

CFR 47 FCC PART 15 SUBPART E ISED RSS-247 ISSUE 2

CERTIFICATION TEST REPORT

For

Ridge Racer-Stand Up, Ridge Racer-Sit Down

MODEL NUMBER: RID-A-10175, RID-A-10174

FCC ID: 2APXHRIDGE

ISED: 24128-RIDGE

REPORT NUMBER: 4790049323-2

ISSUE DATE: September 22, 2021

Prepared for

WF TASTEMAKERS TRADING LIMITED (FCC)
Unit 05 and unit 06, 6th Floor, Greenfield Tower Concordia Plaza, 1 Science
Museum Road, TST East

WF Tastemakers Trading Limited (ISED)
980 Avenue of the Americas, 3rd Floor New York NY 10018 United States Of
America

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

REPORT NO.: 4790049323-2 Page 2 of 274

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	09/22/2021	Initial Issue	

Summary of Test Results					
Clause	Test Items	FCC/IC Rules	Test Results		
1	6dB/26dB Bandwidth	FCC 15.407 (a)&(e) RSS-247 Clause 6.2	PASS		
2	99% Occupied Bandwidth	RSS-Gen Clause 6.6	PASS		
3	Conducted Output Power	FCC 15.407 (a) RSS-247 Clause 6.2	PASS		
4	Power Spectral Density	FCC 15.407 (a) RSS-247 Clause 6.2	PASS		
5	Radiated Bandedge and Spurious Emission	FCC 15.407 (b) FCC 15.209 FCC 15.205 RSS-247 Clause 6.2 RSS-GEN Clause 8.9	PASS		
6	Conducted Emission Test for AC Power Port	FCC 15.207 RSS-GEN Clause 8.8	PASS		
7	Frequency Stability	FCC 15.407 (g)	PASS		
8	Dynamic Frequency Selection	FCC 15.407 (h) RSS-247 Clause 6.3	PASS		
9	Antenna Requirement	FCC 15.203 RSS-GEN Clause 6.8	PASS		

Note:

^{1.} This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

^{2.} The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C >< ISED RSS-247 > when <Accuracy Method> decision rule is applied.

TABLE OF CONTENTS

1.	ΑI	TESTATION OF TEST RESULTS	7
2.	TES	ST METHODOLOGY	9
3.	FAC	CILITIES AND ACCREDITATION	9
4.	CA	LIBRATION AND UNCERTAINTY	10
	4.1.	MEASURING INSTRUMENT CALIBRATION	10
	4.2.	MEASUREMENT UNCERTAINTY	10
5.	EQ	UIPMENT UNDER TEST	11
,	5.1.	MAXIMUM OUTPUT POWER	11
,	5.2.	CHANNEL LIST	12
,	5.3.	DESCRIPTION OF EUT	13
,	5. <i>4</i> .	DESCRIPTION OF AVAILABLE ANTENNAS	14
,	5.5.	THE WORSE CASE POWER SETTING PARAMETER	15
	5.6.	THE WORSE CASE CONFIGURATIONS	17
	5.7.	DESCRIPTION OF TEST SETUP	
6.	ME	ASURING INSTRUMENT AND SOFTWARE USED	19
_	AN.	TENNA PORT TEST RESULTS	04
7.	,		∠1
	7.1.	ON TIME AND DUTY CYCLE	
			21
	7.1.	ON TIME AND DUTY CYCLE	21 22
	7.1. 7.2.	ON TIME AND DUTY CYCLE	21 22 25
	7.1. 7.2. 7.3. 7.4.	ON TIME AND DUTY CYCLE	21 22 25 28
8.	7.1. 7.2. 7.3. 7.4.	ON TIME AND DUTY CYCLE	21252830
8.	7.1. 7.2. 7.3. 7.4. RA I 8.1.	ON TIME AND DUTY CYCLE	21 25 28 30 36
8.	7.1. 7.2. 7.3. 7.4. RA I 8.1. 8.1. UNI	ON TIME AND DUTY CYCLE	21 25 30 36 36
8.	7.1. 7.2. 7.3. 7.4. RA I 8.1. 8.1. UNI UNI	ON TIME AND DUTY CYCLE	212530363638
8.	7.1. 7.2. 7.3. 7.4. RAI 8.1. 8.1. UNI UNI UNI	ON TIME AND DUTY CYCLE	2125303636383838
8.	7.1. 7.2. 7.3. 7.4. RAI 8.1. 8.1. UNI UNI 8.1.	ON TIME AND DUTY CYCLE	2125303636363636363636
8.	7.1. 7.2. 7.3. 7.4. 8.1. 8.1. UNI UNI UNI UNI	ON TIME AND DUTY CYCLE	212236363636384043
8.	7.1. 7.2. 7.3. 7.4. 8.1. UNI UNI UNI UNI UNI UNI	ON TIME AND DUTY CYCLE	212536363636363636340434545
8.	7.1. 7.2. 7.3. 7.4. 8.1. 8.1. UNI UNI UNI UNI UNI UNI	ON TIME AND DUTY CYCLE 6/26 dB EMISSION BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER	2122253036363636363636374043454545
8.	7.1. 7.2. 7.3. 7.4. 8.1. 8.1. UNI UNI UNI UNI UNI UNI UNI UNI	ON TIME AND DUTY CYCLE 6/26 dB EMISSION BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER	212225303636363840434545454552
8.	7.1. 7.2. 7.3. 7.4. 8.1. 8.1. UNI UNI UNI UNI UNI UNI UNI	ON TIME AND DUTY CYCLE 6/26 dB EMISSION BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER	21223036363636363640434545454554

3.3.4. 802.11ac VHT80 MODE JNII-1 BAND JNII-2A BAND JNII-2C BAND STRADDLE CHANNEL 138 JNII-3 BAND SPURIOUS EMISSIONS (18 GHz ~ 26 GHz) 3.4.1. 802.11 a MODE SPURIOUS EMISSIONS (26 GHz ~ 40 GHz) 3.5.1. 802.11 a MODE SPURIOUS EMISSIONS (30 MHz ~ 1 GHz) 3.6.1. 802.11 a MODE SPURIOUS EMISSIONS BELOW 30 MHz 3.7.1. 802.11 a MODE	169 171 173 177 179 181 183 185 185 187
3.3.4. 802.11ac VHT80 MODE JNII-1 BAND JNII-2A BAND JNII-2C BAND STRADDLE CHANNEL 138 JNII-3 BAND 4. SPURIOUS EMISSIONS (18 GHz ~ 26 GHz) 3.4.1. 802.11 a MODE 5. SPURIOUS EMISSIONS (26 GHz ~ 40 GHz) 3.5.1. 802.11 a MODE 6. SPURIOUS EMISSIONS (30 MHz ~ 1 GHz) 3.6.1. 802.11 a MODE	169 171 173 177 179 181 183 185 185
3.3.4. 802.11ac VHT80 MODE JNII-1 BAND JNII-2A BAND JNII-2C BAND STRADDLE CHANNEL 138 JNII-3 BAND 4. SPURIOUS EMISSIONS (18 GHz ~ 26 GHz) 3.4.1. 802.11 a MODE 5. SPURIOUS EMISSIONS (26 GHz ~ 40 GHz) 3.5.1. 802.11 a MODE 6. SPURIOUS EMISSIONS (30 MHz ~ 1 GHz) 6. SPURIOUS EMISSIONS (30 MHz ~ 1 GHz) 6. SPURIOUS EMISSIONS (30 MHz ~ 1 GHz)	169 171 173 177 179 181 183 183
3.3.4. 802.11ac VHT80 MODE JNII-1 BAND JNII-2A BAND JNII-2C BAND STRADDLE CHANNEL 138 JNII-3 BAND 4. SPURIOUS EMISSIONS (18 GHz ~ 26 GHz) 3.4.1. 802.11 a MODE 5. SPURIOUS EMISSIONS (26 GHz ~ 40 GHz) 3.5.1. 802.11 a MODE	169 171 173 177 179 181 183 183
3.3.4. 802.11ac VHT80 MODE JNII-1 BAND JNII-2A BAND JNII-2C BAND STRADDLE CHANNEL 138 JNII-3 BAND JNII-3 BAND SPURIOUS EMISSIONS (18 GHz ~ 26 GHz) 3.4.1. 802.11 a MODE 5. SPURIOUS EMISSIONS (26 GHz ~ 40 GHz) 3.5.1. 802.11 a MODE	169 171 173 177 179 181 183
3.3.4. 802.11ac VHT80 MODE	169 171 173 177 179 181
3.3.4. 802.11ac VHT80 MODE	169 171 173 177 179 181
3.3.4. 802.11ac VHT80 MODE JNII-1 BAND JNII-2A BAND JNII-2C BAND STRADDLE CHANNEL 138 JNII-3 BAND JNII-3 BAND	169 171 173 177 179
3.3.4. 802.11ac VHT80 MODE JNII-1 BAND JNII-2A BAND JNII-2C BAND STRADDLE CHANNEL 138	169 169 171 173
3.3.4. 802.11ac VHT80 MODE	169 169 171 173
3.3.4. 802.11ac VHT80 MODE JNII-1 BAND JNII-2A BAND	169 169 171
3.3.4. 802.11ac VHT80 MODE	169 169
3.3.4. 802.11ac VHT80 MODE	169
JNII-3 BAND	405
STRADDLE CHANNEL 142	163
JNII-2C BAND	157
JNII-3 BAND	143
JNII-2C BAND	135
	_
JNII-1 BAND	97
B. SPURIOUS EMISSIONS (7 GHz ~ 18 GHz)	97
JNII-3 BAND	91
	_
3 - 3 - 3 - 3 - 3	INII-1 BAND INII-2 BAND INII-2 BAND INII-3 BAND INII-2 BAND INII-3

10. FREQUENCY STABILITY	194
11. DYNAMIC FREQUENCY SELECTION	196
12. ANTENNA REQUIREMENTS	200
13. Appendix	201
13.1. Appendix A1: Emission Bandwidth	201
13.2. Appendix A2: Occupied channel bandwidth	218
13.3. Appendix A3: Min emission bandwidth	235
13.4. Appendix B: Maximum conducted output power	
13.5. Appendix C: Maximum power spectral density	244
13.6. Appendix D: Duty Cycle	262
13.8. Appendix E: Channel Move Time and Channel Closing Transmission Time 13.8.1. Test Result	270
13.9. Appendix F: Non-Occupancy Period	
13.1 Appendix G: Frequency Stability	274

REPORT NO.: 4790049323-2

Page 7 of 274

1. ATTESTATION OF TEST RESULTS

FCC

Applicant Information

Company Name: WF TASTEMAKERS TRADING LIMITED

Address: Unit 05 and unit 06, 6th Floor, Greenfield Tower Concordia Plaza,

1 Science Museum Road, TST East

ISED

Applicant Information

Company Name: WF Tastemakers Trading Limited (ISED)

Address: 980 Avenue of the Americas, 3rd Floor New York NY 10018

United States Of America

FCC

Manufacturer Information

Company Name: WF TASTEMAKERS TRADING LIMITED

Address: Unit 05 and unit 06, 6th Floor, Greenfield Tower Concordia Plaza,

1 Science Museum Road, TST East

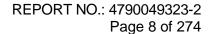
ISED

Manufacturer Information

Company Name: WF Tastemakers Trading Limited (ISED)

Address: 980 Avenue of the Americas, 3rd Floor New York NY 10018

United States Of America


EUT Information

EUT Name: Ridge Racer-Stand Up , Ridge Racer-Sit Down

Model: RID-A-10175
Series Model: RID-A-10174
Brand: ARCADE 1 UP
Sample Received Date: July 26, 2021

Sample Status: Normal Sample ID: 4138087

Date of Tested: August 19, 2021 ~ August 26, 2021

 APPLICABLE STANDARDS

 STANDARD
 TEST RESULTS

 CFR 47 FCC PART 15 SUBPART E
 PASS

 ISED RSS-247 Issue 2
 PASS

 ISED RSS-GEN Issue 5
 PASS

Prepared	Ву:
----------	-----

Kebo Zhang

Project Engineer

Approved By:

Stephen Guo

Laboratory Manager

Shawn Wen

Laboratory Leader

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, CFR 47 FCC Part 2, CFR 47 FCC Part 15, KDB 789033 D02 v02r01, RSS-GEN Issue 5, RSS-247 Issue 2, KDB414788 D01 Radiated Test Site v01r01, KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02, KDB 905462 D03 UNII clients without radar detection New Rules v01r02, KDB 905462 D04 Operational Modes for DFS Testing New Rules v01 and KDB 905462 D06 802 11 Channel Plans New Rules v02.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Delcaration of Conformity (DoC) and Certification
	rules
	ISED (Company No.: 21320)
Accreditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Certificate	has been registered and fully described in a report filed with ISED.
	The Company Number is 21320 and the test lab Conformity Assessment
	Body Identifier (CABID) is CN0046.
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004
	Shielding Room B, the VCCI registration No. is C-20012 and T-20011

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Uncertainty	
3.62 dB	
2.2 dB	
4.00 dB	
5.78 dB (1 GHz ~ 18 GHz)	
5.23 dB (18 GHz ~ 26 GHz)	
±0.028%	
±0.0196%	
±0.766 dB	
±1.22 dB	
±2.76%	
±1.328 dB	
±0.746 dB (9 kHz ~ 1 GHz)	
±1.328dB (1 GHz ~ 26 GHz)	

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

5. EQUIPMENT UNDER TEST

5.1. MAXIMUM OUTPUT POWER

UNII-1 BAND

IEEE Std. 802.11	Frequency (MHz)	Maximum Average Conducted Power (dBm)	Max Average EIRP (dBm)
а	5180 ~ 5240	12.12	15.52
n HT20		Covered by 802.11ac V	HT20
n HT40		Covered by 802.11ac V	HT40
ac VHT20		12.14	15.54
ac VHT40		12.07	15.47
ac VHT 80		10.51	13.91

UNII-2A BAND

IEEE Std. 802.11	Frequency (MHz)	Maximum Average Conducted Power (dBm)	Max Average EIRP (dBm)
а	5260 ~ 5320	12.77	16.17
n HT20		Covered by 802.11ac VI	HT20
n HT40		Covered by 802.11ac VI	HT40
ac VHT20		12.65	16.05
ac VHT40		12.55	15.95
ac VHT 80		12.78	16.18

UNII-2C BAND

IEEE Std.	Frequency	Maximum Average Conducted Power	Max Average EIRP
802.11	(MHz)	(dBm)	(dBm)
а	5510 ~ 5670	13.46	16.86
n HT20		Covered by 802.11ac VI	HT20
n HT40		Covered by 802.11ac VI	HT40
ac VHT20		13.24	16.64
ac VHT40		13.21	16.61
ac VHT 80		13.10	16.5

UNII-3 BAND

IEEE Std. 802.11	Frequency (MHz)	Maximum Average Conducted Power (dBm)	Max Average EIRP (dBm)
002.11	(IVII 12)	(ubiii)	(ubiii)
а		11.33	14.73
n HT20	5725 ~ 5850	Covered by 802.11ac VI	HT20
n HT40		Covered by 802.11ac VI	HT40
ac VHT20		11.14	14.54
ac VHT40		11.02	14.42
ac VHT 80		11.01	14.41

