture: 24.8(<br>Remarl    | mpera<br>P/F<br>P | Te<br>7.6V<br>Detector<br>peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | al<br>ower:DC<br>Margin<br>(dB)<br>-23.35                                                                        | on: Vertic<br>Pr<br>Limit<br>(dBuV/m)<br>74.00  | Polarizatio<br>Level<br>(dBuV/m)<br>50.65 | dge(peak<br>Factor<br>(dB/m)<br>-16.65<br>ducted in a | Chamber<br>247 bande<br>Reading<br>(dBuV)<br>67.30<br>s were cond | Anechoic (<br>C part 15.2<br>equency<br>(MHz)<br>483.500<br>asurements | 3m /<br>FCC<br>Fr<br>2<br><i>Mea</i> | nit:<br>p.<br>*<br><b>e<i>: l</i></b> |
| y: 51 %         | Humid               | B(℃)<br>rk | ture: 24.8(<br>Remarl    | mpera<br>P/F<br>P | Te<br>7.6V<br>Detector<br>peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | al<br>ower:DC<br>Margin<br>(dB)<br>-23.35                                                                        | on: Vertic<br>Pr<br>Limit<br>(dBuV/m)<br>74.00  | Polarizatio<br>Level<br>(dBuV/m)<br>50.65 | dge(peak<br>Factor<br>(dB/m)<br>-16.65<br>ducted in a | Chamber<br>247 bande<br>Reading<br>(dBuV)<br>67.30<br>s were cond | Anechoic (<br>C part 15.2<br>equency<br>(MHz)<br>483.500<br>asurements | 3m /<br>FCC<br>Fr<br>2<br><i>Mea</i> | nit:<br>p.<br>*<br><b>e<i>: l</i></b> |
| y: 51 %         | Humid               | B(℃)<br>rk | ture: 24.8(<br>Remarl    | mpera<br>P/F<br>P | Te<br>7.6V<br>Detector<br>peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | al<br>ower:DC<br>Margin<br>(dB)<br>-23.35                                                                        | on: Vertic<br>Pr<br>Limit<br>(dBuV/m)<br>74.00  | Polarizatio<br>Level<br>(dBuV/m)<br>50.65 | dge(peak<br>Factor<br>(dB/m)<br>-16.65<br>ducted in a | Chamber<br>247 bande<br>Reading<br>(dBuV)<br>67.30<br>s were cond | Anechoic (<br>C part 15.2<br>equency<br>(MHz)<br>483.500<br>asurements | 3m /<br>FCC<br>Fr<br>2<br><i>Mea</i> | nit:<br>p.<br>*<br><b>e<i>: l</i></b> |
| y: 51 %         | Humid               | B(℃)<br>rk | ture: 24.8(<br>Remarl    | mpera<br>P/F<br>P | Te<br>7.6V<br>Detector<br>peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | al<br>ower:DC<br>Margin<br>(dB)<br>-23.35                                                                        | on: Vertic<br>Pr<br>Limit<br>(dBuV/m)<br>74.00  | Polarizatio<br>Level<br>(dBuV/m)<br>50.65 | dge(peak<br>Factor<br>(dB/m)<br>-16.65<br>ducted in a | Chamber<br>247 bande<br>Reading<br>(dBuV)<br>67.30<br>s were cond | Anechoic (<br>C part 15.2<br>equency<br>(MHz)<br>483.500<br>asurements | 3m /<br>FCC<br>Fr<br>2<br><i>Mea</i> | nit:<br>p.<br>*<br><b>e<i>: l</i></b> |
| y: 51 %         | Humid               | B(℃)<br>rk | ture: 24.8(<br>Remarl    | mpera<br>P/F<br>P | Te<br>7.6V<br>Detector<br>peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | al<br>ower:DC<br>Margin<br>(dB)<br>-23.35                                                                        | on: Vertic<br>Pr<br>Limit<br>(dBuV/m)<br>74.00  | Polarizatio<br>Level<br>(dBuV/m)<br>50.65 | dge(peak<br>Factor<br>(dB/m)<br>-16.65<br>ducted in a | Chamber<br>247 bande<br>Reading<br>(dBuV)<br>67.30<br>s were cond | Anechoic (<br>C part 15.2<br>equency<br>(MHz)<br>483.500<br>asurements | 3m /<br>FCC<br>Fr<br>2<br><i>Mea</i> | nit:<br>p.<br>*<br><b>e<i>: l</i></b> |
| y: 51 %         | Humid               | B(℃)<br>rk | ture: 24.8(<br>Remarl    | mpera<br>P/F<br>P | Te<br>7.6V<br>Detector<br>peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | al<br>ower:DC<br>Margin<br>(dB)<br>-23.35                                                                        | on: Vertic<br>Pr<br>Limit<br>(dBuV/m)<br>74.00  | Polarizatio<br>Level<br>(dBuV/m)<br>50.65 | dge(peak<br>Factor<br>(dB/m)<br>-16.65<br>ducted in a | Chamber<br>247 bande<br>Reading<br>(dBuV)<br>67.30<br>s were cond | Anechoic (<br>C part 15.2<br>equency<br>(MHz)<br>483.500<br>asurements | 3m /<br>FCC<br>Fr<br>2<br><i>Mea</i> | nit:<br>p.<br>*<br><b>e<i>: l</i></b> |
| y: 51 %         | Humid               | B(℃)<br>rk | ture: 24.8(<br>Remarl    | mpera<br>P/F<br>P | Te<br>7.6V<br>Detector<br>peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | al<br>ower:DC<br>Margin<br>(dB)<br>-23.35                                                                        | on: Vertic<br>Pr<br>Limit<br>(dBuV/m)<br>74.00  | Polarizatio<br>Level<br>(dBuV/m)<br>50.65 | dge(peak<br>Factor<br>(dB/m)<br>-16.65<br>ducted in a | Chamber<br>247 bande<br>Reading<br>(dBuV)<br>67.30<br>s were cond | Anechoic (<br>C part 15.2<br>equency<br>(MHz)<br>483.500<br>asurements | 3m /<br>FCC<br>Fr<br>2<br><i>Mea</i> | nit:<br>p.<br>*<br><b>e<i>: l</i></b> |

# 

#### Above 1GHz

| Modulation         | Type: 8D         | PSK                       |                         |                                |       |       |                        |                      |                |
|--------------------|------------------|---------------------------|-------------------------|--------------------------------|-------|-------|------------------------|----------------------|----------------|
| Low channe         | el: 2402 N       | 1Hz                       |                         |                                |       |       |                        |                      |                |
| Frequency<br>(MHz) | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBµV) | AV<br>reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Peak  | A \ / | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| 4804               | Н                | 54.25                     |                         | -9.51                          | 44.74 |       | 74                     | 54                   | -9.26          |
| 7206               | Н                | 45.04                     |                         | -1.41                          | 43.63 |       | 74                     | 54                   | -10.37         |
|                    | H                |                           |                         |                                |       |       |                        |                      |                |
| (                  | <b>G</b>         |                           | Û.)                     |                                | (     | .G`)  |                        | (G)                  |                |
| 4804               | V                | 56.68                     |                         | -9.51                          | 47.17 |       | 74                     | 54                   | -6.83          |
| 7206               | V                | 47.57                     |                         | -1.41                          | 46.16 |       | 74                     | 54                   | -7.84          |
|                    | V                |                           |                         |                                |       |       |                        |                      |                |

| Middle cha         | nnel: 2441       | MHz                       |                         | XC<br>V                        | )     |              |                        |    | KC<br>KC       |
|--------------------|------------------|---------------------------|-------------------------|--------------------------------|-------|--------------|------------------------|----|----------------|
| Frequency<br>(MHz) | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBµV) | AV<br>reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Peak  |              | Peak limit<br>(dBµV/m) |    | Margin<br>(dB) |
| 4882               | Н                | 55.11                     |                         | -9.36                          | 45.75 | <u> </u>     | 74                     | 54 | -8.25          |
| 7323               | KOĤ)             | 46.35                     | -120                    | -1.14                          | 45.21 | <u>, 0 1</u> | 74                     | 54 | -8.79          |
|                    | Ĥ                |                           |                         |                                |       |              |                        |    |                |
| 4882               | V                | 56.99                     |                         | -9.36                          | 47.63 |              | 74                     | 54 | -6.37          |
| 7323               | V                | 46.52                     |                         | -1.14                          | 45.38 |              | 74                     | 54 | -8.62          |
| 27                 | V                |                           |                         | %                              | - /   |              |                        |    |                |

| High chann         | nel: 2480 N      | ЛНz                       |                         |                                |       |                           |                        |                      |                |
|--------------------|------------------|---------------------------|-------------------------|--------------------------------|-------|---------------------------|------------------------|----------------------|----------------|
| Frequency<br>(MHz) | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBµV) | AV<br>reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Peak  | n Level<br>AV<br>(dBµV/m) | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| 4960               | Н                | 54.41                     |                         | -9.20                          | 45.21 |                           | 74                     | 54                   | -8.79          |
| 7440               | Н                | 45.40                     |                         | -0.96                          | 44.44 |                           | 74                     | 54                   | -9.56          |
|                    | Н                | <u> </u>                  |                         |                                | 2     |                           |                        |                      |                |
| C                  |                  | $(\mathbf{G})$            |                         | (.0                            |       |                           | $(\mathbf{G})$         |                      | (.c            |
| 4960               | V                | 54.88                     |                         | -9.20                          | 45.68 |                           | 74                     | 54                   | -8.32          |
| 7440               | V                | 45.25                     |                         | -0.96                          | 44.29 |                           | 74                     | 54                   | -9.71          |
|                    | V                |                           |                         |                                |       |                           |                        |                      |                |

#### Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB $\mu$ V/m)-Average limit (dB $\mu$ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB

below the limits or the field strength is too small to be measured.

6. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (8DPSK) was submitted only.

7. All the restriction bands are compliance with the limit of 15.209.



# **Appendix A: Test Result of Conducted Test**

|           | M     | aximum Con         | ducted Output P          | ower           |         |
|-----------|-------|--------------------|--------------------------|----------------|---------|
| Condition | Mode  | Frequency<br>(MHz) | Conducted<br>Power (dBm) | Limit<br>(dBm) | Verdict |
| NVNT      | 1-DH1 | 2402               | -2.15                    | 21             | Pass    |
| NVNT      | 1-DH1 | 2441               | -0.55                    | 21             | Pass    |
| NVNT      | 1-DH1 | 2480               | 0.66                     | 21             | Pass    |
| NVNT      | 2-DH1 | 2402               | -1.37                    | 21             | Pass    |
| NVNT      | 2-DH1 | 2441               | 0.33                     | 21             | Pass    |
| NVNT      | 2-DH1 | 2480               | 1.51                     | 21             | Pass    |
| NVNT      | 3-DH1 | 2402               | -0.77                    | 21             | Pass    |
| NVNT      | 3-DH1 | 2441               | 0.90                     | 21             | Pass    |
| NVNT      | 3-DH1 | 2480               | 2.11                     | 21             | Pass    |
|           |       |                    |                          |                |         |























Page 33 of 88

Tel: 86-755-27673339 Fax: 86-755-27673332 Hotline: 400-6611-140 http://www.tct-lab.com

