Radio Test Report

Report No.:STS2405119W01

Issued for

Hiconics Eco-energy Drive Technology Co., Ltd

No.3 Boxing 2nd Road, Economic and Technological Development Zone 100176, Beijing P.R. China

Product Name:	Internet Dongle
Brand Name:	N/A
Model Name:	MDC-HKA
Series Model(s):	N/A
FCC ID:	2BG23MDC-HKA94E6
Test Standards:	FCC Part15.247

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.

TEST REPORT

Applicant's Name:	Hiconics Eco-energy Drive Technology Co., Ltd
Address	No.3 Boxing 2nd Road, Economic and Technological Development Zone 100176, Beijing P.R. China
Manufacturer's Name:	Hiconics Eco-energy Drive Technology Co., Ltd
Address	No.3 Boxing 2nd Road, Economic and Technological Development Zone 100176, Beijing P.R. China
Product Description	
Product Name:	Internet Dongle
Brand Name:	N/A
Model Name	. MDC-HKA
Series Model(s):	N/A
Test Standards	FCC Part15.247
Test Procedure:	ANSI C63.10-2020

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.

Date of Test	
Date of receipt of test item:	28 May 2024
Date (s) of performance of tests:	28 May 2024 ~ 27 June 2024
Date of Issue	27 June 2024
Test Result	Pass

Testing Engineer

ann 13u

(Aaron Bu)

Technical Manager

cher

(Chris Chen)

Authorized Signatory :

(Bovey Yang)

how

Table of Contents

Table of Contents	
1. SUMMARY OF TEST RESULTS 1.1 TEST FACTORY 1.2 MEASUREMENT UNCERTAINTY	6 7 7
2. GENERAL INFORMATION	, 8
2.1 GENERAL DESCRIPTION OF THE EUT 2.2 DESCRIPTION OF THE TEST MODES	8 10
 2.3 TEST SOFTWARE AND POWER LEVEL 2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS 2.6 EQUIPMENTS LIST 	10 11 12 13
3. EMC EMISSION TEST	14
3.1 CONDUCTED EMISSION MEASUREMENT 3.2 TEST PROCEDURE	14 15
3.3 TEST SETUP	15
3.4 EUT OPERATING CONDITIONS 3.5 TEST RESULTS	15 15
4. RADIATED EMISSION MEASUREMENT	16
 4.1 RADIATED EMISSION LIMITS 4.2 TEST PROCEDURE 4.3 TEST SETUP 4.4 EUT OPERATING CONDITIONS 	16 18 19 19
4.5 FIELD STRENGTH CALCULATION 4.6 TEST RESULTS	20 21
5. CONDUCTED SPURIOUS & BAND EDGE EMISSION 5.1 LIMIT	34 34
5.2 TEST PROCEDURE 5.3 TEST SETUP	34 34
5.4 EUT OPERATION CONDITIONS 5.5 TEST RESULTS	34 34
6. POWER SPECTRAL DENSITY TEST 6.1 LIMIT	35 35
6.2 TEST PROCEDURE 6.3 TEST SETUP	35 35

Table of Contents

Table of Contents	
6.4 EUT OPERATION CONDITIONS	35
6.5 TEST RESULTS	35
7. BANDWIDTH TEST	36
7.1 LIMIT	36
7.2 TEST PROCEDURE	36
7.3 TEST SETUP	36
7.4 EUT OPERATION CONDITIONS	36
7.5 TEST RESULTS	36
8. PEAK OUTPUT POWER TEST	37
8.1 LIMIT	37
8.2 TEST PROCEDURE	37
8.3 TEST SETUP	38
8.4 EUT OPERATION CONDITIONS	38
8.5 TEST RESULTS	38
9. ANTENNA REQUIREMENT	39
9.1 STANDARD REQUIREMENT	39
9.2 EUT ANTENNA	39
APPENDIX 1-TEST DATA	40
1. DUTY CYCLE	40
2. MAXIMUM AVERAGE CONDUCTED OUTPUT POWER	44
3. MAXIMUM PEAK CONDUCTED OUTPUT POWER	48
46DB BANDWIDTH	52
5. MAXIMUM POWER SPECTRAL DENSITY LEVEL	56
6. BAND EDGE	60
7. CONDUCTED RF SPURIOUS EMISSION	65
APPENDIX 2- EUT TEST PHOTO	72

Page 5 of 72

Report No.: STS2405119W01

Revision History

Rev.	Issue Date	Report No.	Effect Page	Contents
00	27 June 2024	STS2405119W01	ALL	Initial Issue
			9	9

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

FCC Part 15.247,Subpart C					
Standard Section					
15.207	Conducted Emission	N/A			
15.247 (a)(2)	6dB Bandwidth	PASS			
15.247 (b)(3)	Output Power	PASS			
15.209	Radiated Spurious Emission	PASS	-		
15.247 (d)	Conducted Spurious & Band Edge Emission	PASS			
15.247 (e)	Power Spectral Density	PASS			
15.205	Restricted bands of operation	PASS			
Part 15.247(d)/ Part 15.209(a)	Band Edge Emission	PASS			
15.203	Antenna Requirement	PASS			

NOTE:

- (1) 'N/A' denotes test is not applicable in this Test Report.
- (2) All tests are according to ANSI C63.10-2020.

1.1 TEST FACTORY

SHENZHEN STS TEST SERVICES CO., LTD Add. : 101, Building B, Zhuoke Science Park, No.190 Chongqing Road, ZhanChengShequ, Fuhai Sub-District, Bao'an District, Shenzhen, Guang Dong, China FCC test Firm Registration Number: 625569

Page 7 of 72

IC test Firm Registration Number: 12108A

A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.755dB
2	Unwanted Emissions, conducted	±2.874dB
3	All emissions, radiated 9K-30MHz	±3.80dB
4	All emissions, radiated 30M-1GHz	±4.18dB
5	All emissions, radiated 1G-6GHz	±4.90dB
6	All emissions, radiated>6G	±5.24dB
7	Conducted Emission (9KHz-150KHz)	±2.19dB
8	Conducted Emission (150KHz-30MHz)	±2.53dB
9	Occupied Channel Bandwidth	±3.5%
10	Power Spectral Density, conducted	±1.245dB
11	Duty Cycle	±3.2%

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Internet Dongle	1.1 1.9		
Brand Name	N/A			
Model Name	MDC-HKA			
Series Model(s)	N/A			
Model Difference	N/A			
	The EUT is a Intern	et Dongle		
	Operation Frequency:	2402~2480 MHz		
	Modulation Type:	GFSK		
Product Description	Radio Technology:	BLE		
	Bluetooth Configuration:	LE(Support 1M PHY, 2M PHY)		
	Number Of Channel:	40		
	Antenna Type:	Out-board PCB Antenna		
	Antenna Gain (dBi)	3.34 dBi		
Channel List	Please refer to the Note 3.			
Rating	Input: DC 5V			
Hardware version number	N/A			
Software version number	N/A			
Connecting I/O Port(s)	Please refer to the Note 1.			

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.

2. The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report. Due to the incorrect antenna information, a series of problems such as the accuracy of the test results will be borne by the customer.

Channel List							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequenc y (MHz)
00	2402	10	2422	20	2442	30	2462
01	2404	11	2424	21	2444	31	2464
02	2406	12	2426	22	2446	32	2466
03	2408	13	2428	23	2448	33	2468
04	2410	14	2430	24	2450	34	2470
05	2412	15	2432	25	2452	35	2472
06	2414	16	2434	26	2454	36	2474
07	2416	17	2436	27	2456	37	2476
08	2418	18	2438	28	2458	38	2478
09	2420	19	2440	29	2460	39	2480
	4			4	1		1º

2.2 DESCRIPTION OF THE TEST MODES

For conducted test items and radiated spurious emissions

Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

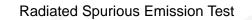
Worst Mode	Description	Data/Modulation
Mode 1	TX CH00(2402MHz)	1M PHY /GFSK
Mode 2	TX CH19(2440MHz)	1M PHY /GFSK
Mode 3	TX CH39(2480MHz)	1M PHY /GFSK

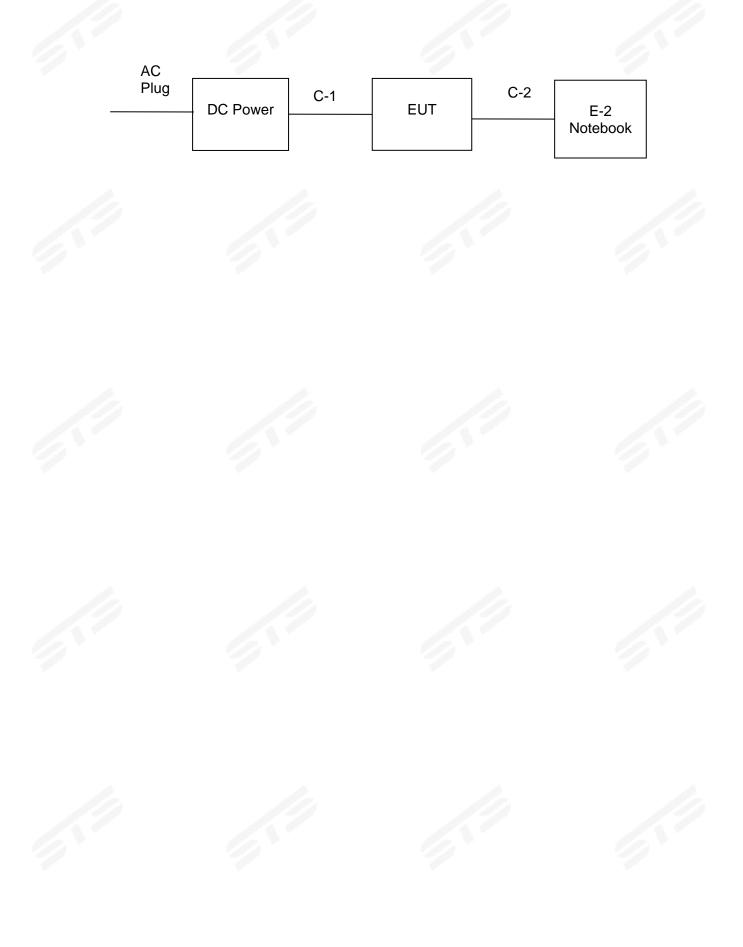
Worst Mode	Description	Data/Modulation
Mode 4	TX CH00(2402MHz)	2M PHY /GFSK
Mode 5	TX CH19(2440MHz)	2M PHY /GFSK
Mode 6	TX CH39(2480MHz)	2M PHY /GFSK

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.

(2) We have be tested for all avaiable U.S. voltage and frequencies (For DC 5V) for which the device is capable of operation, and the worst case of DC 5V is shown in the report.


2.3 TEST SOFTWARE AND POWER LEVEL


During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

RF Function	Туре	Mode Or Modulation type	ANT Gain(dBi)	Power Class	Software For Testing
BLE(With	BLE_1M PHY	GFSK	3.34	Default	
2M PHY)	BLE_2M PHY	GFSK	3.34	Default	DOGO_VP2.4.7

2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

		Neces	ssary accessories	· · · · · · · · · · · · · · · · · · ·	A.V.
Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
	N/A	N/A	N/A	N/A	N/A

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
	Personal computer	DELL	Inspiron 14-3467	N/A	N/A
	USB Cable	N/A	N/A	150cm	NO
	DC Power	HONGSHENGFENG	DPS-305AF	N/A	N/A

Note:

- (1) For detachable type I/O cable should be specified the length in cm in ^r Length ^a column.
- (2) "YES" is means "with core"; "NO" is means "without core".