5.2. CHANNEL LIST

UNI	UNII-1 UNII		III-1	UNII-1	
(For Bandwid	dth=20MHz)	(For Bandwi	dth=40MHz)	n=40MHz) (For Bandwidth=80M	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	38	5190	42	5210
40	5200	46	5230		
44	5220				
48	5240				

UNII	UNII-2A		UNII-2A		UNII-2A	
(For Bandwid	dth=20MHz)	(For Bandwi	For Bandwidth=40MHz) (For Band		dth=80MHz)	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
52	5260	54	5270	58	5290	
56	5280	62	5310			
60	5300					
64	5320					

UNII-2C (For Bandwidth=20MHz)		UNII-2C (For Bandwidth=40MHz)		UNII-2C (For Bandwidth=80MHz)	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
100	5500	102	5510	106	5530
104	5520	110	5550	122	5610
108	5540	118	5590	138	5690
112	5560	126	5630		
116	5580	134	5670		
120	5600	142	5710		
124	5620				
128	5640				
132	5660				
136	5680				
140	5700				
144	5720				

UNII-3		UNII-3		UNII-3	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	151	5755	155	5775
153	5765	159	5795		
157	5785				
161	5805				
165	5825				

5.3. DESCRIPTION OF EUT

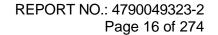
EUT Name	Ridge Racer-Stand Up , Ridge Racer-Sit Down
Model Name	RID-A-10175
Series Model	RID-A-10174
Model Difference	RID-A-10175 have the same technical construction including circuit diagram, PCB Layout, components and component layout, all electrical construction and mechanical construction with RID-A-10174. The difference lies Appearance.
Radio Technology	IEEE802.11a IEEE802.11n HT20/n HT40 IEEE802.11ac VHT20/VHT40/VHT80
Operation frequency	UNII-1/UNII-2A/UNII-2C/UNII-3
Modulation	OFDM(BPSK,QPSK,16QAM,64QAM,256QAM only in ac mode)
Power Supply	AC120 V,60 Hz

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna No.	Frequency Band	Antenna Type	Max Antenna Gain (dBi)
1	5150-5850	Monopole	3.4

IEE Std. 802.11	Transmit and Receive Mode	Description
802.11a	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
802.11n HT20	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
802.11n HT40	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
802.11ac VHT20	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
802.11ac VHT40	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
802.11ac VHT80	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.

5.5. THE WORSE CASE POWER SETTING PARAMETER


The Worse Case Power Setting Parameter			
Test Software	RFTestTool		

UNII-1

Mode	Rate	Channel	Soft set value
Mode	Nate		ANT1
		36	default
11a	6M	40	default
		48	default
		36	default
11n HT20	MCS0	40	default
		48	default
115 UT40	MCCO	38	default
11n HT40	MCS0	46	default
		36	default
11ac VHT20	MCS0	40	default
		48	default
11ac VHT40	MCCO	38	default
	MCS0	46	default
11ac VHT80	MCS0	42	default

UNII-2A

Mada	Rate	Channal	Soft set value
Mode		Channel	ANT1
		52	default
11a	6M	60	default
		64	default
		52	default
11n HT20	MCS0	60	default
		64	default
11n HT40	MCS0	54	default
111111140		62	default
	MCS0	52	default
11ac VHT20		60	default
		64	default
11ac VHT40	MCCO	54	default
	MCS0	62	default
11ac VHT80	MCS0	58	default

UNII-2C

Mode	Rate	Channel	Soft set value
Wode	Nate	Griannei	ANT1
		100	default
11a	6M	120	default
		140	default
		100	default
11n HT20	MCS0	120	default
		140	default
	MCS0	102	default
11n HT40		118	default
		134	default
	MCS0	100	default
11ac VHT20		120	default
		140	default
		102	default
11ac VHT40	MCS0	118	default
		134	default
11ac VHT80	MCS0	106	default
		122	default

UNII-3

	01111-9		Coft act value
Mode	Rate	Channel	Soft set value
Wede	rtato	Gridinier	ANT1
		149	default
11a	6M	157	default
		165	default
		149	default
11n HT20	MCS0	157	default
		165	default
44× UT20	MCCO	151	default
11n HT20	MCS0	159	default
		149	default
11ac VHT20	MCS0	157	default
		165	default
11ac VHT40	MCCO	151	default
	MCS0	159	default
11ac VHT80	MCS0	155	default

5.6. THE WORSE CASE CONFIGURATIONS

The EUT was tested in the following configuration(s):

Controlled in test mode using a software application on the EUT supplied by customer. The application was used to enable a continuous transmission and to select the mode, test channels, bandwidth, data rates as required.

Test channels referring to section 5.4.

Maximum power setting referring to section 5.6.

Worst-case data rates as provided by the client were:

802.11a mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0 802.11ac VHT20 mode: MCS0 802.11ac VHT40 mode: MCS0 802.11ac VHT80 mode: MCS0

The measured additional path loss was included in any path loss calculations for all RF cable used during tested.

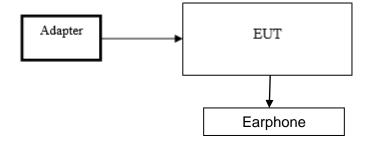
Since 802.11ac VHT20/VHT40 mode are different from 802.11n HT20/HT40 only in control messages, so all the tests (except conducted output power and power spectral density) were performed on the worst case (802.11ac VHT20/802.11ac VHT40) mode between these 4 modes and only the worst data was recorded in this report.

5.7. DESCRIPTION OF TEST SETUP

Item	Equipment	Brand Name	Model Name	Remarks
1	Earphone	ELIFE	/	/

I/O CABLES

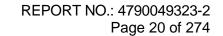
Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
/	/	/	/	/	/


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
1	Switching Power Supply	Blron	BI36-120300-U2	Input: 100-240 V~ 50/60 Hz 1.2 A Output: 12.0 V === 3.0 A 36.0 W

TEST SETUP

The EUT can work in engineering mode with a software inside.


SETUP DIAGRAM FOR TESTS

6. MEASURING INSTRUMENT AND SOFTWARE USED

		0 1			
			d Emissions		
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
EMI Test Receiver	R&S	ESR3	101961	Nov. 12, 2020	Nov. 11, 2021
Two-Line V- Network	R&S	ENV216	101983	Nov. 12, 2020	Nov. 11, 2021
		Sof	ftware		
Ι	Description		Manufacturer	Name	Version
Test Software	for Conducted	Emissions	Farad	EZ-EMC	Ver. UL-3A1
		Radiated	Emissions		
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Nov. 12, 2020	Nov. 11, 2021
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130960	Aug. 2, 2021	Aug. 1, 2023
Preamplifier	HP	8447D	2944A09099	Nov. 12, 2020	Nov. 11, 2021
EMI Measurement Receiver	R&S	ESR26	101377	Nov. 12, 2020	Nov. 11, 2021
Horn Antenna	TDK	HRN-0118	130939	Sept. 17, 2018	Sept. 17, 2021
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Nov. 20, 2020	Nov. 19, 2021
Horn Antenna	Schwarzbeck	BBHA9170	#697	July 20, 2021	July 19, 2024
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Nov. 12, 2020	Nov. 11, 2021
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Nov. 12, 2020	Nov. 11, 2021
Loop antenna	Schwarzbeck	1519B	80000	Jan.17, 2019	Jan.17,2022
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Nov. 12, 2020	Nov. 11, 2021
Preamplifier	Mini-Circuits	ZX60-83LN- S+	SUP01201941	Nov. 20, 2020	Nov. 19, 2021
Highpass Filter	Wainwright	WHKX10- 5850-6500- 1800-40SS	4	Nov. 12, 2020	Nov. 11, 2021
Band Reject Filter	Wainwright	WRCJV12- 5695-5725- 5850-5880- 40SS	4	Nov. 12, 2020	Nov. 11, 2021
Band Reject Filter	Wainwright	WRCJV20- 5120-5150- 5350-5380- 60SS	2	Nov. 12, 2020	Nov. 11, 2021

Band Reject Filter	Wainwright	WRCJV20- 5440-5470- 5725-5755- 60SS	1	Nov. 12, 2020	Nov. 11, 2021
		So	ftware		
Description			Manufacturer	Name	Version
Test Software for Radiated Emissions			Farad	EZ-EMC	Ver. UL-3A1

Tonsend RF Test System							
Equipment	Manufacturer	Мо	odel No.	Serial No.	Last	Cal.	Due. Date
Wideband Radio Communication Tester	R&S	CI	MW500	155523	Nov.20	0,2020	Nov.19,2021
PXA Signal Analyzer	Keysight	Ν	19030A	MY55410512	Nov.2	0,2020	Nov.19,2021
MXG Vector Signal Generator	Keysight	N	5182B	MY56200284	Nov.20	0,2020	Nov.19,2021
MXG Vector Signal Generator	Keysight	Ν	5172B	MY56200301	Nov.20	0,2020	Nov.19,2021
DC power supply	Keysight	Ш	3642A	MY55159130	Nov.2	4,2020	Nov.23,2021
Temperature & Humidity Chamber	SANMOOD	SANMOOD SG-80-CC-2		2088	Nov.20	0,2020	Nov.19,2021
Software							
Description	Manufacturer			Name		,	Version
Tonsend SRD Test Syste	m Tonsend	t	JS1120	-3 RF Test Sys	stem	2.6	6.77.0518

Other Instruments					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Dual Channel Power Meter	Keysight	N1912A	MY55416024	Nov. 20, 2020	Nov. 19, 2021
Power Sensor	Keysight	USB Wideband Power Sensor	MY5100022	Nov. 20, 2020	Nov. 19, 2021

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.

PROCEDURE

Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.B.

The zero-span mode on a spectrum analyzer or EMI receiver, if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq EBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in II.B.1.a), and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

TEST SETUP

TEST ENVIRONMENT

Temperature	26.4 °C	Relative Humidity	60.8 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V,60 Hz

RESULTS

Please refer to appendix D.

7.2. 6/26 dB EMISSION BANDWIDTH AND 99 % OCCUPIED BANDWIDTH

LIMITS

CFR 47 FCC Part15, Subpart E ISED RSS-247 ISSUE 2				
Test Item	Limit	Frequency Range (MHz)		
26 dB Emission Bandwidth	For reporting purposes only.	5150 ~ 5250		
26 dB Emission Bandwidth	For reporting purposes only.	5250 ~ 5350		
26 dB Emission Bandwidth	For reporting purposes only.	5470 ~ 5725 (For FCC) 5470 ~ 5600 (For ISED) 5650 ~ 5725 (For ISED)		
6 dB Emission Bandwidth	The minimum 6 dB emission bandwidth shall be 500 kHz.	5725 ~ 5850		
99 % Occupied Bandwidth	For reporting purposes only.	5150 ~ 5825 (For ISED)		

TEST PROCEDURE

ISED RSS-247 6.2.1.2 clause unwanted emission limits

For transmitters with operating frequencies in the band 5150-5250 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. Any unwanted emissions that fall into the band 5250-5350 MHz shall be attenuated below the channel power by at least 26 dB, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth (i.e. 99% bandwidth), above 5250 MHz.

TEST PROCEDURE

Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.C1. for 26 dB Emission Bandwidth; section II.C2. for 6 dB Emission Bandwidth; section II.D. for 99 % Occupied Bandwidth.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	For 6 dB Emission Bandwidth: RBW=100 kHz For 26 dB Emission bandwidth: approximately 1 % of the OBW For 99 % Occupied Bandwidth: approximately 1 % ~ 5 % of the OBW.
VBW	For 6 dB Bandwidth: ≥ 3*RBW For 26 dB Bandwidth: >RBW For 99 % Bandwidth: >3*RBW
Trace	Max hold
Sweep	Auto couple

a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.

b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6/26 dB relative to the maximum level measured in the fundamental emission.

Calculation for 99 % Bandwidth of UNII-2C and UNII-3 Straddle Channel:

For Example: Fundamental Frequency: 5720 MHz

99 % OBW: 21.00 MHz

Turning Frequency: 5725 MHz

99 % Bandwidth of UNII-2C Band Portion = (5725-(5720-(21.00/2)) = 15.50 MHz

99 % Bandwidth of UNII-3 Band Portion = (5720+(21.00/2)-5725) = 5.50 MHz

Calculation for 26 dB Bandwidth of UNII-2C Straddle Channel:

For Example: Fundamental frequency: 5720 MHz

26 dB BW: 20.00 MHz

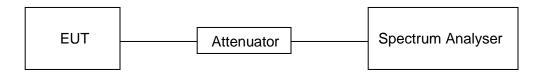
FL: 5710.16 MHz FH: 5730.16 MHz

Turning Frequency: 5725 MHz

26 dB Bandwidth of UNII-2C Band Portion = 5725-5710.16=14.84 MHz

Calculation for 6dB Bandwidth of UNII-3 Straddle Channel:

For Example: Fundamental frequency: 5720 MHz


6 dB BW: 16.44 MHz

FL: 5711.76 MHz FH: 5728.2 MHz

Turning Frequency: 5725 MHz

6 dB Bandwidth of UNII-3 band Portion = 5728.2-5725=3.2 MHz

TEST SETUP

TEST ENVIRONMENT

Temperature	26.4 °C	Relative Humidity	60.8 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V,60 Hz

RESULTS

Please refer to Appendix A1&A2&A3.

Page 25 of 274

CONDUCTED OUTPUT POWER 7.3.

LIMITS

CFR 47 FCC Part15, Subpart E				
Test Item	Limit	Frequency Range (MHz)		
Conducted	☐ Outdoor Access Point: 1 W (30 dBm) ☐ Indoor Access Point: 1 W (30 dBm) ☐ Fixed Point-To-Point Access Points: 1 W (30 dBm) ☐ Client Devices: 250 mW (24 dBm)	5150 ~ 5250		
Output Power	Shall not exceed the lesser of 250 mW (24dBm) or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.	5250 ~ 5350 5470 ~ 5725		
	Shall not exceed 1 Watt (30 dBm).	5725 ~ 5850		

	ISED RSS-247 ISSUE 2			
Test Item	Limit	Frequency Range (MHz)		
	The maximum e.i.r.p. shall not exceed 200 mW (23 dBm) or 10 + 10 log ₁₀ B, dBm, whichever power is less. B is the 99 % emission bandwidth in megahertz.	5150 ~ 5250		
Conducted Output Power or e.i.r.p.	a. The maximum conducted output power shall not exceed 250 mW (24 dBm) or 11 + 10 log ₁₀ B dBm, whichever is less. b. The maximum e.i.r.p. shall not exceed 1.0 W (30 dBm) or 17 + 10 log ₁₀ B dBm, whichever is less. B is the 99 % emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.	5250 ~ 5350 5470 ~ 5600 5650 ~ 5725		
	Shall not exceed 1 Watt (30 dBm).	5725 ~ 5850		

Note:

The above limits are based upon the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

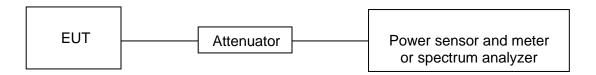
Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.E.