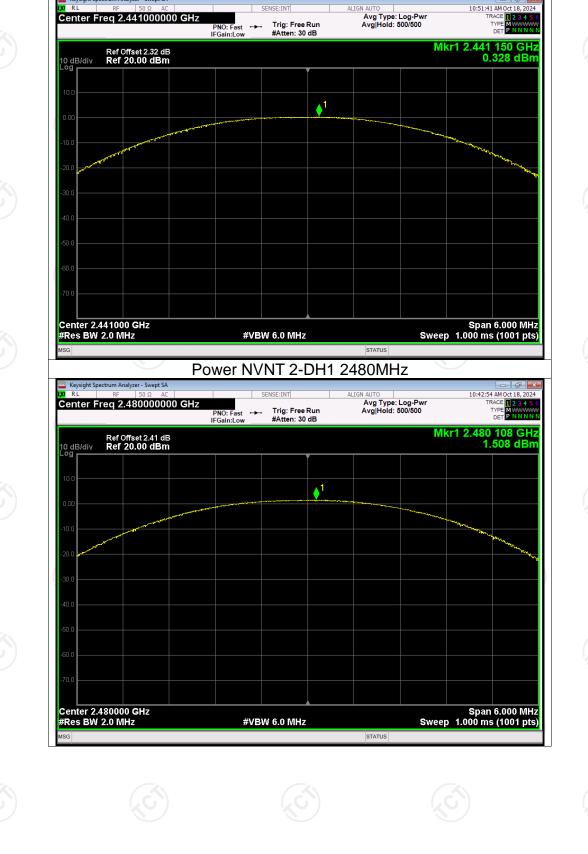


# Trig: Free Run #Atten: 30 dB PNO: Fast +++ Mkr1 2.480 120 GHz 0.657 dBm Ref Offset 2.41 dB Ref 20.00 dBm 10 dB/div Log **≜**<sup>1</sup> Center 2.480000 GHz #Res BW 2.0 MHz Span 6.000 MHz Sweep 1.000 ms (1001 pts) #VBW 6.0 MHz STATUS Power NVNT 2-DH1 2402MHz Keysight Spectrum Analyzer - Swept SA 10:53:30 AM Oct 18, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N KI RL Avg Type: Log-Pw Avg|Hold: 500/500 Center Freq 2.402000000 GHz PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.402 138 GHz -1.374 dBm Ref Offset 2.19 dB Ref 20.00 dBm 10 dB/div Log **≜**<sup>1</sup> Center 2.402000 GHz #Res BW 2.0 MHz Span 6.000 MHz Sweep 1.000 ms (1001 pts) #VBW 6.0 MHz STATUS

Power NVNT 1-DH1 2480MHz

Avg Type: Log-Pwr Avg|Hold: 600/600

KI RL


Keysight Spectrum Analyzer - Swept SA

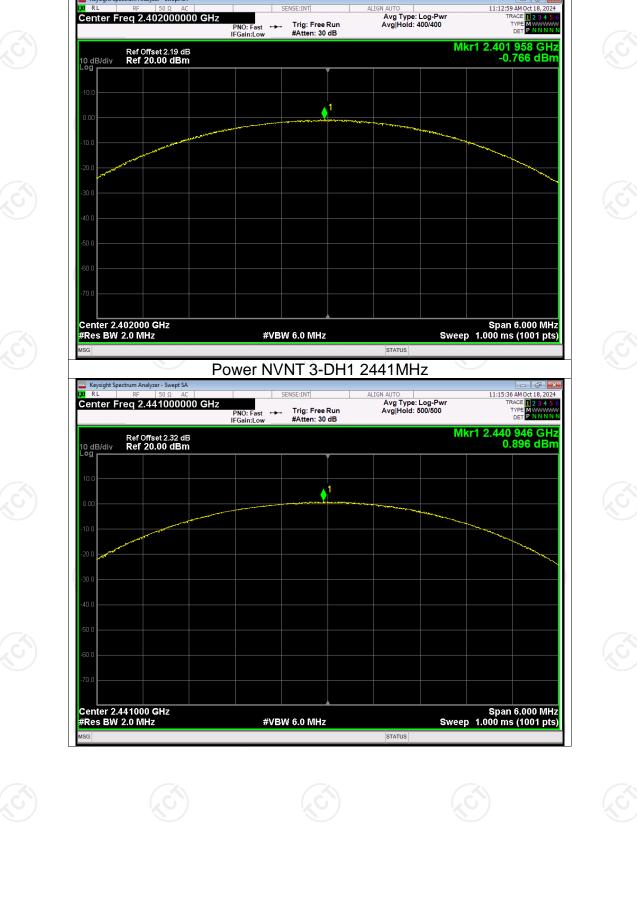
Center Freq 2.480000000 GHz

Report No.: TCT241009E017

Page 35 of 88

10:27:58 AM Oct 18, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNN




Power NVNT 2-DH1 2441MHz

KI RL

Keysight Spectrum Analyzer - Swept S

#### Report No.: TCT241009E017

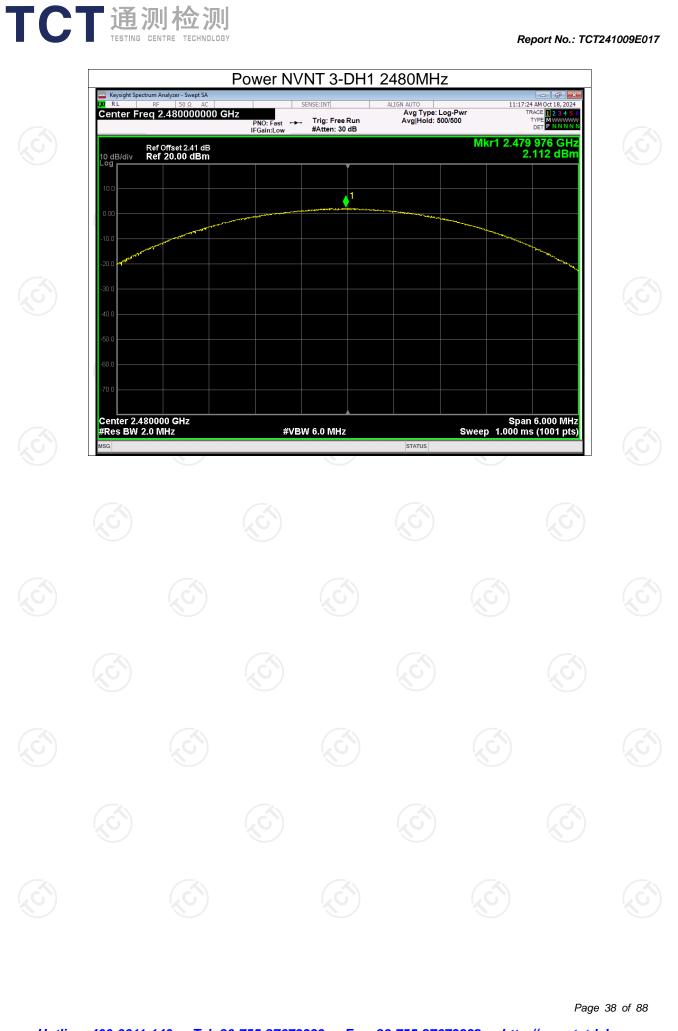
Page 36 of 88



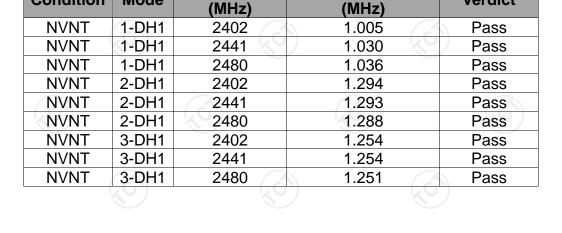
Power NVNT 3-DH1 2402MHz

ALIGN

Avg Type: Log-Pwr Avg|Hold: 400/400


KI RL

Keysight Spectrum Analyzer - Swept SA


Center Freq 2.402000000 GHz

Report No.: TCT241009E017

Page 37 of 88



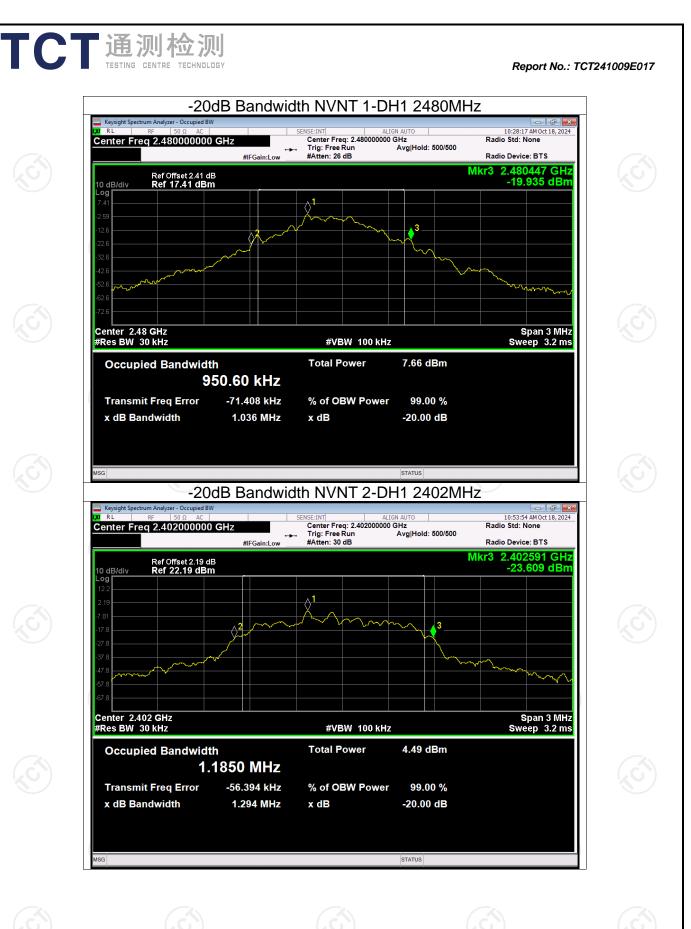
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



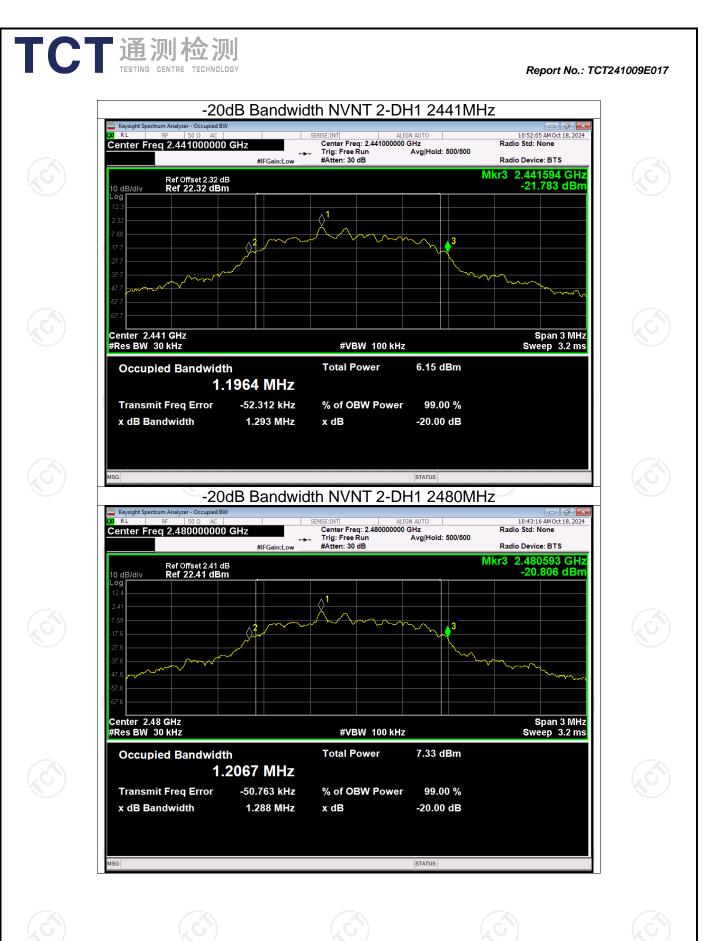
#### -20dB Bandwidth Frequency -20 dB Bandwidth