2.6 EQUIPMENTS LIST

Kind of Equipment	Manufacturer	Туре No.	Serial No.	Last Calibration	Calibrated Until
Temperature & Humidity	SW-108	SuWei	N/A	2024.03.15	2025.03.14
Pre-Amplifier(0.1M-3GHz)	EM	EM330	060665	2024.02.23	2025.02.22
Pre-Amplifier(1G-18GHz)	SKET	LNPA-01018G-45	SK2018080901	2023.09.26	2024.09.25
Pre-Amplifier(18G-40GHz)	SKET	LNPA_1840-50	SK2018101801	2024.02.23	2025.02.22
Active loop Antenna	ZHINAN	ZN30900C	16035	2023.02.28	2025.02.27
Bilog Antenna	TESEQ	CBL6111D	34678	2022.09.30	2024.09.29
Horn Antenna	SCHWARZBECK	BBHA 9120D	02014	2023.09.24	2025.09.23
Horn Antenna	A-INFOMW	LB-180400-KF	J211020657	2023.10.10	2025.10.09
Positioning Controller	MF	MF-7802	MF-780208587	N/A	N/A
Signal Analyzer	R&S	FSV 40-N	101823	2023.09.26	2024.09.25
Switch Control Box	N/A	N/A	N/A	N/A	N/A
Filter Box	BALUN Technology	SU319E	BL-SZ1530051	N/A	N/A
Antenna Mast	MF	MFA-440H	N/A	N/A	N/A
Turn Table	MF	SC100_1	60531	N/A	N/A
AC Power Source	APC	KDF-11010G	F214050035	N/A	N/A
DC power supply	HONGSHENGFENG	DPS-305AF	17064939	2023.09.26	2024.09.25
Test SW	EZ-EMC		Ver.STSLAB-03	A1 RE	P
	RFC	Connected Test			
Kind of Equipment	Manufacturer	Туре No.	Serial No.	Last calibration	Calibrated until
Signal Analyzer	Agilent	N9020A	MY51510623	2024.02.23	2025.02.22
Power Sensor	Keysight	U2021XA	MY55520005	2023.09.26	2024.09.25
Temperature & Humidity	SW-108	SuWei	N/A	2024.03.15	2025.03.14
Test SW	MW		MTS 8310_2.0).0.0	

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

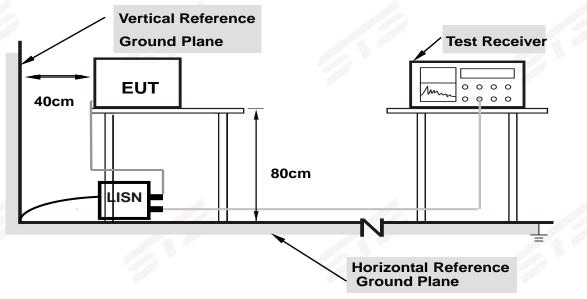
	Conducted Emission limit (dBuV)		
FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver


Receiver Parameters	Setting	
Attenuation	10 dB	
Start Frequency	0.15 MHz	
Stop Frequency	30 MHz	
IF Bandwidth	9 kHz	

3.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.3 TEST SETUP

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.5 TEST RESULTS

Temperature:	(C)	Relative Humidity:	%RH
Test Voltage:	N/A	Phase:	L/N
Test Mode:	N/A		

Note: product is DC power operated and conducted emission test is not applicable.

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part 15.205(a)&209(a) limit in the table and according to ANSI C63.10-2020 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	(dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	
Notes:		/ /	1
(1) The limit for radiated te	est was performed according	to FCC PART 15C.	
(2) The tighter limit applies	s at the band edges		

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

For Radiated Emission

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP/AV
Start Frequency	9 KHz/150KHz(Peak/QP/AV)
Stop Frequency	150KHz/30MHz(Peak/QP/AV)
	200Hz (From 9kHz to 0.15MHz)/
RB / VB (emission in restricted	9KHz (From 0.15MHz to 30MHz);
band)	200Hz (From 9kHz to 0.15MHz)/
	9KHz (From 0.15MHz to 30MHz)

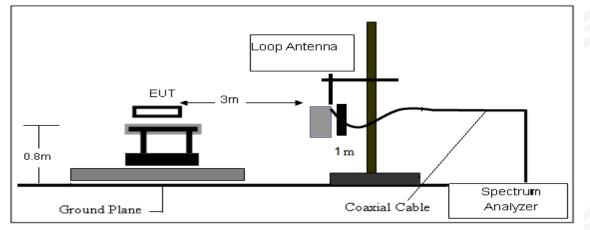
Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/QP	
Start Frequency	30 MHz(Peak/QP)	
Stop Frequency	1000 MHz (Peak/QP)	
RB / VB (emission in restricted	120 KHz / 300 KHz	
band)	120 KHZ / 300 KHZ	

	Spectrum Parameter	Setting						
	Attenuation	Auto						
	Detector	Peak/AV						
	Start Frequency	1000 MHz(Peak/AV)						
	Stop Frequency	10th carrier hamonic(Peak/AV)						
	RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)						
	band)	1 MHz/1/T MHz(AVG)						
F	or Restricted band							

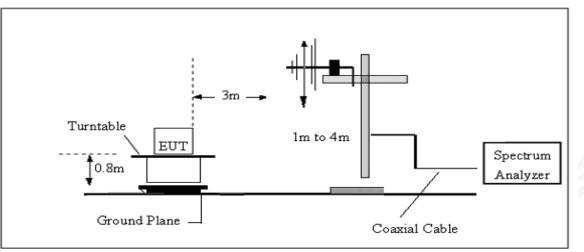
Spectrum Parameter	Setting		
 Detector	Peak/AV		
Stort/Stop Eroquopov	Lower Band Edge: 2310 to 2410 MHz		
Start/Stop Frequency	Upper Band Edge: 2475 to 2500 MHz		
RB / VB	1 MHz / 3 MHz(Peak)		
	1 MHz/1/T MHz(AVG)		

Receiver Parameter	Setting		
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV		
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP		
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV		
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP		
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP		

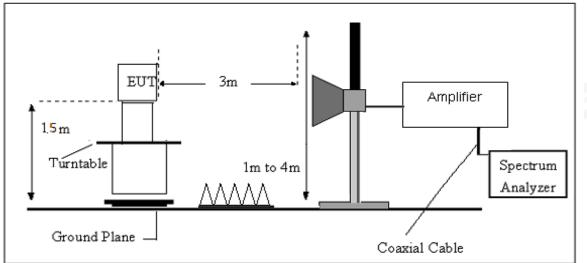
4.2 TEST PROCEDURE


- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.



4.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

^{4.4} EUT OPERATING CONDITIONS Please refer to section 3.4 of this report.

4.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

 $F\dot{S} = RA + AF + CL - AG$ Where FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude AG = Amplifier Gain

AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

4.6 TEST RESULTS

(Between 9KHz – 30 MHz)

Temperature:	23.1(C)	Relative Humidtity:	60%RH
Test Voltage:	DC 5V	Polarization:	
Test Mode:	TX Mode	1	1

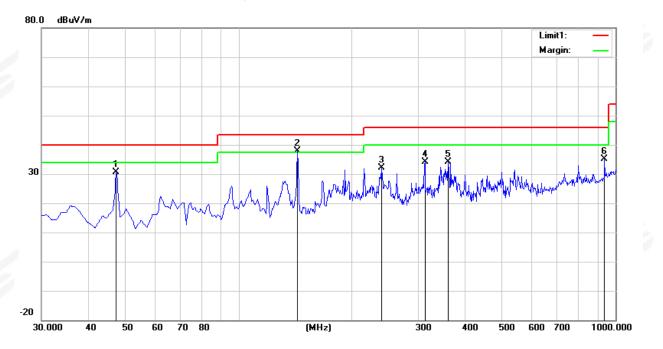
Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

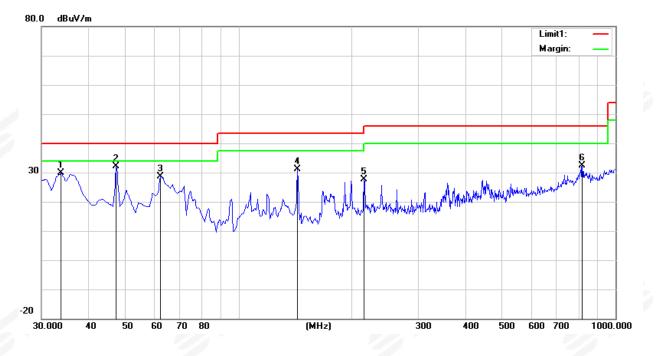

(30MHz -1000MHz)

1M PHY

Temperature:	23.1(C)	Relative Humidity:	60%RH		
Test Voltage:	DC 5V	Phase:	Horizontal		
Test Mode:	Mode 1/2/3 (Mode 1 worst mode)				

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	47.4600	52.45	-21.92	30.53	40.00	-9.47	peak
2	143.4900	56.04	-18.23	37.81	43.50	-5.69	peak
3	239.5200	50.16	-18.10	32.06	46.00	-13.94	peak
4	312.2700	48.45	-14.36	34.09	46.00	-11.91	peak
5	359.8000	46.89	-12.87	34.02	46.00	-11.98	peak
6	937.9200	34.00	1.20	35.20	46.00	-10.80	peak

- 1. Margin = Result (Result = Reading + Factor)-Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain
- 3. All modes have been tested, only show the worst case.

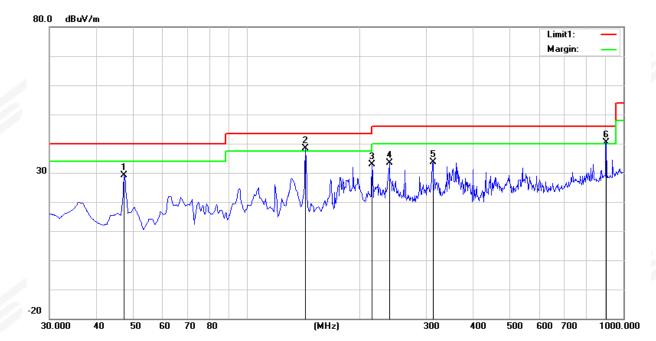


Report No.: STS2405119W01

Temperature:	23.1(C)	Relative Humidity:	60%RH
Test Voltage:	DC 5V	Phase:	Vertical
Test Mode:	Mode 1/2/3 (Mode 1 worst mo	1.7	

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	33.8800	44.72	-14.80	29.92	40.00	-10.08	peak
2	47.4600	54.05	-21.92	32.13	40.00	-7.87	peak
3	62.0100	54.40	-25.76	28.64	40.00	-11.36	peak
4	143.4900	49.25	-18.23	31.02	43.50	-12.48	peak
5	215.2700	47.72	-20.17	27.55	43.50	-15.95	peak
6	817.6400	34.28	-1.97	32.31	46.00	-13.69	peak

- 1. Margin = Result (Result = Reading + Factor)-Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain
- 3. All modes have been tested, only show the worst case.

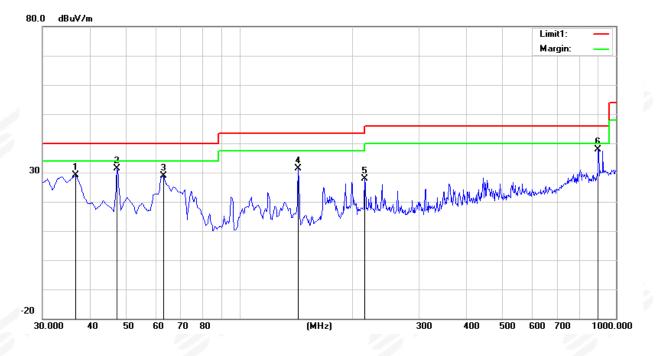


2M PHY

Temperature:	23.1(C)	Relative Humidity:	60%RH		
Test Voltage:	DC 5V	Phase:	Horizontal		
Test Mode:	Mode 4/5/6 (Mode 4 worst mode)				

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	47.4600	51.08	-21.92	29.16	40.00	-10.84	peak
2	143.4900	56.58	-18.23	38.35	43.50	-5.15	peak
3	215.2700	53.13	-20.17	32.96	43.50	-10.54	peak
4	239.5200	51.54	-18.10	33.44	46.00	-12.56	peak
5	312.2700	47.95	-14.36	33.59	46.00	-12.41	peak
6	901.0600	40.89	-0.43	40.46	46.00	-5.54	peak

- Margin = Result (Result = Reading + Factor)–Limit
 Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain
- 3. All modes have been tested, only show the worst case.