Method SA-1 (trace averaging with the EUT transmitting at full power throughout each sweep):

- (i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.
- (ii) Set RBW = 1 MHz.
- (iii) Set VBW ≥ 3 MHz.
- (iv) Number of points in sweep $\geq 2 \times \text{span} / \text{RBW}$. (This ensures that bin-to-bin spacing is $\leq \text{RBW}/2$, so that narrowband signals are not lost between frequency bins.)
- (v) Sweep time = auto.
- (vi) Detector = power averaging (rms), if available. Otherwise, use sample detector mode.
- (vii) If transmit duty cycle < 98° %, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle $\geq 98^{\circ}$ %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run."
- (viii) Trace average at least 100 traces in power averaging (rms) mode.
- (ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at 1 MHz intervals extending across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the spectrum.

Method PM (Measurement using an RF average power meter):

- (i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the following conditions are satisfied:
- a. The EUT is configured to transmit continuously or to transmit with a constant duty cycle.
- b. At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.
- c. The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- (ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in II.B.
- (iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
- (iv) Adjust the measurement in dBm by adding 10 log (1/x) where x is the duty cycle (e.g., 10 log (1/0.25) if the duty cycle is 25 %).


Method PM-G (Measurement using a gated RF average power meter):

Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

Straddle channel power was measured using spectrum analyzer.

TEST SETUP

TEST ENVIRONMENT

Temperature	26.4 °C	Relative Humidity	60.8 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V,60 Hz

RESULTS

Please refer to appendix B.

REPORT NO.: 4790049323-2 Page 28 of 274

7.4. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15, Subpart E			
Test Item	Limit	Frequency Range (MHz)	
Power Spectral Density	☐ Outdoor Access Point: 17 dBm/MHz ☐ Indoor Access Point: 17 dBm/MHz ☐ Fixed Point-To-Point Access Points: 17 dBm/MHz ☐ Client Devices: 11 dBm/MHz	5150 ~ 5250	
Density	11 dBm/MHz	5250 ~ 5350 5470 ~ 5725	
	30 dBm/500kHz	5725 ~ 5850	

ISED RSS-247 ISSUE 2			
Test Item	Limit	Frequency Range (MHz)	
	The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.	5150 ~ 5250	
Power Spectral Density	The power spectral density shall not exceed 11 dBm inany 1.0 MHz band.	5250 ~ 5350 5470 ~ 5600 5650 ~ 5725	
	30 dBm / 500 kHz	5725 ~ 5850	

Note:

The above limits are based upon the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.F.

Connect the EUT to the spectrum analyser and use the following settings:

For U-NII-1, U-NII-2A and U-NII-2C band:

Center Frequency	The center frequency of the channel under test
Detector	RMS
RBW	1 MHz
VBW	≥3 × RBW
Span	Encompass the entire emissions bandwidth (EBW) of the signal
Trace	Max hold
Sweep time	Auto

For U-NII-3:

Center Frequency	The center frequency of the channel under test
Detector	RMS
RBW	500 kHz
VBW	≥3 × RBW
Span	Encompass the entire emissions bandwidth (EBW) of the signal
Trace	Max hold
Sweep time	Auto

Allow trace to fully stabilize and Use the peak search function on the instrument to find the peak of the spectrum and record its value.

Add 10 log (1/x), where x is the duty cycle, to the peak of the spectrum, the result is the Maximum PSD over 1 MHz / 500 kHz reference bandwidth.

TEST SETUP

TEST ENVIRONMENT

Temperature	26.4 °C	Relative Humidity	60.8 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V,60 Hz

RESULTS

Please refer to Appendix C.

8. RADIATED TEST RESULTS

LIMITS

Refer to CFR 47 FCC §15.205, §15.209 and §15.407 (b).

Refer to ISED RSS-GEN Clause 8.9, Clause 8.10 and ISED RSS-247 6.2.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range	Field Strength Limit	Field Stren	gth Limit
(MHz)	(uV/m) at 3 m	(dBuV/m)	at 3 m
		Quasi-l	Peak
30 - 88	100	40	
88 - 216	150	43.5	
216 - 960	200	46	
Above 960	500	54	
Above 1000	500	Peak	Average
Above 1000	500	74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz		
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)		
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

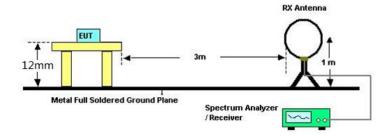
Limits of unwanted/undesirable emission out of the restricted bands refer to CFR 47 FCC §15.407 (b).

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1GHz)		
Frequency Range	EIRP Limit	Field Strength Limit
(MHz)		(dBuV/m) at 3 m
5150~5250 MHz		
5250~5350 MHz	PK: -27 (dBm/MHz)	PK:68.2(dBµV/m)
5470~5725 MHz		
	PK: -27 (dBm/MHz) *1	PK: 68.2(dBµV/m) *1
5725~5850 MHz	PK: 10 (dBm/MHz) *2	PK: 105.2 (dBµV/m) *2
	PK: 15.6 (dBm/MHz) *3	PK: 110.8(dBµV/m) *3
	PK: 27 (dBm/MHz) *4	PK: 122.2 (dBµV/m) *4

Note:

^{*1} beyond 75 MHz or more above of the band edge.

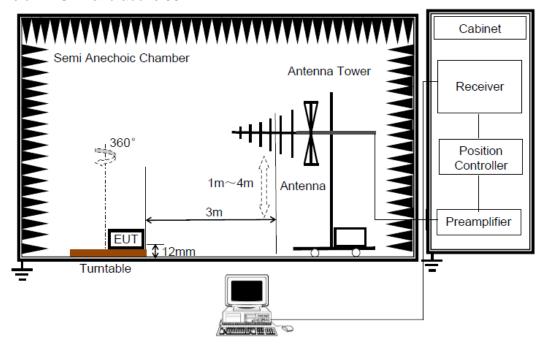
^{*2} below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above.


^{*3} below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above.

^{*4} from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

TEST SETUP AND PROCEDURE

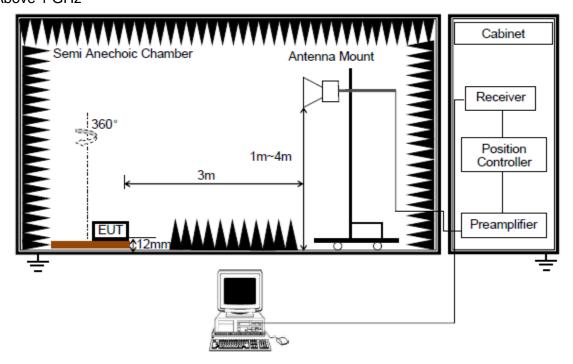
Below 30 MHz


The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 12 mm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.
- 7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.
- 8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

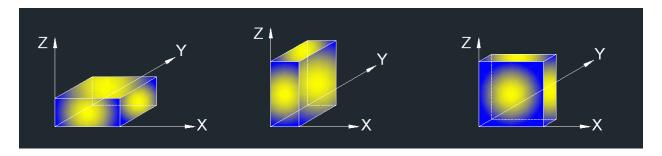
Below 1 GHz and above 30 MHz


The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 12 mm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1 GHz


The setting of the spectrum analyser

RBW	1 MHz
VBW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 12 mm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1. ON TIME AND DUTY CYCLE.

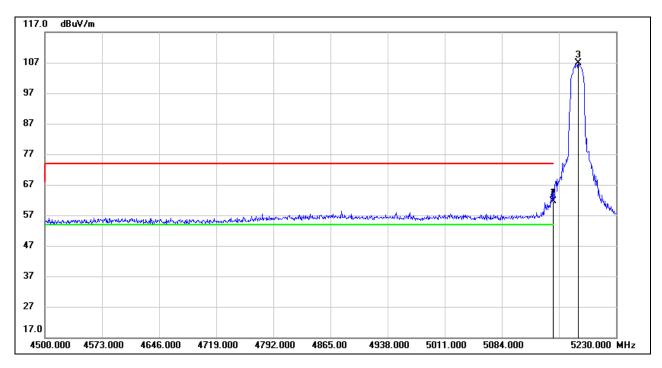
X axis, Y axis, Z axis positions:

Note: The manufacturer has recommended that the EUT only be used in the Floor-standing orientation; therefore, all radiated testing was performed in the orientation. The EUT was placed on normal orientation and all radiated emissions were performed with the EUT shown on the setup photo.

TEST ENVIRONMENT

Temperature	23.5 °C	Relative Humidity	60 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V,60 Hz

RESULTS

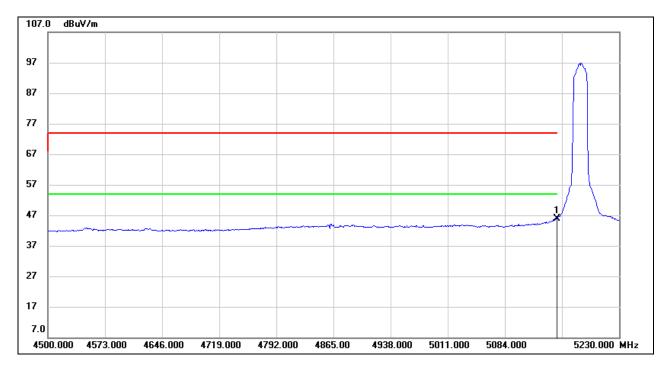

8.1. RESTRICTED BANDEDGE

8.1.1. 802.11a MODE

UNII-1 BAND

RESTRICTED BANDEDGE (LOW CHANNEL, Vertical)

PEAK

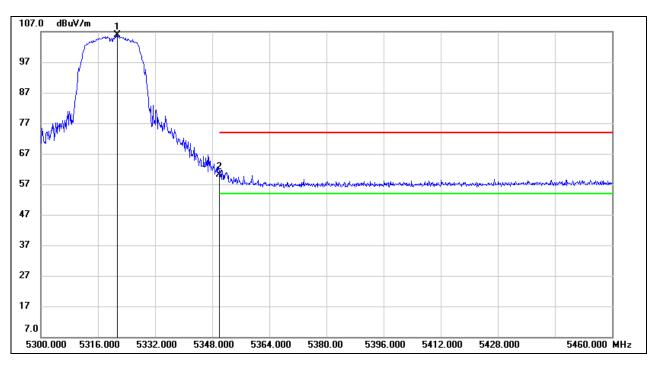

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	20.43	41.19	61.62	74.00	-12.38	peak
2	5150.000	20.43	41.19	61.62	74.00	-12.38	peak
3	5181.820	65.39	41.46	106.85	/	1	Fundamental

Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

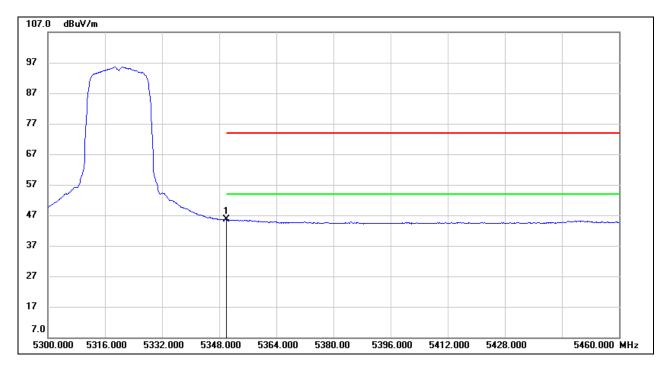
<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	4.76	41.19	45.95	54.00	-8.05	AVG


- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 4. For the transmitting duration, please refer to clause 7.1.
- 5. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

UNII-2A BAND

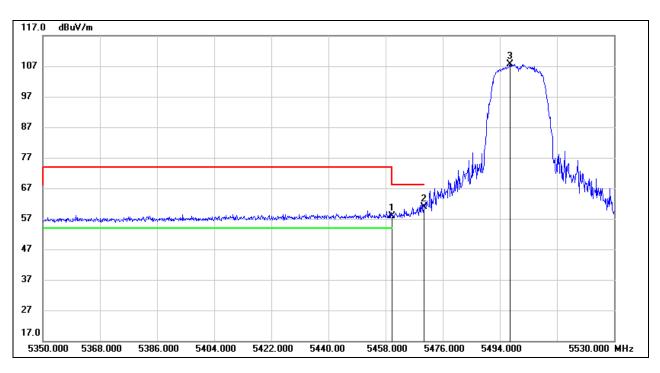
RESTRICTED BANDEDGE (HIGH CHANNEL, Vertical)


PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5321.440	64.84	41.05	105.89	1	/	Fundamental
2	5350.000	18.95	41.20	60.15	74.00	-13.85	peak

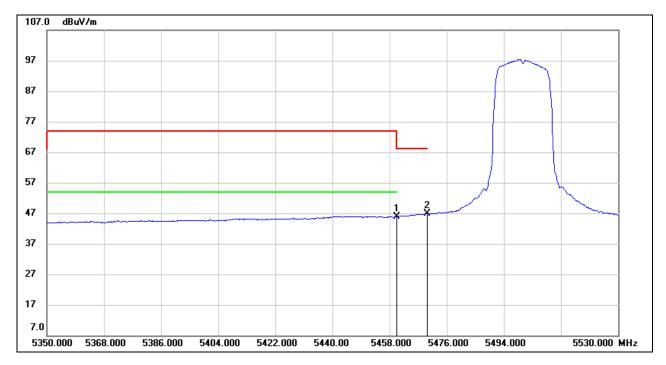
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	4.32	41.20	45.52	54.00	-8.48	AVG


- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 4. For the transmitting duration, please refer to clause 7.1.
- 5. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

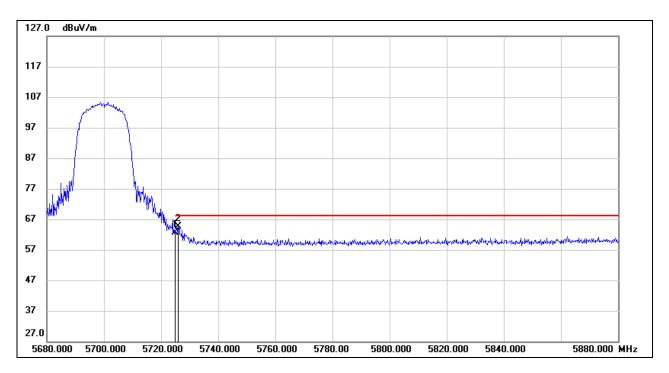
UNII-2C BAND

RESTRICTED BANDEDGE (LOW CHANNEL, Vertical))


<u>PEAK</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	15.96	41.82	57.78	68.20	-10.42	peak
2	5470.000	18.92	41.87	60.79	68.20	-7.41	peak
3	5497.240	65.62	42.04	107.66	/	/	Fundamental