TCT通测检测 TEGTING CENTRE TECHNOLOGY

Condition


Mode

Report No.: TCT241009E017


Page 39 of 88

Verdict



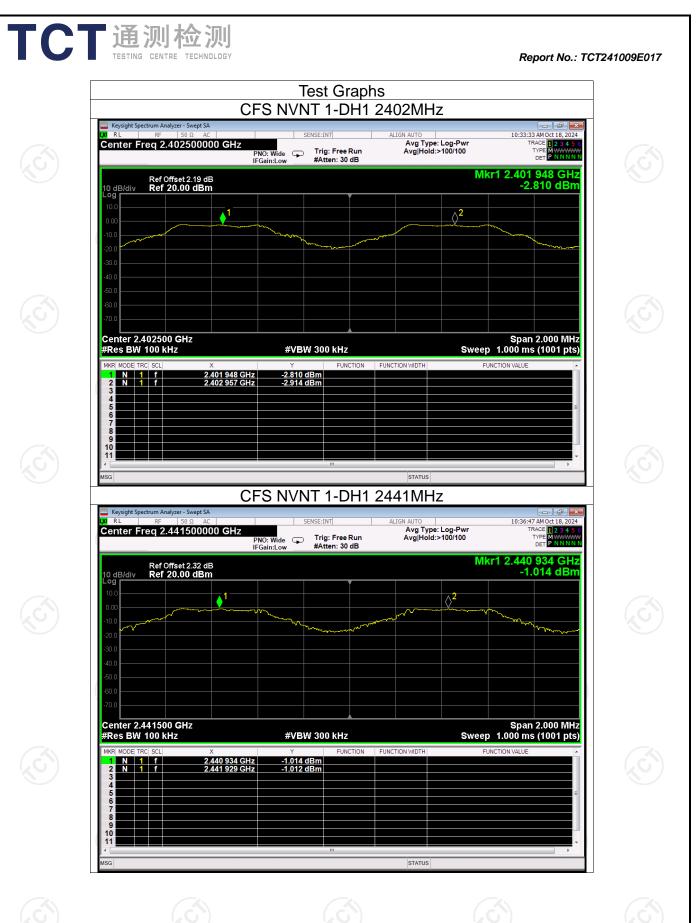


Page 41 of 88

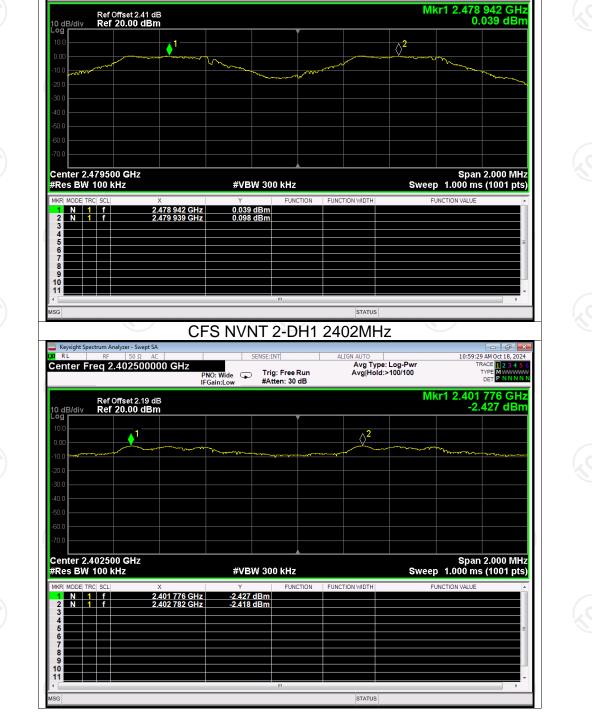




|                           | 11:17:5<br>Radio Std:<br>Radio Devi<br>Mkr3 2.4 | -DH1 2480I | SENSE:INT<br>Center Freq: 2.48000<br>Trig: Free Run<br>#Atten: 30 dB |                                     | -20d<br>m Analyzer - Occupied BW<br>RF 50 Ω AC<br>2.4800000000 C<br>Ref Offset 2.41 dB<br>Ref 22.41 dBm | LXI RL                                                                           |  |
|---------------------------|-------------------------------------------------|------------|----------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| Span 3 MHz<br>reep 3.2 ms | Sw                                              |            | #VBW 100<br>Total Power                                              |                                     | GHz<br>0 kHz<br>ed Bandwidth                                                                            | 17.6<br>27.6<br>37.6<br>47.6<br>57.6<br>57.6<br>57.6<br>Center 2.44<br>#Res BW 3 |  |
|                           |                                                 |            | % of OBW Pov                                                         | 866 MHz<br>-55.926 kHz<br>1.251 MHz | 1.1<br>Freq Error                                                                                       |                                                                                  |  |
|                           |                                                 | STATUS     |                                                                      |                                     |                                                                                                         | MSG                                                                              |  |
|                           |                                                 |            |                                                                      |                                     |                                                                                                         |                                                                                  |  |
|                           |                                                 |            |                                                                      |                                     |                                                                                                         |                                                                                  |  |
|                           |                                                 |            |                                                                      |                                     |                                                                                                         |                                                                                  |  |
|                           |                                                 |            |                                                                      |                                     |                                                                                                         |                                                                                  |  |
|                           |                                                 |            |                                                                      |                                     |                                                                                                         |                                                                                  |  |
|                           |                                                 |            |                                                                      |                                     |                                                                                                         |                                                                                  |  |


|           |       |                        | equencies Separat      |              |                |         |
|-----------|-------|------------------------|------------------------|--------------|----------------|---------|
| Condition | Mode  | Hopping Freq1<br>(MHz) | Hopping Freq2<br>(MHz) | HFS<br>(MHz) | Limit<br>(MHz) | Verdict |
| NVNT      | 1-DH1 | 2401.948               | 2402.957               | 1.009        | 0.691          | Pass    |
| NVNT      | 1-DH1 | 2440.934               | 2441.929               | 0.995        | 0.691          | Pass    |
| NVNT      | 1-DH1 | 2478.942               | 2479.939               | 0.997        | 0.691          | Pass    |
| NVNT      | 2-DH1 | 2401.776               | 2402.782               | 1.006        | 0.863          | Pass    |
| NVNT      | 2-DH1 | 2440.774               | 2441.770               | 0.996        | 0.863          | Pass    |
| NVNT      | 2-DH1 | 2478.778               | 2479.774               | 0.996        | 0.863          | Pass    |
| NVNT      | 3-DH1 | 2401.776               | 2402.778               | 1.002        | 0.836          | Pass    |
| NVNT      | 3-DH1 | 2440.774               | 2441.774               | 1.000        | 0.836          | Pass    |
| NVNT      | 3-DH1 | 2478.778               | 2479.774               | 0.996        | 0.836          | Pass    |
|           |       |                        |                        |              |                |         |

#### **Carrier Frequencies Separation**


TCT 通测检测 TESTING CENTRE TECHNOLOGY

Page 45 of 88

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



Page 46 of 88



CFS NVNT 1-DH1 2480MHz

Trig: Free Run #Atten: 30 dB

PNO: Wide IFGain:Low

 $\mathbf{P}$ 

ALTGN AL

Avg Type: Log-Pwr Avg|Hold:>100/100

🔤 Keysight Spe

Center Freg 2.479500000 GHz

KI RL

Report No.: TCT241009E017

10:40:33 AM Oct 18, 2024 TRACE 1 2 3 4 5 ( TYPE MWWWW DET P N N N N

TYPE DET



Page 47 of 88



#### Mkr1 2.440 774 GHz -0.804 dBm Ref Offset 2.32 dB Ref 20.00 dBm 10 d Log **⁄** $\Diamond^2$ Center 2.441500 GHz #Res BW 100 kHz Span 2.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz 2.440 774 GHz 2.441 770 GHz N 1 f N 1 f -0.804 dBm -0.785 dBm 234 10 11 CFS NVNT 2-DH1 2480MHz Keysight Spectrum Analyzer - Swept SA 11:10:34 AM Oct 18, TRACE 12.3 Avg Type: Log-Pw Avg|Hold:>100/100 Center Freg 2.479500000 GHz Trig: Free Run #Atten: 30 dB TYPE PNO: Wide IFGain:Low Mkr1 2.478 778 GHz 0.349 dBm Ref Offset 2.41 dB Ref 20.00 dBm 10 dB/div Log **r ⊘**2 Ø Center 2.479500 GHz #Res BW 100 kHz Span 2.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH TION N 1 f N 1 f 2.478 778 GHz 2.479 774 GHz 0.349 dBm 0.385 dBm 10 11 STATUS