Report No.: STS2405119W01

Temperature:	23.1(C)	Relative Humidity:	60%RH
Test Voltage:	DC 5V	Phase:	Vertical
Test Mode:	Mode 4/5/6 (Mode 4 worst mo	ode)	12

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	36.7900	45.49	-16.39	29.10	40.00	-10.90	peak
2	47.4600	53.34	-21.92	31.42	40.00	-8.58	peak
3	62.9800	54.56	-25.70	28.86	40.00	-11.14	peak
4	143.4900	49.52	-18.23	31.29	43.50	-12.21	peak
5	215.2700	48.04	-20.17	27.87	43.50	-15.63	peak
6	900.0900	38.25	-0.45	37.80	46.00	-8.20	peak

- 1. Margin = Result (Result = Reading + Factor)–Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain
- 3. All modes have been tested, only show the worst case.

(1GHz-25GHz) Spurious emission Requirements

1M PHY GFSK

						L					
Frequency	Meter Reading	Amplifier	Loss	Antenna Factor	Corrected Factor	Emission Level	Limits	Margin	Detector	Comment	
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
				Low Cl	nannel (GFSK/2	2402 MHz)					
3264.78	61.87	44.70	6.70	28.20	-9.80	52.07	74.00	-21.93	PK	Vertical	
3264.78	51.14	44.70	6.70	28.20	-9.80	41.34	54.00	-12.66	AV	Vertical	
3264.80	61.00	44.70	6.70	28.20	-9.80	51.20	74.00	-22.80	PK	Horizontal	
3264.80	50.08	44.70	6.70	28.20	-9.80	40.28	54.00	-13.72	AV	Horizontal	
4804.52	58.76	44.20	9.04	31.60	-3.56	55.20	74.00	-18.80	PK	Vertical	
4804.52	49.44	44.20	9.04	31.60	-3.56	45.88	54.00	-8.12	AV	Vertical	
4804.43	58.52	44.20	9.04	31.60	-3.56	54.96	74.00	-19.04	PK	Horizontal	
4804.43	50.59	44.20	9.04	31.60	-3.56	47.03	54.00	-6.97	AV	Horizontal	
5359.85	48.85	44.20	9.86	32.00	-2.34	46.51	74.00	-27.49	PK	Vertical	
5359.85	39.01	44.20	9.86	32.00	-2.34	36.67	54.00	-17.33	AV	Vertical	
5359.81	47.74	44.20	9.86	32.00	-2.34	45.40	74.00	-28.60	PK	Horizontal	
5359.81	38.78	44.20	9.86	32.00	-2.34	36.44	54.00	-17.56	AV	Horizontal	
7205.96	54.98	43.50	11.40	35.50	3.40	58.38	74.00	-15.62	PK	Vertical	
7205.96	44.74	43.50	11.40	35.50	3.40	48.14	54.00	-5.86	AV	Vertical	
7205.81	53.64	43.50	11.40	35.50	3.40	57.04	74.00	-16.96	PK	Horizontal	
7205.81	44.96	43.50	11.40	35.50	3.40	48.36	54.00	-5.64	AV	Horizontal	
				Middle 0	Channel (GFSK	(/2440 MHz)					
3263.16	61.87	44.70	6.70	28.20	-9.80	52.07	74.00	-21.93	PK	Vertical	
3263.16	50.34	44.70	6.70	28.20	-9.80	40.54	54.00	-13.46	AV	Vertical	
3263.07	62.03	44.70	6.70	28.20	-9.80	52.23	74.00	-21.77	PK	Horizontal	
3263.07	50.65	44.70	6.70	28.20	-9.80	40.85	54.00	-13.15	AV	Horizontal	
4880.09	58.14	44.20	9.04	31.60	-3.56	54.58	74.00	-19.42	PK	Vertical	
4880.09	50.44	44.20	9.04	31.60	-3.56	46.88	54.00	-7.12	AV	Vertical	
4880.09	59.63	44.20	9.04	31.60	-3.56	56.07	74.00	-17.93	PK	Horizontal	
4880.09	49.76	44.20	9.04	31.60	-3.56	46.20	54.00	-7.80	AV	Horizontal	
5357.10	48.62	44.20	9.86	32.00	-2.34	46.28	74.00	-27.72	PK	Vertical	
5357.10	40.01	44.20	9.86	32.00	-2.34	37.67	54.00	-16.33	AV	Vertical	
5357.39	47.93	44.20	9.86	32.00	-2.34	45.59	74.00	-28.41	PK	Horizontal	
5357.19	38.75	44.20	9.86	32.00	-2.34	36.41	54.00	-17.59	AV	Horizontal	
7320.85	53.90	43.50	11.40	35.50	3.40	57.30	74.00	-16.70	PK	Vertical	
7320.85	44.15	43.50	11.40	35.50	3.40	47.55	54.00	-6.45	AV	Vertical	
7320.36	54.69	43.50	11.40	35.50	3.40	58.09	74.00	-15.91	PK	Horizontal	
7320.36	44.33	43.50	11.40	35.50	3.40	47.73	54.00	-6.27	AV	Horizontal	

Report No.: STS2405119W01

High Channel (GFSK/2480 MHz)											
3264.88	61.51	44.70	6.70	28.20	-9.80	51.71	74.00	-22.29	PK	Vertical	
3264.88	51.10	44.70	6.70	28.20	-9.80	41.30	54.00	-12.70	AV	Vertical	
3264.77	60.88	44.70	6.70	28.20	-9.80	51.08	74.00	-22.92	PK	Horizontal	
3264.77	50.55	44.70	6.70	28.20	-9.80	40.75	54.00	-13.25	AV	Horizontal	
4960.58	59.28	44.20	9.04	31.60	-3.56	55.72	74.00	-18.28	PK	Vertical	
4960.58	49.29	44.20	9.04	31.60	-3.56	45.73	54.00	-8.27	AV	Vertical	
4960.37	58.65	44.20	9.04	31.60	-3.56	55.09	74.00	-18.91	PK	Horizontal	
4960.37	49.76	44.20	9.04	31.60	-3.56	46.20	54.00	-7.80	AV	Horizontal	
5359.68	48.05	44.20	9.86	32.00	-2.34	45.71	74.00	-28.29	PK	Vertical	
5359.68	40.31	44.20	9.86	32.00	-2.34	37.97	54.00	-16.03	AV	Vertical	
5359.71	47.11	44.20	9.86	32.00	-2.34	44.77	74.00	-29.23	PK	Horizontal	
5359.71	38.87	44.20	9.86	32.00	-2.34	36.53	54.00	-17.47	AV	Horizontal	
7439.89	54.90	43.50	11.40	35.50	3.40	58.30	74.00	-15.70	PK	Vertical	
7439.89	44.62	43.50	11.40	35.50	3.40	48.02	54.00	-5.98	AV	Vertical	
7439.77	54.81	43.50	11.40	35.50	3.40	58.21	74.00	-15.79	PK	Horizontal	
7439.77	44.62	43.50	11.40	35.50	3.40	48.02	54.00	-5.98	AV	Horizontal	

Note:

- 1) Factor = Antenna Factor + Cable Loss Pre-amplifier.
 - Emission Level = Reading + Factor.
- 2) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.

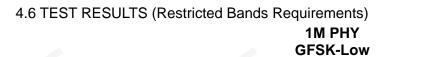
2M PHY GFSK

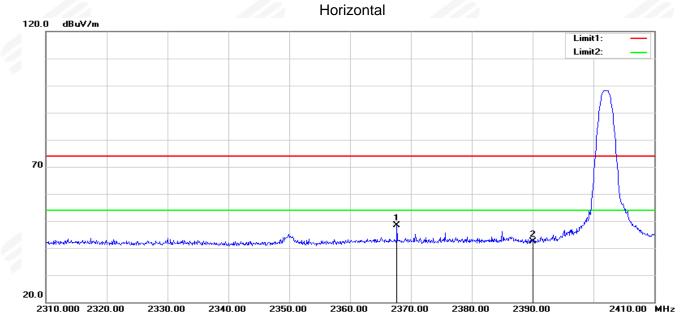
						-				
Frequency	Meter Reading	Amplifier	Loss	Antenna Factor	Corrected Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	1
				Low Ch	nannel (GFSK/2	2402 MHz)				
3264.83	61.15	44.70	6.70	28.20	-9.80	51.35	74.00	-22.65	PK	Vertical
3264.83	50.53	44.70	6.70	28.20	-9.80	40.73	54.00	-13.27	AV	Vertical
3264.79	61.32	44.70	6.70	28.20	-9.80	51.52	74.00	-22.48	PK	Horizontal
3264.79	51.10	44.70	6.70	28.20	-9.80	41.30	54.00	-12.70	AV	Horizontal
4804.37	59.34	44.20	9.04	31.60	-3.56	55.78	74.00	-18.22	PK	Vertical
4804.37	50.36	44.20	9.04	31.60	-3.56	46.80	54.00	-7.20	AV	Vertical
4804.35	58.31	44.20	9.04	31.60	-3.56	54.75	74.00	-19.25	PK	Horizontal
4804.35	49.37	44.20	9.04	31.60	-3.56	45.81	54.00	-8.19	AV	Horizontal
5359.80	49.20	44.20	9.86	32.00	-2.34	46.86	74.00	-27.14	PK	Vertical
5359.80	39.43	44.20	9.86	32.00	-2.34	37.09	54.00	-16.91	AV	Vertical
5359.78	48.06	44.20	9.86	32.00	-2.34	45.72	74.00	-28.28	PK	Horizontal
5359.78	38.98	44.20	9.86	32.00	-2.34	36.64	54.00	-17.36	AV	Horizontal
7205.68	53.66	43.50	11.40	35.50	3.40	57.06	74.00	-16.94	PK	Vertical
7205.68	44.58	43.50	11.40	35.50	3.40	47.98	54.00	-6.02	AV	Vertical
7205.70	54.51	43.50	11.40	35.50	3.40	57.91	74.00	-16.09	PK	Horizontal
7205.70	44.83	43.50	11.40	35.50	3.40	48.23	54.00	-5.77	AV	Horizontal
	•			Middle C	Channel (GFSK	(/2440 MHz)				•
3263.11	60.95	44.70	6.70	28.20	-9.80	51.15	74.00	-22.85	PK	Vertical
3263.11	50.07	44.70	6.70	28.20	-9.80	40.27	54.00	-13.73	AV	Vertical
3263.00	62.10	44.70	6.70	28.20	-9.80	52.30	74.00	-21.70	PK	Horizontal
3263.00	50.77	44.70	6.70	28.20	-9.80	40.97	54.00	-13.03	AV	Horizontal
4880.07	59.08	44.20	9.04	31.60	-3.56	55.52	74.00	-18.48	PK	Vertical
4880.07	50.11	44.20	9.04	31.60	-3.56	46.55	54.00	-7.45	AV	Vertical
4879.94	59.11	44.20	9.04	31.60	-3.56	55.55	74.00	-18.45	PK	Horizontal
4879.94	49.28	44.20	9.04	31.60	-3.56	45.72	54.00	-8.28	AV	Horizontal
5357.29	48.14	44.20	9.86	32.00	-2.34	45.80	74.00	-28.20	PK	Vertical
5357.29	40.21	44.20	9.86	32.00	-2.34	37.87	54.00	-16.13	AV	Vertical
5357.39	47.34	44.20	9.86	32.00	-2.34	45.00	74.00	-29.00	PK	Horizontal
5357.15	38.46	44.20	9.86	32.00	-2.34	36.12	54.00	-17.88	AV	Horizontal
7320.85	54.86	43.50	11.40	35.50	3.40	58.26	74.00	-15.74	PK	Vertical
7320.85	44.32	43.50	11.40	35.50	3.40	47.72	54.00	-6.28	AV	Vertical
7320.44	54.24	43.50	11.40	35.50	3.40	57.64	74.00	-16.36	PK	Horizontal
7320.44	44.85	43.50	11.40	35.50	3.40	48.25	54.00	-5.75	AV	Horizontal