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

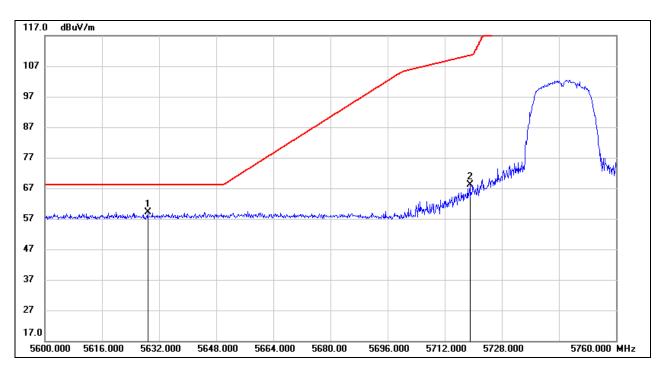

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	4.06	41.82	45.88	54.00	-8.12	AVG
2	5470.000	5.04	41.87	46.91	1	1	AVG

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 4. For the transmitting duration, please refer to clause 7.1.
- 5. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, Vertical))

PEAK

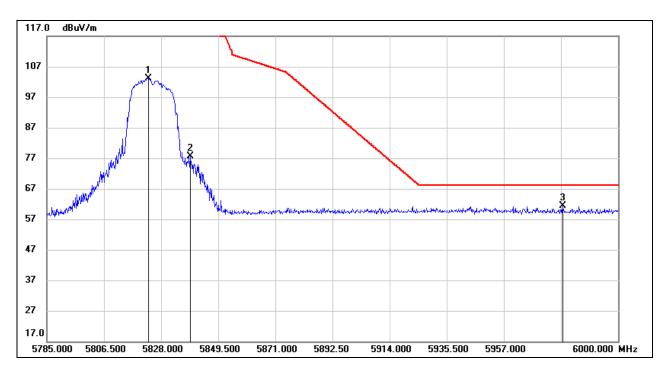
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5725.000	19.63	42.95	62.58	68.20	-5.62	peak
2	5726.000	21.72	42.95	64.67	68.20	-3.53	peak


- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

UNII-3 BAND

RESTRICTED BANDEDGE (LOW CHANNEL, Vertical))

PEAK


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5628.800	17.52	41.67	59.19	68.20	-9.01	peak
2	5719.040	26.51	41.64	68.15	110.53	-42.38	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, Vertical))

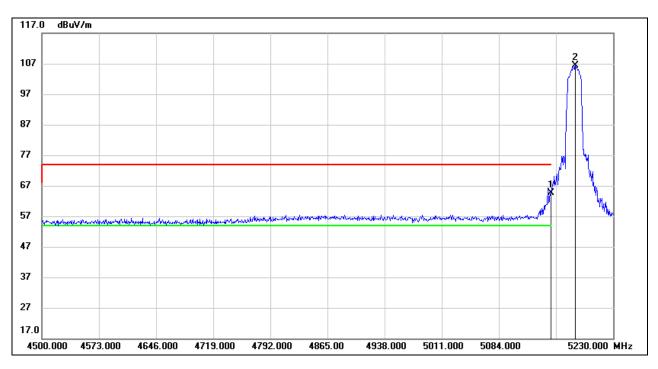
PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5823.270	60.99	42.26	103.25			peak
2	5838.965	35.11	42.42	77.53			peak
3	5979.145	18.71	42.65	61.36	68.20	-6.84	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

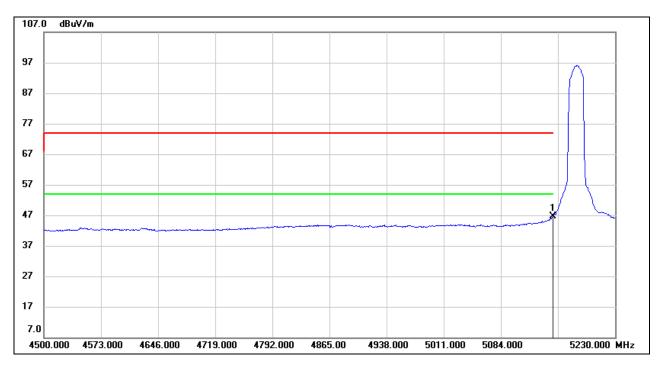
Note: Both horizontal and vertical had been tested, but only the worst data was recorded in the report.



8.1.2. 802.11ac VHT20

UNII-1 BAND

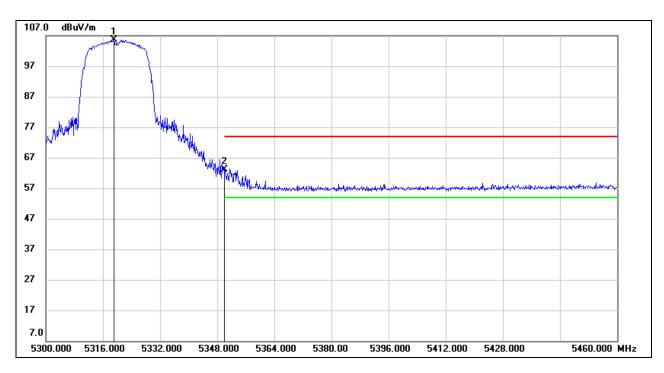
RESTRICTED BANDEDGE (LOW CHANNEL, Vertical)


PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	23.40	41.19	64.59	74.00	-9.41	peak
2	5181.820	64.96	41.46	106.42	/	/	Fundamental

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

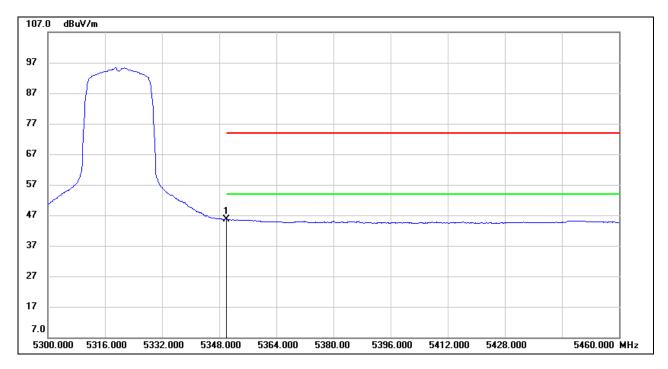
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	5.32	41.19	46.51	54.00	-7.49	AVG


- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 4. For the transmitting duration, please refer to clause 7.1.
- 5. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

UNII-2A BAND

RESTRICTED BANDEDGE (HIGH CHANNEL, Vertical)

PEAK

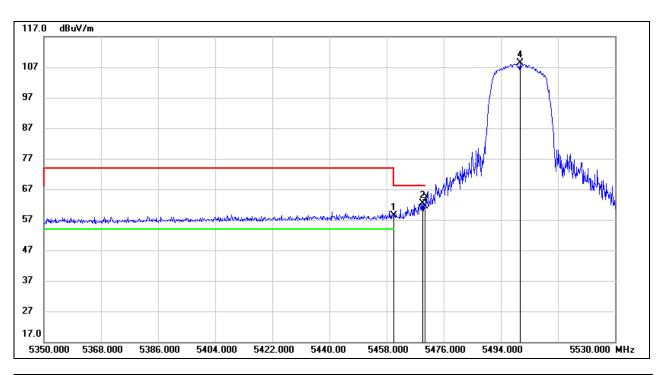


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5319.040	64.67	41.03	105.70	1	/	Fundamental
2	5350.000	21.86	41.20	63.06	74.00	-10.94	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

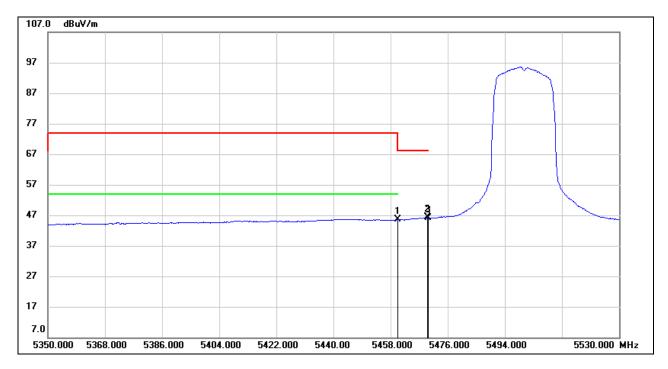
<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	4.38	41.20	45.58	54.00	-8.42	AVG


- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 4. For the transmitting duration, please refer to clause 7.1.
- 5. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

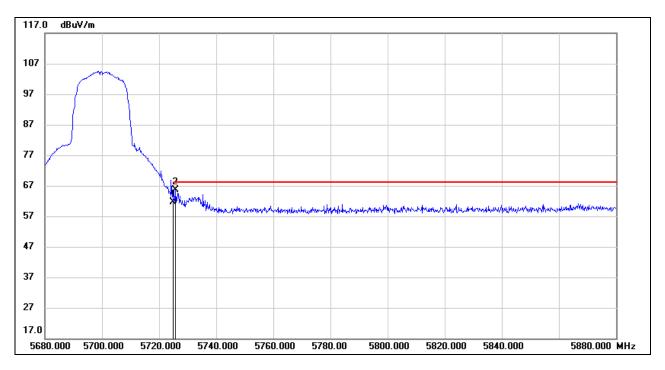
UNII-2C BAND

RESTRICTED BANDEDGE (LOW CHANNEL, Vertical)


PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	16.54	41.82	58.36	68.20	-9.84	peak
2	5469.340	20.45	41.87	62.32	68.20	-5.88	peak
3	5470.000	19.63	41.87	61.50	68.20	-6.70	peak
4	5500.120	66.24	42.05	108.29	/	/	Fundamental

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

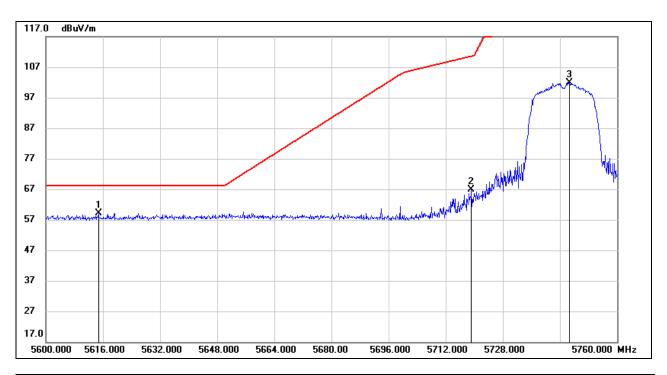

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	3.77	41.82	45.59	54.00	-8.41	AVG
2	5469.350	4.48	41.87	46.35	/	/	AVG
3	5470.000	4.32	41.87	46.19	/	/	AVG

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 4. For the transmitting duration, please refer to clause 7.1.
- 5. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, Vertical)

PEAK

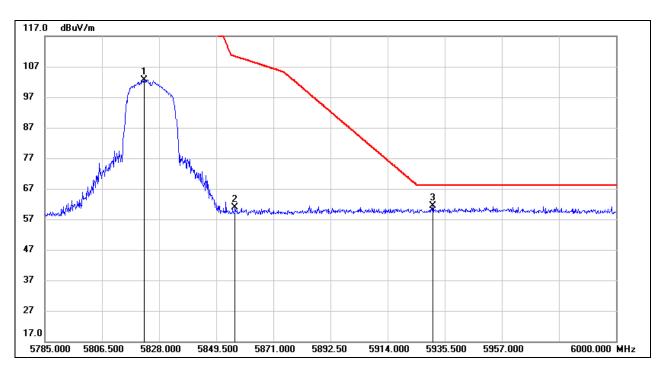
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5725.000	18.67	42.95	61.62	68.20	-6.58	peak
2	5725.800	22.75	42.95	65.70	68.20	-2.50	peak


- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

UNII-3 BAND

RESTRICTED BANDEDGE (LOW CHANNEL, Vertical)

PEAK


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5614.720	17.47	41.71	59.18	68.20	-9.02	peak
2	5719.200	25.32	41.64	66.96	110.58	-43.62	peak
3	5746.720	60.04	41.77	101.81	/	/	Fundamental

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, Vertical)

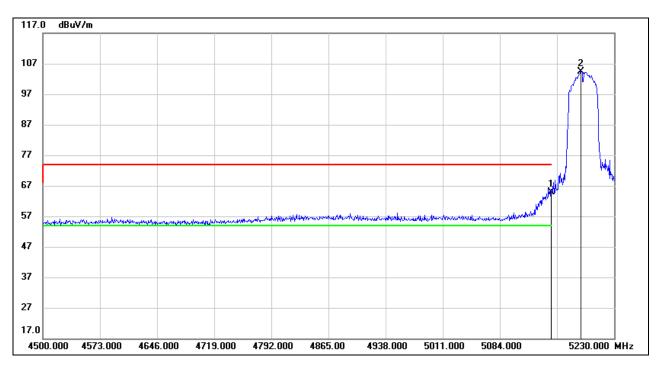
PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5822.410	60.33	42.25	102.58	/	/	Fundamental
2	5856.595	18.30	42.59	60.89	110.35	-49.46	peak
3	5930.985	18.48	42.89	61.37	68.20	-6.83	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

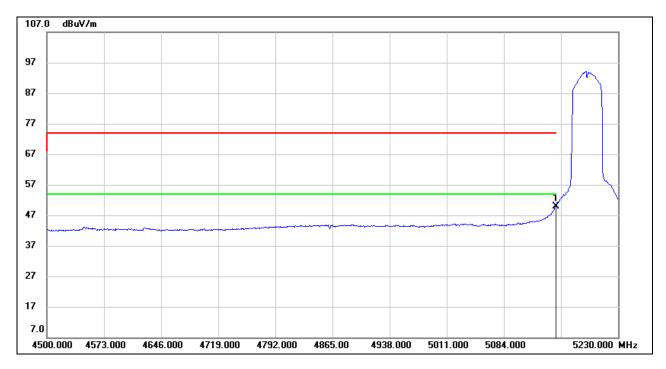
Note: Both horizontal and vertical had been tested, but only the worst data was recorded in the report.