CFS NVNT 2-DH1 2441MHz

Trig: Free Run #Atten: 30 dB

PNO: Wide 😱 IFGain:Low

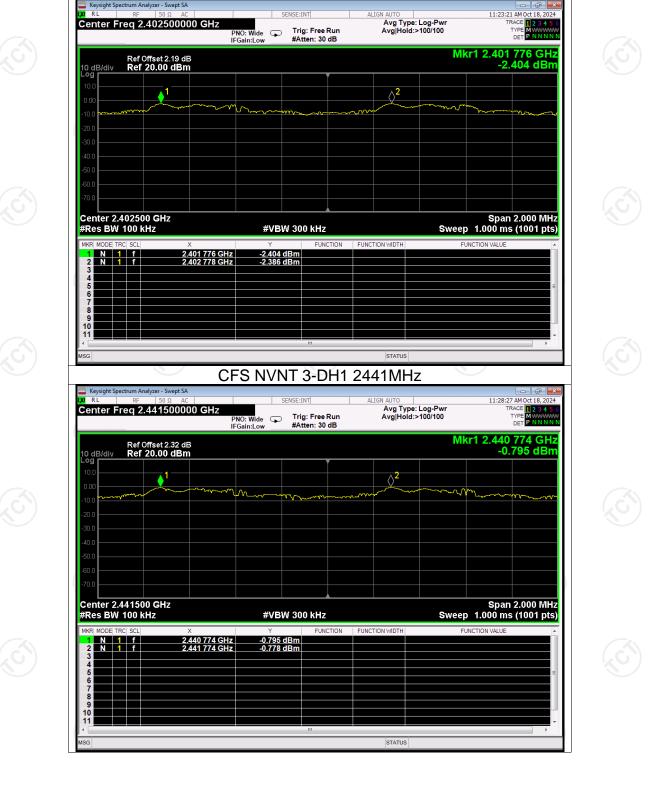
ALIGN A

Avg Type: Log-Pwr Avg|Hold:>100/100

Report No.: TCT241009E017

11:04:51 AM Oct 18, 2024 TRACE 1 2 3 4 5 ( TYPE MWWWW DET P N N N N

Page 48 of 88


TYPE DET



Center Freg 2.441500000 GHz

🔤 Keysight Spectrum Analyzer -

KI RL



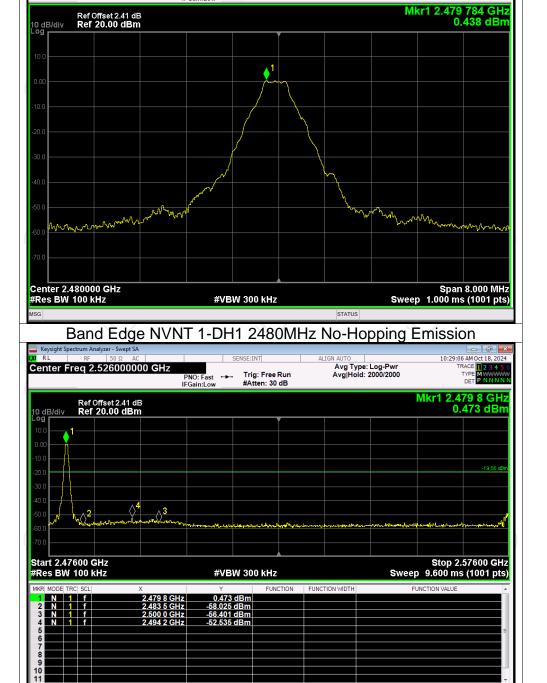
CFS NVNT 3-DH1 2402MHz

Report No.: TCT241009E017

Page 49 of 88

|     |                    | <b>检</b> 況<br>TECHNO               |                      | CFS                 | NVN                | IT 3-I                             | DH1 2          | 2480MF                           | Ηz                      |          | Re             |                                                   |                               | 241009E0 |
|-----|--------------------|------------------------------------|----------------------|---------------------|--------------------|------------------------------------|----------------|----------------------------------|-------------------------|----------|----------------|---------------------------------------------------|-------------------------------|----------|
|     | RF                 | er - Swept SA<br>50 Ω AC<br>950000 |                      | PNO: Wi<br>IFGain:L | ide 😱              | ENSE:INT<br>Trig: Fre<br>#Atten: 3 | e Run<br>60 dB | ALIGN AUTO<br>Avg Tyj<br>Avg Hol | pe: Log-Pv<br>d:>100/10 | )        | TF             | DAMOct 18, 3<br>RACE 1 2 3<br>TYPE MWW<br>DET PNN | 2024<br>4 5 6<br>MMW<br>N N N |          |
| ,   | Ref Offs<br>Ref 20 | et 2.41 dB<br>.00 dBm              |                      |                     |                    |                                    | Ĭ              | 2                                |                         | Mkr1     | 2.478<br>0.    | 778 G<br>315 di                                   | Hz<br>Bm                      |          |
|     |                    |                                    |                      |                     |                    | ~~~~~                              |                |                                  |                         |          |                |                                                   |                               |          |
|     |                    |                                    |                      |                     |                    |                                    |                |                                  |                         |          |                |                                                   |                               |          |
| N 1 | 79500 (<br>100 kHz | X                                  |                      |                     | Y                  |                                    |                |                                  |                         | Sweep 1. | Span<br>000 ms | 2.000 N<br>5 (1001 j                              | 1Hz<br>ots)                   |          |
| 1   | f                  | <u>2.4</u><br>2.4                  | 78 778 (<br>79 774 ( | GHz<br>GHz          | 0.315 c<br>0.374 c | iBm<br>iBm                         |                |                                  |                         |          |                |                                                   | =                             |          |
|     |                    |                                    |                      |                     |                    |                                    |                |                                  |                         |          |                |                                                   |                               |          |
|     |                    |                                    |                      |                     |                    | C                                  | _              | STATUS                           |                         |          |                |                                                   |                               |          |
|     |                    |                                    |                      |                     |                    |                                    |                |                                  |                         |          |                |                                                   |                               |          |
|     |                    |                                    |                      |                     |                    |                                    |                |                                  |                         |          |                |                                                   |                               |          |
|     |                    |                                    |                      |                     |                    |                                    |                |                                  |                         |          |                |                                                   |                               |          |
|     |                    |                                    |                      |                     |                    |                                    |                |                                  |                         |          |                |                                                   |                               |          |
|     |                    |                                    |                      |                     |                    |                                    |                |                                  |                         |          |                |                                                   |                               |          |
|     |                    |                                    |                      |                     |                    |                                    |                |                                  |                         |          |                |                                                   |                               |          |
|     |                    |                                    |                      |                     |                    |                                    |                |                                  |                         |          |                |                                                   |                               |          |
|     |                    |                                    |                      |                     |                    |                                    |                |                                  |                         |          |                |                                                   |                               |          |
|     |                    |                                    |                      |                     |                    |                                    |                |                                  |                         |          |                |                                                   |                               |          |

| Hotline: 400-6611-140 | Tel: 86-755-27673339 | Fax: 86-755-27673332 | http://www.tct-lab.com |
|-----------------------|----------------------|----------------------|------------------------|


|           |       |                    | Band Edge       |                    |                |         |
|-----------|-------|--------------------|-----------------|--------------------|----------------|---------|
| Condition | Mode  | Frequency<br>(MHz) | Hopping<br>Mode | Max Value<br>(dBc) | Limit<br>(dBc) | Verdict |
| NVNT      | 1-DH1 | 2402               | No-Hopping      | -52.75             | -20            | Pass    |
| NVNT      | 1-DH1 | 2480               | No-Hopping      | -52.97             | -20            | Pass    |
| NVNT      | 2-DH1 | 2402               | No-Hopping      | -52.72             | -20            | Pass    |
| NVNT      | 2-DH1 | 2480               | No-Hopping      | -52.47             | -20            | Pass    |
| NVNT      | 3-DH1 | 2402               | No-Hopping      | -52.59             | -20            | Pass    |
| NVNT      | 3-DH1 | 2480               | No-Hopping      | -53.69             | -20            | Pass    |

Report No.: TCT241009E017

Page 51 of 88







Band Edge NVNT 1-DH1 2480MHz No-Hopping Ref

Trig: Free Run #Atten: 30 dB

PNO: Wide IFGain:Low

-----

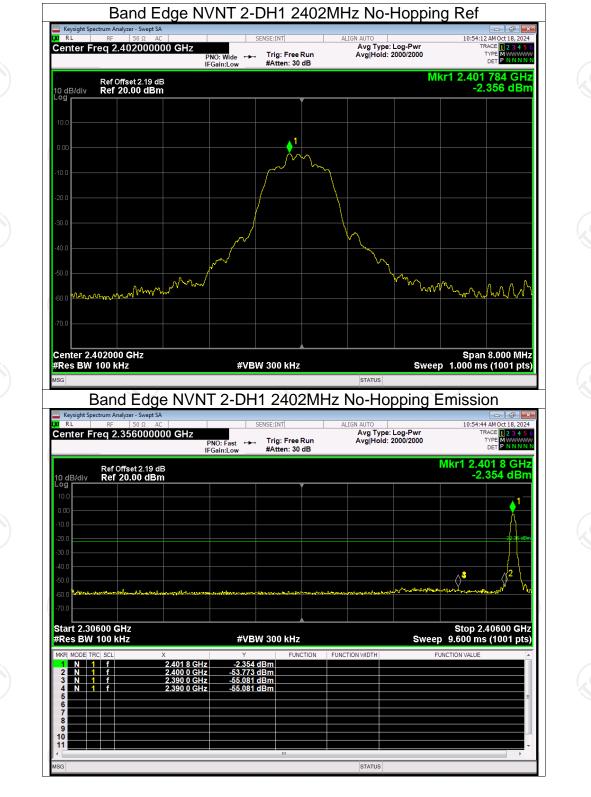
Avg Type: Log-Pwr Avg|Hold: 2000/2000

- Keysight

Center Freq 2.480000000 GHz

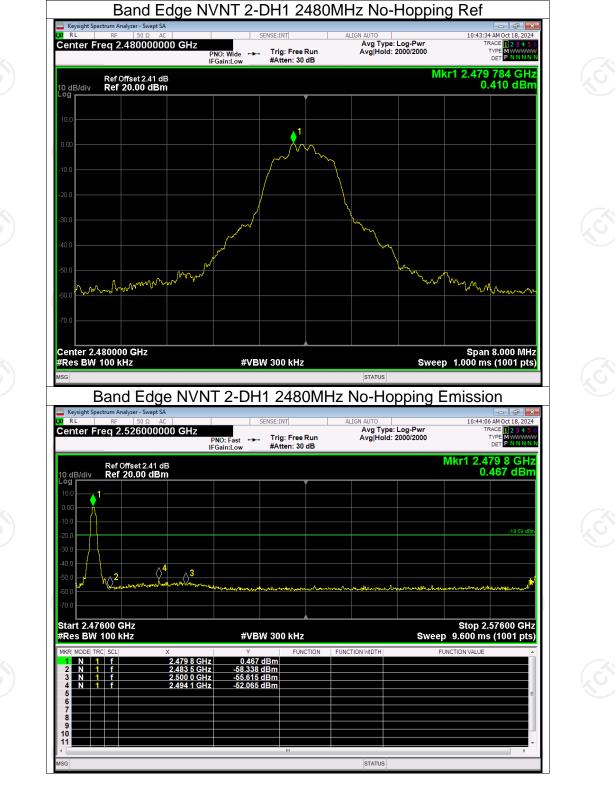
KI RL

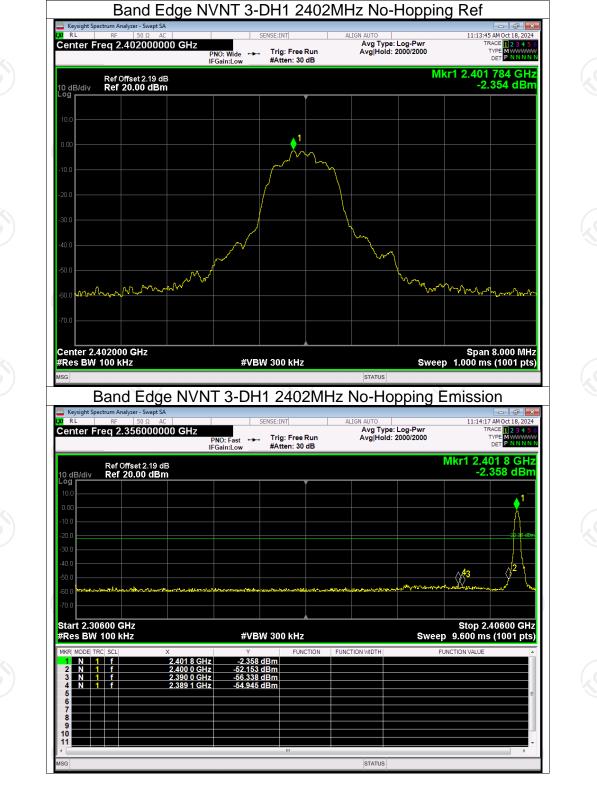
#### Report No.: TCT241009E017

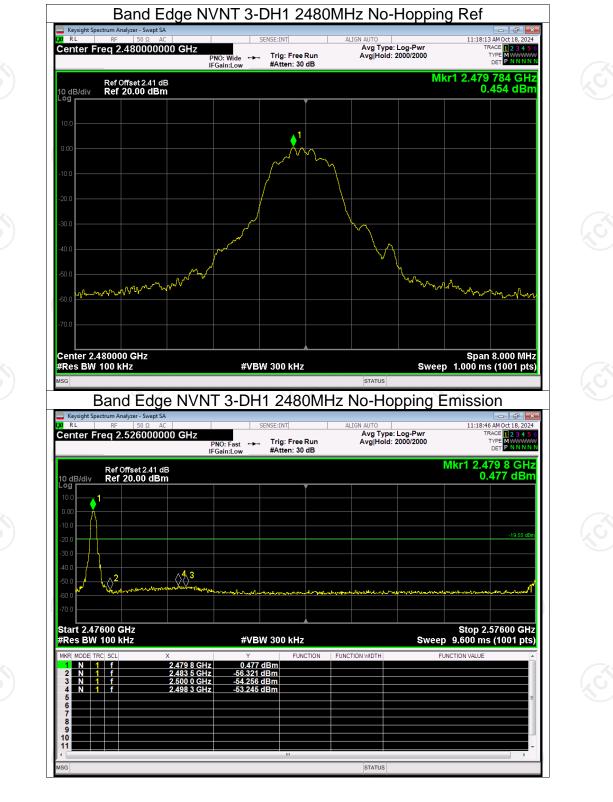

10:28:33 AM Oct 18, 2024 TRACE 1 2 3 4 5 ( TYPE DET P NNNN



STATUS




#### Report No.: TCT241009E017

Page 54 of 88







| Hotline: 400-6611-140 | Tel: 86-755-27673339 | Fax: 86-755-27673332 | http://www.tct-lab.com |
|-----------------------|----------------------|----------------------|------------------------|