Report No.: STS2405119W01

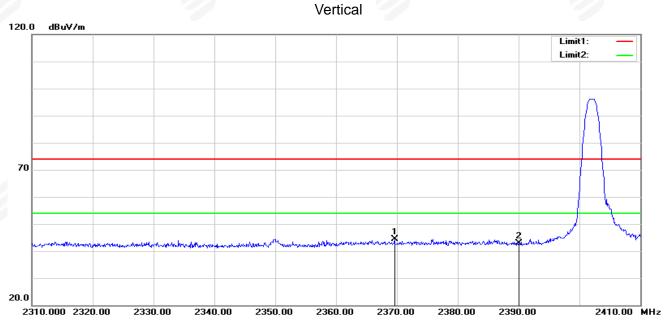
				High Char	nnel (GFSK/	2480 MHz)				
3264.72	61.23	44.70	6.70	28.20	-9.80	51.43	74.00	-22.57	PK	Vertical
3264.72	50.45	44.70	6.70	28.20	-9.80	40.65	54.00	-13.35	AV	Vertical
3264.66	61.53	44.70	6.70	28.20	-9.80	51.73	74.00	-22.27	PK	Horizontal
3264.66	50.90	44.70	6.70	28.20	-9.80	41.10	54.00	-12.90	AV	Horizontal
4960.34	59.54	44.20	9.04	31.60	-3.56	55.98	74.00	-18.02	PK	Vertical
4960.34	50.12	44.20	9.04	31.60	-3.56	46.56	54.00	-7.44	AV	Vertical
4960.43	59.61	44.20	9.04	31.60	-3.56	56.05	74.00	-17.95	PK	Horizontal
4960.43	49.51	44.20	9.04	31.60	-3.56	45.95	54.00	-8.05	AV	Horizontal
5359.76	48.12	44.20	9.86	32.00	-2.34	45.78	74.00	-28.22	PK	Vertical
5359.76	39.67	44.20	9.86	32.00	-2.34	37.33	54.00	-16.67	AV	Vertical
5359.81	48.28	44.20	9.86	32.00	-2.34	45.94	74.00	-28.06	PK	Horizontal
5359.81	39.47	44.20	9.86	32.00	-2.34	37.13	54.00	-16.87	AV	Horizontal
7439.71	53.61	43.50	11.40	35.50	3.40	57.01	74.00	-16.99	PK	Vertical
7439.71	44.52	43.50	11.40	35.50	3.40	47.92	54.00	-6.08	AV	Vertical
7439.91	54.52	43.50	11.40	35.50	3.40	57.92	74.00	-16.08	PK	Horizontal
7439.91	44.51	43.50	11.40	35.50	3.40	47.91	54.00	-6.09	AV	Horizontal

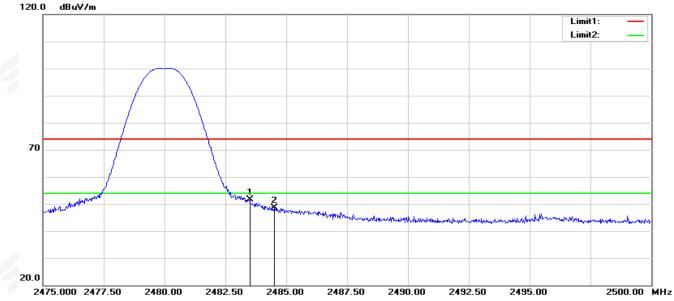
Note:

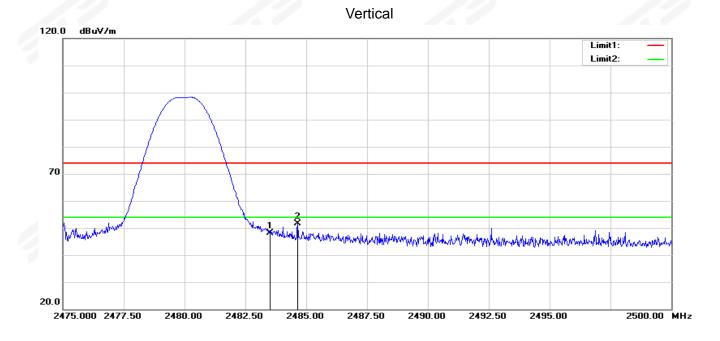

1) Factor = Antenna Factor + Cable Loss – Pre-amplifier.


Emission Level = Reading + Factor.

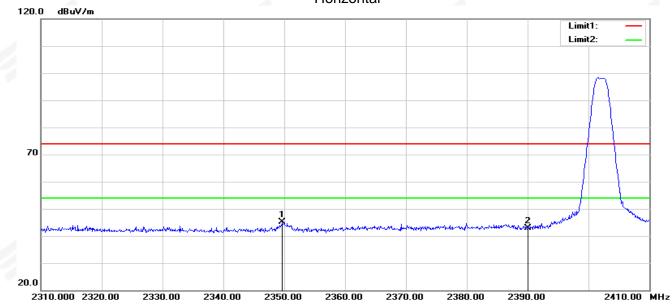
2) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.

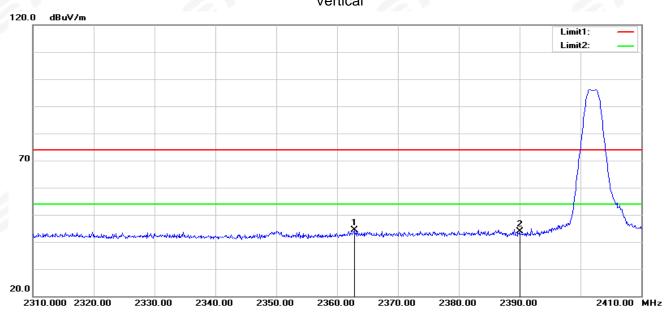



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2367.700	44.47	4.01	48.48	74.00	-25.52	peak
2	2390.000	37.92	4.34	42.26	74.00	-31.74	peak


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2369.600	40.43	4.04	44.47	74.00	-29.53	peak
2	2390.000	38.50	4.34	42.84	74.00	-31.16	peak

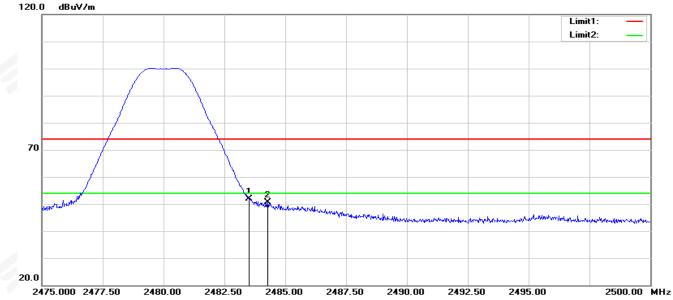
GFSK-High Horizontal


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	46.98	4.60	51.58	74.00	-22.42	peak
2	2484.500	44.00	4.61	48.61	74.00	-25.39	peak

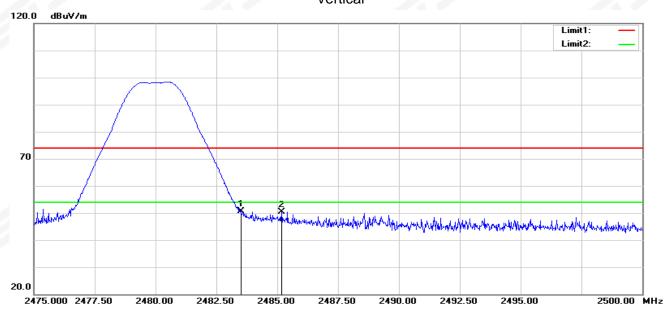

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	43.49	4.60	48.09	74.00	-25.91	peak
2	2484.650	46.98	4.61	51.59	74.00	-22.41	peak
	•						

2M PHY GFSK-Low Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2349.700	41.47	3.74	45.21	74.00	-28.79	peak
2	2390.000	38.57	4.34	42.91	74.00	-31.09	peak



	No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
		(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
	1	2362.800	40.47	3.93	44.40	74.00	-29.60	peak
P	2	2390.000	39.66	4.34	44.00	74.00	-30.00	peak


Vertical

GFSK-High Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	47.24	4.60	51.84	74.00	-22.16	peak
2	2484.275	45.97	4.61	50.58	74.00	-23.42	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	46.14	4.60	50.74	74.00	-23.26	peak
2	2485.175	45.74	4.61	50.35	74.00	-23.65	peak

Vertical

5. CONDUCTED SPURIOUS & BAND EDGE EMISSION

5.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.2 TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

For Band edge

Spectrum Parameter	Setting		
Detector	Peak		
Stort/Stop Fraguency	Lower Band Edge: 2300 – 2407 MHz		
Start/Stop Frequency	Upper Band Edge: 2475 – 2500 MHz		
RB / VB (emission in restricted band)	100 KHz/300 KHz		
Trace-Mode:	Max hold		

5.3 TEST SETUP

The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna termina is 50 Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

5.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

5.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.

6. POWER SPECTRAL DENSITY TEST

6.1 LIMIT

FCC Part 15.247,Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(e)	Power Spectral Density	≤8 dBm (RBW≥3KHz)	2400-2483.5	PASS		

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: 100 kHz \ge RBW \ge 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

6.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

6.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.

7. BANDWIDTH TEST

7.1 LIMIT

FCC Part 15.247,Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS		

7.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW≥3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be≥6 dB.

7.3 TEST SETUP

7.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

7.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.

8. PEAK OUTPUT POWER TEST

8.1 LIMIT

	F	CC Part 15.247,Subpa	rt C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS

8.2 TEST PROCEDURE

One of the following procedures may be used to determine the averaging conducted output powe r of a DTS EUT.

Method AVGSA-2 uses trace averaging across ON and OFF times of the EUT transmissions, foll owed by duty cycle correction. The procedure for this method is as follows:

a) Measure the duty cycle D of the transmitter output signal as described in 11.6.

b) Set span to at least 1.5 times the OBW.

c) Set RBW = 1% to 5% of the OBW, not to exceed 1 MHz.

d) Set VBW \geq [3 × RBW].

e) Number of points in sweep \geq [2 × span / RBW]. (This gives bin-to-bin spacing \leq RBW / 2, so th at narrowband signals are not lost between frequency bins.)

f) Sweep time = auto.

g) Detector = RMS (i.e., power averaging), if available. Otherwise, use the sample detector mode . h) Do not use sweep triggering. Allow the sweep to "free run."

i) Trace average at least 100 traces in power averaging (rms) mode; however, the number of trac es to be averaged shall be increased above 100 as needed such that the average accurately re presents the true average over the ON and OFF periods of the transmitter.

j) Compute power by integrating the spectrum across the OBW of the signal using the instrument 's band power measurement function with band limits set equal to the OBW band edges. If the in strument does not have a band power function, then sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

k) Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average o ver both the ON and OFF times of the transmission). For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is 25%.

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

 $RBW \ge DTS$ bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

a) Set the RBW \geq DTS bandwidth.

b) Set VBW \geq [3 × RBW].

c) Set span \geq [3 × RBW].

d) Sweep time = auto couple.

e) Detector = peak.

f) Trace mode = max hold.

