

SAR TEST REPORT

For

Fujian Morefun Electronic Technology Co., Ltd.

A-602, No.10 Building, HaiXi Innovation Area, High-Tech Zone, Fuzhou, Fujian, China

FCC ID: 2AQREPOS10Q

Report Type: Original Report		Product Type: Smart POS Terminal	
Report Number:	RXM200929050-SA		
Report Date:	2020-11-08		
Reviewed By:	Alvin Huang Lab Manager Lab Manager		
	Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn		

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "★".

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Attestation of Test Results				
	EUT Description	Smart POS Terminal		
	Tested Model	POS10Q		
EUT Information	FCC ID	2AQREPOS10Q		
inioi mation	Serial Number	RXM200929050-SA-S1		
	Test Date	2020/10/30 to 2020/10/31		
MO	DE	Max. SAR Level(s) Reported(W/kg)	Limit (W/kg)	
WCDMA Band 2	1g Body SAR	0.24		
WCDMA Band 4	1g Body SAR	1.14		
WCDMA Band 5	1g Body SAR	0.21		
LTE Band 2	1g Body SAR	1.25		
LTE Band 4	1g Body SAR	0.78		
LTE Band 5	1g Body SAR	0.24		
LTE Band 7	1g Body SAR	0.65	1.6	
LTE Band 12	1g Body SAR	0.22		
LTE Band 13	1g Body SAR	0.31		
LTE Band 25	1g Body SAR	1.12		
LTE Band 26	1g Body SAR	0.28		
Simultaneous(tx)	1g Body SAR	1.44		
Simultaneous(tx)	1g Body SAR	1.44(Hotspot)		
WCDMA Band 2	10g Hand Held SAR	0.06		
WCDMA Band 4	10g Hand Held SAR	0.04		
WCDMA Band 5	10g Hand Held SAR	0.54		
LTE Band 2	10g Hand Held SAR	2.36		
LTE Band 4	10g Hand Held SAR	1.86		
LTE Band 5	10g Hand Held SAR	0.21		
LTE Band 7	10g Hand Held SAR	3.25	4.0	
LTE Band 12	10g Hand Held SAR	0.53		
LTE Band 13	10g Hand Held SAR	0.77		
LTE Band 25	10g Hand Held SAR	3.16		
LTE Band 26	10g Hand Held SAR	0.85		
Simultaneous(tx)	10g Hand Held SAR	3.33		
Simultaneous(tx)	10g Hand Held SAR	3.33 (Hotspot)		

SAR Test Report 2 of 79

	FCC 47 CFR part 2.1093 Radiofrequency radiation exposure evaluation: portable devices
	IEEE1528:2013 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques IEC 62209-2:2010
Applicable Standards	Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices-Human models, instrumentation, and procedures-Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
	KDB procedures KDB 447498 D01 General RF Exposure Guidance v06 KDB 648474 D04 Handset SAR v01r03 KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 KDB 865664 D02 RF Exposure Reporting v01r02 KDB 941225 D01 3G SAR Procedures v03r01
	KDB 941225 D05 SAR for LTE Devices v02r05 KDB 941225 D06 Hotspot Mode v02r01 KDB 248227 D01 802.11 Wi-Fi SAR v02r02

Report No.: RXM200929050-SA

Note: This wireless device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in **FCC 47 CFR part 2.1093** and has been tested in accordance with the measurement procedures specified in IEEE 1528-2013 and RF exposure KDB procedures.

The results and statements contained in this report pertain only to the device(s) evaluated.

SAR Test Report 3 of 79

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	5
EUT DESCRIPTION	6
TECHNICAL SPECIFICATION	6
REFERENCE, STANDARDS, AND GUIDELINES	7
SAR LIMITS	8
FACILITIES	9
DESCRIPTION OF TEST SYSTEM	10
EQUIPMENT LIST AND CALIBRATION	16
EQUIPMENTS LIST & CALIBRATION INFORMATION	
SAR MEASUREMENT SYSTEM VERIFICATION	17
LIQUID VERIFICATION	
SYSTEM ACCURACY VERIFICATION	
SAR SYSTEM VALIDATION DATA	
EUT TEST STRATEGY AND METHODOLOGY	
TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR	
EAR/TILT POSITION	
TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS	
TEST DISTANCE FOR SAR EVALUATION.	
SAR EVALUATION PROCEDURE	
PROVISION APPLICABLE	
TEST PROCEDURE	
RADIO CONFIGURATION	
MAXIMUM TARGET OUTPUT POWER	34
TEST RESULTS:	
STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	
ANTENNA DISTANCE TO EDGE	
SAR MEASUREMENT RESULTS	
SAR TEST DATA	
SAR SIMULTANEOUS TRANSMISSION DESCRIPTION	
SAR PLOTS	
APPENDIX A MEASUREMENT UNCERTAINTY	
APPENDIX B EUT TEST POSITION PHOTOS	77
APPENDIX C PROBE CALIBRATION CERTIFICATES	78
APPENDIX D DIPOLE CALIBRATION CERTIFICATES	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision	
0	RXM200929050-SA	Original Report	2020-11-08	

Report No.: RXM200929050-SA

SAR Test Report 5 of 79

EUT DESCRIPTION

This report has been prepared on behalf of *Fujian Morefun Electronic Technology Co., Ltd.* and their product *Smart POS Terminal*, Model: *POS10Q*, FCC ID: *2AQREPOS10Q* or the EUT (Equipment under Test) as referred to in the rest of this report.

Report No.: RXM200929050-SA

Technical Specification

Device Type:	Portable	
Exposure Category:	Population / Uncontrolled	
Antenna Type(s):	Internal Antenna	
DTM Type:	Class B	
Proximity sensor for SAR reduction:	None	
Body-Worn Accessories:	Headset	
Face-Head Accessories:	None	
Operation Mode:	WCDMA(R99 (Voice+Data), HSDPA/HSUPA/HSPA+), FDD-LTE, WLAN, Bluetooth	
Frequency Band:	WCDMA Band 2: 1850-1910 MHz(TX); 1930-1990 MHz(RX) WCDMA Band 4: 1710-1755 MHz(TX); 2110-2155 MHz(RX) WCDMA Band 5: 824-849 MHz(TX); 869-894 MHz(RX) LTE Band 2: 1850-1910 MHz(TX); 1930-1990 MHz(RX) LTE Band 4: 1710-1755 MHz(TX); 2110-2155 MHz(RX) LTE Band 5: 824-849 MHz(TX); 869-894 MHz(RX) LTE Band 7: 2500-2570 MHz(TX); 2620-2690MHz(RX) LTE Band 12: 698-716 MHz(TX); 729-746 MHz(RX) LTE Band 13: 777-787 MHz(TX); 746-756 MHz(RX) LTE Band 25: 1850-1915 MHz(TX); 1940-1985 MHz(RX) LTE Band 26: 814-849 MHz(TX); 859-894 MHz(RX) WLAN (2.4G): 2412~2462 MHz (802.11b/g/n20), 2422~2452 MHz (802.11n40) Bluetooth: 2402 MHz-2480 MHz	
Conducted RF Power:	WCDMA Band 2: 22.61 dBm WCDMA Band 4: 22.51 dBm WCDMA Band 5: 22.91 dBm LTE Band 2: 23.04 dBm LTE Band 4: 23.16 dBm LTE Band 5: 22.99 dBm LTE Band 7: 22.39 dBm LTE Band 7: 22.39 dBm LTE Band 12: 22.44 dBm LTE Band 13: 22.26 dBm LTE Band 25: 22.31 dBm LTE Band 26: 22.83 dBm WLAN (2.4G): 4.00 dBm Bluetooth(BDR/EDR): 3.25 dBm BLE: 2.56dBm	
Power Source:	Rechargeable Battery	
Normal Operation:	: Hand Held and Body Support	

SAR Test Report 6 of 79

^{*}All measurement and test data in this report was gathered from production sample serial number: RXM200929050-SA-S1 (Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2020-09-30.

REFERENCE, STANDARDS, AND GUIDELINES

FCC:

The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

Report No.: RXM200929050-SA

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass.

CE:

The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 2 mW/g as recommended by EN62209-1 for an uncontrolled environment. According to the Standard, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in Europe is 2 mW/g average over 10 gram of tissue mass.

The test configurations were laid out on a specially designed test fixture to ensure the reproducibility of measurements. Each configuration was scanned for SAR. Analysis of each scan was carried out to characterize the above effects in the device.

SAR Test Report 7 of 79

Report No.: RXM200929050-SA

SAR Limits

FCC Limit(1g Tissue)

	SAR (W/kg)		
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)	
Spatial Average (averaged over the whole body)	0.08	0.4	
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0	
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0	

CE Limit(10g Tissue)

	SAR (W/kg)		
	(General Population /	(Occupational /	
EXPOSURE LIMITS	Uncontrolled Exposure	Controlled Exposure	
	Environment)	Environment)	
Spatial Average (averaged over the whole body)	0.08	0.4	
Spatial Peak (averaged over any 10 g of tissue)	2.0	10	
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0	

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

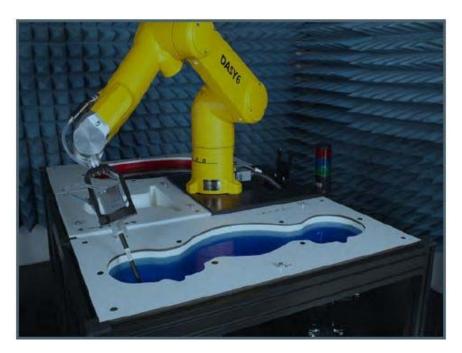
General Population/Uncontrolled environments Spatial Peak limit 1.6W/kg (FCC) & 2 W/kg (CE) applied to the EUT.

SAR Test Report 8 of 79

FACILITIES

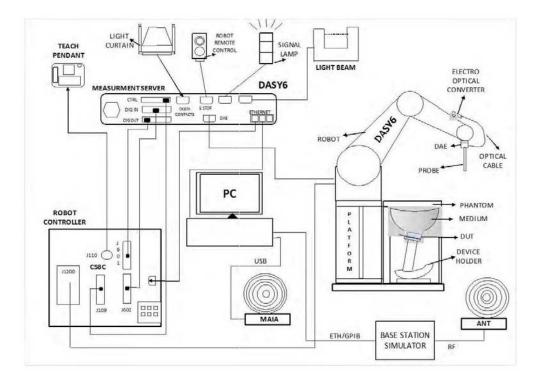
The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect data is located at 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

Report No.: RXM200929050-SA


The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

SAR Test Report 9 of 79


DESCRIPTION OF TEST SYSTEM

These measurements were performed with the automated near-field scanning system DASY6 from Schmid & Partner Engineering AG (SPEAG) which is the Fifth generation of the system shown in the figure hereinafter:

DASY6 System Description

The DASY6 system for performing compliance tests consists of the following items:

SAR Test Report 10 of 79

- A standard high precision 6-axis robot (Staubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal application, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7 professional operating system and the DASY52 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

DASY6 Measurement Server

The DASY6 measurement server is based on a PC/104 CPU board with a 400 MHz Intel ULV Celeron, 128 MB chip-disk and 128 MB RAM. The necessary circuits for communication with the DAE4 (or DAE3) electronics box, as well as the 16-bit AD converter system for optical detection and digital I/O interface are contained on the DASY6 I/O board, which is directly connected to the PC/104 bus of the CPU board.

Report No.: RXM200929050-SA

The measurement server performs all real-time data evaluations of field measurements and surface detection, controls robot movements, and handles safety operations. The PC operating system cannot interfere with these time-critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port, which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Connection of devices from any other supplier could seriously damage the measurement server.

Data Acquisition Electronics

The data acquisition electronics (DAE4) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of both the DAE4 as well as of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

SAR Test Report 11 of 79

Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in TSL (rotation around probe axis) ± 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μ W/g to > 100 mW/g Linearity: \pm 0.2 dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

SAM Twin Phantom

The SAM Twin Phantom (shown in front of DASY6) is a fiberglass shell phantom with shell thickness 2 mm, except in the ear region where the thickness is increased to 6 mm. The phantom has three measurement areas: 1) Left Head, 2) Right Head, and 3) Flat Section. For larger devices, the use of the ELI-Phantom (shown behind DASY6) is required. For devices such as glasses with a wireless link, the Face Down Phantom is the most suitable (between the SAM Twin and ELI phantoms).

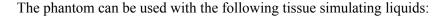
When the phantom is mounted inside allocated slot of the DASY6 platform, phantom reference points can be taught directly in the DASY5 V5.2 software. When the DASY6 platform is used to mount the

Phantom, some of the phantom teaching points cannot be reached by the robot in DASY5 V5.2. A special tool called P1a-P2aX-Former is provided to transform two of the three points, P1 and P2, to reachable locations. To use these new teaching points, a revised phantom configuration file is required.

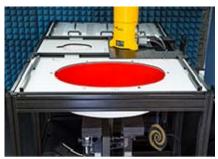
In addition to our standard broadband liquids, the phantom can be used with the following tissue simulating liquids:

Report No.: RXM200929050-SA

Sugar-water-based liquids can be left permanently in the phantom. Always cover the liquid when the system is not in use to prevent changes in liquid parameters due to water evaporation.


DGBE-based liquids should be used with care. As DGBE is a softener for most plastics, the liquid should be taken out of the phantom, and the phantom should be dried when the system is not in use (desirable at least once a week).

Do not use other organic solvents without previously testing the solvent resistivity of the phantom. Approximately 25 liters of liquid is required to fill the SAM Twin phantom.


SAR Test Report 12 of 79

ELI Phantom

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30MHz to 6 GHz. ELI is fully compatible with the latest draft of the standard IEC 62209-2 and the use of all known tissue simulating liquids. ELI has been optimized for performance and can be integrated into a SPEAG standard phantom table. A cover is provided to prevent evaporation of water and changes in liquid parameters. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points.

Sugar-water-based liquids can be left permanently in the phantom.
 Always cover the liquid when the system is not in use to prevent changes in liquid parameters due to water evaporation.

- DGBE-based liquids should be used with care. As DGBE is a softener for most plastics, the liquid should
 be taken out of the phantom, and the phantom should be dried when the system is not in use (desirable at
 least once a week).
- Do not use other organic solvents without previously testing the solvent resistivity of the phantom.

Approximately 25 liters of liquid is required to fill the ELI phantom.

Robots

The DASY6 system uses the high-precision industrial robots TX60L, TX90XL, and RX160L from St aubli SA (France). The TX robot family - the successor of the well-known RX robot family - continues to offer the features important for DASY6 applications:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchrony motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

The robots are controlled by the Staubli CS8c robot controllers. All information regarding the use and maintenance of the robot arm and the robot controller is provided

SAR Test Report 13 of 79

Calibration Frequency Points for EX3DV4 E-Field Probes SN: 7522 Calibrated: 2020/04/01

Calibration Frequency	Frequency Range(MHz)		Conversion Factor		
Point(MHz)	From	To	X	Y	Z
750 Head	650	850	9.92	9.92	9.92
900 Head	850	1000	9.4	9.4	9.4
1750 Head	1650	1850	8.21	8.21	8.21
1900 Head	1850	2000	7.95	7.95	7.95
2300 Head	2200	2400	7.53	7.53	7.53
2450 Head	2400	2550	7.15	7.15	7.15
2600 Head	2550	2700	7.04	7.04	7.04
5200 Head	5090	5250	5.2	5.2	5.2
5300 Head	5250	5410	4.96	4.96	4.96
5600 Head	5490	5700	4.55	4.55	4.55
5800 Head	5700	5910	4.65	4.65	4.65

Report No.: RXM200929050-SA

Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 15mm 2 step integral, with 1.5mm interpolation used to locate the peak SAR area used for zoom scan assessments.

Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

Zoom Scan (Cube Scan Averaging)

The averaging zoom scan volume utilized in the DASY5 software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1g cube is 10mm, with the side length of the 10g cube is 21.5mm.

When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 7 x7 x 7 (5mmx5mmx5mm) providing a volume of 30 mm in the X & Y & Z axis.

SAR Test Report 14 of 79

Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEC 62209-1:2016

Recommended Tissue Dielectric Parameters for Head and Body

Table A.3 - Dielectric properties of the head tissue-equivalent liquid

Report No.: RXM200929050-SA

Frequency	Relative permittivity	Conductivity (σ)
MHz	$arepsilon_{ m r}$	S/m
300	45,3	0,87
450	43,5	0,87
750	41,9	0,89
835	41,5	0,90
900	41,5	0,97
1 450	40,5	1,20
1 500	40,4	1,23
1 640	40,2	1,31
1 750	40,1	1,37
1 800	40,0	1,40
1 900	40,0	1,40
2 000	40,0	1,40
2 100	39,8	1,49
2 300	39,5	1,67
2 450	39,2	1,80
2 600	39,0	1,96
3 000	38,5	2,40
3 500	37,9	2,91
4 000	37,4	3,43
4 500	36,8	3,94
5 000	36,2	4,45
5 200	36,0	4,66
5 400	35,8	4,86
5 600	35,5	5,07
5 800	35,3	5,27
6 000	35,1	5,48

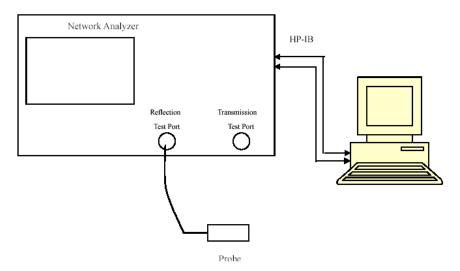
NOTE For convenience, permittivity and conductivity values at those frequencies which are not part of the original data provided by Drossos et al. [33] or the extension to 5 800 MHz are provided (i.e. the values shown in italics). These values were linearly interpolated between the values in this table that are immediately above and below these values, except the values at 6 000 MHz that were linearly extrapolated from the values at 3 000 MHz and 5 800 MHz.

SAR Test Report 15 of 79

EQUIPMENT LIST AND CALIBRATION

Equipments List & Calibration Information

Equipment	Model	S/N	Calibration Date	Calibration Due Date
DASY5 Test Software	DASY52 52.10.2	N/A	NCR	NCR
DASY6 Measurement Server	DASY6 6.0.31	N/A	NCR	NCR
Data Acquisition Electronics	DAE4	1562	2020/03/03	2021/03/02
E-Field Probe	EX3DV4	7522	2020/04/01	2021/03/31
Mounting Device	MD4HHTV5	SD 000 H01 KA	NCR	NCR
SAM Twin Phantom	SAM-Twin V8.0	1962	NCR	NCR
Dipole, 750MHz	D750V3	1194	2020/1/13	2023/1/12
Dipole, 1800MHz	D1800V2	2d018	2020/10/25	2023/10/24
Dipole, 1900MHz	D1900V2	5d231	2020/1/14	2023/1/13
Dipole,2450MHz	D2450V2	751	2020/10/13	2023/10/12
Dipole, 2600MHz	D2600V2	1162	2019/10/2	2022/10/1
Simulated Tissue Liquid Head	HBBL600-10000V6	180622-2	Each	Time
Network Analyzer	8753D	3410A08288	2020/7/31	2021/7/30
Dielectric Assessment Kit	DAK-3.5	1248	NCR	NCR
MXG Analog Signal Generator	N5181A	MY48180408	2020/7/31	2021/7/30
USB wideband power sensor	U2021XA	MY54250003	2020/7/31	2021/7/30
Power Amplifier	5S1G4	71377	NCR	NCR
Directional Coupler	4242-10	3307	NCR	NCR
Attenuator	6dB	773-6	NCR	NCR
Wireless communication tester	8960	MY48367501	2020/7/31	2021/7/30
WIDEBAND RADIO COMMUNICATION TESTER	CMW500	116218	2020/7/31	2021/7/30


Report No.: RXM200929050-SA

SAR Test Report 16 of 79

Report No.: RXM200929050-SA

SAR MEASUREMENT SYSTEM VERIFICATION

Liquid Verification

Liquid Verification Setup Block Diagram

Liquid Verification Results

-		_	Liquid Parameter		Target Value		lta 6)	T. 1
Frequency (MHz)	- I lanna I vne		O' (S/	$\epsilon_{ m r}$	o (S/	$\Delta arepsilon_{ m r}$	ΔO	Tolerance (%)
			m)		m)			
704	Simulated Tissue Liquid Head	43.081	0.874	42.18	0.89	2.14	-1.8	±5
707.5	Simulated Tissue Liquid Head	43.28	0.876	42.16	0.89	2.66	-1.57	±5
711	Simulated Tissue Liquid Head	42.673	0.876	42.14	0.89	1.26	-1.57	±5
750	Simulated Tissue Liquid Head	42.972	0.888	41.90	0.89	2.56	-0.22	±5
782	Simulated Tissue Liquid Head	42.592	0.886	41.75	0.89	2.02	-0.45	±5
821.5	Simulated Tissue Liquid Head	42.39	0.885	41.55	0.90	2.02	-1.67	±5
826.4	Simulated Tissue Liquid Head	41.507	0.894	41.54	0.90	-0.08	-0.67	±5
829	Simulated Tissue Liquid Head	41.386	0.892	41.53	0.90	-0.35	-0.89	±5
831.5	Simulated Tissue Liquid Head	41.506	0.901	41.5	0.90	0.01	0.11	±5
836.5	Simulated Tissue Liquid Head	41.609	0.928	41.5	0.90	0.26	3.11	±5
836.6	Simulated Tissue Liquid Head	41.966	0.924	41.5	0.90	1.12	2.67	±5
841.5	Simulated Tissue Liquid Head	42.595	0.935	41.5	0.90	2.64	3.89	±5
844	Simulated Tissue Liquid Head	41.749	0.941	41.5	0.91	0.6	3.41	±5
846.6	Simulated Tissue Liquid Head	41.607	0.946	41.5	0.91	0.26	3.96	±5

^{*}Liquid Verification above was performed on 2020/10/30.