| Mode        | Frequency<br>(MHz)                               | Hopping<br>Mode                                                                                                                                                                                | Max Value<br>(dBc)                                                                                                                                                                                                                                                                                                                                       | Limit<br>(dBc)                                                                                                                                                                                                                                                                                                                                          | Verdict                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1-DH1       | 2402                                             | Hopping                                                                                                                                                                                        | -52.11                                                                                                                                                                                                                                                                                                                                                   | -20                                                                                                                                                                                                                                                                                                                                                     | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1-DH1       | 2480                                             | Hopping                                                                                                                                                                                        | -50.88                                                                                                                                                                                                                                                                                                                                                   | -20                                                                                                                                                                                                                                                                                                                                                     | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2-DH1       | 2402                                             | Hopping                                                                                                                                                                                        | -52.27                                                                                                                                                                                                                                                                                                                                                   | -20                                                                                                                                                                                                                                                                                                                                                     | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2-DH1       | 2480                                             | Hopping                                                                                                                                                                                        | -52.38                                                                                                                                                                                                                                                                                                                                                   | -20                                                                                                                                                                                                                                                                                                                                                     | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3-DH1       | 2402                                             | Hopping                                                                                                                                                                                        | -52.71                                                                                                                                                                                                                                                                                                                                                   | -20                                                                                                                                                                                                                                                                                                                                                     | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3-DH1       | 2480                                             | Hopping                                                                                                                                                                                        | -51.68                                                                                                                                                                                                                                                                                                                                                   | -20                                                                                                                                                                                                                                                                                                                                                     | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1<br>2<br>3 | -DH1<br>-DH1<br>2-DH1<br>2-DH1<br>2-DH1<br>3-DH1 | wode         (MHz)           -DH1         2402           -DH1         2480           2-DH1         2402           2-DH1         2402           2-DH1         2480           3-DH1         2402 | Wode         (MHz)         Mode           -DH1         2402         Hopping           -DH1         2480         Hopping           2-DH1         2402         Hopping           2-DH1         2402         Hopping           2-DH1         2402         Hopping           2-DH1         2480         Hopping           2-DH1         2480         Hopping | Mode         (MHz)         Mode         (dBc)           -DH1         2402         Hopping         -52.11           -DH1         2480         Hopping         -50.88           2-DH1         2402         Hopping         -52.27           2-DH1         2480         Hopping         -52.38           2-DH1         2402         Hopping         -52.71 | Mode         (MHz)         Mode         (dBc)         (dBc)           -DH1         2402         Hopping         -52.11         -20           -DH1         2480         Hopping         -50.88         -20           -DH1         2402         Hopping         -52.27         -20           2-DH1         2480         Hopping         -52.38         -20           2-DH1         2480         Hopping         -52.38         -20           2-DH1         2402         Hopping         -52.71         -20 |

### Band Edge(Hopping)

Report No.: TCT241009E017

Page 58 of 88







Page 60 of 88







Page 62 of 88



Page 63 of 88



Page 64 of 88

## Conducted RF Spurious Emission

| Condition | Mode  | Frequency (MHz) | Max Value (dBc) | Limit (dBc) | Verdict |
|-----------|-------|-----------------|-----------------|-------------|---------|
| NVNT      | 1-DH1 | 2402            | -39.96          | -20         | Pass    |
| NVNT      | 1-DH1 | 2441            | -41.49          | -20         | Pass    |
| NVNT      | 1-DH1 | 2480            | -41.15          | -20         | Pass    |
| NVNT      | 2-DH1 | 2402            | -39.68          | -20         | Pass    |
| NVNT      | 2-DH1 | 2441            | -41.00          | -20         | Pass    |
| NVNT      | 2-DH1 | 2480            | -42.11          | -20         | Pass    |
| NVNT 🚫    | 3-DH1 | 2402            | -41.37          | -20         | Pass    |
| NVNT      | 3-DH1 | 2441            | -41.84          | -20         | Pass    |
| NVNT      | 3-DH1 | 2480            | -44.17          | -20         | Pass    |
|           |       |                 |                 |             |         |

Page 65 of 88



Page 66 of 88

10:26:54 AM Oct 18, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N Avg Type: Log-Pwr Avg|Hold: 1000/1000 Trig: Free Run #Atten: 30 dB TYP DE PNO: Wide IFGain:Low **н**н Mkr1 2.440 776 40 GHz -0.810 dBm Ref Offset 2.32 dB Ref 20.00 dBm 10 dB/div Loa **♦**<sup>1</sup> Center 2.4410000 GHz #Res BW 100 kHz Span 1.500 MHz Sweep 2.000 ms (30001 pts) #VBW 300 kHz STATUS Tx. Spurious NVNT 1-DH1 2441MHz Emission yzer - Swept SA Keysight Spe U RL 10:27:24 AM Oct 18, Avg Type: Log-Pw Avg|Hold: 10/10 Center Freg 13.265000000 GHz Trig: Free Run #Atten: 30 dB TYPE PNO: Fast ↔→→ IFGain:Low Mkr1 2.440 5 GHz -1.503 dBm Ref Offset 2.32 dB Ref 20.00 dBm 10 dB/div Log **r**  $\Diamond^3$ ⊘⁵ **∲**<sup>4</sup> MAX. Start 0.03 GHz #Res BW 100 kHz Stop 26.50 GHz Sweep 2.530 s (30001 pts) #VBW 300 kHz FUNCTION WIDTH TION 
 MODE
 TRC
 Sol

 N
 1
 f

 N
 1
 f

 N
 1
 f

 N
 1
 f

 N
 1
 f

 N
 1
 f

 N
 1
 f

 N
 1
 f
 2.440 5 GHz 4.882 0 GHz 4.882 0 GHz 7.322 5 GHz 9.763 9 GHz -1.503 dBm -42.305 dBm -42.305 dBm -54.402 dBm -50.144 dBm 456780 STATUS

Tx. Spurious NVNT 1-DH1 2441MHz Ref

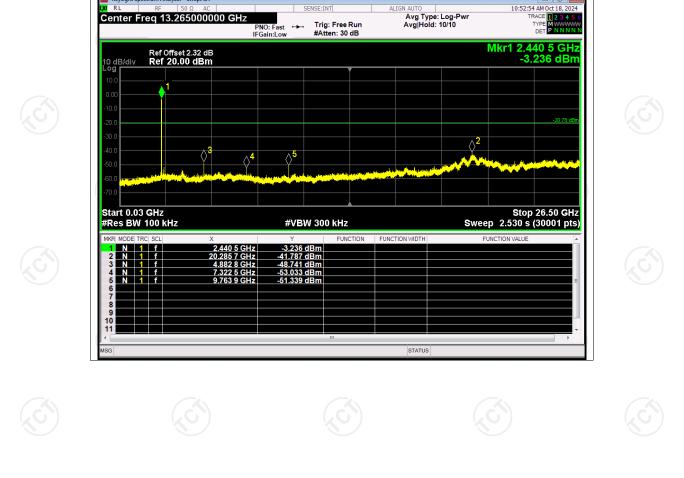
TCT通测检测 TESTING CENTRE TECHNOLOGY

🔤 Keysight S

Center Freg 2.441000000 GHz

KI RL




TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT241009E017

Page 68 of 88



Page 69 of 88



10:52:24 AM Oct 18, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N Avg Type: Log-Pwr Avg|Hold: 1000/1000 Trig: Free Run #Atten: 30 dB TYP DE PNO: Wide IFGain:Low **н**н Mkr1 2.440 773 45 GHz -0.782 dBm Ref Offset 2.32 dB Ref 20.00 dBm 10 dB/div Loa **≜**<sup>1</sup> Center 2.4410000 GHz #Res BW 100 kHz Span 1.500 MHz Sweep 2.000 ms (30001 pts) #VBW 300 kHz STATUS