8.1.3. 802. 11ac VHT40

UNII-1 BAND

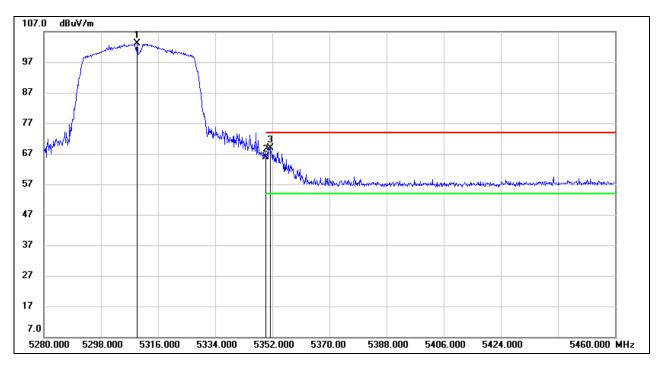
RESTRICTED BANDEDGE (LOW CHANNEL, Vertical


PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	23.68	41.19	64.87	74.00	-9.13	peak
2	5187.660	62.98	41.52	104.50	/	/	Fundamental

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

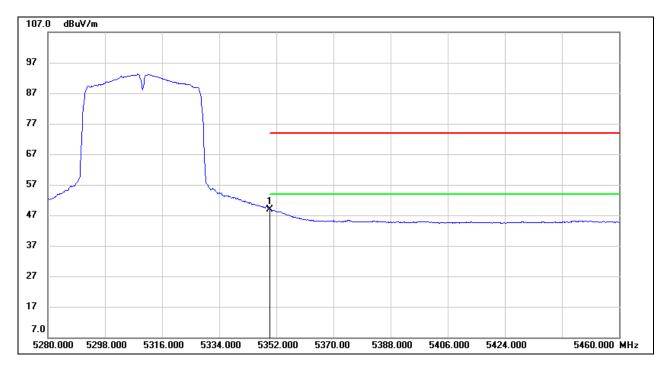
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	8.77	41.19	49.96	54.00	-4.04	AVG


- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 4. For the transmitting duration, please refer to clause 7.1.
- 5. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

UNII-2A BAND

RESTRICTED BANDEDGE (HIGH CHANNEL, Vertical)

PEAK

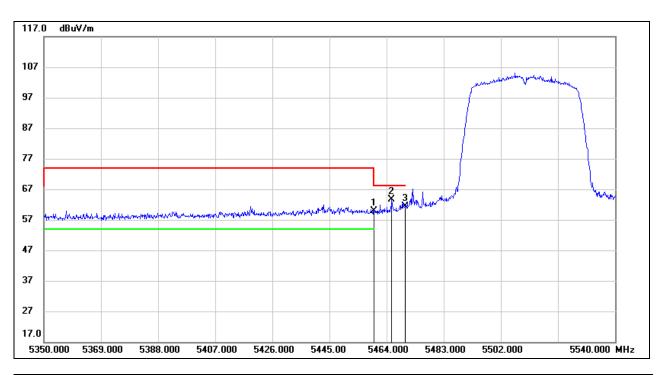


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5309.340	62.11	40.98	103.09	/	/	Fundamental
2	5350.000	24.74	41.20	65.94	74.00	-8.06	peak
3	5351.280	27.68	41.21	68.89	74.00	-5.11	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

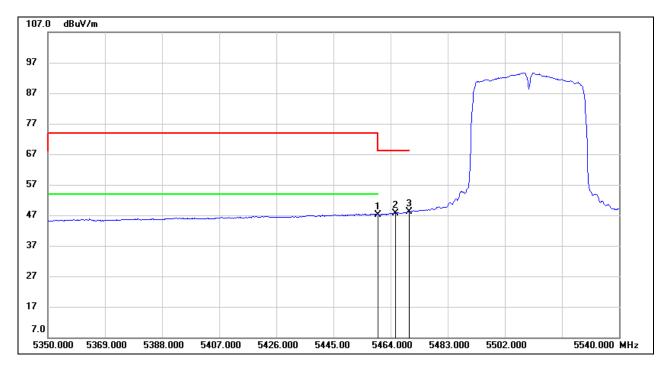
<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	7.74	41.20	48.94	54.00	-5.06	AVG


- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 4. For the transmitting duration, please refer to clause 7.1.
- 5. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

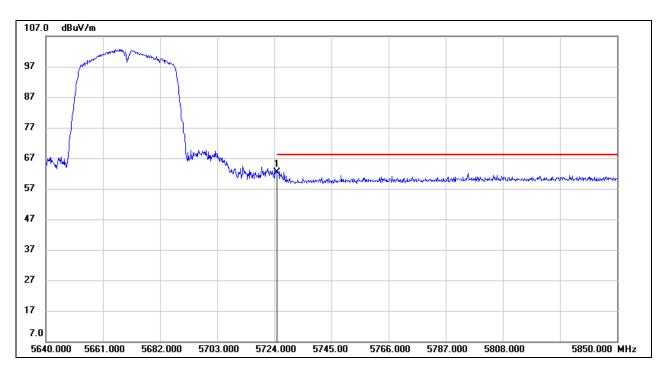
UNII-2C BAND

RESTRICTED BANDEDGE (LOW CHANNEL, Vertical)


PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	16.98	43.01	59.99	68.20	-8.21	peak
2	5465.710	20.52	43.04	63.56	68.20	-4.64	peak
3	5470.000	18.21	43.05	61.26	68.20	-6.94	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

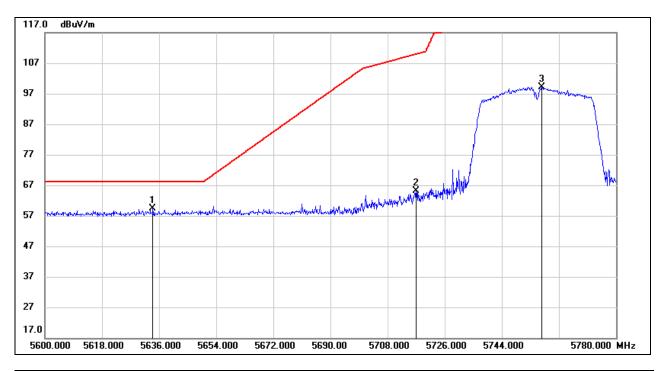

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	4.24	43.01	47.25	54.00	-6.75	AVG
2	5465.710	4.66	43.04	47.70	/	/	AVG
3	5470.000	5.12	43.05	48.17	/	/	AVG

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 4. For the transmitting duration, please refer to clause 7.1.
- 5. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, Vertical)

PEAK

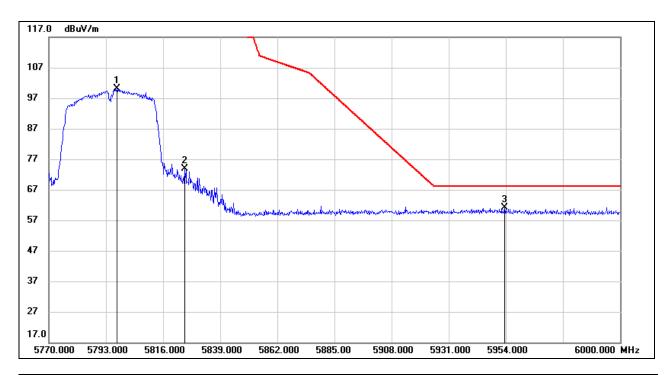
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5725.000	19.50	42.95	62.45	68.20	-5.75	peak


- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

UNII-3 BAND

RESTRICTED BANDEDGE (LOW CHANNEL, Vertical)

PEAK


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5634.020	17.73	41.67	59.40	68.20	-8.80	peak
2	5717.000	23.59	41.63	65.22	109.96	-44.74	peak
3	5756.600	57.34	41.82	99.16	/	/	Fundamental

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, Vertical)

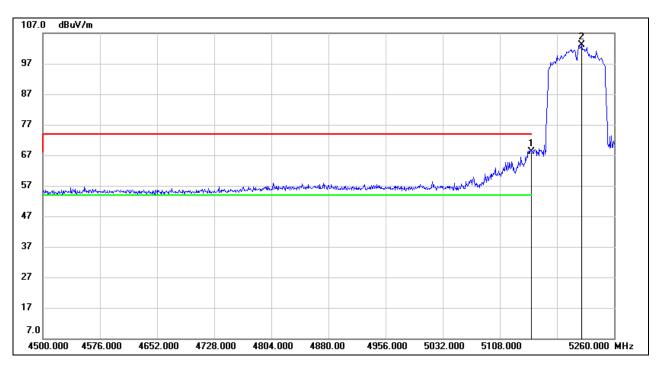
PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5797.370	58.04	42.01	100.05	/	/	Fundamental
2	5824.740	31.51	42.27	73.78	/	/	peak
3	5953.540	18.38	42.77	61.15	68.20	-7.05	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

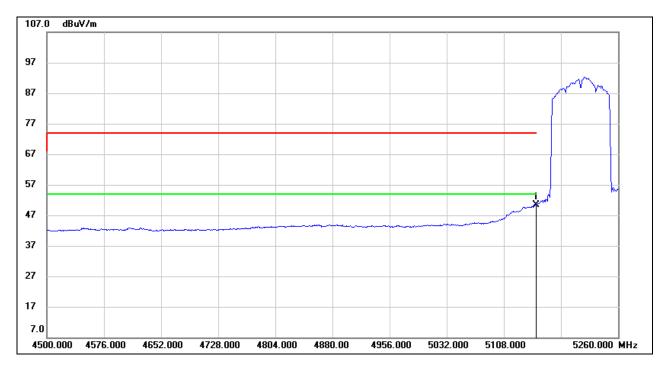
Note: Both horizontal and vertical had been tested, but only the worst data was recorded in the report.



8.1.4. 802.11ac VHT80 MODE

UNII-1 BAND

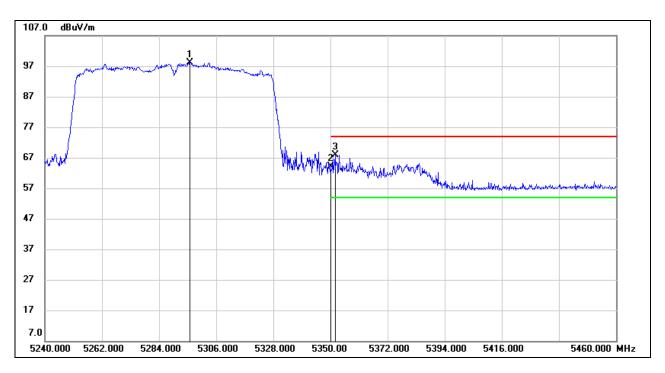
RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)


PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	26.88	41.19	68.07	74.00	-5.93	peak
2	5216.680	61.75	41.50	103.25	1	/	Fundamental

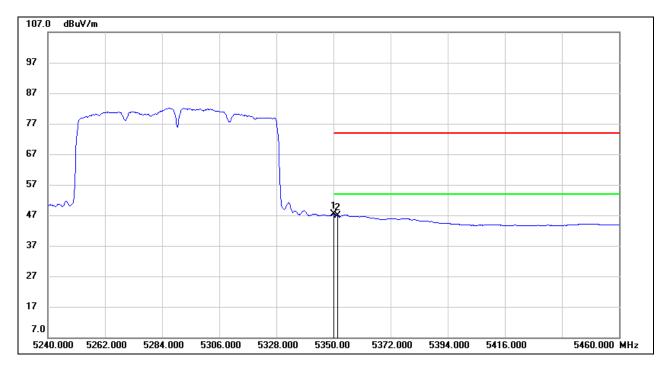
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	9.27	41.19	50.46	54.00	-3.54	AVG


- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 4. For the transmitting duration, please refer to clause 7.1.
- 5. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

UNII-2A BAND

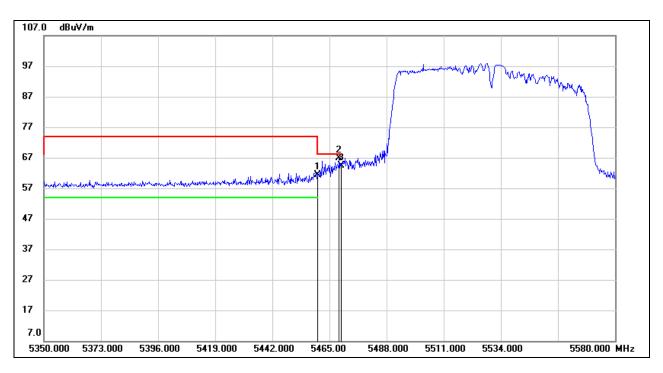
RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)


PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5295.880	57.26	40.96	98.22	/	/	Fundamental
2	5350.000	22.95	41.20	64.15	74.00	-9.85	peak
3	5351.760	26.74	41.21	67.95	74.00	-6.05	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

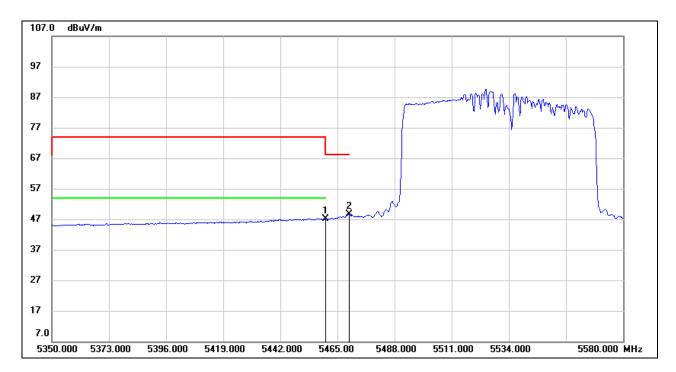
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	6.10	41.20	47.30	54.00	-6.70	AVG
2	5351.760	5.59	41.21	46.80	54.00	-7.20	AVG


- 2. AVG: VBW=1/Ton where: ton is transmit duration.
- 3. For duty cycle, please refer to clause 7.1.
- 4. Only the worst case emission will be recorder, if it complies with the limit, the other emissions deemed to comply with the limit.

UNII-2C BAND

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

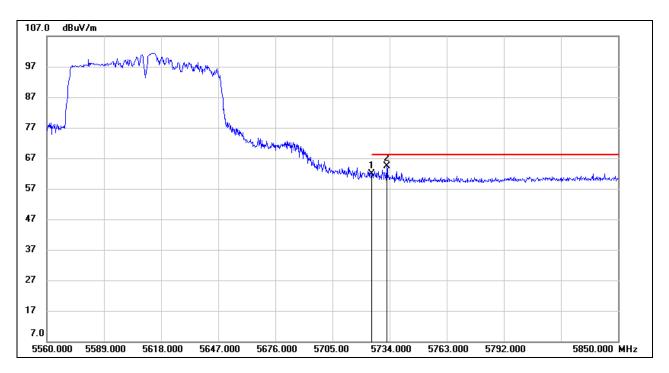
PEAK



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	18.33	43.01	61.34	68.20	-6.86	peak
2	5468.910	23.84	43.05	66.89	68.20	-1.31	peak
3	5470.000	21.40	43.05	64.45	68.20	-3.75	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

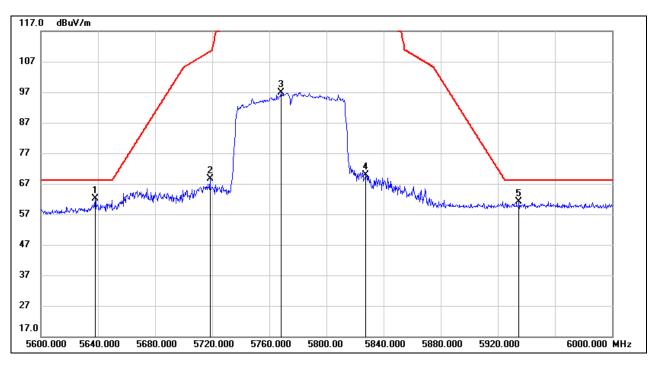
<u>AVG</u>


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	4.00	43.01	47.01	54.00	-6.99	AVG
2	5470.000	5.47	43.05	48.52	/	/	AVG

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 4. For the transmitting duration, please refer to clause 7.1.
- 5. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

PEAK


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5725.000	19.04	42.95	61.99	68.20	-6.21	peak
2	5732.550	21.33	42.98	64.31	68.20	-3.89	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

UNII-3 BAND

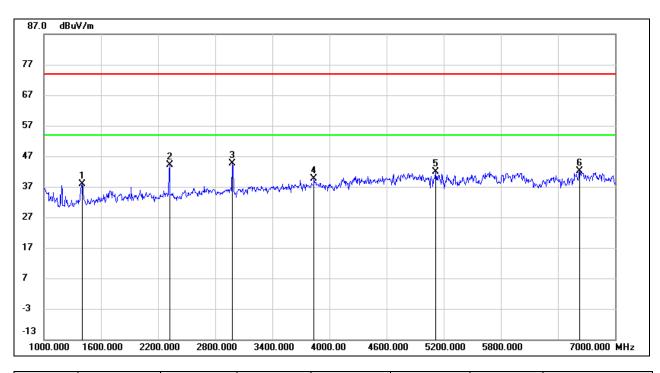
RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5638.000	20.44	41.67	62.11	68.20	-6.09	peak
2	5718.400	27.06	41.63	68.69	110.35	-41.66	peak
3	5768.400	55.03	41.87	96.90	/	/	Fundamental
4	5827.200	27.54	42.29	69.83	1	1	peak
5	5934.800	18.31	42.86	61.17	68.20	-7.03	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Note: Both horizontal and vertical had been tested, but only the worst data was recorded in the report.