SAR Test Report 17 of 79

Euganana		Liquid Parameter		Target Value		Delta (%)		T. I
Frequency (MHz)	Liquid Type	$\epsilon_{ m r}$	O' (S/ m)	$\epsilon_{ m r}$	O' (S/ m)	$\Delta arepsilon_{ m r}$	ΔƠ	Tolerance (%)
1712.4	Simulated Tissue Liquid Head	40.947	1.341	40.13	1.34	2.04	0.07	±5
1720	Simulated Tissue Liquid Head	40.551	1.374	40.13	1.35	1.05	1.78	±5
1732.5	Simulated Tissue Liquid Head	41.924	1.372	40.12	1.36	4.5	0.88	±5
1732.6	Simulated Tissue Liquid Head	40.727	1.378	40.11	1.36	1.54	1.32	±5
1745	Simulated Tissue Liquid Head	41.439	1.388	40.1	1.37	3.34	1.31	±5
1752.6	Simulated Tissue Liquid Head	41.259	1.4	40.1	1.38	2.89	1.45	±5
1800	Simulated Tissue Liquid Head	40.135	1.425	40.0	1.40	0.34	1.79	±5

^{*}Liquid Verification above was performed on 2020/10/30.

Emanuel		Liquid Parameter		Target Value		Delta (%)		T
Frequency (MHz)	Liquid Type	£ _r	O' (S/ m)	ε _r	O' (S/ m)	$\Delta arepsilon_{ m r}$	ΔΟ	Tolerance (%)
1850.2	Simulated Tissue Liquid Head	39.49	1.373	40.0	1.40	-1.28	-1.93	±5
1860	Simulated Tissue Liquid Head	39.765	1.377	40.0	1.40	-0.59	-1.64	±5
1880	Simulated Tissue Liquid Head	39.882	1.395	40.0	1.40	-0.3	-0.36	±5
1882.5	Simulated Tissue Liquid Head	40.694	1.409	40.0	1.40	1.74	0.64	±5
1900	Simulated Tissue Liquid Head	40.004	1.43	40.0	1.40	0.01	2.14	±5
1907.6	Simulated Tissue Liquid Head	40.177	1.432	40.0	1.40	0.44	2.29	±5
1905	Simulated Tissue Liquid Head	40.396	1.427	40.0	1.40	0.99	1.93	±5

^{*}Liquid Verification above was performed on 2020/10/31.

		Liquid Parameter		Target Value		Delta (%)		T
Frequency (MHz)	Liquid Type	ε _r	(S/ m)	$\epsilon_{ m r}$	(S/ m)	$\Delta arepsilon_{ m r}$	ΔƠ	Tolerance (%)
2412	Simulated Tissue Liquid Head	38.498	1.817	39.28	1.77	-1.99	2.66	±5
2437	Simulated Tissue Liquid Head	38.561	1.831	39.23	1.79	-1.71	2.29	±5
2450	Simulated Tissue Liquid Head	38.266	1.859	39.20	1.80	-2.38	3.28	±5
2462	Simulated Tissue Liquid Head	38.56	1.872	39.18	1.81	-1.58	3.43	±5
2510	Simulated Tissue Liquid Head	38.565	1.908	39.12	1.86	-1.42	2.58	±5
2535	Simulated Tissue Liquid Head	38.104	1.925	39.09	1.89	-2.52	1.85	±5

^{*}Liquid Verification above was performed on 2020/10/31.

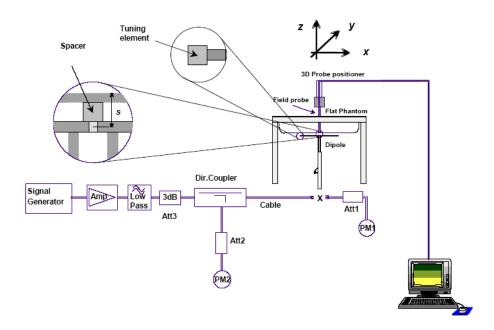
SAR Test Report 18 of 79

T.			Liquid Parameter		Target Value		lta ⁄6)	T. 1
Frequency (MHz)	Liquid Type	£ _r	O' (S/ m)	£ _r	O' (S/ m)	$\Delta \epsilon_{ m r}$	ΔΟ	Tolerance (%)
2560	Simulated Tissue Liquid Head	38.909	1.963	39.06	1.92	-0.39	2.24	±5
2600	Simulated Tissue Liquid Head	38.066	1.995	39.0	1.96	-2.39	1.79	±5

^{*}Liquid Verification above was performed on 2020/10/31.

SAR Test Report 19 of 79

System Accuracy Verification


Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

Report No.: RXM200929050-SA

The spacing distances in the **System Verification Setup Block Diagram** is given by the following:

- a) $s = 15 \text{ mm} \pm 0.2 \text{ mm for } 300 \text{ MHz} \le f \le 1000 \text{ MHz};$
- b) $s = 10 \text{ mm} \pm 0.2 \text{ mm for } 1000 \text{ MHz} < f \le 3000 \text{ MHz};$
- c) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for 3 000 MHz $< f \le 6$ 000 MHz.

System Verification Setup Block Diagram

System Accuracy Check Results

Date	Frequency Band (MHz)	Liquid Type	Input Pow er (mW)		asured SAR V/kg)	Normalized to 1W (W/kg)	Target Value (W/Kg)	Delta (%)	Tolerance (%)
2020/10/30	750	Head	100	1g	0.842	8.42	8.55	-1.520	±10
2020/10/30	1800	Head	100	1g	3.62	36.2	39.3	-7.888	±10
2020/10/31	1900	Head	100	1g	3.83	38.3	40.3	-4.963	±10
2020/10/31	2450	Head	100	1g	5.21	52.1	53.0	-1.698	±10
2020/10/31	2600	Head	100	1g	5.92	59.2	55.4	6.859	±10

^{*}The SAR values above are normalized to 1 Watt forward power.

SAR Test Report 20 of 79

SAR SYSTEM VALIDATION DATA

System Performance 750 MHz Head

DUT: Dipole 750MHz; Type: D750V3; Serial: 1194

Communication System: UID 0, CW (0); Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.888$ S/m; $\varepsilon_r = 41.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7522; ConvF(9.92, 9.92, 9.92) @ 750 MHz;

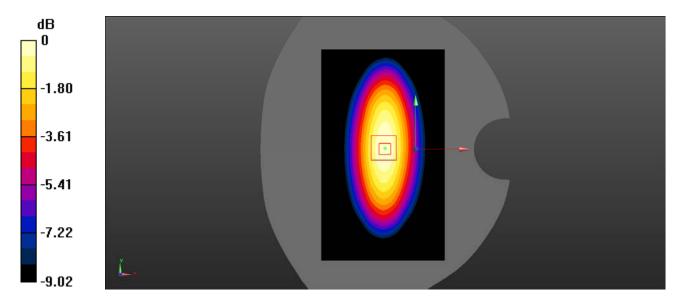
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1562; Calibrated: 3/3/2020

Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA; Serial: 1962

• Measurement SW: DASY52, Version 52.10 (2);

Head 750MHz Pin=100mW/Area Scan (101x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.09 W/kg


Head 750MHz Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 31.19 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.19 W/kg

SAR(1 g) = 0.842 W/kg; SAR(10 g) = 0.551 W/kg

Maximum value of SAR (measured) = 0.939 W/kg

0 dB = 0.939 W/kg = -0.27 dBW/kg

SAR Test Report 21 of 79

System Performance 1800 MHz Head

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: 2d018

Communication System: UID 0, CW (0); Frequency: 1800 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1800 MHz; $\sigma = 1.425$ S/m; $\varepsilon_r = 40.135$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7522; ConvF(8.21, 8.21, 8.21) @ 1800 MHz;

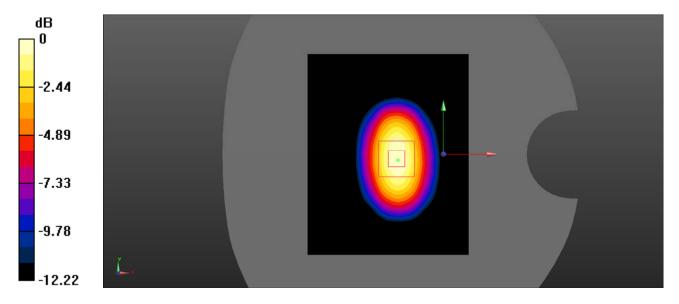
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1562; Calibrated: 3/3/2020

Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA; Serial: 1962

• Measurement SW: DASY52, Version 52.10 (2);

Head 1800MHz Pin=100mW/Area Scan (81x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 4.85 W/kg


Head 1800MHz Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.16 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 6.19 W/kg

SAR(1 g) = 3.62 W/kg; SAR(10 g) = 1.81 W/kg

Maximum value of SAR (measured) = 4.13 W/kg

0 dB = 4.13 W/kg = 6.16 dBW/kg

SAR Test Report 22 of 79

System Performance 1900 MHz Head

DUT: Dipole 1900MHz; Type: D1900V2; Serial: 5d231

Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.43$ S/m; $\varepsilon_r = 40.004$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7522; ConvF(7.95, 7.95, 7.95) @ 1900 MHz;

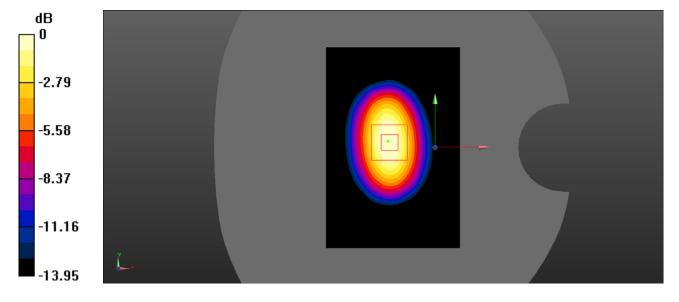
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1562; Calibrated: 3/3/2020

Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA; Serial: 1962

Measurement SW: DASY52, Version 52.10 (2);

Head 1900MHz Pin=100mW/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 4.19 W/kg


Head 1900MHz Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.62 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 6.19 W/kg

SAR(1 g) = 3.83W/kg; SAR(10 g) = 2.03 W/kg

Maximum value of SAR (measured) = 4.63 W/kg

0 dB = 4.63 W/kg = 6.66 dBW/kg

SAR Test Report 23 of 79

System Performance 2450 MHz Head

DUT: Dipole 2450MHz; Type: D2450V2; Serial: 751

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.859$ S/m; $\varepsilon_r = 38.266$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7522; ConvF(7.15, 7.15, 7.15) @ 2450 MHz;

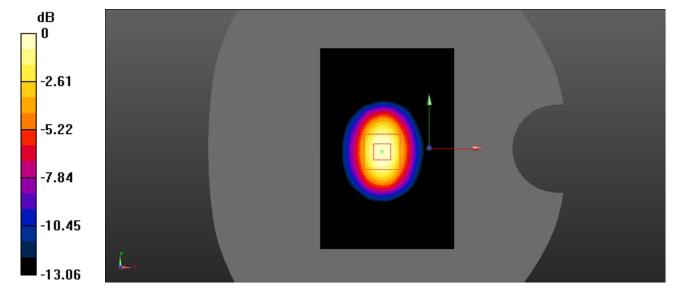
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1562; Calibrated: 3/3/2020

Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA; Serial: 1962

Measurement SW: DASY52, Version 52.10 (2);

Head 2450MHz Pin=100mW/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 5.65 W/kg


Head 2450MHz Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 42.16 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 9.16 W/kg

SAR(1 g) = 5.21 W/kg; SAR(10 g) = 2.39 W/kg

Maximum value of SAR (measured) = 5.75 W/kg

0 dB = 5.75 W/kg = 7.60 dBW/kg

SAR Test Report 24 of 79

System Performance 2600 MHz Head

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1073

Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2600 MHz; $\sigma = 1.995 \text{ S/m}$; $\varepsilon_r = 38.066$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7522; ConvF(7.04, 7.04, 7.04) @ 2600 MHz;

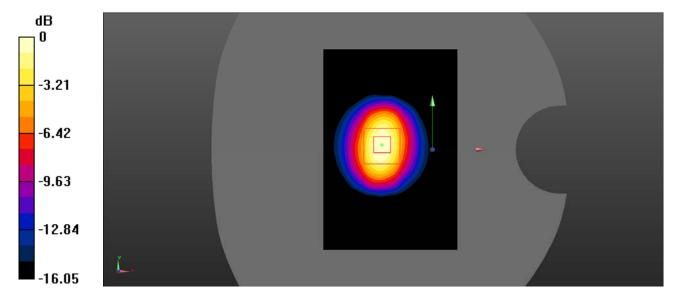
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1562; Calibrated: 3/3/2020

Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA; Serial: 1962

• Measurement SW: DASY52, Version 52.10 (2);

Head 2600MHz Pin=100mW/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 7.86 W/kg


Head 2600MHz Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

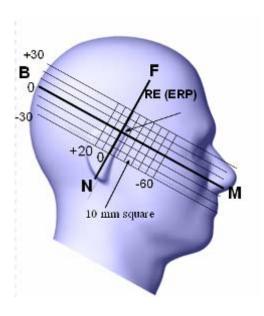
Reference Value = 53.74 V/m; Power Drift = -0.11 dB

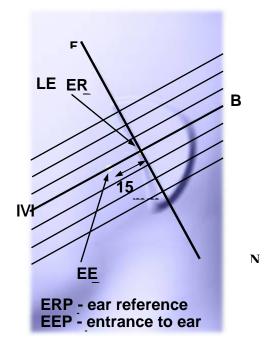
Peak SAR (extrapolated) = 10.2 W/kg

SAR(1 g) = 5.92 W/kg; SAR(10 g) = 2.52 W/kg

Maximum value of SAR (measured) = 8.15 W/kg

0 dB = 8.15 W/kg = 9.11 dBW/kg


SAR Test Report 25 of 79


EUT TEST STRATEGY AND METHODOLOGY

Test Positions for Device Operating Next to a Person's Ear

This category includes most wireless handsets with fixed, retractable or internal antennas located toward the top half of the device, with or without a foldout, sliding or similar keypad cover. The handset should have its earpiece located within the upper ½ of the device, either along the centerline or off-centered, as perceived by its users. This type of handset should be positioned in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point". The "test device reference point" should be located at the same level as the center of the earpiece region. The "vertical centerline" should bisect the front surface of the handset at its top and bottom edges. A "ear reference point" is located on the outer surface of the head phantom on each ear spacer. It is located 1.5 cm above the center of the ear canal entrance in the "phantom reference plane" defined by the three lines joining the center of each "ear reference point" (left and right) and the tip of the mouth.

A handset should be initially positioned with the earpiece region pressed against the ear spacer of a head phantom. For the SCC-34/SC-2 head phantom, the device should be positioned parallel to the "N-F" line defined along the base of the ear spacer that contains the "ear reference point". For interim head phantoms, the device should be positioned parallel to the cheek for maximum RF energy coupling. The "test device reference point" is aligned to the "ear reference point" on the head phantom and the "vertical centerline" is aligned to the "phantom reference plane". This is called the "initial ear position". While maintaining these three alignments, the body of the handset is gradually adjusted to each of the following positions for evaluating SAR:

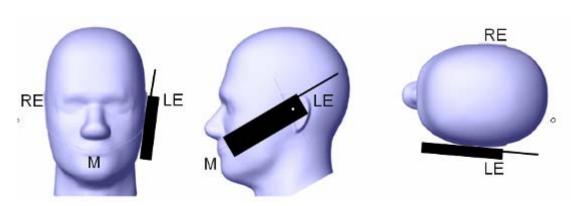
Report No.: RXM200929050-SA

SAR Test Report 26 of 79

Cheek/Touch Position

The device is brought toward the mouth of the head phantom by pivoting against the "ear reference point" or along the "N-F" line for the SCC-34/SC-2 head phantom.

Report No.: RXM200929050-SA


This test position is established:

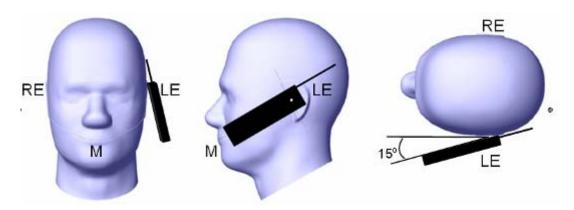
When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom.

(or) When any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom.

For existing head phantoms – when the handset loses contact with the phantom at the pivoting point, rotation should continue until the device touches the cheek of the phantom or breaks its last contact from the ear spacer.

Cheek / Touch Position

Ear/Tilt Position


With the handset aligned in the "Cheek/Touch Position":

- 1) If the earpiece of the handset is not in full contact with the phantom's ear spacer (in the "Cheek/Touch position") and the peak SAR location for the "Cheek/Touch" position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer.
- 2) (otherwise) The handset should be moved (translated) away from the cheek perpendicular to the line passes through both "ear reference points" (note: one of these ear reference points may not physically exist on a split head model) for approximate 2-3 cm. While it is in this position, the device handset is tilted away from the mouth with respect to the "test device reference point" until the inside angle between the vertical centerline on the front surface of the phone and the horizontal line passing through the ear reference point is by 15 80°. After the tilt, it is then moved (translated) back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15° so that the device and its antenna would touch the phantom simultaneously. This test position may require a device holder or positioner to achieve the translation and tilting with acceptable positioning repeatability.

If a device is also designed to transmit with its keypad cover closed for operating in the head position, such positions should also be considered in the SAR evaluation. The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tilt/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s). If the transmission band of the test device is less than 10 MHz, testing at the high and low frequency channels is optional.

SAR Test Report 27 of 79

Ear /Tilt 15° Position

Test positions for body-worn and other configurations

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested.

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components.

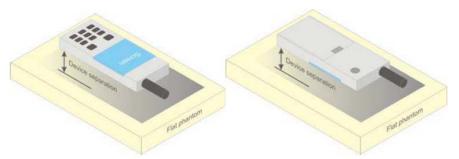


Figure 5 - Test positions for body-worn devices

Test Distance for SAR Evaluation

For this case the EUT(Equipment Under Test) is set 0mm away from the phantom, the test distance is 0mm.

SAR Test Report 28 of 79

SAR Evaluation Procedure

The evaluation was performed with the following procedure:

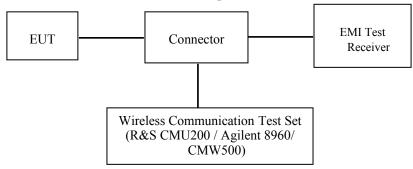
Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing.