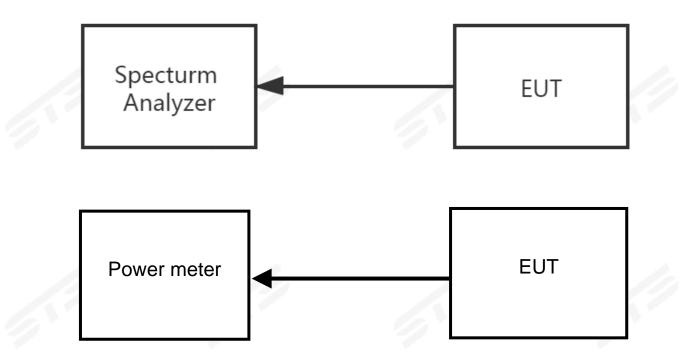
g) Allow trace to fully stabilize.

h) Use peak marker function to determine the peak amplitude level.

Integrated band power method:

The following procedure can be used when the maximum available RBW of the instrument is less than the

DTS bandwidth:


- a) Set the RBW = 1 MHz.
- b) Set the VBW \geq [3 × RBW].
- c) Set the span \geq [1.5 × DTS bandwidth].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.

h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector). If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS channel bandwidth.

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

8.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.

9. ANTENNA REQUIREMENT

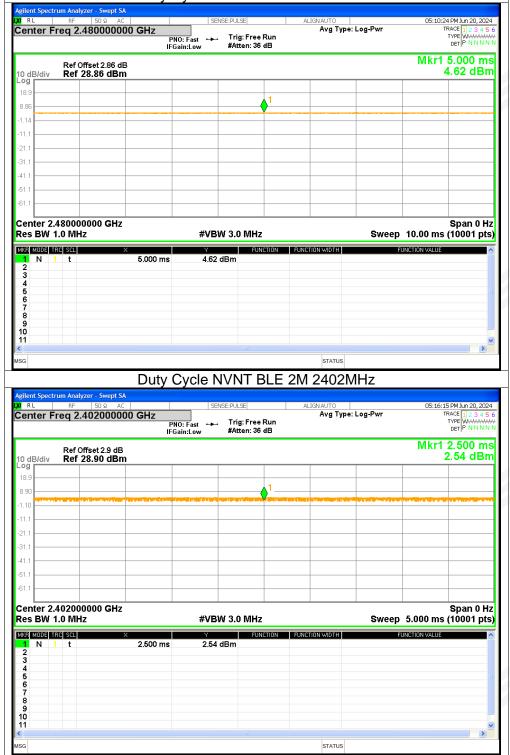
9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

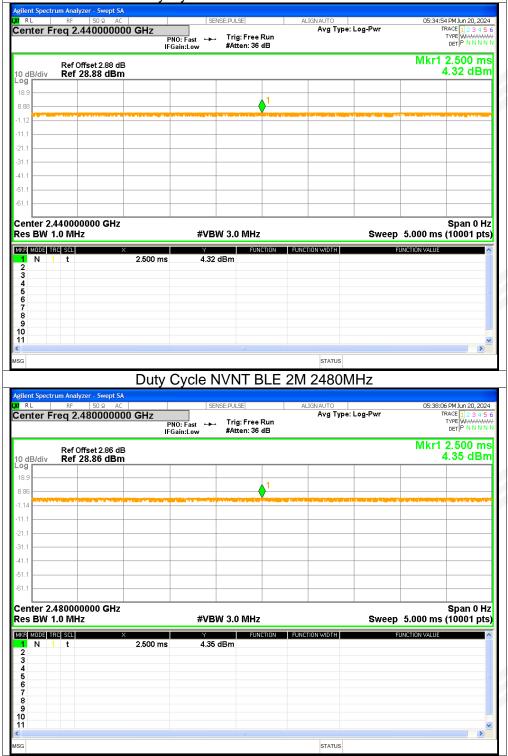
9.2 EUT ANTENNA

The EUT antenna is PCB Antenna. It comply with the standard requirement.

1. Duty Cycle

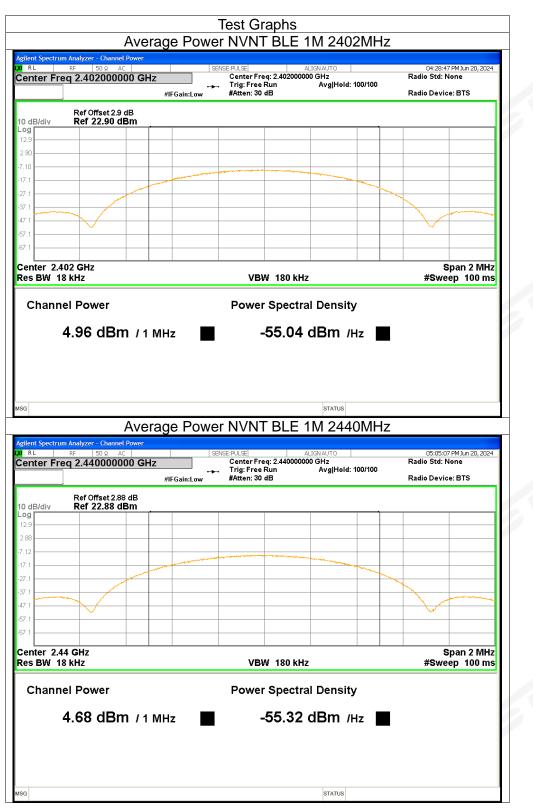

	J				and the second
Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 1M	2402	100	0	0.1
NVNT	BLE 1M	2440	100	0	0.1
NVNT	BLE 1M	2480	100	0	0.1
NVNT	BLE 2M	2402	100	0	0.1
NVNT	BLE 2M	2440	100	0	0.1
NVNT	BLE 2M	2480	100	0	0.1
	Condition NVNT NVNT NVNT NVNT NVNT	ConditionModeNVNTBLE 1MNVNTBLE 1MNVNTBLE 1MNVNTBLE 2MNVNTBLE 2M	ConditionModeFrequency (MHz)NVNTBLE 1M2402NVNTBLE 1M2440NVNTBLE 1M2480NVNTBLE 2M2402NVNTBLE 2M2440	Condition Mode Frequency (MHz) Duty Cycle (%) NVNT BLE 1M 2402 100 NVNT BLE 1M 2440 100 NVNT BLE 1M 2480 100 NVNT BLE 1M 2480 100 NVNT BLE 2M 2402 100 NVNT BLE 2M 2440 100	Condition Mode Frequency (MHz) Duty Cycle (%) Correction Factor (dB) NVNT BLE 1M 2402 100 0 NVNT BLE 1M 2440 100 0 NVNT BLE 1M 2480 100 0 NVNT BLE 1M 2402 100 0 NVNT BLE 2M 2402 100 0 NVNT BLE 2M 2440 100 0

Test Graphs Duty Cycle NVNT BLE 1M 2402MHz Center Freq 2.402000000 GHz Avg Type: Log-Pwr TRACE Trig: Free Run #Atten: 36 dB DET P N N N N PNO: Fast IFGain:Low Mkr1 50.00 ms 5.12 dBm Ref Offset 2.9 dB Ref 28.90 dBm 10 dB/div 8.9 1.10 31. 41. Center 2.402000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 100.0 ms (10001 pts) #VBW 3.0 MHz MKR MODE TRC SCL FUNCTION VALUE FUNCTION FUNCTION WIDTH 50.00 ms 5.12 dBm Ν t 2 3 4 5 6 7 8 9 10 11 > STATUS SG Duty Cycle NVNT BLE 1M 2440MHz ctrum Analyzer - Swept SA 35 PM Jun 20, 2024 Avg Type: Log-Pwr Center Freq 2.440000000 GHz TRACE PNO: Fast ↔→ IFGain:Low Trig: Free Run #Atten: 36 dB DET P N N N N Mkr1 5.000 ms 4.57 dBm Ref Offset 2.88 dB Ref 28.88 dBm 0 dB(dis 8.8 1.13 .41 Center 2.440000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 10.00 ms (10001 pts) #VBW 3.0 MHz MKR MODE TRC SCL FUNCTION VALUE FUNCTION FUNCTION WIDTH 5.000 ms 4.57 dBm Ν 2 3 4 5 6 7 8 9 10 STATUS

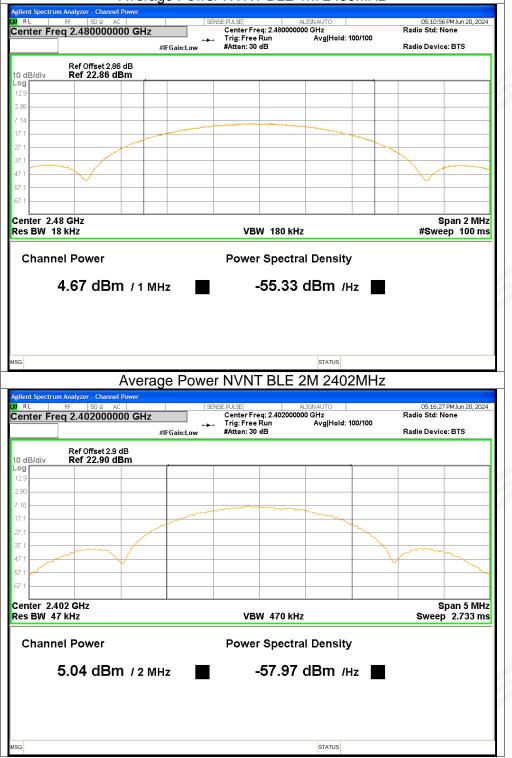


Duty Cycle NVNT BLE 1M 2480MHz

Duty Cycle NVNT BLE 2M 2440MHz


14

2. Maximum Average Conducted Output Power

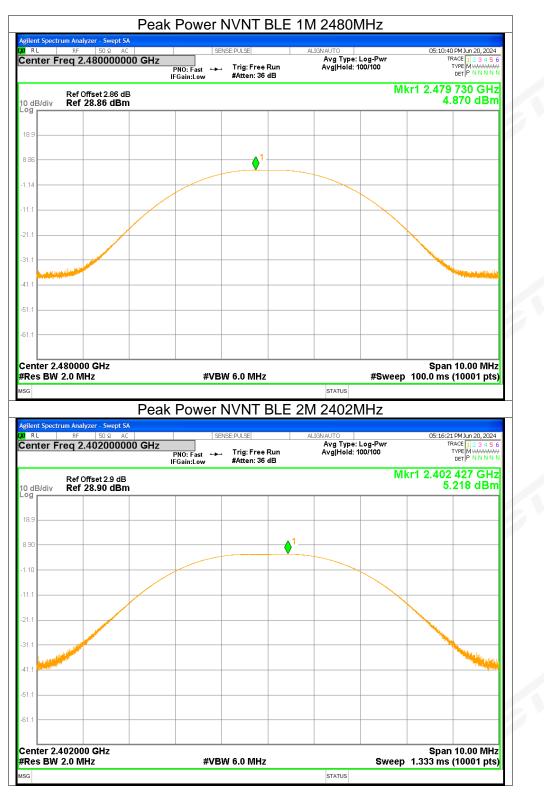

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	4.96	0	4.96	<=30	Pass
NVNT	BLE 1M	2440	4.68	0	4.68	<=30	Pass
NVNT	BLE 1M	2480	4.67	0	4.67	<=30	Pass
NVNT	BLE 2M	2402	5.04	0	5.04	<=30	Pass
NVNT	BLE 2M	2440	4.78	0	4.78	<=30	Pass
NVNT	BLE 2M	2480	4.59	0	4.59	<=30	Pass