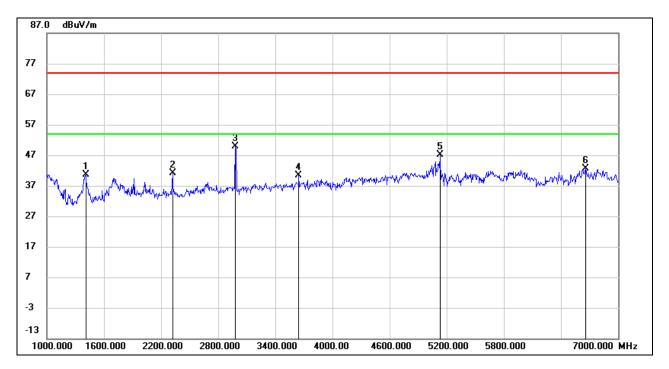


8.2. SPURIOUS EMISSIONS (1 GHz ~ 7 GHz)

8.2.1. 802.11 a MODE

UNII-1 BAND

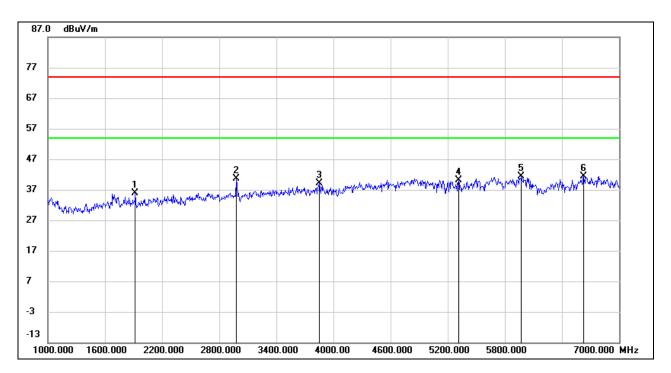
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1402.000	50.49	-12.69	37.80	74.00	-36.20	peak
2	2320.000	52.75	-8.65	44.10	74.00	-29.90	peak
3	2980.000	50.34	-5.69	44.65	74.00	-29.35	peak
4	3838.000	42.92	-3.32	39.60	74.00	-34.40	peak
5	5116.000	40.29	1.60	41.89	74.00	-32.11	peak
6	6628.000	36.55	5.50	42.05	74.00	-31.95	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

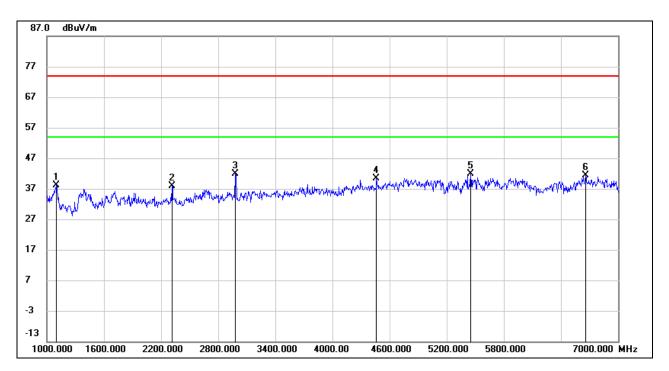
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1408.000	53.25	-12.67	40.58	74.00	-33.42	peak
2	2320.000	49.85	-8.65	41.20	74.00	-32.80	peak
3	2980.000	55.56	-5.69	49.87	74.00	-24.13	peak
4	3646.000	44.27	-3.98	40.29	74.00	-33.71	peak
5	5128.000	45.47	1.67	47.14	74.00	-26.86	peak
6	6658.000	37.09	5.51	42.60	74.00	-31.40	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

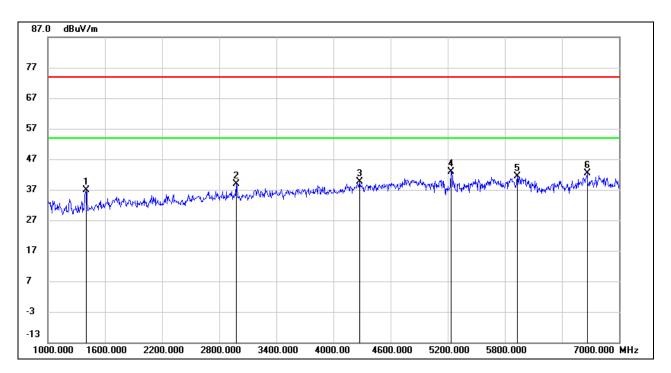
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1918.000	45.96	-10.13	35.83	74.00	-38.17	peak
2	2980.000	46.20	-5.69	40.51	74.00	-33.49	peak
3	3850.000	42.46	-3.35	39.11	74.00	-34.89	peak
4	5314.000	38.17	1.98	40.15	74.00	-33.85	peak
5	5974.000	38.11	3.20	41.31	74.00	-32.69	peak
6	6628.000	35.94	5.50	41.44	74.00	-32.56	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

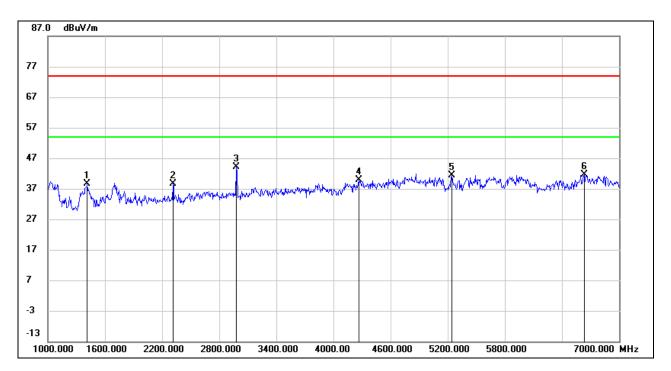
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1102.000	51.58	-13.48	38.10	74.00	-35.90	peak
2	2314.000	46.59	-8.67	37.92	74.00	-36.08	peak
3	2980.000	47.45	-5.69	41.76	74.00	-32.24	peak
4	4462.000	41.75	-1.47	40.28	74.00	-33.72	peak
5	5452.000	39.83	2.02	41.85	74.00	-32.15	peak
6	6658.000	35.82	5.51	41.33	74.00	-32.67	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

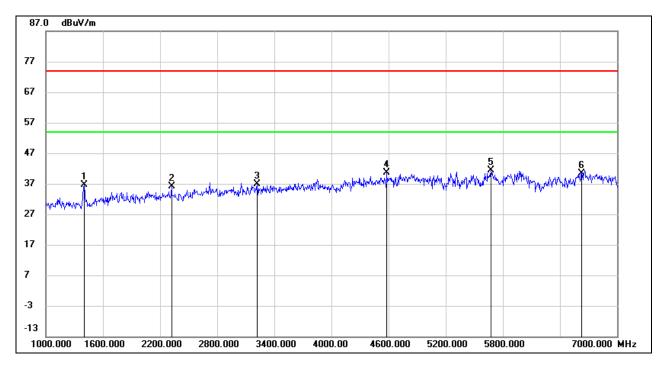
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1402.000	49.66	-12.69	36.97	74.00	-37.03	peak
2	2980.000	44.59	-5.69	38.90	74.00	-35.10	peak
3	4276.000	41.31	-1.74	39.57	74.00	-34.43	peak
4	5236.000	40.75	2.05	42.80	74.00	-31.20	peak
5	5932.000	38.32	3.03	41.35	74.00	-32.65	peak
6	6664.000	36.80	5.53	42.33	74.00	-31.67	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

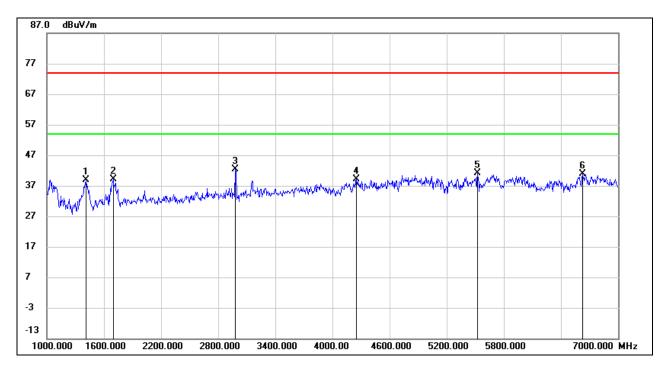
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1414.000	51.32	-12.64	38.68	74.00	-35.32	peak
2	2314.000	47.25	-8.67	38.58	74.00	-35.42	peak
3	2980.000	49.89	-5.69	44.20	74.00	-29.80	peak
4	4264.000	41.56	-1.73	39.83	74.00	-34.17	peak
5	5242.000	39.43	2.06	41.49	74.00	-32.51	peak
6	6634.000	36.15	5.51	41.66	74.00	-32.34	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

UNII-2A BAND

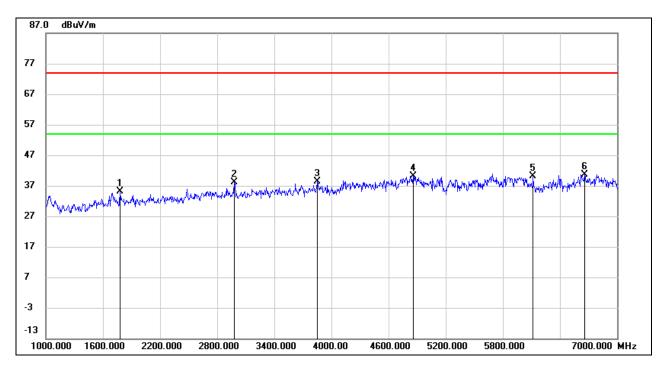
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1402.000	49.41	-12.69	36.72	74.00	-37.28	peak
2	2320.000	44.89	-8.65	36.24	74.00	-37.76	peak
3	3220.000	42.17	-5.24	36.93	74.00	-37.07	peak
4	4582.000	41.42	-0.69	40.73	74.00	-33.27	peak
5	5674.000	38.90	2.48	41.38	74.00	-32.62	peak
6	6628.000	34.96	5.50	40.46	74.00	-33.54	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

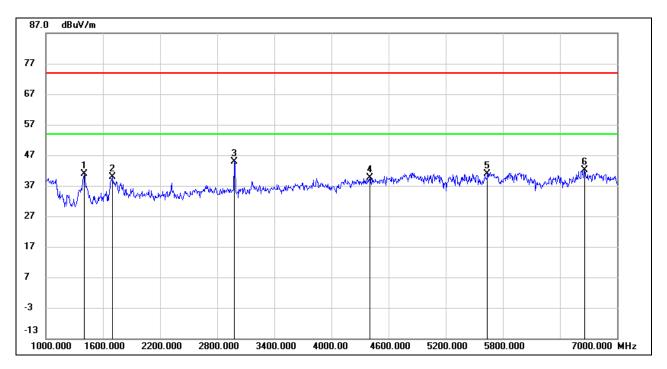
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1414.000	51.40	-12.64	38.76	74.00	-35.24	peak
2	1696.000	49.94	-10.84	39.10	74.00	-34.90	peak
3	2980.000	48.02	-5.69	42.33	74.00	-31.67	peak
4	4252.000	40.89	-1.73	39.16	74.00	-34.84	peak
5	5524.000	38.85	2.23	41.08	74.00	-32.92	peak
6	6628.000	35.41	5.50	40.91	74.00	-33.09	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

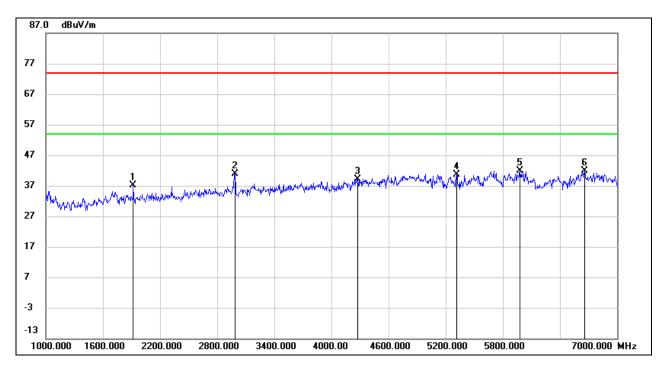
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1780.000	45.31	-10.20	35.11	74.00	-38.89	peak
2	2980.000	43.91	-5.69	38.22	74.00	-35.78	peak
3	3850.000	41.73	-3.35	38.38	74.00	-35.62	peak
4	4858.000	39.33	0.68	40.01	74.00	-33.99	peak
5	6118.000	36.74	3.28	40.02	74.00	-33.98	peak
6	6658.000	35.13	5.51	40.64	74.00	-33.36	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

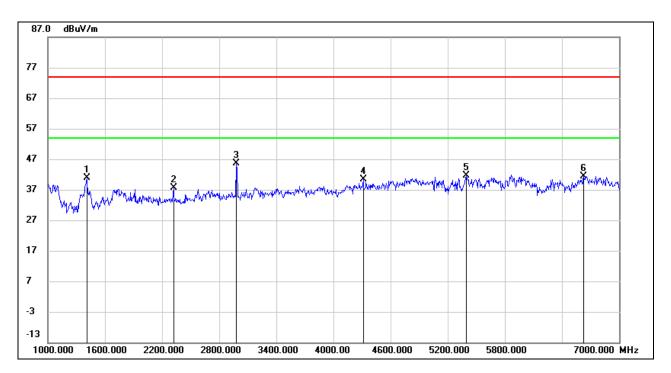
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1402.000	53.47	-12.69	40.78	74.00	-33.22	peak
2	1696.000	50.69	-10.84	39.85	74.00	-34.15	peak
3	2980.000	50.46	-5.69	44.77	74.00	-29.23	peak
4	4402.000	41.36	-1.85	39.51	74.00	-34.49	peak
5	5638.000	38.48	2.47	40.95	74.00	-33.05	peak
6	6658.000	36.50	5.51	42.01	74.00	-31.99	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