Report No.: RXM200929050-SA

- Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or radiating structures of the EUT, the horizontal grid spacing was 15 mm x 15 mm, and the SAR distribution was determined by integrated grid of 1.5mm x 1.5mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.
- Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:
 - 1) The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - 2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the averages.
 - All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.

SAR Test Report 29 of 79

CONDUCTED OUTPUT POWER MEASUREMENT


Provision Applicable

The measured peak output power should be greater and within 5% than EMI measurement.

Test Procedure

The RF output of the transmitter was connected to the input of the EMI Test Receiver through Connector.

Report No.: RXM200929050-SA

GSM/WCDMA/LTE

Radio Configuration

The power measurement was configured by the Wireless Communication Test Set.

WCDMA Release 99

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification. The EUT has a nominal maximum output power of 24dBm (+1.7/-3.7).

	Loopback Mode	Test Mode 1
WCDMA	Rel99 RMC	12.2kbps RMC
General Settings	Power Control Algorithm	Algorithm2
	β_c/β_d	8/15

SAR Test Report 30 of 79

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification.

Report No.: RXM200929050-SA

	Mode	HSDPA	HSDPA	HSDPA	HSDPA				
	Subset	1	2	3	4				
	Loopback Mode		Test Mode 1						
	Rel99 RMC		1	12.2kbps RM	1C				
	HSDPA FRC			H-Set1					
WCDMA	Power Control Algorithm	Algorithm2							
General	β_{c}	2/15	12/15	15/15	15/15				
Settings	β_{d}	15/15	15/15	8/15	4/15				
_	$\beta_d(SF)$	64							
	$\beta_{\rm c}/\beta_{ m d}$	2/15	12/15	15/8	15/4				
	$eta_{ m hs}$	4/15	24/15	30/15	30/15				
	MPR(dB)	0	0	0.5	0.5				
	DACK			8					
HSDPA	DNAK			8					
Specifi	DCQI			8					
c Setting	Ack-Nack repetition factor								
Setting	CQI Feedback			4ms					
3	CQI Repetition Factor			2					
	Ahs=βhs/ βc			30/15					

SAR Test Report 31 of 79

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification.

Report No.: RXM200929050-SA

	Mode	HSUPA	HSUPA	HSUPA	HSUPA	HSUPA	
	Subset	1	2	3	4	5	
	Loopback Mode			Test Mode 1			
	Rel99 RMC		1:	2.2kbps RM	C		
	HSDPA FRC			H-Set1			
	HSUPA Test		HS	UPA Loopba	ack		
	Power Control			Algorithm2			
WCDMA	Algorithm						
General	$\beta_{ m c}$	11/15	6/15	15/15	2/15	15/15	
Settings	β_d	15/15	15/15	9/15	15/15	0	
	$eta_{ m ec}$	209/225	12/15	30/15	2/15	5/15	
	β_c/β_d	11/15	6/15	15/9	2/15	-	
	$eta_{ m hs}$	22/15	12/15	30/15	4/15	5/15	
	CM(dB)	1.0	3.0	2.0	3.0	1.0	
	MPR(dB)	0	2	1	2	0	
	DACK			8			
	DNAK			8			
	DCQI			8			
HSDPA	Ack-Nack			3			
Specific	repetition factor			3			
Settings	CQI Feedback			4ms			
	CQI Repetition			2			
	Factor						
	Ahs= β_{hs}/β_{c}			30/15			
	DE-DPCCH	6	8	8	5	7	
	DHARQ	0	0	0	0	0	
	AG Index	20	12	15	17	21	
	ETFCI	75	67	92	71	81	
	Associated Max						
	UL Data Rate	242.1	174.9	482.8	205.8	308.9	
	kbps						
		E TEC	VI 11 F	E TEOL	E TEC	N 11 F	
HSUPA		E-TFC E-TFC		E-TFCI 11		CI 11 E CI PO 4	
Specific		E-TFC		E-TFCI		CI 67	
Settings						I PO 18	
C		E-TFCI PO 18 PO4 E E-TFCI 71 E-TFCI					
	D.C. E.ECI	E-TFC		92		CI 71 I PO23	
	Reference E_FCls	E-TF		E-TFCI		CI 75	
		E-TFC		PO 18		I PO26	
		E-TF		1010		CI 81	
		E-TFC				I PO 27	
			- '			- ,	

SAR Test Report 32 of 79

FDD-LTE

For UE Power Class 1 and 3, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2-1 due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1 and 3

Modulation	Cha	nnel bandw	idth / Tra	ansmission	bandwidth (N _{RB})	MPR (dB)
	1.4	3.0	5	10	15	20	
	MHz	MHz	MHz	MHz	MHz	MHz	
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2

For UE Power Class 1 and 3 the specific requirements and identified sub clauses are specified in Table 6.2.4-1 along with the allowed A-MPR values that may be used to meet these requirements. The allowed A-MPR values specified below in Table 6.2.4-1 to 6.2.4-15 are in addition to the allowed MPR requirements specified in sub clause 6.2.3.

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Network Signalling value	Requirements (subclause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	N/A
			3	>5	≤1
		2 4 40 22 25	5	>6	≤1
NS_03	6.6.2.2.1	2, 4,10, 23, 25, 35, 36	10	>6	≤1
		35, 30	15	>8	≤1
			20	>10	≤1
NS_04	6.6.2.2.2	41	5	>6	≤1
			10, 15, 20		6.2.4-4
NS_05	6.6.3.3.1	1	10,15,20	≥ 50	≤ 1
NS_06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	N/A
NS_07	6.6.2.2.3 6.6.3.3.2	13	10	Table	6.2.4-2
NS_08	6.6.3.3.3	19	10, 15	> 44	≤3
NS_09	6.6.3.3.4	21	10, 15	> 40 > 55	≤1 ≤2
NS 10		20	15, 20	Table	6.2.4-3
NS_11	6.6.2.2.1	23	1.4, 3, 5, 10, 15, 20	Table	6.2.4-5
NS_12	6.6.3.3.5	26	1.4, 3, 5	Table	6.2.4-6
NS_13	6.6.3.3.6	26	5	Table	6.2.4-7
NS_14	6.6.3.3.7	26	10, 15	Table	6.2.4-8
NS_15	6.6.3.3.8	26	1.4, 3, 5, 10, 15		6.2.4-9 6.2.4-10
NS_16	6.6.3.3.9	27	3, 5, 10		Table 6.2.4-12, 5.2.4-13
NS_17	6.6.3.3.10	28	5, 10	Table 5.6-1	N/A
NS_18	6.6.3.3.11	28	5 10, 15, 20	≥2 ≥1	≤ 1 ≤ 4
NS_19	6.6.3.3.12	44	10, 15, 20	Table 6	5.2.4-14
NS_20	6.2.2 6.6.2.2.1 6.6.3.2	23	5, 10, 15, 20		3.2.4-15
NS_32	-	-	-	-	-

SAR Test Report 33 of 79

Maximum Target Output Power

	Max Target Power(dBm)								
M. J./D. J	Channel								
Mode/Band	Low	Middle	High						
WCDMA Band 2	23.0	23.0	23.0						
WCDMA Band 4	23.0	23.0	23.0						
WCDMA Band 5	23.0	23.0	23.0						
LTE Band 2	22.0	23.5	23.5						
LTE Band 4	23.4	23.4	23.4						
LTE Band 5	23.5	23.5	23.5						
LTE Band 7	23.0	23.0	23.0						
LTE Band 12	23.0	23.0	23.0						
LTE Band 13	23.0	23.0	23.0						
LTE Band 25	21.5	23.0	21.5						
LTE Band 26	23.0	23.0	23.0						
WLAN 2.4G	6.5	6.5	6.5						
Bluetooth BDR/EDR	3.5	3.5	3.5						
Bluetooth BLE	3.0	3.0	3.0						

Report No.: RXM200929050-SA

SAR Test Report 34 of 79

Test Results:

WCDMA Band 2:

Test Conditio n	Test Mode	3GPP Sub Test	Averaged Mean Power (dBm)		
			Low Frequency	Mid Frequency	High Frequency
Normal	RMC12.2k		22.61	22.26	22.21
	HSDPA	1	22.23	22.13	22.17
		2	22.23	22.11	22.01
		3	22.33	22.03	22.18
		4	22.19	21.98	22.24
	HSUPA	1	22.29	22.02	22.12
		2	22.11	22.20	22.30
		3	22.15	21.97	21.97
		4	22.27	22.06	22.09
		5	22.27	22.04	22.14
	HSPA+	1	22.26	22.08	22.22

Report No.: RXM200929050-SA

WCDMA Band 4:

Test Conditio n	Test Mode	3GPP Sub Test	Averaged Mean Power (dBm)		
			Low Frequency	Mid Frequency	High Frequency
Normal	RMC12.2k		22.51	22.26	22.46
	HSDPA	1	22.30	21.92	22.19
		2	22.11	22.12	22.22
		3	22.25	22.05	21.99
		4	22.26	22.07	22.19
	HSUPA	1	22.22	22.19	22.19
		2	22.37	22.00	22.22
		3	22.40	22.10	22.10
		4	22.30	22.08	21.95
		5	22.28	22.11	22.24
	HSPA+	1	22.35	21.90	22.14

SAR Test Report 35 of 79

WCDMA Band 5:

Test Conditio n	Test Mode	3GPP Sub Test	Averaged Mean Power (dBm)		
			Low Frequency	Mid Frequency	High Frequency
Normal	RMC12.2k		22.31	22.91	22.62
	HSDPA	1	22.07	22.13	22.07
		2	22.04	22.14	22.11
		3	21.94	22.12	22.23
		4	22.13	22.08	22.18
	HSUPA	1	22.11	22.05	22.26
		2	21.87	21.98	22.13
		3	22.02	22.09	22.23
		4	22.04	21.99	22.08
		5	21.94	22.17	22.13
	HSPA+	1	22.20	22.00	22.09

Report No.: RXM200929050-SA

Note:

- 1. The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2 kbps RMC (reference measurement Channel) Configured in Test Loop Model 1.
- 2. KDB 941225 D01-Body SAR is not required for HSDPA/HSUPA when the maximum average output of each RF channel is less than ¼ dB higher than measured 12.2kbps RMC or the maximum SAR for 12.2kbps RMC is < 75% of SAR limit.

SAR Test Report 36 of 79

			Ave	Tx Power (d)	Bm)
BW (MHz)	Modulation	Resource Block Size& Resource Block Offset	Low Channel	Mid Channel	High Channel
		4.00	1850.7MHz	1880MHz	1909.3MHz
	_	1#0	21.63	22.07	21.86
	<u> </u>	1#3	21.55	22.07	21.90
	_	1#5	21.69	21.97	21.94
	QPSK	3#0	21.63	21.97	21.86
		3#1	21.68	22.03	21.91
		3#3	21.74	21.95	21.99
1.4		6#0	21.62	21.88	22.19
1.7		1#0	21.72	21.86	22.15
		1#3	21.66	21.95	22.14
		1#5	21.59	21.89	22.12
	16QAM	3#0	21.51	21.94	21.98
		3#1	21.66	22.00	22.05
		3#3	21.65	21.97	22.13
		6#0	21.56	22.06	22.17
			Ave Tx Power (dBm)		
BW (MHz)	Modulation	Resource Block Size& Resource Block Offset	Low Channel	Mid Channel	High Channel
	Modulation				
	Modulation		Channel	Channel	Channel
	Modulation	Resource Block Offset	Channel 1851.5MHz	Channel 1880MHz	Channel 1908.5MHz
	Modulation	Resource Block Offset 1#0	Channel 1851.5MHz 21.55	Channel 1880MHz 21.94	Channel 1908.5MHz 22.21
	Modulation QPSK	Resource Block Offset 1#0 1#7	Channel 1851.5MHz 21.55 21.48	Channel 1880MHz 21.94 22.01	Channel 1908.5MHz 22.21 22.22
		Resource Block Offset 1#0 1#7 1#14	Channel 1851.5MHz 21.55 21.48 21.44	Channel 1880MHz 21.94 22.01 22.02	Channel 1908.5MHz 22.21 22.22 22.26
		1#0 1#7 1#14 8#0	Channel 1851.5MHz 21.55 21.48 21.44 21.38	Channel 1880MHz 21.94 22.01 22.02 22.14	Channel 1908.5MHz 22.21 22.22 22.26 22.28
(MHz)		1#0 1#7 1#14 8#0 8#4	Channel 1851.5MHz 21.55 21.48 21.44 21.38 21.31	Channel 1880MHz 21.94 22.01 22.02 22.14 22.10	Channel 1908.5MHz 22.21 22.22 22.26 22.28 22.22
		1#0 1#7 1#14 8#0 8#4 8#7	Channel 1851.5MHz 21.55 21.48 21.44 21.38 21.31 21.33	Channel 1880MHz 21.94 22.01 22.02 22.14 22.10 22.14	Channel 1908.5MHz 22.21 22.22 22.26 22.28 22.22 22.29
(MHz)		1#0 1#7 1#14 8#0 8#4 8#7 15#0	Channel 1851.5MHz 21.55 21.48 21.44 21.38 21.31 21.33 21.41	Channel 1880MHz 21.94 22.01 22.02 22.14 22.10 22.14 22.09	Channel 1908.5MHz 22.21 22.22 22.26 22.28 22.22 22.29 22.30
(MHz)		1#0 1#7 1#14 8#0 8#4 8#7 15#0 1#0	Channel 1851.5MHz 21.55 21.48 21.44 21.38 21.31 21.33 21.41 21.39	Channel 1880MHz 21.94 22.01 22.02 22.14 22.10 22.14 22.09 22.15	Channel 1908.5MHz 22.21 22.22 22.26 22.28 22.22 22.29 22.30 22.16
(MHz)		1#0 1#7 1#14 8#0 8#4 8#7 15#0 1#0 1#7	Channel 1851.5MHz 21.55 21.48 21.44 21.38 21.31 21.33 21.41 21.39 21.35	Channel 1880MHz 21.94 22.01 22.02 22.14 22.10 22.14 22.09 22.15 22.20	Channel 1908.5MHz 22.21 22.22 22.26 22.28 22.22 22.29 22.30 22.16 22.17
(MHz)	QPSK	1#0 1#7 1#14 8#0 8#4 8#7 15#0 1#0 1#7 1#14	Channel 1851.5MHz 21.55 21.48 21.44 21.38 21.31 21.33 21.41 21.39 21.35 21.24	Channel 1880MHz 21.94 22.01 22.02 22.14 22.10 22.14 22.09 22.15 22.20 22.27	Channel 1908.5MHz 22.21 22.22 22.26 22.28 22.22 22.29 22.30 22.16 22.17 22.10
(MHz)	QPSK	1#0 1#7 1#14 8#0 8#4 8#7 15#0 1#0 1#7	Channel 1851.5MHz 21.55 21.48 21.44 21.38 21.31 21.33 21.41 21.39 21.35 21.24 21.46	Channel 1880MHz 21.94 22.01 22.02 22.14 22.10 22.14 22.09 22.15 22.20 22.27 22.24	Channel 1908.5MHz 22.21 22.22 22.26 22.28 22.29 22.30 22.16 22.17 22.10 22.16

SAR Test Report 37 of 79

			Av	e Tx Power (dI	Bm)
BW (MHz)	Modulation	Resource Block Size& Resource Block Offset	Low Channel	Mid Channel	High Channel 1907.5MHz
		1.110	1852.5MHz	1880MHz	
	_	1#0	21.21	22.28	22.21
	-	1#12	21.33	22.38	22.11
	o Day	1#24	21.39	22.52	22.13
	QPSK	12#0	21.27	22.54	22.23
	_	12#6	21.43	22.57	22.31
	_	12#11	21.33	22.49	22.21
5		25#0	21.30	22.49	22.25
	_	1#0	21.26	22.37	22.20
	_	1#12	21.21	22.56	22.31
		1#24	21.11	22.64	22.36
	16QAM	12#0	21.04	22.50	22.46
		12#6	21.10	22.59	22.38
		12#11	21.18	22.44	22.41
		25#0	21.23	22.49	22.49
			Ave Tx Power (dBm)		
BW (MHz)	Modulation	Resource Block Size& Resource Block Offset	Low Channel	Mid Channel	High Channel
			1855MHz	1880MHz	1905MHz
	_	1#0	21.30	22.47	22.46
		1#24	21.24	22.51	22.54
		1#49	21.27	22.64	22.51
	QPSK	25#0	21.22	22.69	22.40
		25#12	21.31	22.68	22.41
		25#24	21.25	22.76	22.53
10		50#0	21.30	22.72	22.59
10		1#0	21.36	22.70	22.56
		1#24	21.35	22.74	22.40
		1#49	21.51	22.75	22.45
	16QAM	25#0	21.54	22.96	22.50
		25#12	21.56	22.75	22.39
		25#24	21.50	22.81	22.57
		50#0	21.55	22.76	22.65

SAR Test Report 38 of 79

			Av	Ave Tx Power (dBm)			
BW (MHz)	Modulation	Resource Block Size& Resource Block Offset	Low Channel	Mid Channel	High Channel		
		1//0	1857.5MHz	1880MHz	1902.5MHz		
	<u> </u>	1#0	21.60	22.77	22.69		
	<u> </u>	1#37	21.55	22.71	22.59		
	_	1#74	21.44	22.64	22.75		
	QPSK	36#0	21.46	22.55	22.69		
	<u> </u>	36#17	21.51	22.47	22.76		
	_	36#35	21.52	22.51	22.74		
15		75#0	21.52	22.48	22.91		
10	<u> </u>	1#0	21.51	22.61	23.04		
	_	1#37	21.48	22.52	22.97		
		1#74	21.38	22.59	22.97		
	16QAM	36#0	21.43	22.59	22.95		
		36#17	21.45	22.60	22.99		
		36#35	21.32	22.50	22.97		
		75#0	21.37	22.70	22.87		
			Ave Tx Power (dBm)				
BW (MHz)	Modulation	Resource Block Size& Resource Block Offset	Low Channel	Mid Channel	High Channel		
		4.110	1860MHz	1880MHz	1900MHz		
	_	1#0	21.55	22.67	22.91		
	_	1#49	21.43	22.57	22.85		
	<u> </u>	1#99	21.55	22.57	22.82		
	QPSK	50#0	21.57	22.62	22.86		
	_	50#24	21.66	22.54	22.98		
		50#49	21.81	22.52	22.83		
20		100#0	21.75	22.54	22.81		
20		1#0	21.64	22.61	22.79		
	<u> </u>	1#49	21.62	22.62	22.82		
		1#99	21.48	22.55	22.76		
	16QAM	50#0	21.56	22.62	22.83		
	[50#24	21.48	22.74	22.76		
		50#49	21.58	22.78	22.90		
		100#0	21.62	22.68	22.84		