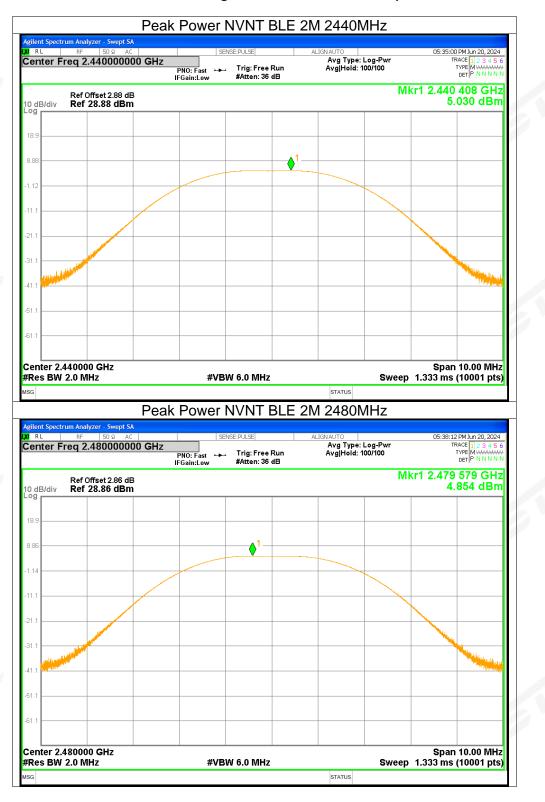
Average Power NVNT BLE 1M 2480MHz

Average Power NVNT BLE 2M 2440MHz

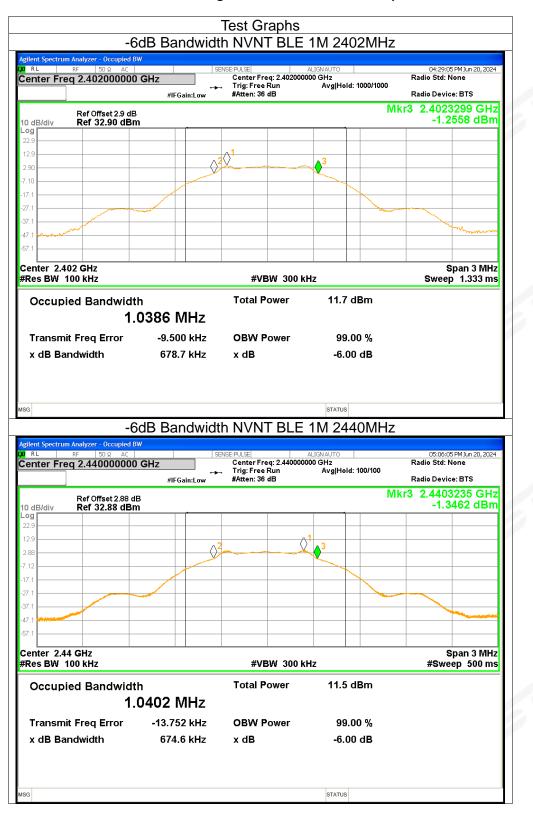
3. Maximum Peak Conducted Output Power


Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	5.21	<=30	Pass
NVNT	BLE 1M	2440	4.93	<=30	Pass
NVNT	BLE 1M	2480	4.87	<=30	Pass
NVNT	BLE 2M	2402	5.22	<=30	Pass
NVNT	BLE 2M	2440	5.03	<=30	Pass
NVNT	BLE 2M	2480	4.85	<=30	Pass

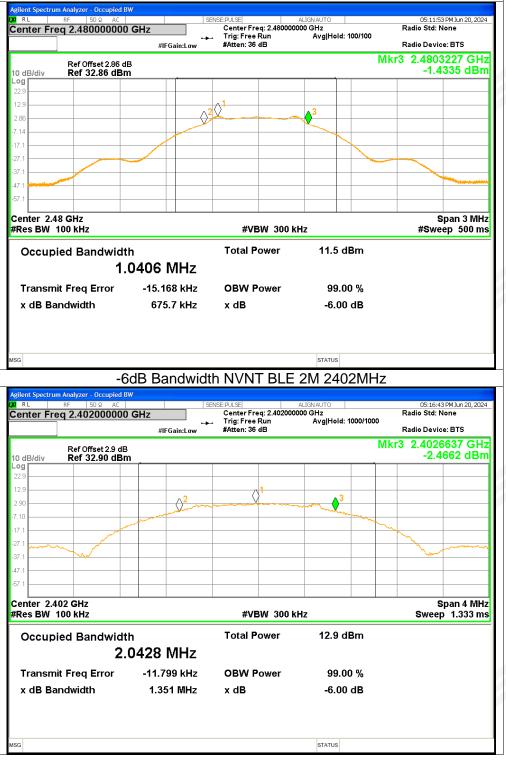
Page 49 of 72

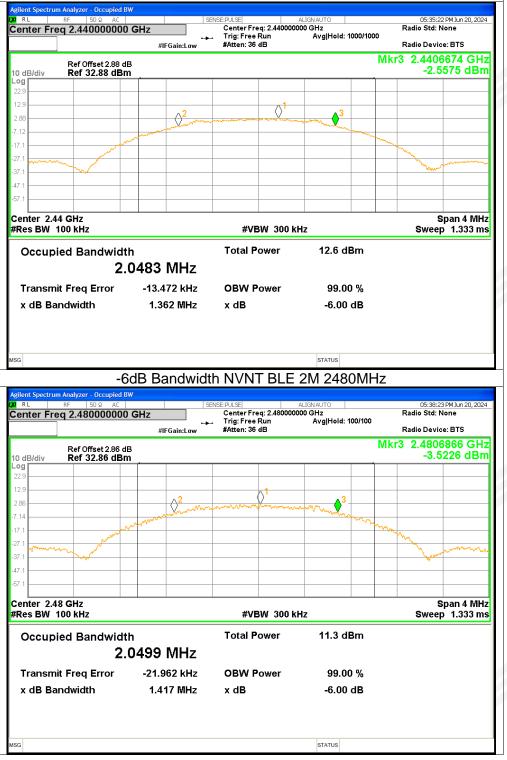


Page 51 of 72



4. -6dB Bandwidth


Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	0.6787	>=0.5	Pass
NVNT	BLE 1M	2440	0.6746	>=0.5	Pass
NVNT	BLE 1M	2480	0.6757	>=0.5	Pass
NVNT	BLE 2M	2402	1.351	>=0.5	Pass
NVNT	BLE 2M	2440	1.3618	>=0.5	Pass
NVNT	BLE 2M	2480	1.4172	>=0.5	Pass

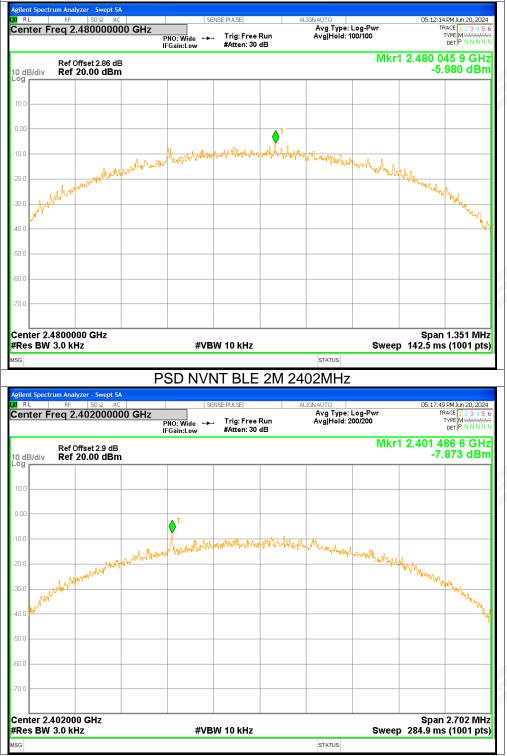


-6dB Bandwidth NVNT BLE 1M 2480MHz

-6dB Bandwidth NVNT BLE 2M 2440MHz

5. Maximum Power Spectral Density Level

	Condition	Mode	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
	NVNT	BLE 1M	2402	-6.07	<=8	Pass
l	NVNT	BLE 1M	2440	-5.63	<=8	Pass
	NVNT	BLE 1M	2480	-5.98	<=8	Pass
	NVNT	BLE 2M	2402	-7.87	<=8	Pass
	NVNT	BLE 2M	2440	-7.97	<=8	Pass
	NVNT	BLE 2M	2480	-8.05	<=8	Pass


Page 57 of 72

PSD NVNT BLE 1M 2480MHz

PSD NVNT BLE 2M 2440MHz

Page 59 of 72

6. Band Edge

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	-52.17	<=-20	Pass
NVNT	BLE 1M	2480	-52.99	<=-20	Pass
NVNT	BLE 2M	2402	-32.02	<=-20	Pass
NVNT	BLE 2M	2480	-51.71	<=-20	Pass