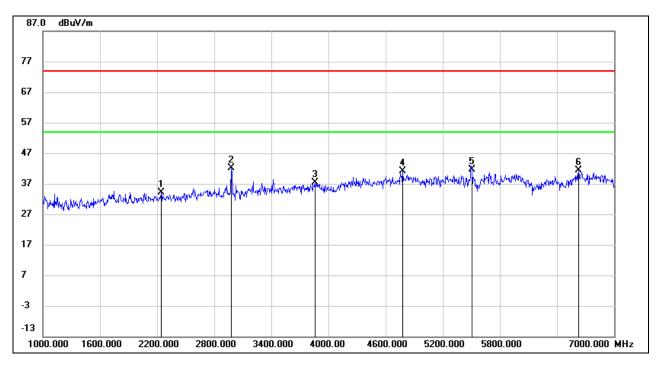
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1918.000	47.14	-10.13	37.01	74.00	-36.99	peak
2	2986.000	46.59	-5.65	40.94	74.00	-33.06	peak
3	4276.000	40.97	-1.74	39.23	74.00	-34.77	peak
4	5314.000	38.63	1.98	40.61	74.00	-33.39	peak
5	5980.000	38.71	3.22	41.93	74.00	-32.07	peak
6	6658.000	36.48	5.51	41.99	74.00	-32.01	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

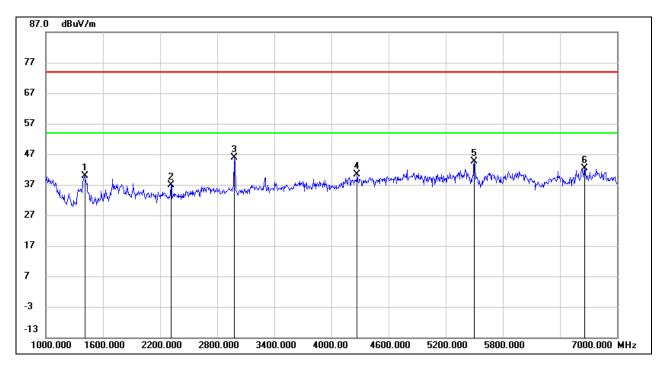
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1408.000	53.44	-12.67	40.77	74.00	-33.23	peak
2	2320.000	46.18	-8.65	37.53	74.00	-36.47	peak
3	2980.000	51.38	-5.69	45.69	74.00	-28.31	peak
4	4312.000	42.21	-1.78	40.43	74.00	-33.57	peak
5	5398.000	39.69	1.88	41.57	74.00	-32.43	peak
6	6628.000	35.92	5.50	41.42	74.00	-32.58	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

UNII-2C BAND

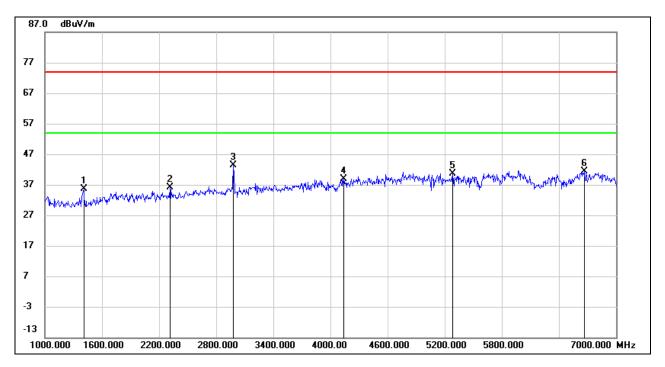
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2242.000	42.94	-8.91	34.03	74.00	-39.97	peak
2	2980.000	47.71	-5.69	42.02	74.00	-31.98	peak
3	3856.000	40.66	-3.36	37.30	74.00	-36.70	peak
4	4780.000	40.63	0.48	41.11	74.00	-32.89	peak
5	5506.000	39.41	2.19	41.60	74.00	-32.40	peak
6	6628.000	35.93	5.50	41.43	74.00	-32.57	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

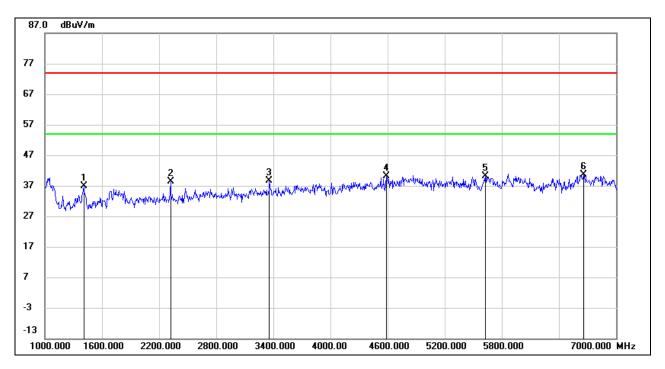
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1408.000	52.43	-12.67	39.76	74.00	-34.24	peak
2	2314.000	45.54	-8.67	36.87	74.00	-37.13	peak
3	2980.000	51.62	-5.69	45.93	74.00	-28.07	peak
4	4270.000	42.03	-1.73	40.30	74.00	-33.70	peak
5	5500.000	42.36	2.17	44.53	74.00	-29.47	peak
6	6658.000	36.82	5.51	42.33	74.00	-31.67	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

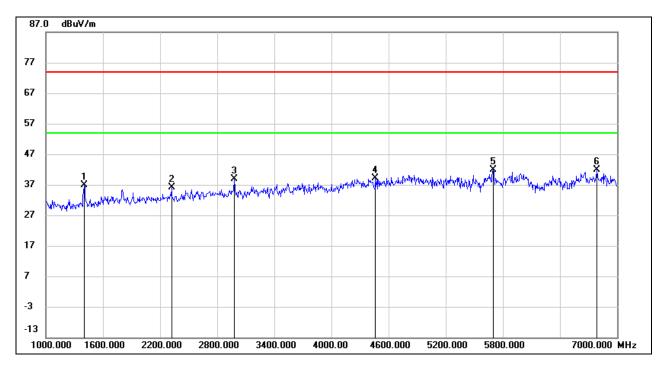
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1408.000	48.22	-12.67	35.55	74.00	-38.45	peak
2	2314.000	44.91	-8.67	36.24	74.00	-37.76	peak
3	2980.000	49.16	-5.69	43.47	74.00	-30.53	peak
4	4138.000	41.06	-2.27	38.79	74.00	-35.21	peak
5	5284.000	38.59	2.01	40.60	74.00	-33.40	peak
6	6664.000	35.78	5.53	41.31	74.00	-32.69	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

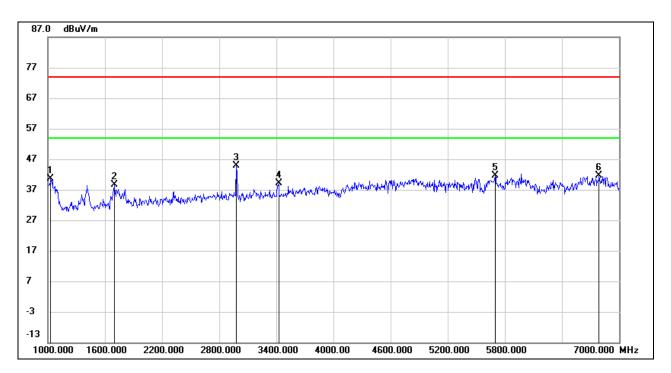
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1408.000	49.60	-12.67	36.93	74.00	-37.07	peak
2	2320.000	46.91	-8.65	38.26	74.00	-35.74	peak
3	3358.000	43.78	-5.14	38.64	74.00	-35.36	peak
4	4588.000	40.69	-0.65	40.04	74.00	-33.96	peak
5	5626.000	37.72	2.46	40.18	74.00	-33.82	peak
6	6658.000	35.00	5.51	40.51	74.00	-33.49	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

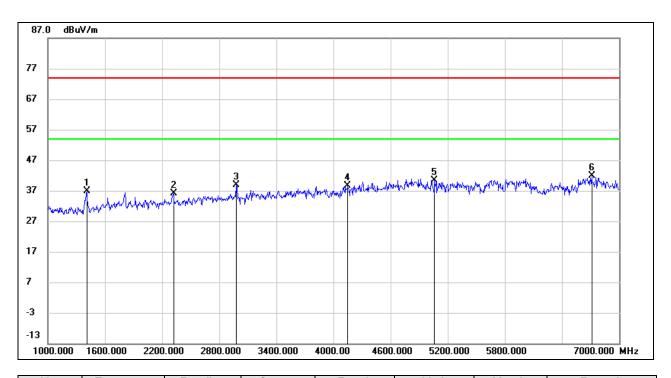
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1402.000	49.50	-12.69	36.81	74.00	-37.19	peak
2	2320.000	44.84	-8.65	36.19	74.00	-37.81	peak
3	2980.000	44.58	-5.69	38.89	74.00	-35.11	peak
4	4462.000	40.49	-1.47	39.02	74.00	-34.98	peak
5	5698.000	39.49	2.49	41.98	74.00	-32.02	peak
6	6790.000	36.43	5.57	42.00	74.00	-32.00	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

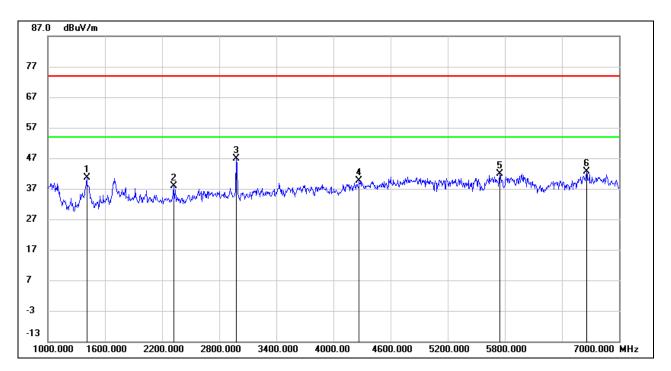
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1030.000	54.42	-13.84	40.58	74.00	-33.42	peak
2	1696.000	49.39	-10.84	38.55	74.00	-35.45	peak
3	2980.000	50.59	-5.69	44.90	74.00	-29.10	peak
4	3424.000	44.21	-5.01	39.20	74.00	-34.80	peak
5	5698.000	39.05	2.49	41.54	74.00	-32.46	peak
6	6790.000	36.05	5.57	41.62	74.00	-32.38	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

STRADDLE CHANNEL 144

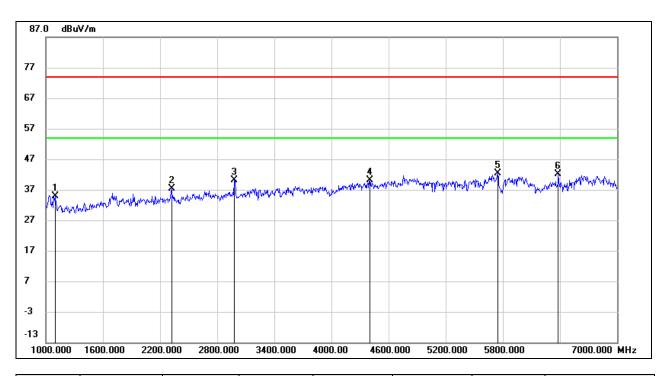
HARMONICS AND SPURIOUS EMISSIONS (HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1408.000	49.56	-12.67	36.89	74.00	-37.11	peak
2	2320.000	44.87	-8.65	36.22	74.00	-37.78	peak
3	2980.000	44.59	-5.69	38.90	74.00	-35.10	peak
4	4150.000	40.85	-2.16	38.69	74.00	-35.31	peak
5	5062.000	39.03	1.27	40.30	74.00	-33.70	peak
6	6712.000	36.32	5.54	41.86	74.00	-32.14	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

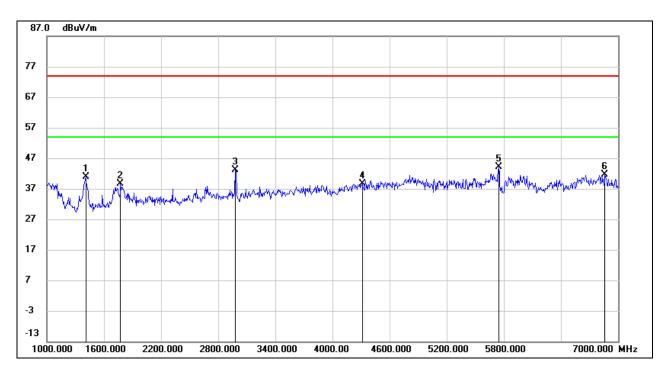
HARMONICS AND SPURIOUS EMISSIONS (VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1408.000	53.36	-12.67	40.69	74.00	-33.31	peak
2	2320.000	46.65	-8.65	38.00	74.00	-36.00	peak
3	2980.000	52.47	-5.69	46.78	74.00	-27.22	peak
4	4270.000	41.31	-1.73	39.58	74.00	-34.42	peak
5	5746.000	39.44	2.50	41.94	74.00	-32.06	peak
6	6658.000	37.04	5.51	42.55	74.00	-31.45	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

UNII-3 BAND

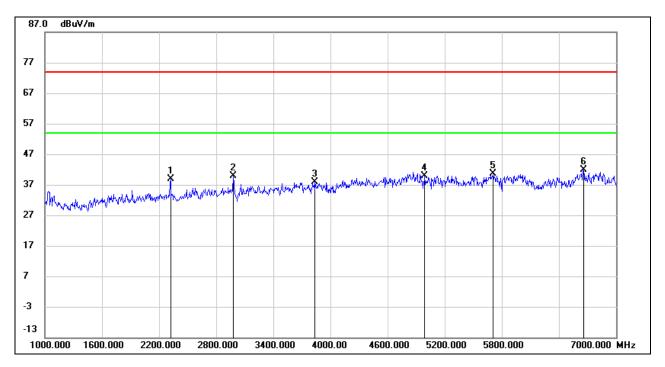
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1096.000	48.50	-13.51	34.99	74.00	-39.01	peak
2	2320.000	46.09	-8.65	37.44	74.00	-36.56	peak
3	2980.000	45.85	-5.69	40.16	74.00	-33.84	peak
4	4402.000	41.86	-1.85	40.01	74.00	-33.99	peak
5	5746.000	39.82	2.50	42.32	74.00	-31.68	peak
6	6382.000	37.87	4.27	42.14	74.00	-31.86	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

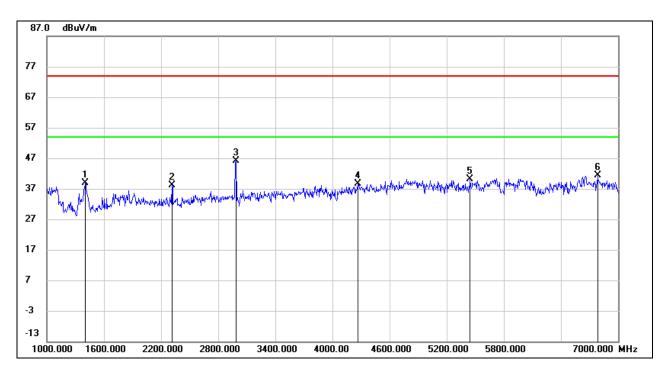
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1408.000	53.53	-12.67	40.86	74.00	-33.14	peak
2	1774.000	48.99	-10.24	38.75	74.00	-35.25	peak
3	2980.000	48.73	-5.69	43.04	74.00	-30.96	peak
4	4312.000	40.44	-1.78	38.66	74.00	-35.34	peak
5	5746.000	41.58	2.50	44.08	74.00	-29.92	peak
6	6862.000	35.99	5.74	41.73	74.00	-32.27	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