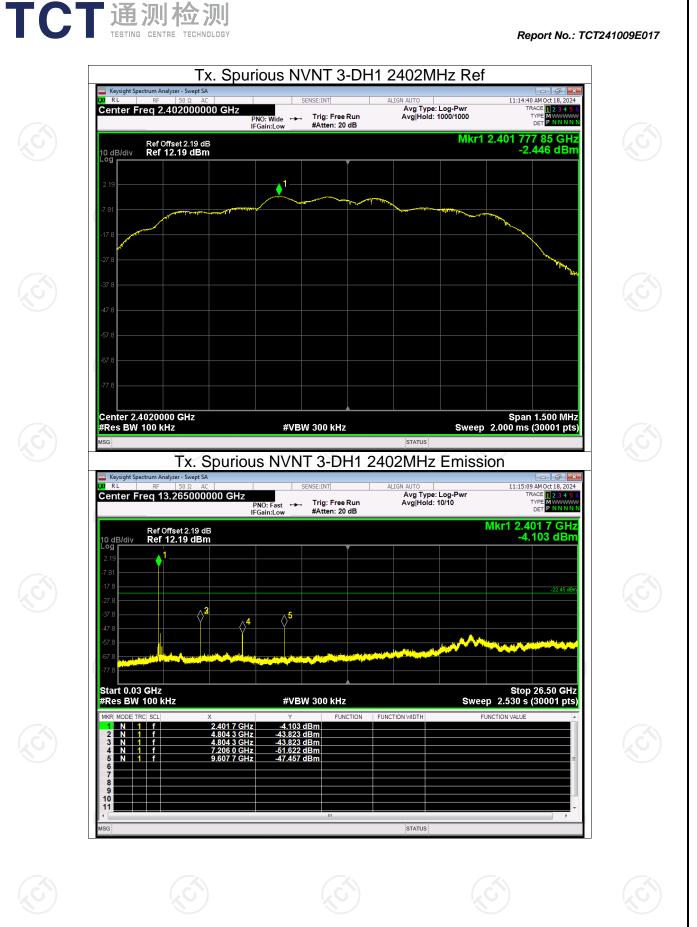
Tx. Spurious NVNT 2-DH1 2441MHz Ref

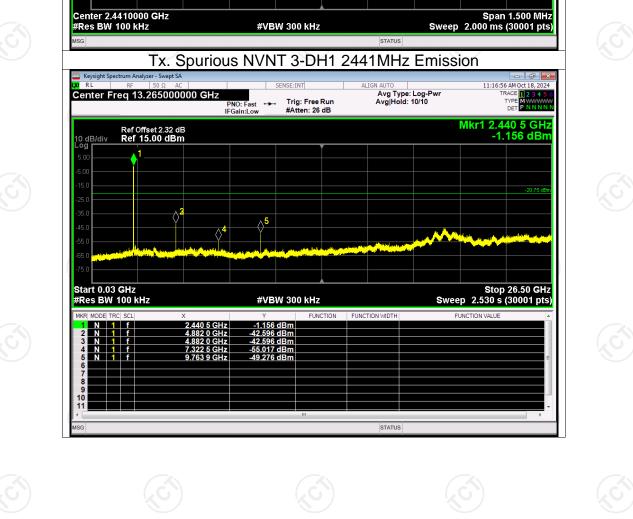
TCT通测检测 TESTING CENTRE TECHNOLOGY

🔤 Keysight S

Keysight Sp

Center Freg 2.441000000 GHz


KI RL


#### Tx. Spurious NVNT 2-DH1 2441MHz Emission /zer - Swept S/





TCT通测检测 TESTING CENTRE TECHNOLOGY





Ø 

Tx. Spurious NVNT 3-DH1 2441MHz Ref

Trig: Free Run #Atten: 26 dB

PNO: Wide IFGain:Low

**н**н

Avg Type: Log-Pwr Avg|Hold: 1000/1000

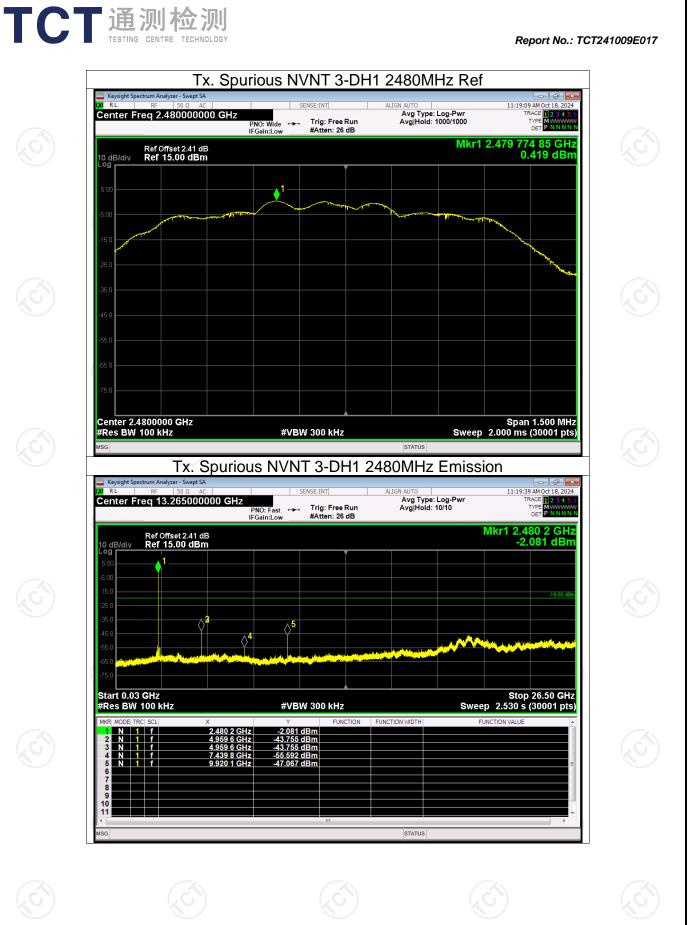
TCT通测检测 TESTING CENTRE TECHNOLOGY

🔤 Keysight S

10 dB/div Loa

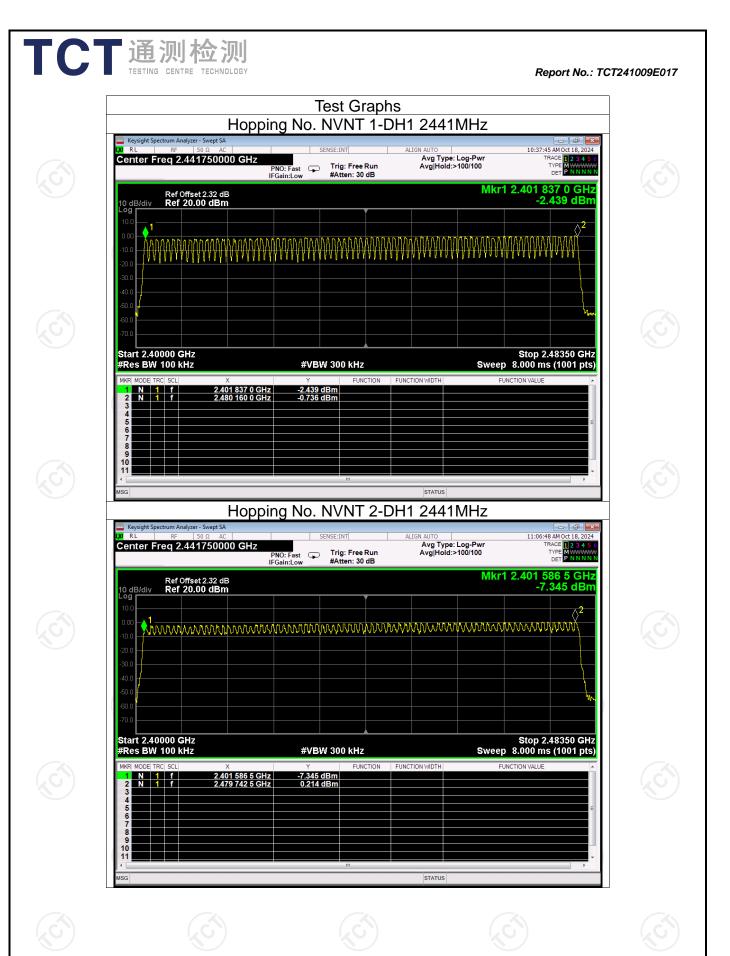
Center Freg 2.441000000 GHz

Ref Offset 2.32 dB Ref 15.00 dBm


KI RL

Report No.: TCT241009E017

11:16:26 AM Oct 18, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N


TYPE DET

Mkr1 2.440 773 60 GHz -0.753 dBm

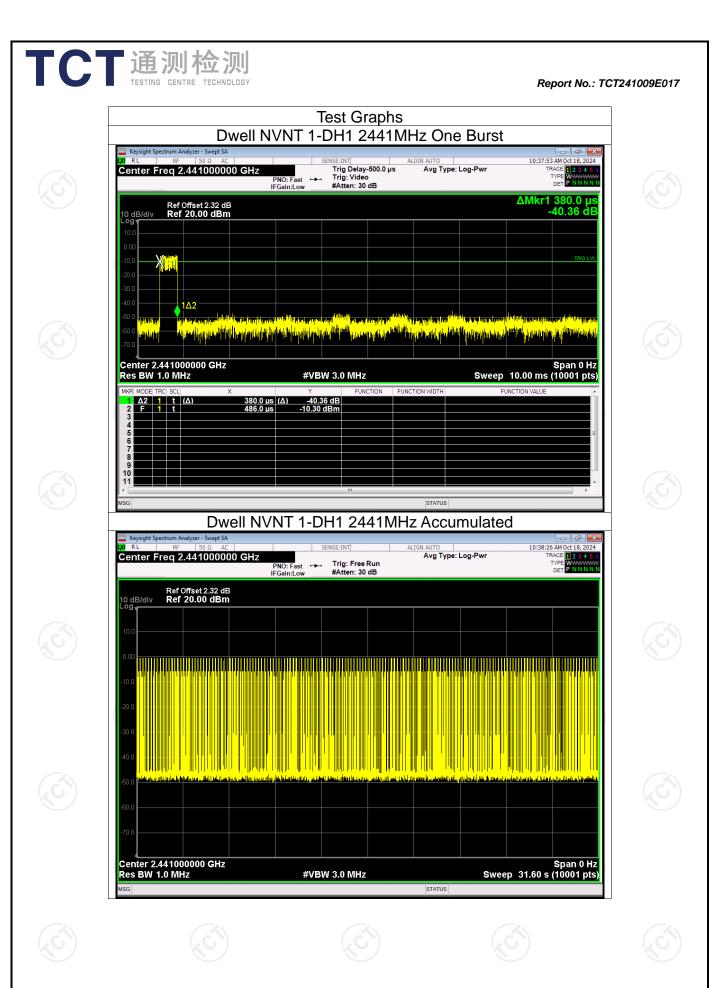


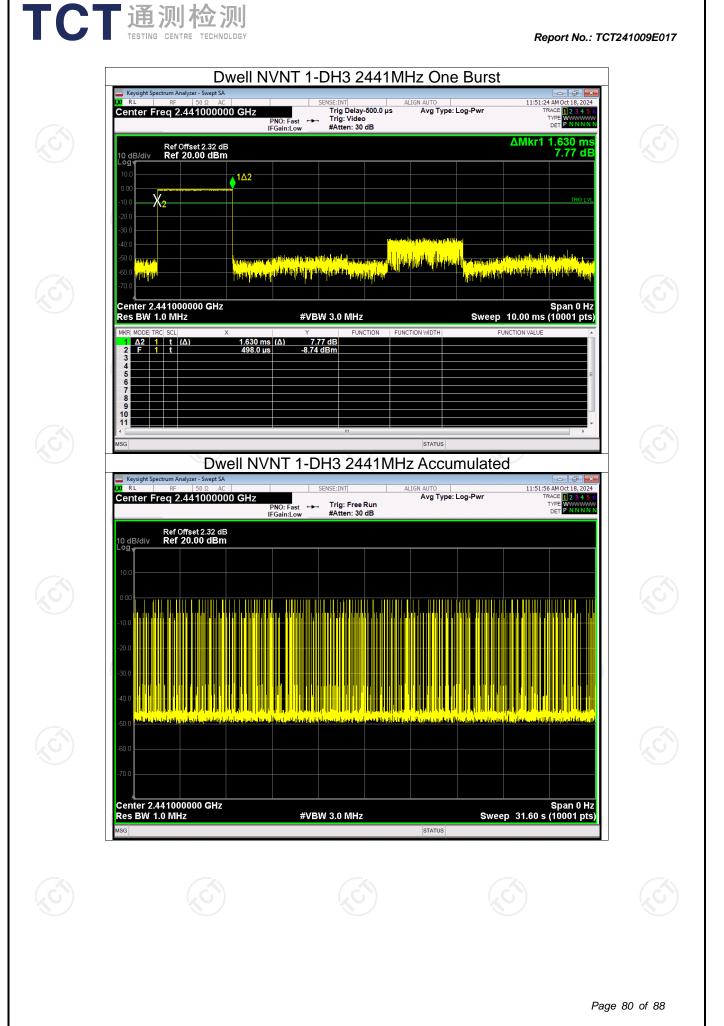
Page 74 of 88

|   | Verd<br>Pas | Limit<br>15 | umber | <b>lopping N</b><br>79 | · F | Mode<br>1-DH1  | Condition<br>NVNT |   |
|---|-------------|-------------|-------|------------------------|-----|----------------|-------------------|---|
| S | Pas<br>Pas  | 15<br>15    |       | 79<br>79               |     | 2-DH1<br>3-DH1 | NVNT<br>NVNT      | 6 |
|   |             |             |       |                        |     |                |                   |   |
|   |             |             |       |                        |     |                |                   |   |
|   |             |             |       |                        |     |                |                   |   |
|   |             |             |       |                        |     |                |                   |   |
|   |             |             |       |                        |     |                |                   |   |
|   |             |             |       |                        |     |                |                   |   |
|   |             |             |       |                        |     |                |                   |   |
|   |             |             |       |                        |     |                |                   |   |
|   |             |             |       |                        |     |                |                   |   |
|   |             |             |       |                        |     |                |                   |   |