SAR Test Report 39 of 79

Modulation Resource Block Size& Resource Block Offset Low Channel Channel Channel T10.7MHz T1732.5MHz T1754.3MHz				Ave	Tx Power (d)	Bm)
A		Modulation		Channel	Channel	Channel
A			1#0			
A			\$			
A						
1.4		ODGIZ				
1.4		QPSK				
1.4						
1.4						
Hard 183 21.72 21.81 22.00 185 21.65 21.82 21.92 180 3#0 21.78 21.78 22.01 3#1 21.68 21.84 22.05 3#3 21.59 21.89 22.21 6#0 21.80 21.99 22.28 Resource Block Size& Resource Block Offset 1711.5MHz 1732.5MHz 180 21.76 22.01 22.32 180 21.77 22.00 22.20 1814 21.84 22.03 22.24 180 21.77 22.00 22.20 1814 21.84 22.03 22.24 180 21.84 22.05 22.24 180 21.84 22.05 22.24 180 21.84 22.05 22.24 180 21.84 22.05 22.24 180 21.84 22.05 22.24 180 21.84 22.05 22.24 180 21.84 22.05 180 21.84 22.05 21.84 22.05 21.84 22.05 22.84 22.05 22.84 22.05 22.84 22.05 22.85 23.85 23.85 23.85 24.85 23.85 24.85 23.85 25.85 23.8	1.4					
185 21.65 21.82 21.92 3#0 21.78 21.78 22.01 3#1 21.68 21.84 22.05 3#3 21.59 21.89 22.21 6#0 21.80 21.99 22.28 8						
16QAM						
3#1 21.68 21.84 22.05 3#3 21.59 21.89 22.21 6#0 21.80 21.99 22.28 Resource Block Size& Low Mid Channel Channel T711.5MHz 1732.5MHz 1753.5MHz 1#0 21.76 22.01 22.32 1#7 21.77 22.00 22.20 1#14 21.84 22.03 22.24						
3#3 21.59 21.89 22.21 6#0 21.80 21.99 22.28 8W (MHz) Modulation Resource Block Size& Resource Block Offset Low Channel T711.5MHz T732.5MHz T753.5MHz 1#0 21.76 22.01 22.32 1#7 21.77 22.00 22.20 1#14 21.84 22.03 22.24		16QAM				
Modulation Resource Block Size& Low Channel Channel T711.5MHz T32.5MHz						
BW (MHz) Modulation Resource Block Size& Resource Block Offset Low Channel Channel Channel 1711.5MHz Mid Channel 1753.5MHz High Channel 1753.5MHz 1#0 21.76 22.01 22.32 1#7 21.77 22.00 22.20 1#14 21.84 22.03 22.24			3#3			
BW (MHz) Modulation Resource Block Offset Low Channel Mid Channel High Channel 1711.5MHz 1732.5MHz 1753.5MHz 1#0 21.76 22.01 22.32 1#7 21.77 22.00 22.20 1#14 21.84 22.03 22.24			6#0			<u></u>
(MHz) Modulation Resource Block Offset Channel Channel Channel 1711.5MHz 1732.5MHz 1753.5MHz 1#0 21.76 22.01 22.32 1#7 21.77 22.00 22.20 1#14 21.84 22.03 22.24	DXX		Dagaywaa Dlaak Siga 6-	` , ,		
1711.5MHz 1732.5MHz 1753.5MHz 1#0 21.76 22.01 22.32 1#7 21.77 22.00 22.20 1#14 21.84 22.03 22.24		Modulation				
1#7 21.77 22.00 22.20 1#14 21.84 22.03 22.24	,					1753.5MHz
1#14 21.84 22.03 22.24			1#0	21.76	22.01	22.32
			1#7	21.77	22.00	22.20
0001			1#14	21.84	22.03	22.24
QPSK 8#0 21.83 21.97 22.23		QPSK	8#0	21.83	21.97	22.23
8#4 21.80 21.95 22.26			8#4	21.80	21.95	22.26
8#7 21.76 21.90 22.38			8#7	21.76	21.90	22.38
15#0 21.71 22.02 22.14	2		15#0	21.71	22.02	22.14
3 1#0 21.92 22.03 22.08	3		1#0	21.92	22.03	22.08
1#7 21.82 22.00 22.09			1#7	21.82	22.00	22.09
1#14 21.90 21.92 22.19		[1#14	21.90	21.92	22.19
0//0 21.00 20.11		16QAM	8#0	21.80	22.11	22.32
1 16QAM 8#0 21.80 22.11 22.32			8#4	21.75	21.99	22.18
			8#7	21.71	22.07	22.19
8#4 21.75 21.99 22.18			15#0	21.72	22.21	22.25

SAR Test Report 40 of 79

			Ave Tx Power (dBm)			
BW (MHz)	Modulation	Resource Block Size& Resource Block Offset	Low Channel 1712.5MHz	Mid Channel 1732.5MHz	High Channel 1752.5MHz	
		1#0	21.63	22.27	22.27	
		1#12	21.03	22.41	22.19	
	-	1#12	21.73	22.36	22.19	
	QPSK	12#0	21.61	22.46	22.17	
	QISK	12#6	21.71	22.34	22.33	
	-	12#11	21.74	22.34	22.35	
	-	25#0	21.74	22.32	22.30	
5		1#0	21.70	22.45	22.30	
	-	1#12	21.75	22.43	22.24	
	-	1#12	21.54	22.38	22.13	
	16QAM	12#0	21.63	22.39	22.13	
	TOQAW	12#6	21.59	22.41	22.04	
		12#11	21.59	22.41	22.03	
		25#0	21.47	22.28	22.13	
		25110		Tx Power (d)	<u> </u>	
RW	Modulation	Resource Block Size&				
BW	Modulation		Low	Mid	High	
BW (MHz)	Modulation	Resource Block Size& Resource Block Offset	Low Channel	Mid Channel	High Channel	
	Modulation	Resource Block Offset	Low Channel 1715MHz	Mid Channel 1732.5MHz	High Channel 1750MHz	
	Modulation	Resource Block Offset 1#0	Low Channel 1715MHz 21.59	Mid Channel 1732.5MHz 22.16	High Channel 1750MHz 22.11	
	Modulation	Resource Block Offset 1#0 1#24	Low Channel 1715MHz 21.59 21.47	Mid Channel 1732.5MHz 22.16 22.20	High Channel 1750MHz 22.11 22.09	
	-	1#0 1#24 1#49	Low Channel 1715MHz 21.59 21.47 21.54	Mid Channel 1732.5MHz 22.16 22.20 22.17	High Channel 1750MHz 22.11 22.09 22.14	
	Modulation QPSK	1#0 1#24 1#49 25#0	Low Channel 1715MHz 21.59 21.47 21.54 21.59	Mid Channel 1732.5MHz 22.16 22.20 22.17 22.34	High Channel 1750MHz 22.11 22.09 22.14 22.13	
	-	1#0 1#24 1#49 25#0 25#12	Low Channel 1715MHz 21.59 21.47 21.54 21.59 21.49	Mid Channel 1732.5MHz 22.16 22.20 22.17 22.34 22.22	High Channel 1750MHz 22.11 22.09 22.14 22.13 22.11	
	-	1#0 1#24 1#49 25#0 25#12 25#24	Low Channel 1715MHz 21.59 21.47 21.54 21.59 21.49 21.61	Mid Channel 1732.5MHz 22.16 22.20 22.17 22.34 22.22 22.40	High Channel 1750MHz 22.11 22.09 22.14 22.13 22.11 22.23	
	-	1#0 1#24 1#49 25#0 25#12 25#24 50#0	Low Channel 1715MHz 21.59 21.47 21.54 21.59 21.49 21.61 21.59	Mid Channel 1732.5MHz 22.16 22.20 22.17 22.34 22.22 22.40 22.31	High Channel 1750MHz 22.11 22.09 22.14 22.13 22.11 22.23 22.21	
(MHz)	-	1#0 1#24 1#49 25#0 25#12 25#24 50#0 1#0	Low Channel 1715MHz 21.59 21.47 21.54 21.59 21.49 21.61 21.59 21.78	Mid Channel 1732.5MHz 22.16 22.20 22.17 22.34 22.22 22.40 22.31 22.15	High Channel 1750MHz 22.11 22.09 22.14 22.13 22.11 22.23 22.21 22.35	
(MHz)	-	1#0 1#24 1#49 25#0 25#12 25#24 50#0 1#0 1#24	Low Channel 1715MHz 21.59 21.47 21.54 21.59 21.49 21.61 21.59 21.78 21.72	Mid Channel 1732.5MHz 22.16 22.20 22.17 22.34 22.22 22.40 22.31 22.15 22.21	High Channel 1750MHz 22.11 22.09 22.14 22.13 22.21 22.35 22.13	
(MHz)	QPSK	1#0 1#24 1#49 25#0 25#12 25#24 50#0 1#0 1#24 1#49	Low Channel 1715MHz 21.59 21.47 21.54 21.59 21.49 21.61 21.59 21.78 21.72 21.67	Mid Channel 1732.5MHz 22.16 22.20 22.17 22.34 22.22 22.40 22.31 22.15 22.21 22.10	High Channel 1750MHz 22.11 22.09 22.14 22.13 22.11 22.23 22.21 22.35 22.13 22.11	
(MHz)	-	1#0 1#24 1#49 25#0 25#12 25#24 50#0 1#0 1#24 1#49 25#0	Low Channel 1715MHz 21.59 21.47 21.54 21.59 21.49 21.61 21.59 21.78 21.72 21.67 21.65	Mid Channel 1732.5MHz 22.16 22.20 22.17 22.34 22.22 22.40 22.31 22.15 22.21 22.10 22.22	High Channel 1750MHz 22.11 22.09 22.14 22.13 22.11 22.23 22.21 22.35 22.13 22.11 22.04	
(MHz)	QPSK	1#0 1#24 1#49 25#0 25#12 25#24 50#0 1#0 1#24 1#49 25#0 25#12	Low Channel 1715MHz 21.59 21.47 21.54 21.59 21.49 21.61 21.59 21.72 21.67 21.65 21.65	Mid Channel 1732.5MHz 22.16 22.20 22.17 22.34 22.22 22.40 22.31 22.15 22.21 22.10 22.22 22.27	High Channel 1750MHz 22.11 22.09 22.14 22.13 22.11 22.23 22.21 22.35 22.13 22.11 22.04 22.11	
(MHz)	QPSK	1#0 1#24 1#49 25#0 25#12 25#24 50#0 1#0 1#24 1#49 25#0	Low Channel 1715MHz 21.59 21.47 21.54 21.59 21.49 21.61 21.59 21.78 21.72 21.67 21.65	Mid Channel 1732.5MHz 22.16 22.20 22.17 22.34 22.22 22.40 22.31 22.15 22.21 22.10 22.22	High Channel 1750MHz 22.11 22.09 22.14 22.13 22.11 22.23 22.21 22.35 22.13 22.11 22.04	

SAR Test Report 41 of 79

			Ave Tx Power (dBm)			
BW (MHz)	Modulation	Resource Block Size& Resource Block Offset	Low Channel 1717.5MHz	Mid Channel 1732.5MHz	High Channel 1747.5MHz	
		1#0		22,24	22.10	
	-	1#37	21.72	22.24	22.10	
	-			22.44	22.04	
	ODCK	1#74 36#0	21.77	22.44	22.16	
	QPSK				22.16	
	-	36#17	21.86	22.46		
	-	36#35	21.69	22.48	22.35	
15		75#0	21.71	22.49	22.27	
	_	1#0	21.60	22.61	22.29	
		1#37	21.65	22.54	22.28	
	_	1#74	21.69	22.57	22.34	
	16QAM	36#0	21.67	22.47	22.23	
		36#17	21.81	22.57	22.35	
		36#35	21.89	22.78	22.33	
		75#0	21.96	22.73	22.33	
BW		Resource Block Size&	Ave Tx Power (dBm) Low Mid High			
(MHz)	Modulation	Resource Block Offset	Channel	Channel	Channel	
			1720MHz	1732.5MHz	1745MHz	
		1#0	21.86	22.80	22.21	
		1#49	21.83	22.85	22.29	
		1#99	21.81	22.81	22.24	
	QPSK	50#0	21.92	22.94	22.25	
	<u> </u>	50#24	21.72	22.98	22.36	
		50#49	21.73	23.01	22.20	
20		100#0	21.74	23.11	22.15	
20		1#0	21.76	23.16	22.08	
		1#49	21.78	23.07	22.08	
		1#99	21.91	22.93	22.11	
	16QAM	50#0	21.92	23.02	22.22	
		50#24	21.94	23.05	22.34	
	-	50#49	21.93	23.15	22.37	

SAR Test Report 42 of 79

LTE Band 5:

			Ave	Ave Tx Power (dBm)		
BW (MHz)	Modulation	Resource Block Size& Resource Block Offset	Low Channel	Mid Channel	High Channel	
		1.110	824.7MHz	836.5MHz	848.3MHz	
	-	1#0	21.68	21.82	22.02	
	_	1#3	21.66	21.85	22.02	
	_	1#5	21.82	22.08	22.05	
	QPSK	3#0	21.65	22.03	22.08	
		3#1	21.67	22.09	22.14	
		3#3	21.88	22.10	22.21	
1.4		6#0	21.66	22.17	22.05	
1.1		1#0	21.76	22.10	22.13	
		1#3	21.96	22.16	22.02	
		1#5	21.98	22.07	22.14	
	16QAM	3#0	22.04	22.19	22.26	
		3#1	22.12	22.32	22.27	
		3#3	22.06	22.32	22.24	
		6#0	22.17	22.30	22.34	
			Ave Tx Power (dBm)			
\mathbf{BW}		Resource Block Size&	Low	Mid	High	
(MHz)	Modulation	Resource Block Offset	Channel	Channel	Channel	
	Modulation	Resource Block Offset	825.5MHz	836.5MHz	Channel 847.5MHz	
	Modulation	Resource Block Offset 1#0				
	Modulation		825.5MHz	836.5MHz	847.5MHz	
	Modulation	1#0	825.5MHz 22.07	836.5MHz 22.26	847.5MHz 22.18	
	Modulation QPSK	1#0 1#7	825.5MHz 22.07 22.08	836.5MHz 22.26 22.26	847.5MHz 22.18 22.18	
		1#0 1#7 1#14	825.5MHz 22.07 22.08 22.08	836.5MHz 22.26 22.26 22.25	847.5MHz 22.18 22.18 22.20	
		1#0 1#7 1#14 8#0	825.5MHz 22.07 22.08 22.08 22.06	836.5MHz 22.26 22.26 22.25 22.24	847.5MHz 22.18 22.18 22.20 22.14	
(MHz)		1#0 1#7 1#14 8#0 8#4	825.5MHz 22.07 22.08 22.08 22.06 21.84	836.5MHz 22.26 22.26 22.25 22.24 22.15	847.5MHz 22.18 22.18 22.20 22.14 22.14	
		1#0 1#7 1#14 8#0 8#4 8#7	825.5MHz 22.07 22.08 22.08 22.06 21.84 21.87	836.5MHz 22.26 22.26 22.25 22.24 22.15 22.23	847.5MHz 22.18 22.20 22.14 22.14 22.14	
(MHz)		1#0 1#7 1#14 8#0 8#4 8#7 15#0	825.5MHz 22.07 22.08 22.08 22.06 21.84 21.87 22.08	836.5MHz 22.26 22.26 22.25 22.24 22.15 22.23 22.14	847.5MHz 22.18 22.18 22.20 22.14 22.14 22.14 22.30	
(MHz)		1#0 1#7 1#14 8#0 8#4 8#7 15#0 1#0	825.5MHz 22.07 22.08 22.08 22.06 21.84 21.87 22.08 22.03	836.5MHz 22.26 22.26 22.25 22.24 22.15 22.23 22.14 22.36	847.5MHz 22.18 22.20 22.14 22.14 22.14 22.30 22.10	
(MHz)		1#0 1#7 1#14 8#0 8#4 8#7 15#0 1#0 1#7	825.5MHz 22.07 22.08 22.08 22.06 21.84 21.87 22.08 22.03 22.04	836.5MHz 22.26 22.26 22.25 22.24 22.15 22.23 22.14 22.36 22.36	847.5MHz 22.18 22.18 22.20 22.14 22.14 22.14 22.30 22.10 22.14	
(MHz)	QPSK	1#0 1#7 1#14 8#0 8#4 8#7 15#0 1#0 1#7	825.5MHz 22.07 22.08 22.08 22.06 21.84 21.87 22.08 22.03 22.04 22.15	836.5MHz 22.26 22.26 22.25 22.24 22.15 22.23 22.14 22.36 22.36 22.24	847.5MHz 22.18 22.18 22.20 22.14 22.14 22.14 22.30 22.10 22.14 21.98	
(MHz)	QPSK	1#0 1#7 1#14 8#0 8#4 8#7 15#0 1#0 1#7 1#14 8#0	825.5MHz 22.07 22.08 22.08 22.06 21.84 21.87 22.08 22.03 22.04 22.15 22.26	836.5MHz 22.26 22.26 22.25 22.24 22.15 22.23 22.14 22.36 22.36 22.36 22.37	847.5MHz 22.18 22.18 22.20 22.14 22.14 22.30 22.10 22.14 21.98 21.97	

Report No.: RXM200929050-SA

SAR Test Report 43 of 79

			Av	e Tx Power (dE	Bm)
BW (MHz)	Modulation	Resource Block Size& Resource Block Offset	Low Channel 826.5MHz	Mid Channel 836.5MHz	High Channel 846.5MHz
		1#0	22.45	22.39	21.95
		1#12	22.52	22.32	21.85
		1#24	22.54	22.37	21.82
	QPSK	12#0	22.34	22.27	21.77
		12#6	22.61	22.27	21.80
		12#11	22.50	22.29	21.70
5		25#0	22.53	22.38	21.71
3		1#0	22.54	22.45	21.70
		1#12	22.60	22.41	21.61
		1#24	22.54	22.50	21.69
	16QAM	12#0	22.58	22.48	21.58
		12#6	22.64	22.50	21.59
		12#11	22.78	22.48	21.38
		25#0	22.68	22.43	21.56
		D D: 1 01 2	Ave Tx Power (dBm)		
BW (MHz)	Modulation	Resource Block Size& Resource Block Offset	Low Channel	Mid Channel	High Channel
(1/1112)		Resource Block Offset	829MHz	836.5MHz	844MHz
		1#0	22.73	22.55	21.47
		1#24	22.79	22.40	21.56
		1#49	22.64	22.37	21.49
	QPSK	25#0	22.66	22.27	21.51
		25#12	22.74	22.24	21.60
		25#24	22.72	22.20	21.56
1.0		50#0	22.65	22.21	21.65
10		1#0	22.63	22.23	21.51
		1#24	22.74	22.15	21.61
		1#49	22.75	22.07	21.39
	16QAM	25#0	22.76	22.14	21.45
		25#12	22.78	22.17	21.38
		25#24	22.99	22.13	21.38
		50#0	22.90	22.02	21.41

SAR Test Report 44 of 79

			Ave	Tx Power (d)	Bm)
BW	Modulation	Resource Block Size& Resource Block Offset	Low Channel 2502.5MHz	Mid Channel 2535MHz	High Channel 2567.5MHz
		1#0	21.66	21.78	21.91
		1#12	22.01	21.96	21.08
		1#24	21.79	21.17	21.46
	QPSK	12#0	21.75	21.72	21.23
		12#6	22.22	21.42	21.23
		12#11	21.29	21.90	21.61
53.f		25#0	21.37	21.73	21.78
5M		1#0	22.11	21.89	20.97
		1#12	21.86	21.92	21.29
		1#24	21.71	21.16	21.42
	16QAM	12#0	22.24	21.95	21.34
		12#6	21.36	21.82	22.08
		12#11	22.01	21.30	21.65
		25#0	21.50	21.08	21.08
			Ave Tx Power (dBm)		
				,	
BW	Modulation	Resource Block Size&	Low	Mid	High
BW	Modulation	Resource Block Size& Resource Block Offset		,	
BW	Modulation		Low Channel	Mid Channel	High Channel
BW	Modulation	Resource Block Offset	Low Channel 2505MHz	Mid Channel 2535MHz	High Channel 2565MHz
BW	Modulation	Resource Block Offset 1#0	Low Channel 2505MHz 21.89	Mid Channel 2535MHz 21.74	High Channel 2565MHz 21.86
BW	Modulation QPSK	Resource Block Offset 1#0 1#24	Low Channel 2505MHz 21.89 21.46	Mid Channel 2535MHz 21.74 21.33	High Channel 2565MHz 21.86 22.39
BW	-	Resource Block Offset 1#0 1#24 1#49	Low Channel 2505MHz 21.89 21.46 21.11	Mid Channel 2535MHz 21.74 21.33 22.11	High Channel 2565MHz 21.86 22.39 22.14
BW	-	1#0 1#24 1#49 25#0	Low Channel 2505MHz 21.89 21.46 21.11 21.19	Mid Channel 2535MHz 21.74 21.33 22.11 21.47	High Channel 2565MHz 21.86 22.39 22.14 22.30
	-	1#0 1#24 1#49 25#0 25#12	Low Channel 2505MHz 21.89 21.46 21.11 21.19 21.38	Mid Channel 2535MHz 21.74 21.33 22.11 21.47 21.26	High Channel 2565MHz 21.86 22.39 22.14 22.30 22.21
10M	-	1#0 1#24 1#49 25#0 25#12 25#24	Low Channel 2505MHz 21.89 21.46 21.11 21.19 21.38 21.63	Mid Channel 2535MHz 21.74 21.33 22.11 21.47 21.26 21.95	High Channel 2565MHz 21.86 22.39 22.14 22.30 22.21 21.32
	-	1#0 1#24 1#49 25#0 25#12 25#24 50#0	Low Channel 2505MHz 21.89 21.46 21.11 21.19 21.38 21.63 21.61	Mid Channel 2535MHz 21.74 21.33 22.11 21.47 21.26 21.95 21.53	High Channel 2565MHz 21.86 22.39 22.14 22.30 22.21 21.32 22.06
	-	1#0 1#24 1#49 25#0 25#12 25#24 50#0 1#0	Low Channel 2505MHz 21.89 21.46 21.11 21.19 21.38 21.63 21.61 21.82	Mid Channel 2535MHz 21.74 21.33 22.11 21.47 21.26 21.95 21.53 21.22	High Channel 2565MHz 21.86 22.39 22.14 22.30 22.21 21.32 22.06 21.63
	-	1#0 1#24 1#49 25#0 25#12 25#24 50#0 1#0 1#24	Low Channel 2505MHz 21.89 21.46 21.11 21.19 21.38 21.63 21.61 21.82 21.06	Mid Channel 2535MHz 21.74 21.33 22.11 21.47 21.26 21.95 21.53 21.22 21.69	High Channel 2565MHz 21.86 22.39 22.14 22.30 22.21 21.32 22.06 21.63 21.36
	QPSK	1#0 1#24 1#49 25#0 25#12 25#24 50#0 1#0 1#24 1#49	Low Channel 2505MHz 21.89 21.46 21.11 21.19 21.38 21.63 21.61 21.82 21.06 21.27	Mid Channel 2535MHz 21.74 21.33 22.11 21.47 21.26 21.95 21.53 21.22 21.69 21.69	High Channel 2565MHz 21.86 22.39 22.14 22.30 22.21 21.32 22.06 21.63 21.45
	QPSK	1#0 1#24 1#49 25#0 25#12 25#24 50#0 1#0 1#24 1#49 25#0	Low Channel 2505MHz 21.89 21.46 21.11 21.19 21.38 21.63 21.61 21.82 21.06 21.27 21.36	Mid Channel 2535MHz 21.74 21.33 22.11 21.47 21.26 21.95 21.53 21.22 21.69 21.69 21.97	High Channel 2565MHz 21.86 22.39 22.14 22.30 22.21 21.32 22.06 21.63 21.45 21.61