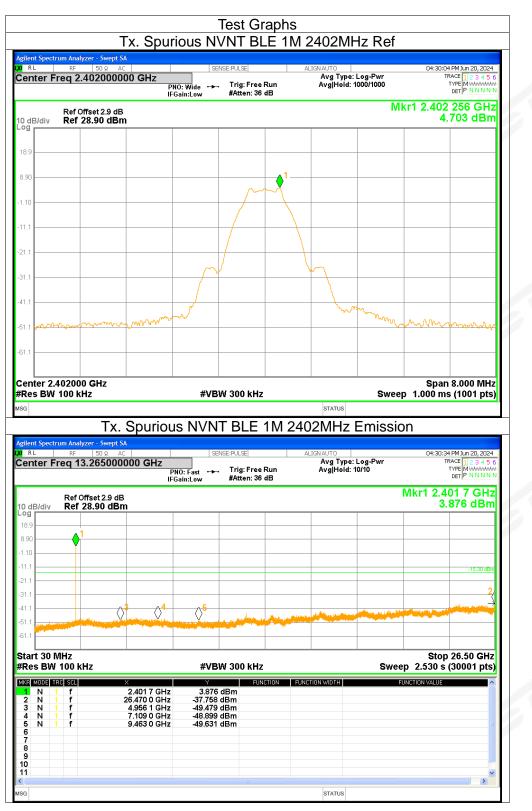
nt Spectrum Analyzer L RF S nter Freq 2.402	50 Ω AC 2000000 GHz P	SENSE:PU NO: Wide ↔ Tri Gain:Low #A	LSE ig: Free Run tten: 36 dB	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 1000/1000	04:29:36 PM Jun 20, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N
Ref Offse B/div Ref 28.9					Mkr1 2.401 752 GHz 4.694 dBm
)					
		/			
		$- \wedge$		\square	
man mm	mmmm				Mannana
nter 2.402000 G	Hz				Span 8.000 MHz
s BW 100 kHz		#VBW 30	00 kHz	Sv	veep 1.000 ms (1001 pts)
es BW 100 kHz	Dond Edg			STATUS	veep 1.000 ms (1001 pts)
nt Spectrum Analyzer -	- Swept SA				veep 1.000 ms (1001 pts)
nt Spectrum Analyzer - L RF 5	- Swept SA 50 Ω AC 50000000 GHz		LE 1M 24	STATUS	veep 1.000 ms (1001 pts)
nt Spectrum Analyzer	Swept SA 50 Q AC 5000000 GHz F IF t 2.9 dB	e NVNT BI	LE 1M 24	STATUS 02MHz Emiss ALIGNAUTO Avg Type: Log-Pwr	veep 1.000 ms (1001 pts) iON 04:29:53 PMJun 20, 2024 TRACE [] 2 3 4 5 6 TYPE[] WWWWW
nt Spectrum Analyzer	Swept SA 50 Q AC 5000000 GHz F IF t 2.9 dB	e NVNT BI	LE 1M 24	STATUS 02MHz Emiss ALIGNAUTO Avg Type: Log-Pwr	ion 04:29:53 PMJun 20, 2024 TRACE [] 2 3 4 5 6 TYPE [] NNN N 06T P.NNN N Mkr1 2.401 8 GHz
nter Freq 2.356 Ref Offse	Swept SA 50 Q AC 5000000 GHz F IF t 2.9 dB	e NVNT BI	LE 1M 24	STATUS 02MHz Emiss ALIGNAUTO Avg Type: Log-Pwr	ion 04:29:53 PMJun 20, 2024 TRACE [] 2 3 4 5 6 TYPE [] NNN N 06T P.NNN N Mkr1 2.401 8 GHz
nt Spectrum Analyzer	Swept SA 50 Q AC 5000000 GHz F IF t 2.9 dB	e NVNT BI	LE 1M 24	STATUS 02MHz Emiss ALIGNAUTO Avg Type: Log-Pwr	ion 04:29:53 PMJun 20, 2024 TRACE [] 2 3 4 5 6 TYPE [] NNN N 06T P.NNN N Mkr1 2.401 8 GHz
nt Spectrum Analyzer	Swept SA 50 Q AC 5000000 GHz F IF t 2.9 dB	e NVNT BI	LE 1M 24	STATUS 02MHz Emiss ALIGNAUTO Avg Type: Log-Pwr	1.000 ms (1001 pts) ion 04:29:53 PMJun 20,2024 TRACE [1:2:3:4:5:6 TYPE [WWWWW DET PINNINN Mkr1 2.401 8 GHz 4.840 dBm
nt Spectrum Analyzer	Swept SA 50 Q AC 5000000 GHz F IF t 2.9 dB	e NVNT BI	LE 1M 24	STATUS 02MHz Emiss ALIGNAUTO Avg Type: Log-Pwr	1.000 ms (1001 pts) ion 04:29:53 PMJun 20,2024 TRACE [1:2:3:4:5:6 TYPE [WWWWW DET PINNINN Mkr1 2.401 8 GHz 4.840 dBm
nt Spectrum Analyzer	Swept SA 50 Q AC 5000000 GHz F IF t 2.9 dB	e NVNT BI	LE 1M 24	STATUS 02MHz Emiss ALIGNAUTO Avg Type: Log-Pwr	1.000 ms (1001 pts) ion 04:29:53 PMJun 20,2024 TRACE [1 2 3 4 5 6 TYPE [WWWWW DET PINNINN Mkr1 2.401 8 GHz 4.840 dBm
nt Spectrum Analyzer	Swept SA 50 Q AC 5000000 GHz F IF t 2.9 dB	e NVNT BI	LE 1M 24	STATUS O2MHz Emiss ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 1000/1000	1.000 ms (1001 pts) ion 04:29:53 PMJun 20,2024 TRACE [1 2 3 4 5 6 TYPE [WWWWW DET PINNINN Mkr1 2.401 8 GHz 4.840 dBm
nt Spectrum Analyzer	Swept SA 50 2 AC 5000000 GHz 12.9 dB 30 dBm 	e NVNT BI	LE 1M 24	STATUS O2MHz Emiss ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 1000/1000	veep 1.000 ms (1001 pts) iion 04:29:53 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:53 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:53 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:53 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:53 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:53 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:53 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:53 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:53 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:53 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:53 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:53 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:53 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:53 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:53 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:53 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:53 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:53 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:53 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:50 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:50 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:50 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:50 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:50 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:50 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:50 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:50 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:50 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:50 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:50 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:50 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:50 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:50 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:50 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:29:50 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:20:50 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:20:50 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:20:50 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:20:50 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:20:50 PM Jun 20, 2024 TRACE [1 23 4 5 6 TYPE [04:20:50 PM Jun
nt Spectrum Analyzer L RF S Iter Freq 2.356 B/div Ref 28.5 	Swept SA 50 © AC 5000000 GHz 12.9 dB 10 dBm 2.401 8 GHz 2.400 8 GHz 2.400 0 GHz	e NVNT BI	LE 1M 24	STATUS O2MHz Emiss ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 1000/1000	veep 1.000 ms (1001 pts) iON 04:29:53 PMJun 20,2024 TRACE [] 2:3 4:5 6 TYPE [] 1:3 4
nt Spectrum Analyzer Iter Freq 2.356 Ref Offse B/div Ref 28.5 	Swept SA 50 2 AC 5000000 GHz 	e NVNT BI	LE 1M 24	STATUS O2MHz Emiss ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 1000/1000	veep 1.000 ms (1001 pts) iON 04:29:53 PMJun 20,2024 TRACE [] 2:3 4:5 6 TYPE [] 1:3 4

12:25 PM Jun 20, 2024 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N R L Center Freq 2.480000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 Trig: Free Run #Atten: 36 dB PNO: Wide ↔ IFGain:Low Mkr1 2.479 768 GHz Ref Offset 2.86 dB Ref 28.86 dBm 4.070 dBm 10 dB/div 31 41. Center 2.480000 GHz Span 8.000 MHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) #Res BW 100 kHz STATUS ISG Band Edge NVNT BLE 1M 2480MHz Emission gilent Spectrum Analyzer - Swept SA 05:12:42 PM Jun 20, 2024 TRACE 1 2 3 4 5 6 TYPE M DET P N N N N B L Center Freq 2.526000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 36 dB Mkr1 2.480 2 GHz Ref Offset 2.86 dB 4.497 dBm 10 dB/div Ref 28.86 dBm 18. 8.8 **⊘**³ 41. $\langle \rangle$ 61. Stop 2.57600 GHz Start 2.47600 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 9.600 ms (1001 pts) FUNCTION VALUE MKR MODE TRC SCL FUNCTION FUNCTION WIDTH 4.497 dBm -49.402 dBm -51.573 dBm -48.922 dBm 2.480 2 GHz 2.483 5 GHz 2.500 0 GHz 2.483 6 GHz N N N 1 2 3 4 5 6 7 8 9 10 11 STATUS SG

Band Edge NVNT BLE 1M 2480MHz Ref

Band Edge NVNT BLE 2M 2402MHz Ref 05:17:59 PM Jun 20, 2024 TRACE 1 2 3 4 5 TYPE M WWWW DET P N N N N R L Center Freq 2.402000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 Trig: Free Run #Atten: 36 dB PNO: Wide 🔸 Mkr1 2.401 512 GHz Ref Offset 2.9 dB Ref 28.90 dBm 3.531 dBm 10 dB/div 31 41. Center 2.402000 GHz Span 8.000 MHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) #Res BW 100 kHz STATUS ISG Band Edge NVNT BLE 2M 2402MHz Emission gilent Spectrum Analyzer - Swept SA B L Center Freg 2.356000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 36 dB Mkr1 2.402 5 GHz Ref Offset 2.9 dB 3.619 dBm 10 dB/div Ref 28.90 dBm 18 ' 8.9 21 31.1 41.1 51. -61. Stop 2.40600 GHz Start 2.30600 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 9.600 ms (1001 pts) MKR MODE TRC SCL FUNCTION FUNCTION WIDTH FUNCTION VALUE 2.402 5 GHz 2.400 0 GHz 2.400 0 GHz 2.400 0 GHz 2.400 0 GHz 3.619 dBm -28.499 dBm -28.499 dBm -28.499 dBm N N N 1 2 3 4 5 6 7 8 9 10 STATUS SG

39:40 PM Jun 20, 2024 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N R L Center Freq 2.480000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 Trig: Free Run #Atten: 36 dB PNO: Wide ↔ IFGain:Low Mkr1 2.480 056 GHz Ref Offset 2.86 dB Ref 28.86 dBm 2.849 dBm 10 dB/div 31 41. Center 2.480000 GHz Span 8.000 MHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) #Res BW 100 kHz STATUS ISG Band Edge NVNT BLE 2M 2480MHz Emission gilent Spectrum Analyzer - Swept SA 05:39:57 PM Jun 20, 20 B L Center Freq 2.526000000 GHz TRACE 1 2 3 4 5 (TYPE MWWWW DET P N N N N Avg Type: Log-Pwr Avg|Hold: 1000/1000 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 36 dB Mkr1 2.480 2 GHz Ref Offset 2.86 dB 3.295 dBm 10 dB/div Ref 28.86 dBm 18. 8.8 -17.15 d 31. 41. $\langle \rangle^2$ $\langle\rangle^4$ $\langle \rangle^3$ Stop 2.57600 GHz Start 2.47600 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 9.600 ms (1001 pts) FUNCTION VALUE MKR MODE TRC SCL FUNCTION FUNCTION WIDTH 2.480 2 GHz 2.483 5 GHz 2.500 0 GHz 2.488 6 GHz 3.295 dBm -49.775 dBm -50.815 dBm -48.861 dBm N N N f 1 2 3 4 5 6 7 8 9 10 11 STATUS SG


Band Edge NVNT BLE 2M 2480MHz Ref

7. Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	-42.45	<=-20	Pass
NVNT	BLE 1M	2440	-42.19	<=-20	Pass
NVNT	BLE 1M	2480	-42.82	<=-20	Pass
NVNT	BLE 2M	2402	-40.73	<=-20	Pass
NVNT	BLE 2M	2440	-40.52	<=-20	Pass
NVNT	BLE 2M	2480	-41.7	<=-20	Pass

1

36 PM Jun 20, 2024 TRACE 1 2 3 4 5 TYPE M WWWW DET P N N N N R L Center Freq 2.440000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 Trig: Free Run #Atten: 36 dB PNO: Wide ↔ IFGain:Low Mkr1 2.440 232 GHz Ref Offset 2.88 dB Ref 28.88 dBm 4.184 dBm 10 dB/div Ø 31 41. 61 Center 2.440000 GHz Span 8.000 MHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) #Res BW 100 kHz STATUS ISG Tx. Spurious NVNT BLE 1M 2440MHz Emission gilent Spectrum Analyzer - Swept SA 5:07:06 PM Jun 20, 20 B L Center Freq 13.265000000 GHz Avg Type: Log-Pwr Avg|Hold: 10/10 TRACE RACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 36 dB Mkr1 2.439 7 GHz Ref Offset 2.88 dB 3.091 dBm 10 dB/div Ref 28.88 dBm 18 ' 31. () $\sqrt{4}$ 41. $\langle \rangle^{5}$ 0 61. Stop 26.50 GHz Sweep 2.530 s (30001 pts) Start 30 MHz #Res BW 100 kHz #VBW 300 kHz MKR MODE TRC SCL FUNCTION VALUE FUNCTION FUNCTION WIDTH 3.091 dBm -38.012 dBm -48.952 dBm -49.076 dBm -50.406 dBm 2.439 7 GHz 25.786 2 GHz 4.994 0 GHz 7.159 3 GHz 9.635 1 GHz 1 2 3 4 5 6 7 8 9 10 11 N N N N STATUS SG

Tx. Spurious NVNT BLE 1M 2440MHz Ref

53 PM Jun 20, 2024 TRACE 1 2 3 4 5 TYPE M WWWW DET P N N N N R L Center Freq 2.480000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 Trig: Free Run #Atten: 36 dB PNO: Wide ↔ IFGain:Low Mkr1 2.479 752 GHz Ref Offset 2.86 dB Ref 28.86 dBm 4.480 dBm 10 dB/div 31 41. Center 2.480000 GHz Span 8.000 MHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) #Res BW 100 kHz STATUS ISG Tx. Spurious NVNT BLE 1M 2480MHz Emission ectrum Analyzer - Swept SA 05:13:23 PM Jun 20, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N B L Center Freq 13.265000000 GHz Avg Type: Log-Pwr Avg|Hold: 10/10 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 36 dB Mkr1 2.480 2 GHz Ref Offset 2.86 dB 2.840 dBm 10 dB/div Ref 28.86 dBm 18 ' 31. $\langle \rangle$ 41. ⊘5 $\langle \rangle$ $\langle \rangle$ 61. Stop 26.50 GHz Sweep 2.530 s (30001 pts) Start 30 MHz #Res BW 100 kHz #VBW 300 kHz MKR MODE TRC SCL FUNCTION VALUE FUNCTION FUNCTION WIDTH 2.840 dBm -38.343 dBm -48.678 dBm -49.342 dBm -50.079 dBm 2.480 2 GHz 25.833 8 GHz 4.876 7 GHz 7.614 5 GHz 9.868 9 GHz 1 2 3 4 5 6 7 8 9 10 11 N N N N STATUS SG