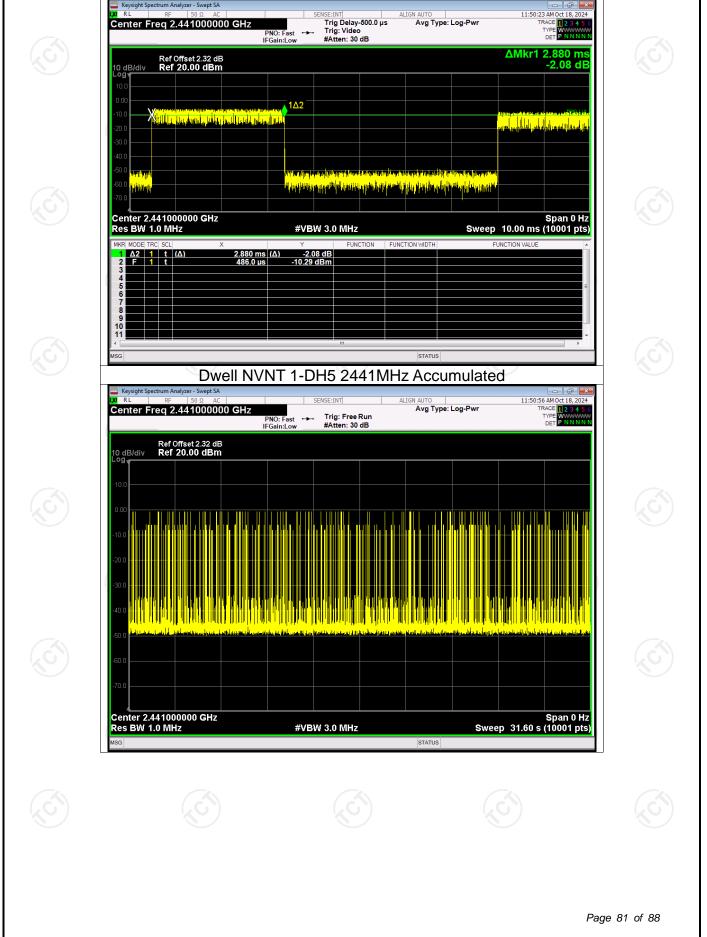


Page 76 of 88


| Keusinht Spactrue                                              | H(<br>m Analyzer - Swept SA                                      | opping No.                     | NVNT 3-D                                     | H1 2441MH                                          | Z                       |                                                                        |  |
|----------------------------------------------------------------|------------------------------------------------------------------|--------------------------------|----------------------------------------------|----------------------------------------------------|-------------------------|------------------------------------------------------------------------|--|
| Center Fred                                                    | RF 50 Ω AC<br>2.441750000 C<br>ef Offset 2.32 dB<br>ef 20.00 dBm | SHZ<br>PNO: Fast<br>IFGain:Low | SENSE:INT<br>Trig: Free Run<br>#Atten: 30 dB | ALIGN AUTO<br>Avg Type: Log-Pr<br>Avg Hold:>100/10 | Mkr1 2.401              | 34 AM Oct 18, 2024<br>TRACE 1 2 3 4 5 6<br>TYPE MWWWW<br>DET P N N N N |  |
| 10.0<br>0.00<br>-10.0<br>-20.0                                 | MANANA ANA                                                       | www.www.ww                     | WWWWWW                                       | wwwww                                              | VUUNUUU                 |                                                                        |  |
| -30.0<br>-40.0<br>-50.0<br>-60.0<br>-70.0                      |                                                                  |                                |                                              |                                                    |                         |                                                                        |  |
| Start 2.4000<br>#Res BW 10<br>MKR MODE TRC S<br>1 N 1<br>2 N 1 | 0 kHz<br><sup>CL</sup> X<br>f 2.401 75                           | 3 5 GHz -2.282                 | SW 300 kHz<br>FUNCTION<br>2 dBm              | FUNCTION WIDTH                                     | Stop 2<br>Sweep 8.000 m |                                                                        |  |
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                          |                                                                  |                                |                                              |                                                    |                         |                                                                        |  |
| MSG                                                            |                                                                  |                                |                                              | STATUS                                             |                         |                                                                        |  |
|                                                                |                                                                  |                                |                                              |                                                    |                         |                                                                        |  |
|                                                                |                                                                  |                                |                                              |                                                    |                         |                                                                        |  |
|                                                                |                                                                  |                                |                                              |                                                    |                         |                                                                        |  |
|                                                                |                                                                  |                                |                                              |                                                    |                         |                                                                        |  |
|                                                                |                                                                  |                                |                                              |                                                    |                         |                                                                        |  |
|                                                                |                                                                  |                                |                                              |                                                    |                         |                                                                        |  |
|                                                                |                                                                  |                                |                                              |                                                    |                         |                                                                        |  |


| ICI       |      | <b>则 检 测</b><br>ENTRE TECHNOLOGY | Dwe           | ell Time       |       | Repor          | t No.: TCT2 | 41009E017 |
|-----------|------|----------------------------------|---------------|----------------|-------|----------------|-------------|-----------|
| Condition | Mode | Frequency                        | Pulse<br>Time | Total<br>Dwell | Burst | Period<br>Time | Limit       | Verdict   |

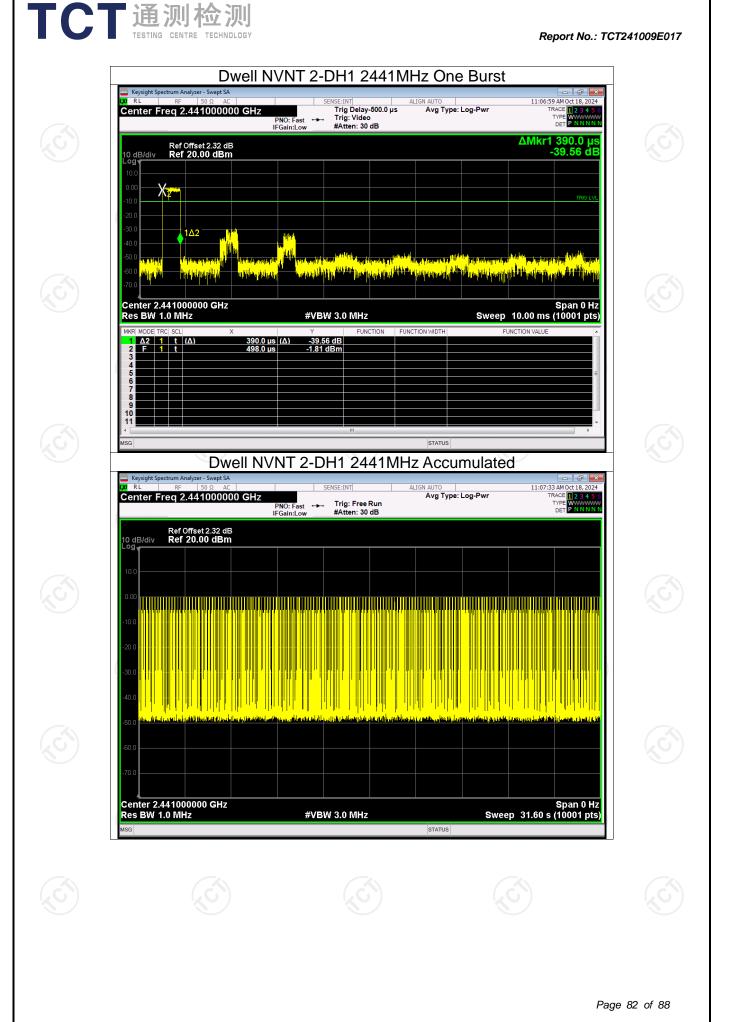
| Condition | Mode  | Frequency<br>(MHz) | Time<br>(ms) | Dwell<br>Time<br>(ms) | Burst<br>Count | Time<br>(ms) | Limit<br>(ms) | Verdict |
|-----------|-------|--------------------|--------------|-----------------------|----------------|--------------|---------------|---------|
| NVNT      | 1-DH1 | 2441               | 0.38         | 121.60                | 320            | 31600        | 400           | Pass    |
| NVNT      | 1-DH3 | 2441               | 1.63         | 259.17                | 159            | 31600        | 400           | Pass    |
| NVNT      | 1-DH5 | 2441               | 2.88         | 311.04                | 108            | 31600        | 400           | Pass    |
| NVNT      | 2-DH1 | 2441               | 0.39         | 123.24                | 316            | 31600        | 400           | Pass    |
| NVNT      | 2-DH3 | 2441               | 1.64         | 264.04                | 161            | 31600        | 400           | Pass    |
| NVNT      | 2-DH5 | 2441               | 2.89         | 286.11                | 99             | 31600        | 400           | Pass    |
| NVNT      | 3-DH1 | 2441               | 0.39         | 123.63                | 317            | 31600        | 400           | Pass    |
| NVNT      | 3-DH3 | 2441               | 1.64         | 254.20                | 155            | 31600        | 400           | Pass    |
| NVNT      | 3-DH5 | 2441               | 2.89         | 268.77                | 93             | 31600        | 400           | Pass    |


| Page | 78 | of | 88 |
|------|----|----|----|
|------|----|----|----|

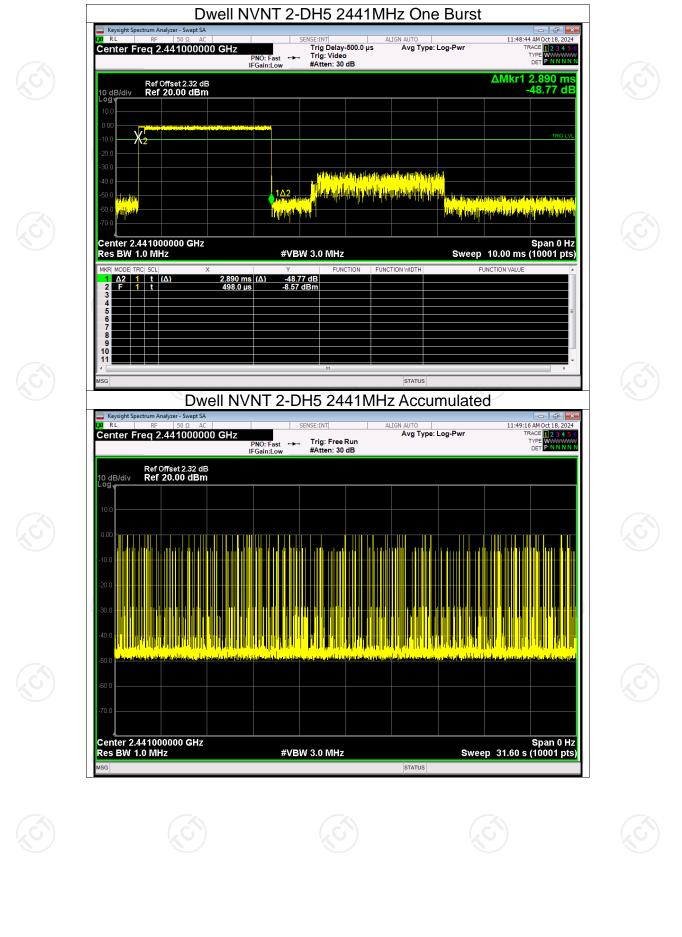
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com






Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com




Dwell NVNT 1-DH5 2441MHz One Burst

Report No.: TCT241009E017

## Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



|     | Keysight Spectrum Analyzer - Swept SA           RL         RF         50 Ω         AC           enter Freq 2.441000000 GHz | PNO: Fast Trig: Video                                        | AUTO 11:49:29 AMOC1 8, 2024<br>Avg Type: Log-Pwr Trace 11249<br>Type United Type                                                                                                                                                    | 1<br>6<br>AF |
|-----|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|     | Ref Offset 2.32 dB<br>0 dB/div Ref 20.00 dBm                                                                               | IFGain:Low #Atten: 30 dB                                     | ΔMkr1 1.640 ms<br>-39.23 dE                                                                                                                                                                                                         |              |
|     | 0.00                                                                                                                       |                                                              | TRO LVI                                                                                                                                                                                                                             |              |
|     | 10.0 <b>X<sup>1</sup>2<sup>1</sup>100, 10, 10, 11, 11, 14, 10, 14</b> , 14, 14, 14, 14, 14, 14, 14, 14, 14, 14             |                                                              |                                                                                                                                                                                                                                     |              |
| -   |                                                                                                                            |                                                              | na mananan na mananan ang na manana na manana na manana na manana na manana na manana na mana na mana na mana m<br>Na mananana na manana na mana na mana na m | 7            |
|     | 2000 1441000000 GHz                                                                                                        |                                                              | Span 0 Hz                                                                                                                                                                                                                           |              |
|     | Res BW 1.0 MHz<br>IKR  MODE  TRC  SCL  X                                                                                   | #VBW 3.0 MHz                                                 | Sweep 10.00 ms (10001 pts                                                                                                                                                                                                           |              |
|     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                      | ms (Δ) -39.23 dB<br>D μs -15.16 dBm                          |                                                                                                                                                                                                                                     |              |
|     | 5<br>7<br>7<br>8<br>9                                                                                                      |                                                              |                                                                                                                                                                                                                                     |              |
|     |                                                                                                                            |                                                              |                                                                                                                                                                                                                                     |              |
|     | Dwell N                                                                                                                    | VNT 2-DH3 2441MHz /                                          |                                                                                                                                                                                                                                     |              |
| LX. | Keysight Spectrum Analyzer - Swept SA<br>RL RF 50 Ω AC<br>Center Freq 2.4410000000 GHz                                     | SENSE:INT ALIGN                                              | AUTO 11:50:03 AM Oct 18, 2024                                                                                                                                                                                                       | 1            |
|     | Ref Offset 2.32 dB                                                                                                         | PNO: Fast Trig: Free Run<br>IFGain:Low #Atten: 30 dB         | TYPE WAANNA<br>DET PNNNN                                                                                                                                                                                                            |              |
| 1   | 0 dB/div Ref 20.00 dBm                                                                                                     |                                                              |                                                                                                                                                                                                                                     |              |
|     |                                                                                                                            |                                                              |                                                                                                                                                                                                                                     |              |
|     |                                                                                                                            |                                                              |                                                                                                                                                                                                                                     |              |
| 4   | 20.0                                                                                                                       |                                                              |                                                                                                                                                                                                                                     |              |
| 4   | 90.0 P                                                                                                                     |                                                              |                                                                                                                                                                                                                                     |              |
|     |                                                                                                                            | n an an haird a share an | a na shi ka sa ka sa<br>Ka sa ka    |              |
|     | 80.0                                                                                                                       |                                                              |                                                                                                                                                                                                                                     |              |
|     | 70.0                                                                                                                       |                                                              |                                                                                                                                                                                                                                     |              |
| Q   | Center 2.441000000 GHz<br>es BW 1.0 MHz                                                                                    | #VBW 3.0 MHz                                                 | Span 0 Hz<br>Sweep 31.60 s (10001 pts                                                                                                                                                                                               | 2            |
|     | G                                                                                                                          |                                                              | STATUS                                                                                                                                                                                                                              | <u> </u>     |
|     |                                                                                                                            |                                                              |                                                                                                                                                                                                                                     |              |
|     |                                                                                                                            |                                                              |                                                                                                                                                                                                                                     |              |