SAR Test Report 45 of 79

			Ave Tx Power (dBm)			
BW	Modulation	Resource Block Size& Resource Block Offset	Low Channel	Mid Channel	High Channel	
			2507.5MHz	2535MHz	2562.5MHz	
		1#0	21.41	21.29	21.41	
		1#37	21.69	21.16	21.73	
		1#74	21.01	21.86	21.47	
	QPSK	36#0	21.19	21.44	21.50	
		36#17	21.34	21.50	22.06	
		36#35	21.23	21.14	22.18	
15M		75#0	21.43	22.07	21.47	
13101		1#0	21.67	21.50	21.59	
		1#37	21.32	21.53	21.48	
		1#74	21.02	22.10	21.78	
	16QAM	36#0	21.65	21.59	21.95	
		36#17	21.24	21.65	21.28	
		36#35	21.37	21.77	21.87	
		75#0	20.70	21.67	21.96	
		D DI 1 CI 2	Ave Tx Power (dBm)			
BW	Modulation	Resource Block Size& Resource Block Offset	Low Channel	Mid Channel	High Channel	
			2510MHz	2535MHz	2560MHz	
		1#0	21.18	21.76	21.80	
		1#49	21.73	21.50	21.02	
		1#99	21.59	21.34	21.54	
	QPSK	50#0	21.67	21.82	21.49	
		50#24	20.92	21.60	21.43	
		50#49	21.31	20.84	21.68	
20M		100#0	21.77	21.27	21.15	
201VI		1#0	21.39	21.00	21.13	
		1#49	21.79	21.82	21.41	
		1#99	21.17	20.91	20.78	
	16QAM		21 41	21.06	20.94	
	16QAM	50#0	21.41	21.00	20.5	
	16QAM	50#0 50#24	21.41	20.95	21.04	
	16QAM					

SAR Test Report 46 of 79

LTE Band 12:

			Ave Tx Power (dBm)			
BW	Modulation	Resource Block Size& Resource Block Offset	Low Channel	Mid Channel	High Channel	
			699.7MHz	707.5MHz	715.3MHz	
	<u>_</u>	1#0	21.75	22.06	21.92	
		1#3	21.57	21.92	21.94	
		1#5	21.55	21.97	21.85	
	QPSK	3#0	21.53	22.02	22.03	
		3#1	21.42	21.84	21.93	
		3#3	21.32	21.76	21.83	
1.4M		6#0	21.26	21.92	21.89	
1.41V1		1#0	21.27	21.88	21.87	
		1#3	21.15	21.89	21.72	
		1#5	21.19	21.90	21.91	
	16QAM	3#0	21.09	21.76	21.70	
		3#1	21.20	22.00	21.73	
		3#3	21.30	22.02	21.75	
		6#0	21.31	22.07	21.76	
			Ave Tx Power (dBm)			
			Ave	,		
BW	Modulation	Resource Block Size& Resource Block Offset	Low Channel	Mid Channel	High Channel	
BW	Modulation	Resource Block Offset	Low Channel 700.5MHz	Mid Channel 707.5MHz	High Channel 714.5MHz	
BW	Modulation		Low Channel	Mid Channel	High Channel	
BW	Modulation	Resource Block Offset	Low Channel 700.5MHz	Mid Channel 707.5MHz	High Channel 714.5MHz	
BW	Modulation	Resource Block Offset 1#0	Channel 700.5MHz 21.15	Mid Channel 707.5MHz 22.09	High Channel 714.5MHz 21.66	
BW	Modulation QPSK	Resource Block Offset 1#0 1#7	Low Channel 700.5MHz 21.15 21.21	Mid Channel 707.5MHz 22.09 22.20	High Channel 714.5MHz 21.66 21.73	
BW		Resource Block Offset 1#0 1#7 1#14	Low Channel 700.5MHz 21.15 21.21 21.05	Mid Channel 707.5MHz 22.09 22.20 22.23	High Channel 714.5MHz 21.66 21.73 21.63	
BW		1#0 1#7 1#14 8#0	Low Channel 700.5MHz 21.15 21.21 21.05 21.27	Mid Channel 707.5MHz 22.09 22.20 22.23 22.22	High Channel 714.5MHz 21.66 21.73 21.63 21.77	
		1#0 1#7 1#14 8#0 8#4	Low Channel 700.5MHz 21.15 21.21 21.05 21.27 21.20	Mid Channel 707.5MHz 22.09 22.20 22.23 22.22 22.33	High Channel 714.5MHz 21.66 21.73 21.63 21.77 21.70	
BW 3M		1#0 1#7 1#14 8#0 8#4 8#7	Low Channel 700.5MHz 21.15 21.21 21.05 21.27 21.20 21.24	Mid Channel 707.5MHz 22.09 22.20 22.23 22.22 22.33 22.15	High Channel 714.5MHz 21.66 21.73 21.63 21.77 21.70 21.72	
		1#0 1#7 1#14 8#0 8#4 8#7 15#0	Low Channel 700.5MHz 21.15 21.21 21.05 21.27 21.20 21.24 21.05	Mid Channel 707.5MHz 22.09 22.20 22.23 22.22 22.33 22.15 22.11	High Channel 714.5MHz 21.66 21.73 21.63 21.77 21.70 21.72 21.72	
		1#0 1#7 1#14 8#0 8#4 8#7 15#0 1#0	Low Channel 700.5MHz 21.15 21.21 21.05 21.27 21.20 21.24 21.05 20.98	Mid Channel 707.5MHz 22.09 22.20 22.23 22.22 22.33 22.15 22.11 22.12	High Channel 714.5MHz 21.66 21.73 21.63 21.77 21.70 21.72 21.72 21.68	
		1#0 1#7 1#14 8#0 8#4 8#7 15#0 1#0 1#7	Low Channel 700.5MHz 21.15 21.21 21.05 21.27 21.20 21.24 21.05 20.98 21.11	Mid Channel 707.5MHz 22.09 22.20 22.23 22.22 22.33 22.15 22.11 22.12 22.14	High Channel 714.5MHz 21.66 21.73 21.63 21.77 21.70 21.72 21.72 21.72 21.68 21.77	
	QPSK	1#0 1#7 1#14 8#0 8#4 8#7 15#0 1#0 1#7	Low Channel 700.5MHz 21.15 21.21 21.05 21.27 21.20 21.24 21.05 20.98 21.11 21.08	Mid Channel 707.5MHz 22.09 22.20 22.23 22.22 22.33 22.15 22.11 22.12 22.14 22.09	High Channel 714.5MHz 21.66 21.73 21.63 21.77 21.70 21.72 21.72 21.68 21.77 21.84	
	QPSK	1#0 1#7 1#14 8#0 8#4 8#7 15#0 1#0 1#7	Low Channel 700.5MHz 21.15 21.21 21.05 21.27 21.20 21.24 21.05 20.98 21.11 21.08 21.04	Mid Channel 707.5MHz 22.09 22.20 22.23 22.22 22.33 22.15 22.11 22.12 22.14 22.09 22.03	High Channel 714.5MHz 21.66 21.73 21.63 21.77 21.70 21.72 21.68 21.77 21.84 21.72	

Report No.: RXM200929050-SA

SAR Test Report 47 of 79

			Ave	Tx Power (d)	Bm)
BW	Modulation	Resource Block Size& Resource Block Offset	Low Channel	Mid Channel	High Channel
			701.5MHz	707.5MHz	713.5MHz
		1#0	21.25	21.94	21.84
		1#12	21.29	21.92	21.90
		1#24	21.26	21.86	21.88
	QPSK	12#0	21.22	22.05	21.96
		12#6	21.28	22.16	21.95
		12#11	21.37	22.11	21.99
5M		25#0	21.38	21.98	21.85
SIVI		1#0	21.24	21.89	21.80
		1#12	21.28	22.04	21.69
		1#24	21.32	22.03	21.72
	16QAM	12#0	21.27	22.04	21.57
		12#6	21.16	22.14	21.46
		12#11	21.12	22.19	21.62
		25#0	21.18	22.11	21.58
				Tx Power (d)	· '
BW	Modulation	Resource Block Size& Resource Block Offset	Low Channel	Mid Channel	High Channel
		Resource Block Offset	704MHz	707.5MHz	711MHz
		1#0	21.24	22.17	21.71
		1#24	21.17	22.20	21.79
		1#49	21.30	22.18	21.88
	QPSK	25#0	21.18	22.20	21.98
		25#12	21.15	22.23	22.09
		25#24	21.05	22.31	22.01
1034	[50#0	20.86	22.29	21.97
10M		1#0	20.90	22.44	22.05
	[1#24	20.87	22.42	22.11
	[1#49	20.87	22.41	22.12
	16QAM	25#0	20.82	22.24	22.12
	[25#12	20.81	22.28	22.18
	[25#24	20.74	22.15	22.16
		50#0	20.81	22.28	22.17

SAR Test Report 48 of 79

			Ave	Tx Power (d)	Bm)
BW	Modulation	Resource Block Size& Resource Block Offset	Low Channel 779.5MHz	Mid Channel 782MHz	High Channel 784.5MHz
		1#0	21.57	21.29	21.75
		1#12	21.77	21.29	21.73
		1#12	21.69	21.90	21.72
	QPSK	12#0	22.04	21.48	22.04
	QISK	12#6	21.73	21.48	21.85
		12#0	21.79	21.79	21.85
		25#0	21.79	21.63	21.23
5M		1#0	21.56	21.03	21.17
		1#12			
		1#12	21.88	21.83	21.42
	16QAM	12#0	22.20	21.30	21.44
	TOQAW	12#6	22.07	21.47	21.23
		12#0	22.19	21.47	22.03
	-	25#0		21.77	
		23#0	21.93	Tx Power (d)	21.74 Pm)
DW	Modulation	Resource Block Size&	Low	Mid	
BW	Modulation	Resource Block Size& Resource Block Offset	Low Channel	Mid Channel	High Channel
BW	Modulation	Resource Block Offset	Low	Mid Channel 782MHz	High
BW	Modulation	Resource Block Offset 1#0	Low Channel 782MHz	Mid Channel 782MHz 21.25	High Channel 782MHz
BW	Modulation	Resource Block Offset 1#0 1#24	Low Channel 782MHz /	Mid Channel 782MHz 21.25 21.85	High Channel 782MHz
BW		1#0 1#24 1#49	Low Channel 782MHz	Mid Channel 782MHz 21.25 21.85 22.06	High Channel 782MHz
BW	Modulation QPSK	1#0 1#24 1#49 25#0	Low Channel 782MHz /	Mid Channel 782MHz 21.25 21.85 22.06 21.62	High Channel 782MHz
BW		1#0 1#24 1#49 25#0 25#12	Low Channel 782MHz / / /	Mid Channel 782MHz 21.25 21.85 22.06 21.62 21.57	High Channel 782MHz
BW		1#0 1#24 1#49 25#0 25#12 25#24	Low Channel 782MHz	Mid Channel 782MHz 21.25 21.85 22.06 21.62 21.57 21.47	High Channel 782MHz
10M		1#0 1#24 1#49 25#0 25#12 25#24 50#0	Low Channel 782MHz / / /	Mid Channel 782MHz 21.25 21.85 22.06 21.62 21.57 21.47 21.84	High Channel 782MHz
		1#0 1#24 1#49 25#0 25#12 25#24 50#0 1#0	Low Channel 782MHz /	Mid Channel 782MHz 21.25 21.85 22.06 21.62 21.57 21.47 21.84 21.42	High Channel 782MHz / / / / / / / / / / /
		1#0 1#24 1#49 25#0 25#12 25#24 50#0 1#0 1#24	Low Channel 782MHz /	Mid Channel 782MHz 21.25 21.85 22.06 21.62 21.57 21.47 21.84 21.42 21.97	High Channel 782MHz / / / / / / / / / / / / /
	QPSK	1#0 1#24 1#49 25#0 25#12 25#24 50#0 1#0 1#24 1#49	Low Channel 782MHz /	Mid Channel 782MHz 21.25 21.85 22.06 21.62 21.57 21.47 21.84 21.42 21.97 22.07	High Channel 782MHz / / / / / / / / / / / / / / / / / / /
		1#0 1#24 1#49 25#0 25#12 25#24 50#0 1#0 1#24 1#49 25#0	Low Channel 782MHz /	Mid Channel 782MHz 21.25 21.85 22.06 21.62 21.57 21.47 21.84 21.42 21.97 22.07 21.89	High Channel 782MHz / / / / / / / / / / / / / / /
	QPSK	1#0 1#24 1#49 25#0 25#12 25#24 50#0 1#0 1#24 1#49 25#0 25#12	Low Channel 782MHz / / / / / / / / / / / / /	Mid Channel 782MHz 21.25 21.85 22.06 21.62 21.57 21.47 21.84 21.42 21.97 22.07 21.89 21.23	High Channel 782MHz / / / / / / / / / / / / /
	QPSK	1#0 1#24 1#49 25#0 25#12 25#24 50#0 1#0 1#24 1#49 25#0	Low Channel 782MHz /	Mid Channel 782MHz 21.25 21.85 22.06 21.62 21.57 21.47 21.84 21.42 21.97 22.07 21.89	High Channel 782MHz / / / / / / / / / / / / / / / / / / /

SAR Test Report 49 of 79

			Ave	Ave Tx Power (dBm)			
BW (MHz)	Modulation	Resource Block Size& Resource Block Offset	Low Channel	Mid Channel	High Channel		
			1850.7MHz	1882.5MHz	1914.3MHz		
	_	1#0	21.90	21.78	21.94		
	_	1#3	21.98	21.75	21.88		
	_	1#5	21.84	21.87	22.01		
	QPSK	3#0	21.84	21.79	21.96		
		3#1	21.81	21.84	21.92		
		3#3	21.82	21.92	21.82		
1.4		6#0	21.85	21.96	21.90		
1.4		1#0	21.78	21.82	21.95		
		1#3	21.89	21.94	21.87		
		1#5	21.86	21.79	21.89		
	16QAM	3#0	21.85	21.68	21.79		
		3#1	21.78	21.69	21.79		
	-	3#3	21.50	21.73	21.77		
		6#0	21.50	21.74	21.85		
			Ave	Tx Power (d)	Bm)		
BW	Modulation	Resource Block Size&	Low	Mid	High		
BW (MHz)	Modulation	Resource Block Size& Resource Block Offset	Low Channel	Mid Channel	High Channel		
	Modulation		Low	Mid	High		
	Modulation	Resource Block Offset	Low Channel 1851.5MHz	Mid Channel 1882.5MHz	High Channel 1913.5MHz		
	Modulation	Resource Block Offset 1#0	Low Channel 1851.5MHz 21.34	Mid Channel 1882.5MHz 21.89	High Channel 1913.5MHz 21.71		
		Resource Block Offset 1#0 1#7	Low Channel 1851.5MHz 21.34 21.26	Mid Channel 1882.5MHz 21.89 21.79	High Channel 1913.5MHz 21.71 21.68		
	Modulation QPSK	Resource Block Offset 1#0 1#7 1#14	Low Channel 1851.5MHz 21.34 21.26 21.29	Mid Channel 1882.5MHz 21.89 21.79 21.77	High Channel 1913.5MHz 21.71 21.68 21.58		
		1#0 1#7 1#14 8#0	Low Channel 1851.5MHz 21.34 21.26 21.29 21.27	Mid Channel 1882.5MHz 21.89 21.79 21.77 21.84	High Channel 1913.5MHz 21.71 21.68 21.58 21.51		
(MHz)		1#0 1#7 1#14 8#0 8#4	Low Channel 1851.5MHz 21.34 21.26 21.29 21.27 21.29	Mid Channel 1882.5MHz 21.89 21.79 21.77 21.84 21.84	High Channel 1913.5MHz 21.71 21.68 21.58 21.51 21.48		
		1#0 1#7 1#14 8#0 8#4 8#7	Low Channel 1851.5MHz 21.34 21.26 21.29 21.27 21.29 21.42	Mid Channel 1882.5MHz 21.89 21.79 21.77 21.84 21.84 21.79	High Channel 1913.5MHz 21.71 21.68 21.58 21.51 21.48 21.65		
(MHz)		1#0 1#7 1#14 8#0 8#4 8#7 15#0	Low Channel 1851.5MHz 21.34 21.26 21.29 21.27 21.29 21.42 21.38	Mid Channel 1882.5MHz 21.89 21.79 21.77 21.84 21.84 21.79 21.85	High Channel 1913.5MHz 21.71 21.68 21.58 21.51 21.48 21.65 21.57		
(MHz)		1#0 1#7 1#14 8#0 8#4 8#7 15#0 1#0	Low Channel 1851.5MHz 21.34 21.26 21.29 21.27 21.29 21.42 21.38 21.56	Mid Channel 1882.5MHz 21.89 21.79 21.77 21.84 21.84 21.79 21.85 21.89	High Channel 1913.5MHz 21.71 21.68 21.58 21.51 21.48 21.65 21.57 21.65		
(MHz)	QPSK	1#0 1#7 1#14 8#0 8#4 8#7 15#0 1#0 1#7	Low Channel 1851.5MHz 21.34 21.26 21.29 21.27 21.29 21.42 21.38 21.56 21.53	Mid Channel 1882.5MHz 21.89 21.79 21.77 21.84 21.84 21.79 21.85 21.89 21.77	High Channel 1913.5MHz 21.71 21.68 21.58 21.51 21.48 21.65 21.57 21.65 21.57		
(MHz)		1#0 1#7 1#14 8#0 8#4 8#7 15#0 1#0 1#7	Low Channel 1851.5MHz 21.34 21.26 21.29 21.27 21.29 21.42 21.38 21.56 21.53 21.39	Mid Channel 1882.5MHz 21.89 21.79 21.77 21.84 21.84 21.79 21.85 21.89 21.77 21.78	High Channel 1913.5MHz 21.71 21.68 21.58 21.51 21.48 21.65 21.57 21.65 21.57 21.66		
(MHz)	QPSK	1#0 1#7 1#14 8#0 8#4 8#7 15#0 1#0 1#7	Low Channel 1851.5MHz 21.34 21.26 21.29 21.27 21.29 21.42 21.38 21.56 21.53 21.53	Mid Channel 1882.5MHz 21.89 21.79 21.77 21.84 21.84 21.79 21.85 21.89 21.77 21.78	High Channel 1913.5MHz 21.71 21.68 21.58 21.51 21.48 21.65 21.57 21.65 21.57 21.66 21.80		