Tx. Spurious NVNT BLE 1M 2480MHz Ref

22 PM Jun 20, 2024 TRACE 1 2 3 4 5 TYPE M WANNAN DET P N N N N R L Center Freq 2.402000000 GHz Avg Type: Log-Pwr Avg|Hold: 200/200 Trig: Free Run #Atten: 36 dB PNO: Wide ↔ IFGain:Low Mkr1 2.401 912 GHz Ref Offset 2.9 dB Ref 28.90 dBm 2.681 dBm 10 dB/div Ø 31 41. Center 2.402000 GHz Span 8.000 MHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) #Res BW 100 kHz STATUS ISG Tx. Spurious NVNT BLE 2M 2402MHz Emission gilent Spectrum Analyzer - Swept SA 05:18:52 PM Jun 20, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N B L Center Freq 13.265000000 GHz Avg Type: Log-Pwr Avg|Hold: 10/10 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 36 dB Mkr1 2.401 7 GHz Ref Offset 2.9 dB 1.589 dBm 10 dB/div Ref 28.90 dBm 18 ' 8.9 \Diamond^2 31. $\langle\rangle^4$ 41. $\langle \rangle^{5}$ $\langle \rangle$ -61. Stop 26.50 GHz Sweep 2.530 s (30001 pts) Start 30 MHz #Res BW 100 kHz #VBW 300 kHz MKR MODE TRC SCL FUNCTION VALUE FUNCTION FUNCTION WIDTH 1.589 dBm -38.058 dBm -49.741 dBm -48.889 dBm -48.611 dBm 2.401 7 GHz 24.485 6 GHz 4.996 7 GHz 7.112 5 GHz 9.508 9 GHz 1 2 3 4 5 6 7 8 9 10 11 N N N N N STATUS SG

Tx. Spurious NVNT BLE 2M 2402MHz Ref

Tx. Spurious NVNT BLE 2M 2440MHz Ref 39 PM Jun 20, 2024 TRACE 1 2 3 4 5 TYPE M WWWW DET P N N N N R L Center Freq 2.440000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 Trig: Free Run #Atten: 36 dB PNO: Wide ↔ IFGain:Low Mkr1 2.440 472 GHz Ref Offset 2.88 dB Ref 28.88 dBm 3.239 dBm 10 dB/div ٥ 31 41. Center 2.440000 GHz Span 8.000 MHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) #Res BW 100 kHz STATUS ISG Tx. Spurious NVNT BLE 2M 2440MHz Emission gilent Spectrum Analyzer - Swept SA 15:37:37 PM Jun 20, 20 B L Center Freq 13.265000000 GHz TRACE 1 2 3 4 5 (TYPE MWWWW DET P N N N N 1 Avg Type: Log-Pwr Avg|Hold: 20/20 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 36 dB Mkr1 2.440 5 GHz Ref Offset 2 88 dB 3.265 dBm 10 dB/div Ref 28.88 dBm 18 ' -16.76 d 21 \Diamond^2 31. ∕_ 41. ()⁵ Ô -61. Stop 26.50 GHz Sweep 2.530 s (30001 pts) Start 30 MHz #Res BW 100 kHz #VBW 300 kHz MKR MODE TRC SCL FUNCTION VALUE FUNCTION FUNCTION WIDTH 3.265 dBm -37.281 dBm -48.064 dBm -48.793 dBm -49.746 dBm 2.440 5 GHz 25.574 4 GHz 5.077 8 GHz 7.124 8 GHz 9.730 4 GHz 1 2 3 4 5 6 7 8 9 10 11 N N N N N STATUS SG

-

RL RF Inter Freq 2.48	0000000 GHz	SENSE:PULSE PNO: Wide +++ Trig: F FGain:Low #Atten	ree Run : 36 dB	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 1000/1000	05:40:08 PM Jun 20, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N
	et 2.86 dB	. comeow		N	lkr1 2.479 496 GHz 3.209 dBm
dB/div Ref 28.	86 dBm				3.209 dBii
9					
6		1-			
			www.		
4		, and the second s	`	mark and a second secon	
1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
1					
1				- Long	
1		V		· · ·	
	www				Munime a second
1 allo alla alla					The provide it does
1					
nter 2.480000 G	iHz				Span 8.000 MHz
es BW 100 kHz		#VBW 300 k			
			HZ		ep 1.000 ms (1001 pts)
				STATUS	
ent Spectrum Analyzer					
RL RF	- Swept SA 50 Ω AC			status 180MHz Emissi alignauto	05:41:06 PMJun 20, 2024 TRACE 10 2 3 4 5 6
RL RF	- Swept SA 50 Ω AC 65000000 GHz	US NVNT BL	E 2M 24	status 180MHz Emissi	on
RL RF nter Freq 13.2 Ref Offs	- Swept SA 50 Ω AC 65000000 GHz		E 2M 24	STATUS 180MHz Emissi ALIGNAUTO Avg Type: Log-Pwr	000 05:41:06 PM Jun 20, 2024 TRACE 12 3 4 5 6 TYPE M WWWWW DET P N N N N Mkr1 2.480 2 GHz
RL RF nter Freq 13.2 Ref Offs dB/div Ref 28.	- Swept SA 50 Ω AC 65000000 GHz		E 2M 24	STATUS 180MHz Emissi ALIGNAUTO Avg Type: Log-Pwr	ON 05:41:06 PM.Jun 20, 2024 TRACE 12 3 4 5 6 TYPE M WWWWW PET P N N N N N
RL RF nter Freq 13.2 Ref Offs dB/div Ref 28.	- Swept SA 50 Ω AC 65000000 GHz		E 2M 24	STATUS 180MHz Emissi ALIGNAUTO Avg Type: Log-Pwr	000 05:41:06 PM Jun 20, 2024 TRACE 12 3 4 5 6 TYPE M WWWWW DET P N N N N Mkr1 2.480 2 GHz
RL RF Treq 13.2 Ref Offs B/div Ref 28. A A A A A A A A A A A A A	- Swept SA 50 Ω AC 65000000 GHz		E 2M 24	STATUS 180MHz Emissi ALIGNAUTO Avg Type: Log-Pwr	000 05:41:06 PM Jun 20, 2024 TRACE 12 3 4 5 6 TYPE M WWWWW DET P N N N N Mkr1 2.480 2 GHz
RL RF Freq 13.2 Ref Offs dB/div Ref 28.	- Swept SA 50 Ω AC 65000000 GHz		E 2M 24	STATUS 180MHz Emissi ALIGNAUTO Avg Type: Log-Pwr	000 05:41:06 PM Jun 20, 2024 TRACE 12 3 4 5 6 TYPE M WWWWW DET P N N N N Mkr1 2.480 2 GHz
RL RF Offs Ref Offs dB/div Ref 28.	- Swept SA 50 Ω AC 65000000 GHz		E 2M 24	STATUS 180MHz Emissi ALIGNAUTO Avg Type: Log-Pwr	001 05:41:06 PM.Jun 20, 2024 TRACE 11 2 3:4 5 6 TYPEE M WWWWWW PET P N N N N Mkr1 2.480 2 GHz 1.795 dBm
RL RF Offs Ref Offs B/div Ref 28.	- Swept SA 50 Ω AC 65000000 GHz		E 2M 24	STATUS 180MHz Emissi ALIGNAUTO Avg Type: Log-Pwr	001 05:41:05 PM Jun 20, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNNN Mkr1 2.480 2 GHz 1.795 dBm
RL RF Offs Ref Offs dB/div Ref 28.	- Swept SA 50 Ω AC 65000000 GHz		E 2M 24	STATUS 180MHz Emissi ALIGNAUTO Avg Type: Log-Pwr	001 05:41:05 PM Jun 20, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNNN Mkr1 2.480 2 GHz 1.795 dBm
RL Ref Offs Bl/div Ref 28.	- Swept SA 50 Ω AC 65000000 GHz	US NVNT BL	E 2M 24	STATUS 180MHz Emissi ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 20/20	ON 05:41:06 PMJun 20, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW Mkr1 2.480 2 GHz 1.795 dBm
REF Freq 13.2 Ref Offs B/div Ref 28. GE/div Ref 28. Ref 28. Ref 0ffs Ref 0ffs Ref 28. Ref 0ffs Ref 28. Ref 0ffs Ref 28. Ref 0ffs Ref 28. Ref 28. Ref 0ffs Ref 28. Ref	- Swept SA 50 Ω AC 65000000 GHz et 2.86 dB 86 dBm	US NVNT BL	E 2M 24	STATUS 180MHz Emissi ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 20/20 Avg Hold: 20/20 Swe	ON 05:41:06 PM.Jun 20, 2024 TRACE 12 3 4 5 6 TYPE MWWWWW DET P N NN N Mkr1 2.480 2 GHz 1.795 dBm
RL Ref Offs Ref Offs Ref Offs Ref Offs Ref 28. Ref 0 Ref 0	- Swept SA 50 0 AC 65000000 GHz et 2.86 dB 86 dBm 2.480 2 GHz 25.600 9 GHz	US NVNT BL	E 2M 24	STATUS 180MHz Emissi ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 20/20 Avg Hold: 20/20 Swe	ON 05:41:06 PM Jun 20, 2024 TRACE 1 2 3 4 5 6 TYPE MWWHWW Mkr1 2.480 2 GHz 1.795 dBm
RL Ref Offs. Ref Offs	- Swept SA 50 0 AC 65000000 GHz et 2.86 dB 86 dBm 2.480 2 GHz 2.480 2 GHz 4.933 1 GHz 7.597 8 GHz	US NVNT BL SENSE-PULSE PNO: Fast → Trig: F FGain:Low → #Atten #Atten #VBW 300 k 1.795 dBm -38.494 dBm -49.183 dBm -49.183 dBm	E 2M 24	STATUS 180MHz Emissi ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 20/20 Avg Hold: 20/20 Swe	ON 05:41:06 PM Jun 20, 2024 TRACE 1 2 3 4 5 6 TYPE MWWHWW Mkr1 2.480 2 GHz 1.795 dBm
RL Ref Offs Ref Offs Ref 28.	- Swept SA 50 Q AC 65000000 GHz et 2.86 dB 86 dBm 2.86 0 GHz 2.480 2 GHz 25.600 9 GHz 4.933 1 GHz	US NVNT BL SENSE-PULSE PNO: Fast → Trig: F FGain:Low → #Atten #Atten #VBW 300 k 1.795 dBm -38.494 dBm -49.183 dBm -49.183 dBm	E 2M 24	STATUS 180MHz Emissi ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 20/20 Avg Hold: 20/20 Swe	ON 05:41:06 PM Jun 20, 2024 TRACE 1 2 3 4 5 6 TYPE MWWHWW Mkr1 2.480 2 GHz 1.795 dBm
Ref Offs Ref Offs 9	- Swept SA 50 0 AC 65000000 GHz et 2.86 dB 86 dBm 2.480 2 GHz 2.480 2 GHz 4.933 1 GHz 7.597 8 GHz	US NVNT BL SENSE-PULSE PNO: Fast → Trig: F FGain:Low → #Atten #Atten #VBW 300 k 1.795 dBm -38.494 dBm -49.183 dBm -49.183 dBm	E 2M 24	STATUS 180MHz Emissi ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 20/20 Avg Hold: 20/20 Swe	ON 05:41:06 PM Jun 20, 2024 TRACE 1 2 3 4 5 6 TYPE MWWHWW Mkr1 2.480 2 GHz 1.795 dBm

0

APPENDIX 2- EUT TEST PHOTO

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

** ** ** END OF THE REPORT ** ** **