Report No.: TCT241009E017

|              | Ref Offset 2.32 dB<br>10 dB/div Ref 20.00 dBm<br>-∙9g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                                         | NNNN N                  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------|
|              | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 | ΔMkr1 390<br>-40.8                                      | .0 μs<br>3 dB           |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                 |                                                         |                         |
|              | 30.0<br>40.0<br>50.0<br>αν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | anan an an shain an                         |                                                         |                         |
| 3)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                 | and an              |                         |
|              | Center 2.441000000 GHz<br>Res BW 1.0 MHz<br>MKR MODE TRC SCL Χ<br>1 Δ2 1 t (Δ) 390.0 μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 | Spar<br>Sweep 10.00 ms (1000<br>DN WIDTH FUNCTION VALUE | n 0 Hz<br>01 pts)       |
|              | 2 F 1 t 486.0 µs<br>3 4 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Δ) -40.83 GB<br>-10.22 dBm                                                     |                                                         | E                       |
|              | 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                         |                         |
| 3)           | 11<br>SG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | m                                                                               | STATUS                                                  | •                       |
|              | لله المالية مالية مالية مالية مالية مالية مالية م<br>مالية مالية ممالية مالية مالي<br>مالية مالية مالي<br>مالية مالية مالية مالية مالية مالية مالية مالية مالية ماليماية مالية مالية ماليمالية مالية ماليمالية ماليمة مالي<br>ممالي ما | NT 3-DH1 2441MHz                                                                | GN AUTO 11:32:20 AM Oct                                 | 67 <b>X</b><br>18, 2024 |
|              | Ref Offset 2.32 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NO: Fast →→ Trig: Free Run<br>Gain:Low #Atten: 30 dB                            | Avg Type: Log-Pwr TRACE TYPE W<br>TYPE W<br>DET P       | N N N N N               |
|              | 0 dB/div Ref 20.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                                                         |                         |
| $\mathbf{S}$ | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 |                                                         |                         |
|              | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 |                                                         |                         |
| (            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                 |                                                         |                         |
|              | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and a solid sector provided as a sector sector by a sector barran sector by the |                                                         | <br>anaditida           |
|              | 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 |                                                         |                         |
|              | 70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 |                                                         |                         |
|              | Center 2.441000000 GHz<br>Res BW 1.0 MHz<br>sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | #VBW 3.0 MHz                                                                    | Spar<br>Sweep 31.60 s (1000<br>status                   | n 0 Hz<br>01 pts)       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                 |                                                         |                         |

| Center Freq 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PNO: Fast                                                                                          | SENSE:INT ALI<br>Trig Delay-500.0 µs<br>→ Trig: Video<br>#Atten: 30 dB           | GN AUTO<br>Avg Type: Log-Pwr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11:46:47 AM Oct 18, 2024<br>TRACE 1 2 3 4 5 6<br>TYPE WWWWWW<br>DET P. N N N N N                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IFGain:Low<br>Fset 2.32 dB<br>0.00 dBm                                                             | #Atten: 30 dB                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ∆Mkr1 1.640 ms<br>-42.83 dB                                                                     |  |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |  |
| S of the other sectors and the sectors of the secto |                                                                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TRIG LVL                                                                                        |  |
| -30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 162                                                                                                |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |  |
| -50.0 <mark>-50.0</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d Marchadada a da Marchada a da ara aray<br>Gara da jan Kang Ang aray a da pang aray ang aray a |  |
| -70.0<br>Center 2.441000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Span 0 Hz                                                                                       |  |
| Res BW 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X                                                                                                  | /BW 3.0 MHz<br>FUNCTION FUNCT<br>I2.83 dB                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D.00 ms (10001 pts)                                                                             |  |
| 2 F 1 t<br>3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 486.0 μs -10                                                                                       | 21 dBm                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |  |
| 5<br>6<br>7<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | =                                                                                               |  |
| 9<br>10<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · ·                                                                                             |  |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dwell NVNT 3-                                                                                      |                                                                                  | status<br>Accumulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /zer - Swept SA<br>50 Ω AC                                                                         |                                                                                  | GN AUTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11:47:20 AM Oct 18, 2024                                                                        |  |
| Center Freq 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41000000 GHZ<br>PNO: Fast<br>IFGain:Low                                                            | ➡ Trig: Free Run<br>#Atten: 30 dB                                                | Avg Type: Log-Pwr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TRACE 123456<br>TYPE<br>DET PNNNNN                                                              |  |
| Ref Off<br>10 dB/div Ref 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | iset 2.32 dB<br>0.00 dBm                                                                           |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |  |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |  |
| -10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |  |
| -30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |  |
| -40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |  |
| -50.0 <mark>1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <mark>h da na sa kina da na sa kabila sa sa na na na sa sa</mark> | <mark>terentelen er ten bill verkenden begreuteten berekenden berekenden.</mark> | and a fill of a | <mark>rahayan selé kapakan kini déné karjak</mark>                                              |  |
| -60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |  |
| Center 2.441000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Span 0 Hz                                                                                       |  |
| Res BW 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | #\<br>#\                                                                                           | /BW 3.0 MHz                                                                      | Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31.60 s (10001 pts)                                                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |  |

TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT241009E017

| -40.0 <b>40.4 (1997)</b><br>-50.0 <b>40.4 (1997)</b><br>-60.0 |                   |      |                                       |
|---------------------------------------------------------------|-------------------|------|---------------------------------------|
| Center 2.441000000 GH<br>Res BW 1.0 MHz                       | Hz<br>#VBW 3.0 MI | Hz S | Span 0 Hz<br>weep 31.60 s (10001 pts) |
|                                                               |                   |      |                                       |

## Dwell NVNT 3-DH5 2441MHz One Burst Keysight NSE:INT ALIGN Trig Delay-500.0 µs Trig: Video #Atten: 30 dB KI RL Center Freq 2.441000000 GHz

Ref Offset 2.32 dB Ref 20.00 dBm

Center 2.441000000 GHz Res BW 1.0 MHz

ım Analyzer - Swept SA

Ref Offset 2.32 dB Ref 20.00 dBm

Center Freg 2.441000000 GHz

<u>Δ2 1 t (Δ)</u> F 1 t

Keysight Spectru

10 dB/div

X sahahan di Giran kanan akahan jira kanan di sa

10 d Log

PNO: Fast ↔→ IFGain:Low

1<u>4</u>2 \_

PNO: Fast ++++

2.890 ms (Δ) 352.0 μs

#VBW 3.0 MHz

Dwell NVNT 3-DH5 2441MHz Accumulated

Trig: Free Run #Atten: 30 dB

-42.67 dB -15.21 dBm

in ann deallachadh ad

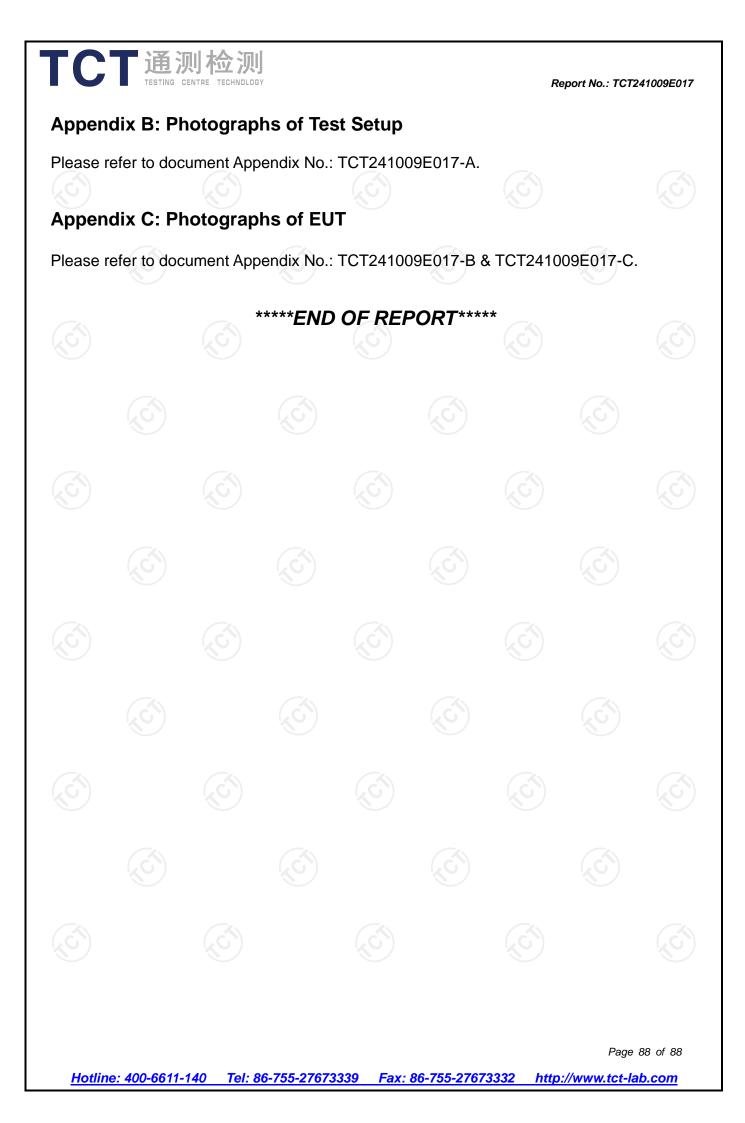
## Report No.: TCT241009E017

11:47:38 AM Oct 18, 2024 TRACE 1 2 3 4 5

TYP DE

ΔMkr1 2.890 ms -42.67 dB

Span 0 Hz Sweep 10.00 ms (10001 pts)


11:48:11 AM Oct 18, 2024 TRACE **1 2 3 4 5 6** TYPE WWWWWW DET P NNNNN

Avg Type: Log-Pwr

the sector blood by the set of the sector by the set of a set of the set of the

STATUS

Avg Type: Log-Pwr