SAR Test Report 50 of 79

		Ave	Tx Power (d)	(dBm)		
BW (MHz)	Modulation	Resource Block Size& Resource Block Offset	Low Channel 1852.5MHz	Mid Channel 1882.5MHz	High Channel 1912.5MHz	
		1#0	21.40	21.91	21.81	
		1#12	21.55	21.96	21.77	
		1#24	21.48	22.07	21.74	
	QPSK	12#0	21.45	21.89	21.78	
		12#6	21.35	21.88	21.82	
		12#11	21.36	21.88	21.65	
_		25#0	21.38	21.82	21.53	
5		1#0	21.44	21.80	21.62	
		1#12	21.38	21.86	21.61	
		1#24	21.42	21.88	21.57	
	16QAM	12#0	21.40	22.09	21.58	
		12#6	21.48	21.95	21.52	
		12#11	21.44	22.04	21.66	
		25#0	21.47	22.10	21.43	
			Ave Tx Power (dBm)			
	Modulation					
BW (MHz)	Modulation	Resource Block Size& Resource Block Offset	Low Channel	Mid Channel	High Channel	
	Modulation		=			
	Modulation		Channel	Channel 1882.5MHz 21.96	Channel	
	Modulation	Resource Block Offset	Channel 1855MHz 21.52 21.33	Channel 1882.5MHz 21.96 22.01	Channel 1910MHz 21.40 21.52	
	-	Resource Block Offset 1#0	Channel 1855MHz 21.52 21.33 21.39	Channel 1882.5MHz 21.96 22.01 22.13	Channel 1910MHz 21.40 21.52 21.51	
	Modulation QPSK	Resource Block Offset 1#0 1#24	Channel 1855MHz 21.52 21.33	Channel 1882.5MHz 21.96 22.01	Channel 1910MHz 21.40 21.52	
	-	1#0 1#24 1#49	Channel 1855MHz 21.52 21.33 21.39	Channel 1882.5MHz 21.96 22.01 22.13 22.02 22.09	Channel 1910MHz 21.40 21.52 21.51	
	-	1#0 1#24 1#49 25#0 25#12 25#24	Channel 1855MHz 21.52 21.33 21.39 21.23	Channel 1882.5MHz 21.96 22.01 22.13 22.02 22.09 22.15	Channel 1910MHz 21.40 21.52 21.51 21.35	
(MHz)	-	1#0 1#24 1#49 25#0 25#12	Channel 1855MHz 21.52 21.33 21.39 21.23 21.38	Channel 1882.5MHz 21.96 22.01 22.13 22.02 22.09 22.15 22.06	Channel 1910MHz 21.40 21.52 21.51 21.35 21.38	
	-	1#0 1#24 1#49 25#0 25#12 25#24 50#0 1#0	Channel 1855MHz 21.52 21.33 21.39 21.23 21.38 21.50 21.42 21.33	Channel 1882.5MHz 21.96 22.01 22.13 22.02 22.09 22.15 22.06 22.18	Channel 1910MHz 21.40 21.52 21.51 21.35 21.38 21.54 21.43 21.35	
(MHz)	-	1#0 1#24 1#49 25#0 25#12 25#24 50#0 1#0 1#24	Channel 1855MHz 21.52 21.33 21.39 21.23 21.38 21.50 21.42 21.33 21.41	Channel 1882.5MHz 21.96 22.01 22.13 22.02 22.09 22.15 22.06 22.18 22.25	Channel 1910MHz 21.40 21.52 21.51 21.35 21.38 21.54 21.43 21.35 21.46	
(MHz)	QPSK	1#0 1#24 1#49 25#0 25#12 25#24 50#0 1#0 1#24 1#49	Channel 1855MHz 21.52 21.33 21.39 21.23 21.38 21.50 21.42 21.33 21.41 21.31	Channel 1882.5MHz 21.96 22.01 22.13 22.02 22.09 22.15 22.06 22.18 22.25 22.20	Channel 1910MHz 21.40 21.52 21.51 21.35 21.38 21.54 21.43 21.35 21.46 21.45	
(MHz)	-	1#0 1#24 1#49 25#0 25#12 25#24 50#0 1#0 1#24 1#49 25#0	Channel 1855MHz 21.52 21.33 21.39 21.23 21.38 21.50 21.42 21.33 21.41 21.31 21.22	Channel 1882.5MHz 21.96 22.01 22.13 22.02 22.09 22.15 22.06 22.18 22.25 22.20 22.28	Channel 1910MHz 21.40 21.52 21.51 21.35 21.38 21.54 21.43 21.35 21.46 21.45 21.38	
(MHz)	QPSK	1#0 1#24 1#49 25#0 25#12 25#24 50#0 1#0 1#24 1#49 25#0 25#12	Channel 1855MHz 21.52 21.33 21.39 21.23 21.38 21.50 21.42 21.33 21.41 21.31 21.22 21.25	Channel 1882.5MHz 21.96 22.01 22.13 22.02 22.09 22.15 22.06 22.18 22.25 22.20 22.28 22.31	Channel 1910MHz 21.40 21.52 21.51 21.35 21.38 21.46 21.45 21.38 21.50	
(MHz)	QPSK	1#0 1#24 1#49 25#0 25#12 25#24 50#0 1#0 1#24 1#49 25#0	Channel 1855MHz 21.52 21.33 21.39 21.23 21.38 21.50 21.42 21.33 21.41 21.31 21.22	Channel 1882.5MHz 21.96 22.01 22.13 22.02 22.09 22.15 22.06 22.18 22.25 22.20 22.28	Channel 1910MHz 21.40 21.52 21.51 21.35 21.38 21.54 21.43 21.35 21.46 21.45 21.38	

SAR Test Report 51 of 79

			Ave	Tx Power (dl	Bm)	
BW (MHz)	Modulation	Resource Block Size& Resource Block Offset	Low Channel 1857.5MHz	Mid Channel 1882.5MHz	High Channel 1907.5MHz	
		1#0	21.19	22.25	21.27	
		1#37	21.21	22.05	21.31	
		1#74	21.15	21.93	21.33	
	QPSK	36#0	21.05	22.03	21.43	
		36#17	21.21	21.91	21.36	
		36#35	21.29	22.07	21.34	
		75#0	21.25	21.99	21.46	
15		1#0	21.32	21.98	21.47	
		1#37	21.36	21.99	21.39	
		1#74	21.12	21.96	21.43	
	16QAM	36#0	21.12	22.09	21.47	
		36#17	21.28	21.92	21.41	
		36#35	21.24	21.91	21.48	
		75#0	21.44	21.92	21.40	
			Ave Tx Power (dBm)			
BW	35 3 3	Resource Block Size&	Low	Mid	High	
(MHz)	Modulation	Resource Block Offset	Channel	Channel	Channel	
(MHz)	Modulation	Resource Block Offset	Channel 1860MHz	Channel 1882.5MHz	Channel 1905MHz	
(MHz)	Modulation	Resource Block Offset 1#0	Channel 1860MHz 21.42	Channel 1882.5MHz 22.00	Channel 1905MHz 21.31	
(MHz)	Modulation	Resource Block Offset 1#0 1#49	Channel 1860MHz 21.42 21.35	Channel 1882.5MHz 22.00 21.96	Channel 1905MHz 21.31 21.39	
(MHz)		1#0 1#49 1#99	Channel 1860MHz 21.42 21.35 21.43	Channel 1882.5MHz 22.00 21.96 21.87	Channel 1905MHz 21.31 21.39 21.41	
(MHz)	Modulation QPSK	1#0 1#49 1#99 50#0	Channel 1860MHz 21.42 21.35 21.43 21.44	Channel 1882.5MHz 22.00 21.96 21.87 22.16	Channel 1905MHz 21.31 21.39 21.41 21.35	
(MHz)		1#0 1#49 1#99 50#0 50#24	Channel 1860MHz 21.42 21.35 21.43 21.44 21.28	Channel 1882.5MHz 22.00 21.96 21.87 22.16 22.13	Channel 1905MHz 21.31 21.39 21.41 21.35 21.25	
(MHz)		1#0 1#49 1#99 50#0 50#24 50#49	Channel 1860MHz 21.42 21.35 21.43 21.44 21.28 21.31	Channel 1882.5MHz 22.00 21.96 21.87 22.16 22.13 22.09	Channel 1905MHz 21.31 21.39 21.41 21.35 21.25 21.39	
		1#0 1#49 1#99 50#0 50#24 50#49 100#0	Channel 1860MHz 21.42 21.35 21.43 21.44 21.28 21.31 21.23	Channel 1882.5MHz 22.00 21.96 21.87 22.16 22.13 22.09 21.96	Channel 1905MHz 21.31 21.39 21.41 21.35 21.25 21.39 21.56	
(MHz) 20		1#0 1#49 1#99 50#0 50#24 50#49 100#0 1#0	Channel 1860MHz 21.42 21.35 21.43 21.44 21.28 21.31 21.23 21.38	Channel 1882.5MHz 22.00 21.96 21.87 22.16 22.13 22.09 21.96 22.08	Channel 1905MHz 21.31 21.39 21.41 21.35 21.25 21.39 21.56 21.54	
		1#0 1#49 1#99 50#0 50#24 50#49 100#0 1#0 1#49	Channel 1860MHz 21.42 21.35 21.43 21.44 21.28 21.31 21.23 21.38 21.37	Channel 1882.5MHz 22.00 21.96 21.87 22.16 22.13 22.09 21.96 22.08 21.94	Channel 1905MHz 21.31 21.39 21.41 21.35 21.25 21.39 21.56 21.54 21.45	
	QPSK	1#0 1#49 1#99 50#0 50#24 50#49 100#0 1#0 1#49	Channel 1860MHz 21.42 21.35 21.43 21.44 21.28 21.31 21.23 21.38 21.37 21.32	Channel 1882.5MHz 22.00 21.96 21.87 22.16 22.13 22.09 21.96 22.08 21.94 22.00	Channel 1905MHz 21.31 21.39 21.41 21.35 21.25 21.39 21.56 21.54 21.45 21.28	
		1#0 1#49 1#99 50#0 50#24 50#49 100#0 1#0 1#49 1#99 50#0	Channel 1860MHz 21.42 21.35 21.43 21.44 21.28 21.31 21.23 21.38 21.37 21.32 21.37	Channel 1882.5MHz 22.00 21.96 21.87 22.16 22.13 22.09 21.96 22.08 21.94 22.00 22.02	Channel 1905MHz 21.31 21.39 21.41 21.35 21.25 21.39 21.56 21.54 21.45 21.45 21.48	
	QPSK	1#0 1#49 1#99 50#0 50#24 50#49 1100#0 1#49 1#49 1#99 50#0 50#24	Channel 1860MHz 21.42 21.35 21.43 21.44 21.28 21.31 21.23 21.38 21.37 21.32 21.37 21.41	Channel 1882.5MHz 22.00 21.96 21.87 22.16 22.13 22.09 21.96 21.96 22.08 21.94 22.00 22.02 22.08	Channel 1905MHz 21.31 21.39 21.41 21.35 21.25 21.39 21.56 21.54 21.45 21.28 21.40 21.26	
	QPSK	1#0 1#49 1#99 50#0 50#24 50#49 100#0 1#0 1#49 1#99 50#0	Channel 1860MHz 21.42 21.35 21.43 21.44 21.28 21.31 21.23 21.38 21.37 21.32 21.37	Channel 1882.5MHz 22.00 21.96 21.87 22.16 22.13 22.09 21.96 22.08 21.94 22.00 22.02	Channel 1905MHz 21.31 21.39 21.41 21.35 21.25 21.39 21.56 21.54 21.45 21.45 21.48	

SAR Test Report 52 of 79

			Ave	Tx Power (dl	Bm)	
BW (MHz)	Modulation	Resource Block Size& Resource Block Offset	Low Channel 814.7MHz	Mid Channel 831.5MHz	High Channel 848.3MHz	
		1#0	21.66	21.91	21.95	
		1#3	21.55	21.80	22.01	
		1#5	21.66	21.87	21.90	
	QPSK	3#0	21.76	22.13	22.04	
		3#1	21.77	22.07	22.01	
		3#3	21.81	22.08	22.02	
	Ī	6#0	21.74	21.98	22.11	
1.4		1#0	21.77	22.15	22.09	
		1#3	21.82	22.25	22.12	
		1#5	21.85	22.13	22.16	
	16QAM	3#0	21.71	22.30	22.07	
	Ī	3#1	21.78	22.19	22.06	
	-	3#3	21.72	22.26	22.09	
		6#0	21.70	22.39	22.07	
			Ave Tx Power (dBm)			
BW (MHz)	Modulation	Resource Block Size& Resource Block Offset	Low Channel	Mid Channel	High Channel	
			017 73 (11	831.5MHz	847.5MHz	
			815.5MHz			
	_	1#0	21.80	22.30	21.98	
		1#0 1#7				
			21.80	22.30	21.98	
	QPSK	1#7	21.80 21.74	22.30 22.40	21.98 22.14	
	QPSK	1#7 1#14	21.80 21.74 21.76	22.30 22.40 22.38	21.98 22.14 21.94	
	QPSK	1#7 1#14 8#0	21.80 21.74 21.76 21.65	22.30 22.40 22.38 22.45	21.98 22.14 21.94 22.01	
2	QPSK	1#7 1#14 8#0 8#4	21.80 21.74 21.76 21.65 21.49	22.30 22.40 22.38 22.45 22.42	21.98 22.14 21.94 22.01 21.95	
3	QPSK	1#7 1#14 8#0 8#4 8#7	21.80 21.74 21.76 21.65 21.49 21.46	22.30 22.40 22.38 22.45 22.42 22.45	21.98 22.14 21.94 22.01 21.95 21.82	
3	QPSK	1#7 1#14 8#0 8#4 8#7 15#0	21.80 21.74 21.76 21.65 21.49 21.46 21.53	22.30 22.40 22.38 22.45 22.42 22.45 22.45	21.98 22.14 21.94 22.01 21.95 21.82 21.99	
3	QPSK	1#7 1#14 8#0 8#4 8#7 15#0 1#0	21.80 21.74 21.76 21.65 21.49 21.46 21.53 21.57	22.30 22.40 22.38 22.45 22.42 22.45 22.45 22.45 22.59	21.98 22.14 21.94 22.01 21.95 21.82 21.99 21.99	
3	QPSK 16QAM	1#7 1#14 8#0 8#4 8#7 15#0 1#0 1#7	21.80 21.74 21.76 21.65 21.49 21.46 21.53 21.57 21.60	22.30 22.40 22.38 22.45 22.42 22.45 22.48 22.59 22.73	21.98 22.14 21.94 22.01 21.95 21.82 21.99 21.99 22.02	
3		1#7 1#14 8#0 8#4 8#7 15#0 1#0 1#7 1#14	21.80 21.74 21.76 21.65 21.49 21.46 21.53 21.57 21.60 21.67	22.30 22.40 22.38 22.45 22.42 22.45 22.45 22.45 22.70	21.98 22.14 21.94 22.01 21.95 21.82 21.99 21.99 22.02 21.93	
3		1#7 1#14 8#0 8#4 8#7 15#0 1#0 1#7 1#14 8#0	21.80 21.74 21.76 21.65 21.49 21.46 21.53 21.57 21.60 21.67 21.59	22.30 22.40 22.38 22.45 22.42 22.45 22.48 22.59 22.73 22.70 22.79	21.98 22.14 21.94 22.01 21.95 21.82 21.99 21.99 22.02 21.93 22.03	

SAR Test Report 53 of 79

			Ave	Tx Power (d)	Bm)	
BW (MHz)	Modulation	Resource Block Size& Resource Block Offset	Low Channel 816.5MHz	Mid Channel 831.5MHz	High Channel 846.5MHz	
		1#0	21.59	22.71	22.22	
		1#12	21.55	22.67	22.18	
		1#24	21.67	22.78	22.26	
	QPSK	12#0	21.58	22.71	22.37	
		12#6	21.49	22.58	22.27	
		12#11	21.59	22.50	22.22	
_		25#0	21.48	22.54	22.20	
5		1#0	21.54	22.54	22.17	
		1#12	21.59	22.69	22.22	
		1#24	21.54	22.54	22.13	
	16QAM	12#0	21.48	22.51	22.16	
		12#6	21.58	22.33	22.11	
		12#11	21.57	22.32	22.06	
		25#0	21.66	22.30	22.06	
			Ave Tx Power (dBm)			
BW		Resource Block Size&	Low	Mid	High	
(MHz)	Modulation	Resource Block Offset	Channel	Channel	Channel	
	Modulation		819MHz	831.5MHz	Channel 844MHz	
	Modulation	1#0	819MHz 21.79	831.5MHz 22.13	Channel 844MHz 22.12	
	Modulation	1#0 1#24	819MHz 21.79 21.73	831.5MHz 22.13 22.26	Channel 844MHz 22.12 22.06	
		1#0 1#24 1#49	819MHz 21.79 21.73 21.77	831.5MHz 22.13 22.26 22.41	Channel 844MHz 22.12 22.06 21.96	
	Modulation QPSK	1#0 1#24 1#49 25#0	819MHz 21.79 21.73 21.77 21.76	831.5MHz 22.13 22.26 22.41 22.35	Channel 844MHz 22.12 22.06 21.96 21.85	
		1#0 1#24 1#49 25#0 25#12	819MHz 21.79 21.73 21.77 21.76 21.65	831.5MHz 22.13 22.26 22.41 22.35 22.44	Channel 844MHz 22.12 22.06 21.96 21.85 21.82	
		1#0 1#24 1#49 25#0 25#12 25#24	819MHz 21.79 21.73 21.77 21.76 21.65 21.43	831.5MHz 22.13 22.26 22.41 22.35 22.44 22.54	Channel 844MHz 22.12 22.06 21.96 21.85 21.82 21.89	
		1#0 1#24 1#49 25#0 25#12 25#24 50#0	819MHz 21.79 21.73 21.77 21.76 21.65 21.43 21.59	831.5MHz 22.13 22.26 22.41 22.35 22.44 22.54 22.49	Channel 844MHz 22.12 22.06 21.96 21.85 21.82 21.89 21.83	
(MHz)		1#0 1#24 1#49 25#0 25#12 25#24 50#0 1#0	819MHz 21.79 21.73 21.77 21.76 21.65 21.43 21.59 21.54	831.5MHz 22.13 22.26 22.41 22.35 22.44 22.54 22.49 22.50	Channel 844MHz 22.12 22.06 21.96 21.85 21.82 21.89 21.83 21.82	
(MHz)		1#0 1#24 1#49 25#0 25#12 25#24 50#0 1#0 1#24	819MHz 21.79 21.73 21.77 21.76 21.65 21.43 21.59 21.54 21.45	831.5MHz 22.13 22.26 22.41 22.35 22.44 22.54 22.49 22.50 22.49	Channel 844MHz 22.12 22.06 21.96 21.85 21.82 21.89 21.83 21.82 22.01	
(MHz)	QPSK	1#0 1#24 1#49 25#0 25#12 25#24 50#0 1#0 1#24 1#49	819MHz 21.79 21.73 21.77 21.76 21.65 21.43 21.59 21.54 21.45 21.44	831.5MHz 22.13 22.26 22.41 22.35 22.44 22.54 22.49 22.50 22.49 22.46	Channel 844MHz 22.12 22.06 21.96 21.85 21.82 21.89 21.83 21.82 22.01 21.99	
(MHz)		1#0 1#24 1#49 25#0 25#12 25#24 50#0 1#0 1#24 1#49 25#0	819MHz 21.79 21.73 21.77 21.76 21.65 21.43 21.59 21.54 21.45 21.44 21.38	831.5MHz 22.13 22.26 22.41 22.35 22.44 22.54 22.49 22.50 22.49 22.56	Channel 844MHz 22.12 22.06 21.96 21.85 21.82 21.83 21.82 22.01 21.99 21.90	
(MHz)	QPSK	1#0 1#24 1#49 25#0 25#12 25#24 50#0 1#0 1#24 1#49 25#0 25#12	819MHz 21.79 21.73 21.77 21.76 21.65 21.43 21.59 21.54 21.45 21.45 21.45 21.55	831.5MHz 22.13 22.26 22.41 22.35 22.44 22.54 22.49 22.50 22.49 22.46 22.56 22.44	Channel 844MHz 22.12 22.06 21.96 21.85 21.82 21.89 21.83 21.82 22.01 21.99 21.90 22.06	
(MHz)	QPSK	1#0 1#24 1#49 25#0 25#12 25#24 50#0 1#0 1#24 1#49 25#0	819MHz 21.79 21.73 21.77 21.76 21.65 21.43 21.59 21.54 21.45 21.44 21.38	831.5MHz 22.13 22.26 22.41 22.35 22.44 22.54 22.49 22.50 22.49 22.56	Channel 844MHz 22.12 22.06 21.96 21.85 21.82 21.83 21.82 22.01 21.99 21.90	

SAR Test Report 54 of 79

			Ave Tx Power (dBm)			
BW (MHz)	Modulation	Resource Block Size& Resource Block Offset	Low Channel 821.5MHz	Mid Channel 831.5MHz	High Channel 841.5MHz	
		1#0	21.96	21.44	21.62	
		1#37	21.91	21.57	21.66	
		1#74	22.06	21.64	21.51	
	QPSK	36#0	21.99	21.70	21.59	
	-	36#17	21.88	21.69	21.53	
		36#34	21.89	21.71	21.51	
1.5		75#0	21.79	21.79	21.53	
15		1#0	21.90	21.74	21.64	
		1#37	21.96	21.94	21.47	
		1#74	22.02	21.91	21.47	
	16QAM	36#0	21.83	21.98	21.40	
		36#17	21.86	21.89	21.45	
		36#35	21.83	21.93	21.54	
		75#0	21.89	21.99	21.62	

Note:

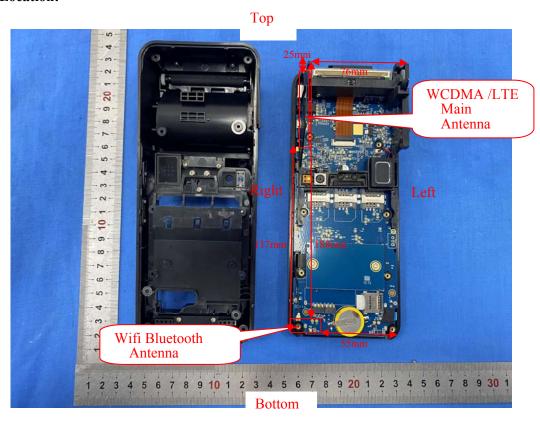
- 1. SAR for LTE band exposure configurations is measured according to the procedures of KDB 941225 D05 SAR
- for LTE Devices v02.

 2. The CMW500 Wideband Radio Communication tester is used for LTE output power measurements and SAR testing. Closed loop power control is used to keep the radio transmitters the max output power during the test.

SAR Test Report 55 of 79

WLAN 2.4G:

Mode	Channel	Data Rate	RF Output
Mode	frequency	Data Rate	Power(dBm)
	2412		3.83
802.11b	2437	1Mbps	3.86
	2462		4.00
	2412		5.69
802.11g	2437	6Mbps	5.63
	2462		5.83
	2412		5.72
802.11n HT20	2437	MCS0	5.57
	2462		5.85
	2422		5.90
802.11n HT40	2442	MCS0	5.73
	2452		5.70


Bluetooth:

Mode	Channel frequency (MHz)	RF Output Power (dBm)
	2402	1.78
BDR(GFSK)	2441	1.27
	2480	2.90
	2402	1.86
$EDR(\pi/4-DQPSK)$	2441	1.24
	2480	2.75
	2402	2.19
EDR(8-DPSK)	2441	1.46
	2480	3.25
	2402	1.45
Bluetooth LE	2440	0.67
	2480	2.56

SAR Test Report 56 of 79

Standalone SAR test exclusion considerations

Antennas Location:

Report No.: RXM200929050-SA

Antenna Distance To Edge

Antenna Distance To Edge(mm)						
Antenna	Back	Left	Right	Top	Bottom	
WLAN/Bluetooh Antenna	7	55	< 5	188	< 5	
WWAN(WCDMA/LTE)	17	76	7	25	117	

Standalone SAR test exclusion considerations

Mode	Frequency (MHz)	P _{avg} (dBm)	P _{avg} (mW	Distance (mm)	Calculated value	Threshold (1-g)	SAR Test Exclusi on
WLAN 2.4G	2462	6.5	4.47	0	1.4	3	No
Bluetooth	2480	3.5	2.239	0	0.7	3	Yes

NOTE:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]

 $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- 1. f(GHz) is the RF channel transmit frequency in GHz.
- 2. Power and distance are rounded to the nearest mW and mm before calculation.
- 3. The result is rounded to one decimal place for comparison.
- 4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

SAR Test Report 57 of 79

Standalone SAR estimation:

Mode	Frequency (MHz)	Pavg (dBm)	Pavg (mW)	Distance (mm)	Estimated 1-g (W/kg)	Estimated 10-g (W/kg)
2.4GWifi Body	2462	6.5	4.47	0	0.19	0.08
2.4GWifi HandHeld	2462	6.5	4.47	0	0.19	0.08
Bluetooh Body	2480	3.5	2.24	0	0.09	0.04
Bluetooh HandHeld	2480	3.5	2.24	0	0.09	0.04

Report No.: RXM200929050-SA

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

[(max. power of channel, including tune-up tolerance , mW)/(min. test separation distance,mm)] $\cdot [\sqrt{f(GHz)/x}]$

W/kg for test separation distances ≤50 mm;

where x = 7.5 for 1-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

SAR test exclusion for the EUT edge considerations Result

Exclusion Result										
Mode Back Left Right Top Bottom										
BT	Exclusion*	Exclusion*	Exclusion*	Exclusion*	Exclusion*					
WLAN 2.4G	Exclusion*	Exclusion*	Exclusion*	Exclusion*	Exclusion*					
WWAN	Required	Exclusion*	Required	Required	Exclusion					

Note:

Required: The distance to Edge is less than 25mm, testing is required. **Exclusion*:** SAR test exclusion evaluation has been done above. **Exclusion:** The distance to Edge is more than 25 mm, testing is not required.

SAR Test Report 58 of 79

SAR MEASUREMENT RESULTS

This page summarizes the results of the performed dosimetric evaluation.

Report No.: RXM200929050-SA

SAR Test Data

Environmental Conditions

Temperature:	22.7-23.6 ℃	22.5-23.9 ℃
Relative Humidity:	43-53%	45-56 %
ATM Pressure:	101.1 kPa	101.3 kPa
Test Date:	2020/10/30	2020/10/31

Testing was performed by Seven Liang, Ricardo Lan, Thomas Deng.

SAR Test Report 59 of 79

WCDMA Band 2:

EUT Position	Frequency (MHz)	requency M (MHz) od		Max Power (dBm)			SAR V/kg)	Plot
Toblion	(IVIIIZ)	e	Meas.	Rated	tor	Meas.	Scaled	
D 1 D 1	1852.4	RMC	/	/	/	/	/	/
Body Back (0mm)	1880	RMC	22.26	23.0	1.186	0.203	0.24	1#
(onni)	1907.6	RMC	/ /		/	/	/	/
EUT Position	Frequency M (MHz) od			Max Power (dBm)			10g SAR (W/kg)	
1 obition	(IVIIIZ)	e	Meas.	Rated	tor	Meas.	Scaled	
Hand Held	1852.4	RMC	/	/	/	/	/	/
Right	1880	RMC	22.26	23.0	1.186	0.045	0.05	2#
(0mm)	1907.6	RMC	/	/	/	/	/	/
	1852.4	RMC	/	/	/	/	/	/
Hand Held Top (0mm)	1880	RMC	22.26	23.0	1.186	0.051	0.06	3#
Top (omm)	1907.6	RMC	/	/	/	/	/	/

Report No.: RXM200929050-SA

WCDMA Band 4:

EUT Position	Frequency (MHz)	Test M od		Max Power (dBm)			SAR V/kg)	Plot
Tosition	(WIIZ)	e	Meas.	Rated	tor	Meas.	Scaled	
D 1 D 1	1712.4	RMC	22.51	23.0	1.119	0.741	0.83	4#
Body Back (0mm)	1732.6	RMC	22.26	23.0	1.186	0.752	0.89	5#
(onni)	1752.6	RMC	22.46	23.0	1.132	1.01	1.14	6#
EUT Position	Frequency (MHz)	Test M od	Max I	Power Bm)	Scaled Fac	10g (V	Plot	
1 OSITION	(IVIIIZ)	e	Meas.	Rated	tor	Meas.	Scaled	
Hand Held	1712.4	RMC	/	/	/	/	/	/
Right	1732.6	RMC	22.26	23.0	1.186	0.036	0.04	7#
(0mm)	1752.6	RMC	/	/	/	/	/	/
TT 1 TT 1 1	1712.4	RMC	/	/	/	/	/	/
Hand Held Top (0mm)	1732.6	RMC	22.26	23.0	1.186	0.008	0.01	8#
Top (omm)	1752.6	RMC	/	/	/	/	/	/

SAR Test Report 60 of 79

WCDMA Band 5:

EUT Position	Frequency (MHz)	Test Max Power (dBm)		Scaled Fac		SAR V/kg)	Plot		
Tosition	(WITE)	e	Meas.	Rated	tor	Meas.	Scaled		
D 1 D 1	826.4	RMC	/	/	/	/	/	/	
Body Back (0mm)	836.6	RMC	22.91	23.0	1.021	0.201	0.21	9#	
(omin)	846.6	RMC	/ /		/	/	/	/	
EUT Position	Frequency (MHz)	Test M od		Power Bm)	Scaled Fac		10g SAR (W/kg)		
1 osition	(IVIIIZ)	(5:333)	e	Meas.	Rated	tor	Meas.	Scaled	
Hand Held	826.4	RMC	/	/	/	/	/	/	
Right	836.6	RMC	22.91	23.0	1.021	0.527	0.54	10#	
(0mm)	846.6	RMC	/	/	/	/	/	/	
	826.4	RMC	/	/	/	/	/	/	
Hand Held Top (0mm)	836.6	RMC	22.91	23.0	1.021	0.158	0.16	11#	
Top (ommi)	846.6	RMC	/	/	/	/	/	/	

Note:

- 1. When the 1-g SAR is ≤ 0.8 W/Kg, testing for other channels are optional.
- 2. The EUT transmit and receive through the same antenna while testing SAR.
- 3. The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2 kbps RMC (reference measurement Channel) Configured in Test Loop Model.
- 4. KDB 941225 D01-Body SAR is not required for HSDPA/HSPA+ when the maximum average output of each RF channel is less than ? dB higher than measured 12.2kbps RMC or the maximum SAR for 12.2kbps RMC is < 75% of SAR limit.
- 5. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.

SAR Test Report 61 of 79

1880

1860

1880

1900

1880

Hand Held

(0mm)

Top

20

20

20

20

20

EUT Frequency Position (MHz)		Bandwidth (MHz)	Mod		Max Power (dBm)		1g S (V	Plot	
TOSITION	(WITIZ)	(WITIZ)	e	Meas.	Rated	tor	Meas.	Scaled	
	1860	20	1RB	21.55	22.0	1.109	1.13	1.25	12#
Body Back	1880	20	1RB	22.67	23.5	1.211	1.00	1.21	13#
(0mm)	1900	20	1RB	22.91	23.5	1.146	0.704	0.81	14#
	1880	20	50%RB	22.62	23.5	1.225	0.702	0.86	15#
EUT Position	Frequency (MHz)	Bandwidth (MHz)	Test Mod		Power Bm)	Scaled Fac	\mathcal{L}	SAR V/kg)	Plot
TOSITION	(WITIZ)	(WITIZ)	e	Meas.	Rated	tor	Meas.	Scaled	
	1860	20	1RB	21.55	22.0	1.109	2.02	2.24	16#
Hand Held Right	1880	20	1RB	22.67	23.5	1.211	1.95	2.36	17#
(0mm)	1900	20	1RB	22.91	23.5	1.146	1.38	1.58	18#

22.62

22.67

/

22.62

50%RB

1RB

1RB

1RB

50%RB

23.5

/

23.5

/

23.5

1.225

1.211

/

1.225

1.35

/

0.102

/

0.075

1.65

0.12

0.09

19#

20#

/

21#

Report No.: RXM200929050-SA

SAR Test Report 62 of 79

EUT Position	Frequency (MHz)	Bandwidth (MHz)	Test Mod	Max I	Power Bm)	Scaled Fac		SAR V/kg)	Plot
Tosition	(IVIIIZ)	(WITE)	e	Meas.	Rated	tor	Meas.	Scaled	
	1720	20	1RB	/	/	/	/	/	/
Body Back	1732.5	20	1RB	22.80	23.4	1.148	0.683	0.78	22#
(0mm)	1745	20	1RB	/	/	/	/	/	/
	1732.5	20	50%RB	22.94	23.4	1.112	0.528	0.59	23#
EUT Position	Frequency (MHz)	2	Test Mod		Power Bm)	Scaled Fac	10g SAR (W/kg)		Plot
1 OSITION	(WILLE)	(WITIZ)	e	Meas.	Rated	tor	Meas.	Scaled	
	1720	20	1RB	/	/	/	/	/	/
Hand Held	1732.5	20	1RB	22.80	23.4	1.148	1.62	1.86	24#
Right (0mm)	1745	20	1RB	/	/	/	/	/	/
,	1732.5	20	50%RB	22.94	23.4	1.112	1.24	1.38	25#
	1720	20	1RB	/	/	/	/	/	/
Hand Held	1732.5	20	1RB	22.80	23.4	1.148	0.082	0.09	26#
Top (0mm)	1745	20	1RB	/	/	/	/	/	/
, ,	1732.5	20	50%RB	22.94	23.4	1.112	0.062	0.07	27#

SAR Test Report 63 of 79

EUT Position	Frequency (MHz)	Bandwidth (MHz)	Test Mod	Max I	Power Bm)	Scaled Fac	1g SAR (W/kg)		Plot
1 OSITION	(WITIZ)	(WITE)	e	Meas.	Rated	tor	Meas.	Scaled	
	829	10	1RB	/	/	/	/	/	/
Body Back	836.5	10	1RB	22.55	23.5	1.245	0.195	0.24	28#
(0mm)	844	10	1RB	/	/	/	/	/	/
	836.5	10	50%RB	22.57	23.5	1.239	0.159	0.20	29#
EUT Position	Frequency (MHz)	Bandwidth (MHz)	Test Mod		Max Power (dBm)		10g SAR (W/kg)		Plot
1 OSITION	(WITIZ)	(141112)	e	Meas.	Rated	tor	Meas.	Scaled	
	829	10	1RB	/	/	/	/	/	/
Hand Held	836.5	10	1RB	22.55	23.5	1.245	0.049	0.06	30#
Right (0mm)	844	10	1RB	/	/	/	/	/	/
	836.5	10	50%RB	22.57	23.5	1.239	0.046	0.06	31#
	829	10	1RB	/	/	/	/	/	/
Hand Held	836.5	10	1RB	22.55	23.5	1.245	0.135	0.17	32#
Top (0mm)	844	10	1RB	/	/	/	/	/	/
` /	836.5	10	50%RB	22.57	23.5	1.239	0.167	0.21	33#

LTE Band 7:

EUT Position	Frequency (MHz)	Bandwidth (MHz)	Test Mod		Power Bm)	Scaled Fac	1g SAR (W/kg)		Plot
1 OSITION	(WITIZ)	(WITIZ)	e	Meas.	Rated	tor	Meas.	Scaled	
	2510	20	1RB	/	/	/	/	/	/
Body Back	2535	20	1RB	21.76	23.0	1.330	0.490	0.65	34#
(0mm)	2560	20	1RB	/	/	/	/	/	/
	2535	20	50%RB	21.82	23.0	1.312	0.374	0.49	35#
EUT Position	Frequency	Frequency (MHz) Bandwidth (MHz)	Test Mod		Max Power (dBm)		10g SAR (W/kg)		Plot
1 OSITION	(MHZ)		e	Meas.	Rated	tor	Meas.	Scaled	
	2510	20	1RB	21.18	23.0	1.521	2.14	3.25	36#
Hand Held	2535	20	1RB	21.76	23.0	1.330	2.26	3.01	37#
Right (0mm)	2560	20	1RB	21.80	23.0	1.318	2.28	3.01	38#
	2535	20	50%RB	21.82	23.0	1.312	1.72	2.26	39#
	2510	20	1RB	/	/	/	/	/	/
Hand Held	2535	20	1RB	21.76	23.0	1.330	0.095	0.13	40#
Top (0mm)	2560	20	1RB	/	/	/	/	/	/
	2535	20	50%RB	21.82	23.0	1.312	0.076	0.10	41#

SAR Test Report 64 of 79

EUT Position	Frequency (MHz)	Bandwidth (MHz)	Test Mod	Max I	Power Bm)	Scaled Fac	1g SAR (W/kg)		Plot
1 OSITION	(IVIIIZ)	(IVIIIZ)	e	Meas.	Rated	tor	Meas.	Scaled	
	704	10	1RB	/	/	/	/	/	/
Body Back	707.5	10	1RB	22.17	23.0	1.211	0.178	0.22	42#
(0mm)	711	10	1RB	/	/	/	/	/	/
	707.5	10	50%RB	22.20	23.0	1.202	0.153	0.18	43#
EUT Position	Frequency (MHz) Bandwidth (MHz)	Test Mod		Max Power (dBm)		10g SAR (W/kg)		Plot	
1 OSITION		(141112)	e	Meas.	Rated	tor	Meas.	Scaled	
	704	10	1RB	/	/	/	/	/	/
Hand Held	707.5	10	1RB	22.17	23.0	1.211	0.439	0.53	44#
Right (0mm)	711	10	1RB	/	/	/	/	/	/
	707.5	10	50%RB	22.20	23.0	1.202	0.361	0.43	45#
	704	10	1RB	/	/	/	/	/	/
Hand Held	707.5	10	1RB	22.17	23.0	1.211	0.041	0.05	46#
Top (0mm)	711	10	1RB	/	/	/	/	/	/
	707.5	10	50%RB	22.20	23.0	1.202	0.076	0.09	47#

LTE Band 13:

EUT Position	Frequency (MHz)	Bandwidth (MHz)	Test Mod	Max I	Power Bm)	Scaled Fac		SAR V/kg)	Plot
Tosition	(IVIIIZ)	(WITZ)	e	Meas.	Rated	tor	Meas.	Scaled	
	782	10	1RB	/	/	/	/	/	/
Body Back	782	10	1RB	21.25	23.0	1.496	0.208	0.31	48#
(0mm)	782	10	1RB	/	/	/	/	/	/
	782	10	50%RB	21.62	23.0	1.374	0.165	0.23	49#
EUT Position	Frequency	Frequency (MHz) Bandwidth (MHz)	Test Mod		Max Power (dBm)		10g SAR (W/kg)		Plot
TOSITION	(MHZ)		e	Meas.	Rated	tor	Meas.	Scaled	
	782	10	1RB	/	/	/	/	/	/
Hand Held	782	10	1RB	21.25	23.0	1.496	0.515	0.77	50#
Right (0mm)	782	10	1RB	/	/	/	/	/	/
	782	10	50%RB	21.62	23.0	1.374	0.423	0.58	51#
	782	10	1RB	/	/	/	/	/	/
Hand Held	782	10	1RB	21.25	23.0	1.496	0.125	0.19	52#
Top (0mm)	782	10	1RB	/	/	/	/	/	/
` '	782	10	50%RB	21.62	23.0	1.374	0.105	0.16	53#

SAR Test Report 65 of 79

LTE Band 25:

EUT Position	Frequency (MHz)	Bandwidth (MHz)	Test Mod	Max I	Power Bm)	Scaled Fac	1g SAR (W/kg)		Plot
1 OSITION	(IVIIIZ)	(IVIIIZ)	e	Meas.	Rated	tor	Meas.	Scaled	
	1860	20	1RB	21.42	21.5	1.019	1.10	1.12	54#
Body Back	1882.5	20	1RB	22.00	23.0	1.259	0.853	1.07	55#
(0mm)	1905	20	1RB	21.31	21.5	1.045	0.606	0.63	56#
	1882.5	20	50%RB	22.16	23.0	1.213	0.607	0.74	57#
EUT Position	Frequency (MHz) Bandwidth (MHz)	Bandwidth	Test Mod		Power Bm)	Scaled Fac	10g SAR (W/kg)		Plot
1 OSITION		(1/1112)	e	Meas.	Rated	tor	Meas.	Scaled	
	1860	20	1RB	21.42	21.5	1.019	3.10	3.16	58#
Hand Held	1882.5	20	1RB	22.00	23.0	1.259	2.44	3.07	59#
Right (0mm)	1905	20	1RB	21.31	21.5	1.045	2.16	2.26	60#
	1882.5	20	50%RB	22.16	23.0	1.213	1.91	2.32	61#
	1860	20	1RB	/	/	/	/	/	/
Hand Held	1882.5	20	1RB	22.00	23.0	1.259	0.087	0.11	62#
Top (0mm)	1905	20	1RB	/	/	/	/	/	/
` /	1882.5	20	50%RB	22.16	23.0	1.213	0.071	0.09	63#

Report No.: RXM200929050-SA

LTE Band 26:

EUT Position	Frequency (MHz)	•			Power Bm)	Scaled Fac	1g SAR (W/kg)		Plot		
1 osition	(14112)	(11112)	e	Meas.	Rated	tor	Meas.	Scaled			
	821.5	15	1RB	/	/	/	/	/	/		
Body Back	831.5	15	1RB	21.44	23.0	1.432	0.197	0.28	64#		
(0mm)	841.5	15	1RB	/	/	/	/	/	/		
	831.5	15	50%RB	21.70	23.0	1.349	0.165	0.22	65#		
EUT Position	Frequency (MHz)	Bandwidth (MHz)	Test Mod	Max Power (dBm)		Scaled Fac		SAR V/kg)	Plot		
1 OSITION	(IVIIIZ)	(IVIIIZ)	(11112)	(11112)	e	Meas.	Rated	tor	Meas.	Scaled	
	821.5	15	1RB	/	/	/	/	/	/		
Hand Held Right	831.5	15	1RB	21.44	23.0	1.432	0.592	0.85	66#		
(0mm)	841.5	15	1RB	/	/	/	/	/	/		
	831.5	15	50%RB	21.70	23.0	1.349	0.485	0.65	67#		
	821.5	15	1RB	/	/	/	/	/	/		
Hand Held	831.5	15	1RB	21.44	23.0	1.432	0.141	0.20	68#		
Top (0mm)	841.5	15	1RB	/	/	/	/	/	/		
, ,	831.5	15	50%RB	21.70	23.0	1.349	0.115	0.16	69#		

SAR Test Report 66 of 79

Note:

- 1. When the 1-g SAR is ≤ 0.8 W/Kg, testing for other channels are optional.
- SAR for LTE band exposure configurations is measured according to the procedures of KDB 941225 D05 SAR for LTE Devices v02.

Report No.: RXM200929050-SA

- 3. KDB941225D05-SAR for higher order modulation is required only when the highest maximum output power for the configuration in the higher order modulation is > 0.5 dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg
- 4. KDB941225D05-For QPSK with 100% RB allocation, when the reported SAR measured for the Highest output power channel is <1.45 W/kg, tests for the remaining required test channels are optional.
- 5.KDB941225D05- For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg.
- 6. KDB941225D05- Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offset the upper edge, middle and lower edge of each required test channel.
- 7. KDB941225D05- other channel bandwidths SAR test is required when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is > 0.5 dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.
- 8. Worst case SAR for 50% RB allocation is selected to be tested.
- 9. KDB 648474 D04-When the peak SAR located in regions that probe is unable to access, a flat phantom is used for SAR measurement.

SAR Test Report 67 of 79

SAR Measurement Variability

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results

Report No.: RXM200929050-SA

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Note: The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

The Highest Measured SAR Configuration in Each Frequency Band

Head

SAR probe	Frequency	Enac (MII-)	ELIT Dogition	Meas. SAR (W/kg)		Largest to Smallest SAR Ratio	
calibration point	Band Freq.(MHz)		EUT Position	Original	Repeated		
/	/	/	/	/	/	/	

Body

SAR probe	Frequency	Freq.(MHz)	EUT Position	Meas. SA	Largest to Smallest		
calibration point	Band	rieq.(Miriz)	(MHZ) EU1 Position Or.		Repeated	SAR Ratio	
1800MHz (1650-1850MHz)	WCDMA Band 4	1752.6	Body Back	1.01	1.05	1.03	
1900MHz (1850-2000MHz)	LTE Band 2	1880	Body Back	1.13	1.08	1.04	
1900MHz (1850-2000MHz)	LTE Band 25	1860	Body Back	1.1	1.08	1.01	

Note:

- 1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.
- 2. The measured SAR results **do not** have to be scaled to the maximum tune-up tolerance to determine if repeated measurements are required.
- 3. SAR measurement variability must be assessed for each frequency band, which is determined by the **SAR probe calibration point and tissue-equivalent medium** used for the device measurements..

SAR Test Report 68 of 79

SAR SIMULTANEOUS TRANSMISSION DESCRIPTION

Simultaneous Transmission:

Description of Simultaneous Tran	Transmit Capabilities Simultaneous? Hotspot?		
Transmitter Combination	Simultaneous?	Hotspot?	
WWAN(WCDMA/LTE) + Bluetooth	√	×	
WWAN(WCDMA/LTE) + WLAN	√	V	

Report No.: RXM200929050-SA

Simultaneous and Hotspot SAR test exclusion considerations:

Mode(SAR1+SAR2)	Position	Reported S	ΣBody SAR <	
1,1000(8,111111,8,11112)	1 00.0.0.1	SAR1	SAR2	1.6W/kg
WCDMA Band 2+Bluetooth	Body Back	0.24	0.09	0.330
WCDMA Band 4+Bluetooth	Body Back	1.14	0.09	1.230
WCDMA Band 5+Bluetooth	Body Back	0.21	0.09	0.300
LTE Band 2+Bluetooth	Body Back	1.25	0.09	1.340
LTE Band 4+Bluetooth	Body Back	0.78	0.09	0.870
LTE Band 5+Bluetooth	Body Back	0.24	0.09	0.330
LTE Band 7+Bluetooth	Body Back	0.65	0.09	0.740
LTE Band 12+Bluetooth	Body Back	0.22	0.09	0.310
LTE Band 13+Bluetooth	Body Back	0.31	0.09	0.400
LTE Band 25+Bluetooth	Body Back	1.12	0.09	1.210
LTE Band 26+Bluetooth	Body Back	0.28	0.09	0.370

SAR Test Report 69 of 79

Mada(CAD1+CAD2)	Danidia			ΣHand SAR
Mode(SAR1+SAR2)	Position	SAR1	SAR2	< 4.0W/kg
	Hand Held Left	/	/	/
WGDM D. 10 DI	Hand Held Right	0.05	0.04	0.090
WCDMA Band 2+Bluetooth	Hand Held Top	0.06	/	0.060
	Hand Held Bottom	/	0.04	0.040
	Hand Held Left	/	/	/
WGDM D. LANDI.	Hand Held Right	0.04	0.04	0.080
WCDMA Band 4+Bluetooth	Hand Held Top	0.01	/	0.010
	Hand Held Bottom	/	0.04	0.040
	Hand Held Left	/	/	/
WODAA D. 15 DI	Hand Held Right	0.54	0.04	0.580
WCDMA Band 5+Bluetooth	Hand Held Top	0.16	/	0.160
	Hand Held Bottom	/	0.04	0.040
	Hand Held Left	/	/	/
LEED 10.DL 1	Hand Held Right	2.36	0.04	2.400
LTE Band 2+Bluetooth	Hand Held Top	0.12	/	0.120
	Hand Held Bottom	/	0.04	0.040
	Hand Held Left	/	/	/
LEED 14.DL	Hand Held Right	1.86	0.04	1.900
LTE Band 4+Bluetooth	Hand Held Top	/	/	/
	Hand Held Bottom	0.07	0.04	0.110
	Hand Held Left	/	/	0.000
LEED 15 DI 1	Hand Held Right	0.06	0.04	0.100
LTE Band 5+Bluetooth	Hand Held Top	0.21	/	0.210
	Hand Held Bottom	/	0.04	0.040
	Hand Held Left	/	/	/
LTE Day 17 Disease 4	Hand Held Right	3.25	0.04	3.290
LTE Band 7+Bluetooth	Hand Held Top	0.10	/	0.100
	Hand Held Bottom	/	0.04	0.040
	Hand Held Left	/	/	/
LTE Dand 12 Dhuata ath	Hand Held Right	0.53	0.04	0.570
LTE Band 12+Bluetooth	Hand Held Top	0.09	/	0.090
	Hand Held Bottom	/	0.04	0.040
	Hand Held Left	/	/	/
LTE Dand 12 Dhuataath	Hand Held Right	0.77	0.04	0.810
LTE Band 13+Bluetooth	Hand Held Top	0.19	/	0.190
	Hand Held Bottom	/	0.04	0.040
	Hand Held Left	/	/	/
LTE Band 25+Bluetooth	Hand Held Right	3.16	0.04	3.200
LTE Dang 25 TDIUCTOORI	Hand Held Top	0.11	/	0.110
	Hand Held Bottom	/	0.04	0.040
	Hand Held Left	/	/	
I TE Dand 24 Dlustostle	Hand Held Right	0.85	0.04	0.890
LTE Band 26+Bluetooth	Hand Held Top	0.20	/	0.200
	Hand Held Bottom	/	0.04	0.040

SAR Test Report 70 of 79

Mode(SAR1+SAR2)	Position	Reported S	SAR(W/kg)	ΣBody SAR <	
117040(611111117611112)	1 00111011	SAR1	SAR2	1.6W/kg	
WCDMA Band 2+ WLAN(2.4G)	Body Back	0.24	0.19	0.430	
WCDMA Band 4+WLAN(2.4G)	Body Back	1.14	0.19	1.330	
WCDMA Band 5+WLAN(2.4G)	Body Back	0.21	0.19	0.400	
LTE Band 2+WLAN(2.4G)	Body Back	1.25	0.19	1.440	
LTE Band 4+WLAN(2.4G)	Body Back	0.78	0.19	0.970	
LTE Band 5+WLAN(2.4G)	Body Back	0.24	0.19	0.430	
LTE Band 7+WLAN(2.4G)	Body Back	0.65	0.19	0.840	
LTE Band 12+WLAN(2.4G)	Body Back	0.22	0.19	0.410	
LTE Band 13+WLAN(2.4G)	Body Back	0.31	0.19	0.500	
LTE Band 25+WLAN(2.4G)	Body Back	1.12	0.19	1.310	
LTE Band 26+WLAN(2.4G)	Body Back	0.28	0.19	0.470	

SAR Test Report 71 of 79

Mode(SAR1+SAR2)	Position	Reported S	SAR(W/kg)	ΣHand SAR
Wiode(SAKI+SAK2)	r osition	SAR1	SAR2	< 4.0W/kg
	Hand Held Left	/	/	/
WCDMA Band 2+	Hand Held Right	0.05	0.08	0.130
WLAN(2.4G)	Hand Held Top	0.06	/	0.060
	Hand Held Bottom	/	0.08	0.080
	Hand Held Left	/	/	/
WCDMA Band 4+	Hand Held Right	0.04	0.08	0.120
WLAN(2.4G)	Hand Held Top	0.01	/	0.010
	Hand Held Bottom	/	0.08	0.080
	Hand Held Left	/	/	0.000
WCDMA Band 5+	Hand Held Right	0.54	0.08	0.620
WLAN(2.4G)	Hand Held Top	0.16	/	0.160
	Hand Held Bottom	/	0.08	0.080
	Hand Held Left	/	/	/
LTED 12 WLANG 4C)	Hand Held Right	2.36	0.08	2.440
LTE Band 2+ WLAN(2.4G)	Hand Held Top	0.12	/	0.120
	Hand Held Bottom	/	0.08	0.080
	Hand Held Left	/	/	/
LTE Devid 4 LWI ANG 4C)	Hand Held Right	1.86	0.08	1.940
LTE Band 4+ WLAN(2.4G)	Hand Held Top	0.07	/	0.070
	Hand Held Bottom	/	0.08	0.080
	Hand Held Left	/	0.08	/
LTE Dand 5 LWI AN(2.4C)	Hand Held Right	0.06	0.08	0.140
LTE Band 5+ WLAN(2.4G)	Hand Held Top	0.21	/	0.210
	Hand Held Bottom	/	0.08	0.080
	Hand Held Left	/	/	0.000
LTE Dond 7+WH AN(2.4C)	Hand Held Right	3.25	0.08	3.330
LTE Band 7+WLAN(2.4G)	Hand Held Top	0.10	/	0.100
	Hand Held Bottom	/	0.08	0.080
	Hand Held Left	/	/	/
LTE Band 12+ WLAN(2.4G)	Hand Held Right	0.53	0.08	0.610
LTE Band 12+ WLAN(2.40)	Hand Held Top	0.09	/	0.090
	Hand Held Bottom	/	0.08	0.080
	Hand Held Left	/	/	/
LTE Band 13+ WLAN(2.4G)	Hand Held Right	0.77	0.08	0.850
LTE Band 131 WEAM(2.40)	Hand Held Top	0.19	/	0.190
	Hand Held Bottom	/	0.08	0.080
	Hand Held Left	/	/	/
LTE Band 25+ WLAN(2.4G)	Hand Held Right	3.16	0.08	3.240
LIL Dung 25 - WEATN(2.40)	Hand Held Top	0.11	/	0.110
	Hand Held Bottom	/	0.08	0.080
	Hand Held Left	/	/	/
LTE Band 26+ WLAN(2.4G)	Hand Held Right	0.85	0.08	0.930
LIL Dang 20+ WLAN(2.40)	Hand Held Top	0.20	/	0.200
	Hand Held Bottom	/	0.08	0.080

SAR Test Report 72 of 79

Note:

- 1. Hotspot mode SAR is measured for all edges and surfaces of the device with a transmitting antenna located within 25 mm from that surface or edge; for the data modes, wireless technologies and frequency bands supporting hotspot mode.
- 2. Hotspot Mode is not feasible during voice calls.

Conclusion:

Sum of SAR: Σ Body SAR \leq 1.6 W/kg, Σ Hand SAR \leq 4.0 W/kg therefore simultaneous transmission SAR with Volume Scans is **not required**.

Report No.: RXM200929050-SA

SAR Test Report 73 of 79

SAR Test Report 74 of 79

APPENDIX A MEASUREMENT UNCERTAINTY

The uncertainty budget has been determined for the measurement system and is given in the following Table.

Measurement uncertainty evaluation for IEEE1528-2013 SAR test

Report No.: RXM200929050-SA

Source of uncertainty	Tolerance/ uncertaint y ± %	Probability distributio n	Divisor	ci (1 g)	ci (10 g)	Standard uncertai nty ± %, (1 g)	Standard uncertai nty ± %, (10 g)
		Measurement	system				
Probe calibration	6.55	N	1	1	1	6.6	6.6
Axial Isotropy	4.7	R	$\sqrt{3}$	1	1	2.7	2.7
Hemispherical Isotropy	9.6	R	√3	0	0	0.0	0.0
Boundary effect	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
Linearity	4.7	R	$\sqrt{3}$	1	1	2.7	2.7
Detection limits	1.0	R	√3	1	1	0.6	0.6
Readout electronics	0.3	N	1	1	1	0.3	0.3
Response time	0.0	R	√3	1	1	0.0	0.0
Integration time	0.0	R	$\sqrt{3}$	1	1	0.0	0.0
RF ambient conditions – noise	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
RF ambient conditions—reflections	1.0	R	√3	1	1	0.6	0.6
Probe positioner mech. Restrictions	0.8	R	√3	1	1	0.5	0.5
Probe positioning with respect to phantom shell	6.7	R	$\sqrt{3}$	1	1	3.9	3.9
Post-processing	2.0	R	$\sqrt{3}$	1	1	1.2	1.2
		Test sample	related				
Test sample positioning	2.8	N	1	1	1	2.8	2.8
Device holder uncertainty	6.3	N	1	1	1	6.3	6.3
Drift of output power	5.0	R	$\sqrt{3}$	1	1	2.9	2.9
		Phantom and	set-up				
Phantom uncertainty (shape and thickness tolerances)	4.0	R	$\sqrt{3}$	1	1	2.3	2.3
Liquid conductivity target)	5.0	R	√3	0.64	0.43	1.8	1.2
Liquid conductivity meas.)	2.5	N	1	0.64	0.43	1.6	1.1
Liquid permittivity target)	5.0	R	√3	0.6	0.49	1.7	1.4
Liquid permittivity meas.)	2.5	N	1	0.6	0.49	1.5	1.2
Combined standard uncertainty		RSS				12.2	12.0
Expanded uncertainty 95 % confidence interval)						24.3	23.9

SAR Test Report 75 of 79

Source of uncertainty	Tolerance/ uncertai nty ± %	Probability distributio n	Divisor	ci (1 g)	ci (10 g)	Standard uncertai nty ± %, (1 g)	Standard uncertai nty ± %, (10 g)
		Measurement	t system	l .			8/
Probe calibration	6.55	N	1	1	1	6.6	6.6
Axial Isotropy	4.7	R	√3	1	1	2.7	2.7
Hemispherical Isotropy	9.6	R	√3	0	0	0.0	0.0
Linearity	4.7	R	√3	1	1	2.7	2.7
Modulation Response	0.0	R	√3	1	1	0.0	0.0
Detection limits	1.0	R	√3	1	1	0.6	0.6
Boundary effect	1.0	R	√3	1	1	0.6	0.6
Readout electronics	0.3	N	1	1	1	0.3	0.3
Response time	0.0	R	√3	1	1	0.0	0.0
Integration time	0.0	R	√3	1	1	0.0	0.0
RF ambient conditions – noise	1.0	R	√3	1	1	0.6	0.6
RF ambient conditions-reflections	1.0	R	√3	1	1	0.6	0.6
Probe positioner mech. Restrictions	0.8	R	$\sqrt{3}$	1	1	0.5	0.5
Probe positioning with respect to phantom shell	6.7	R	√3	1	1	3.9	3.9
Post-processing	2.0	R	√3	1	1	1.2	1.2
		Test sample	related				
Device holder Uncertainty	6.3	N	1	1	1	6.3	6.3
Test sample positioning	2.8	N	1	1	1	2.8	2.8
Power scaling	4.5	R	√3	1	1	2.6	2.6
Drift of output power	5.0	R	√3	1	1	2.9	2.9
		Phantom and	l set-up				
Phantom uncertainty (shape and thickness tolerances)	4.0	R	√3	1	1	2.3	2.3
Algorithm for correcting SAR for deviations in permittivity and conductivity	1.9	N	1	1	0.84	1.1	0.9
Liquid conductivity (meas.)	2.5	N	1	0.64	0.43	1.6	1.1
Liquid permittivity (meas.)	2.5	N	1	0.6	0.49	1.5	1.2
Temp. unc Conductivity	1.7	R	√3	0.78	0.71	0.8	0.7
Temp. unc Permittivity	0.3	R	√3	0.23	0.26	0.0	0.0
Combined standard uncertainty		RSS				12.2	12.1
Expanded uncertainty 95 % confidence interval)						24.5	24.2

SAR Test Report 76 of 79

APPENDIX B EUT TEST POSITION PHOTOS

. (Shenzhen) Report No.: RXM200929050-SA

Please Refer to the Attachment.

SAR Test Report 77 of 79

APPENDIX C PROBE CALIBRATION CERTIFICATES

Report No.: RXM200929050-SA

Please Refer to the Attachment.

SAR Test Report 78 of 79

APPENDIX D DIPOLE CALIBRATION CERTIFICATES

Please Refer to the Attachment.

***** END OF REPORT *****

SAR Test Report 79 of 79