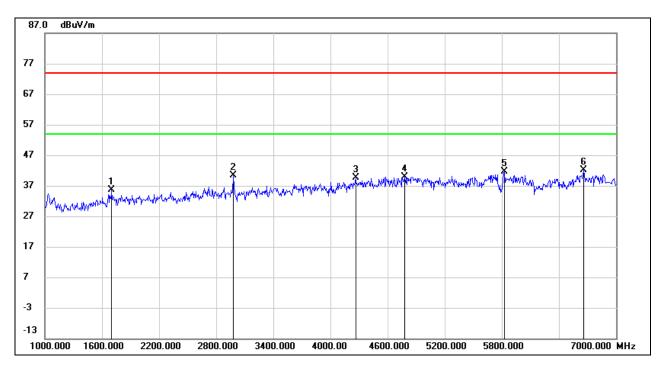
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2320.000	47.55	-8.65	38.90	74.00	-35.10	peak
2	2980.000	45.56	-5.69	39.87	74.00	-34.13	peak
3	3838.000	41.21	-3.32	37.89	74.00	-36.11	peak
4	4990.000	39.08	0.89	39.97	74.00	-34.03	peak
5	5710.000	38.04	2.48	40.52	74.00	-33.48	peak
6	6658.000	36.38	5.51	41.89	74.00	-32.11	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

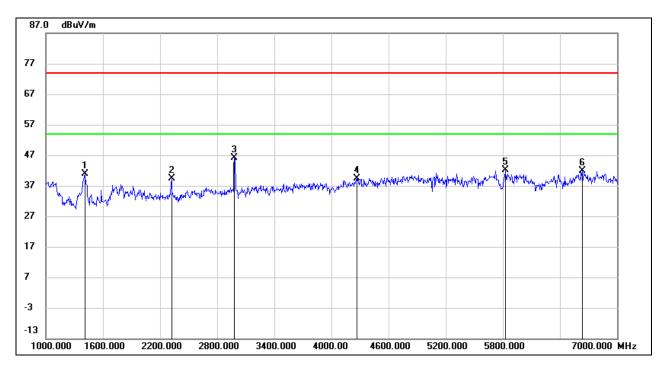
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1402.000	51.67	-12.69	38.98	74.00	-35.02	peak
2	2314.000	46.82	-8.67	38.15	74.00	-35.85	peak
3	2986.000	51.72	-5.65	46.07	74.00	-27.93	peak
4	4264.000	40.27	-1.73	38.54	74.00	-35.46	peak
5	5446.000	38.00	2.01	40.01	74.00	-33.99	peak
6	6784.000	35.88	5.56	41.44	74.00	-32.56	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1702.000	46.51	-10.79	35.72	74.00	-38.28	peak
2	2980.000	46.07	-5.69	40.38	74.00	-33.62	peak
3	4264.000	41.32	-1.73	39.59	74.00	-34.41	peak
4	4780.000	39.37	0.48	39.85	74.00	-34.15	peak
5	5830.000	39.02	2.63	41.65	74.00	-32.35	peak
6	6658.000	36.63	5.51	42.14	74.00	-31.86	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

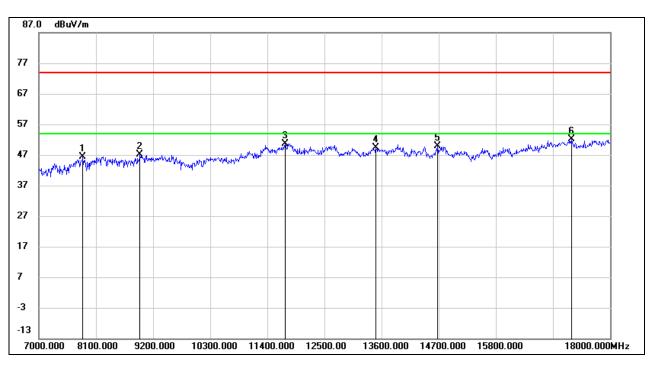
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1408.000	53.63	-12.67	40.96	74.00	-33.04	peak
2	2320.000	47.97	-8.65	39.32	74.00	-34.68	peak
3	2980.000	51.93	-5.69	46.24	74.00	-27.76	peak
4	4264.000	41.19	-1.73	39.46	74.00	-34.54	peak
5	5830.000	39.42	2.63	42.05	74.00	-31.95	peak
6	6634.000	36.25	5.51	41.76	74.00	-32.24	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

Note: All the modes had been tested, but only the worst data was recorded in the report.

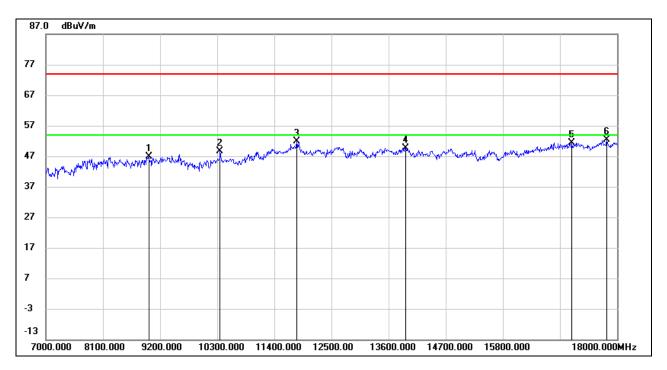


8.3. SPURIOUS EMISSIONS (7 GHz ~ 18 GHz)

8.3.1. 802.11a MODE

UNII-1 BAND

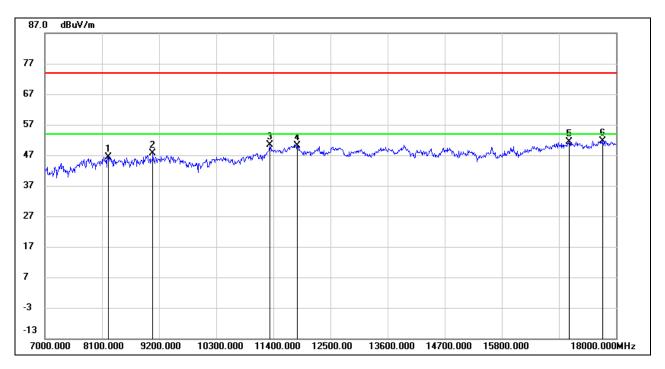
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7847.000	38.16	8.11	46.27	74.00	-27.73	peak
2	8947.000	36.98	10.07	47.05	74.00	-26.95	peak
3	11741.000	35.32	15.28	50.60	74.00	-23.40	peak
4	13490.000	33.07	16.41	49.48	74.00	-24.52	peak
5	14678.000	33.35	16.59	49.94	74.00	-24.06	peak
6	17252.000	31.20	20.97	52.17	74.00	-21.83	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

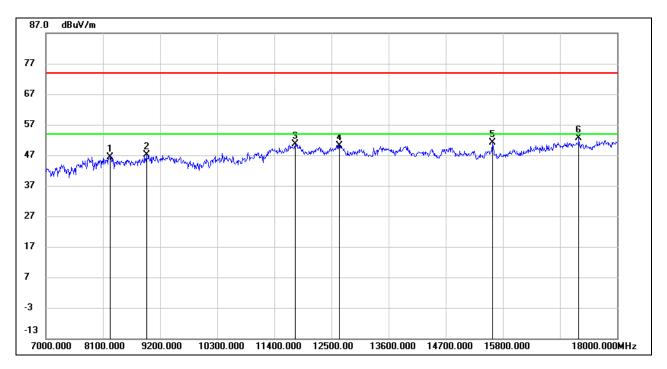
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8980.000	36.35	10.41	46.76	74.00	-27.24	peak
2	10355.000	37.42	11.29	48.71	74.00	-25.29	peak
3	11829.000	36.34	15.57	51.91	74.00	-22.09	peak
4	13930.000	32.84	16.89	49.73	74.00	-24.27	peak
5	17131.000	30.64	20.76	51.40	74.00	-22.60	peak
6	17802.000	29.78	22.72	52.50	74.00	-21.50	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

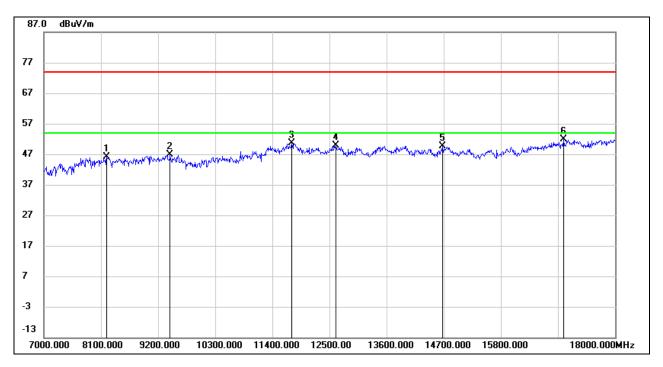
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8221.000	37.13	9.28	46.41	74.00	-27.59	peak
2	9079.000	37.41	10.10	47.51	74.00	-26.49	peak
3	11334.000	36.43	14.02	50.45	74.00	-23.55	peak
4	11862.000	34.49	15.52	50.01	74.00	-23.99	peak
5	17098.000	30.78	20.63	51.41	74.00	-22.59	peak
6	17736.000	29.52	22.22	51.74	74.00	-22.26	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

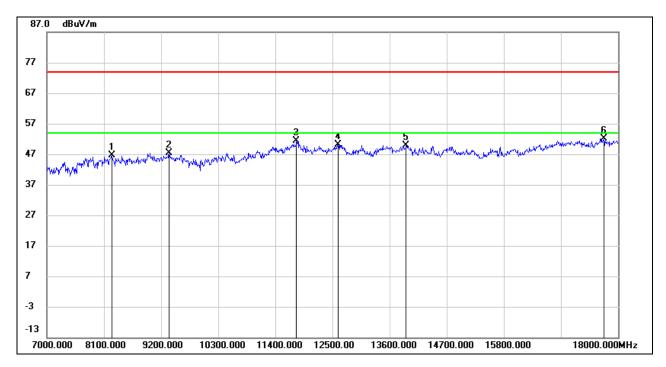
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8232.000	37.27	9.23	46.50	74.00	-27.50	peak
2	8936.000	37.29	9.96	47.25	74.00	-26.75	peak
3	11796.000	35.14	15.59	50.73	74.00	-23.27	peak
4	12654.000	34.72	15.38	50.10	74.00	-23.90	peak
5	15602.000	34.47	16.70	51.17	74.00	-22.83	peak
6	17263.000	31.70	20.95	52.65	74.00	-21.35	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

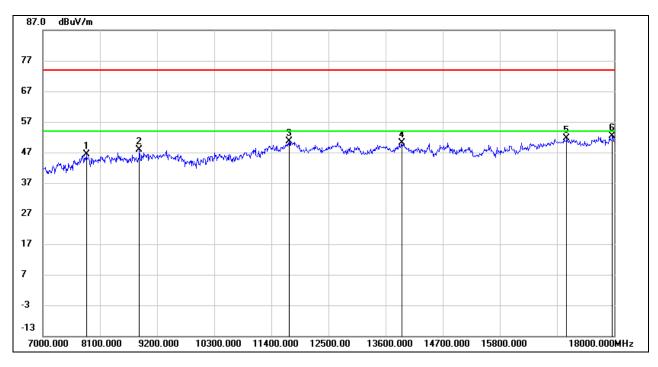
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8210.000	36.71	9.32	46.03	74.00	-27.97	peak
2	9431.000	36.46	10.35	46.81	74.00	-27.19	peak
3	11774.000	35.08	15.47	50.55	74.00	-23.45	peak
4	12621.000	34.58	15.33	49.91	74.00	-24.09	peak
5	14678.000	33.05	16.59	49.64	74.00	-24.36	peak
6	17010.000	31.63	20.27	51.90	74.00	-22.10	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

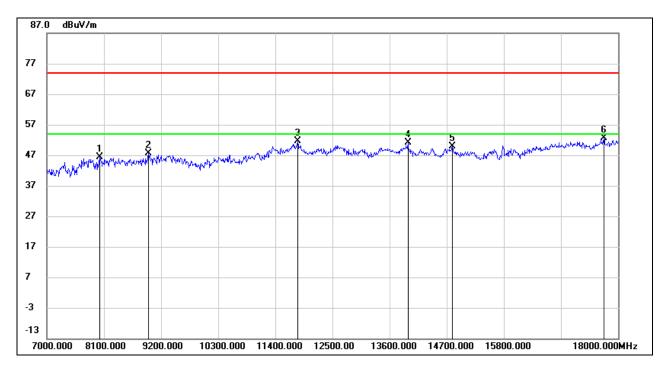
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8254.000	37.39	9.15	46.54	74.00	-27.46	peak
2	9354.000	37.25	10.07	47.32	74.00	-26.68	peak
3	11807.000	35.80	15.61	51.41	74.00	-22.59	peak
4	12610.000	34.91	15.30	50.21	74.00	-23.79	peak
5	13919.000	33.09	16.89	49.98	74.00	-24.02	peak
6	17725.000	29.98	22.13	52.11	74.00	-21.89	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

UNII-2A BAND

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7836.000	38.18	8.14	46.32	74.00	-27.68	peak
2	8859.000	38.64	9.15	47.79	74.00	-26.21	peak
3	11741.000	35.46	15.28	50.74	74.00	-23.26	peak
4	13908.000	33.26	16.90	50.16	74.00	-23.84	peak
5	17087.000	31.01	20.58	51.59	74.00	-22.41	peak
6	17967.000	29.62	22.67	52.29	74.00	-21.71	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

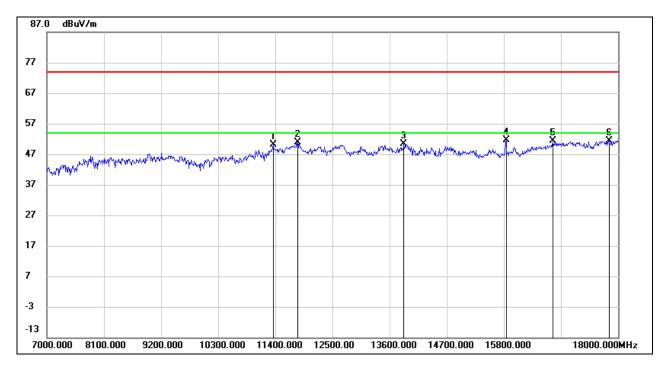
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8012.000	38.66	7.76	46.42	74.00	-27.58	peak
2	8958.000	37.39	10.19	47.58	74.00	-26.42	peak
3	11829.000	36.03	15.57	51.60	74.00	-22.40	peak
4	13952.000	34.30	16.88	51.18	74.00	-22.82	peak
5	14810.000	33.18	16.80	49.98	74.00	-24.02	peak
6	17725.000	30.61	22.13	52.74	74.00	-21.26	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

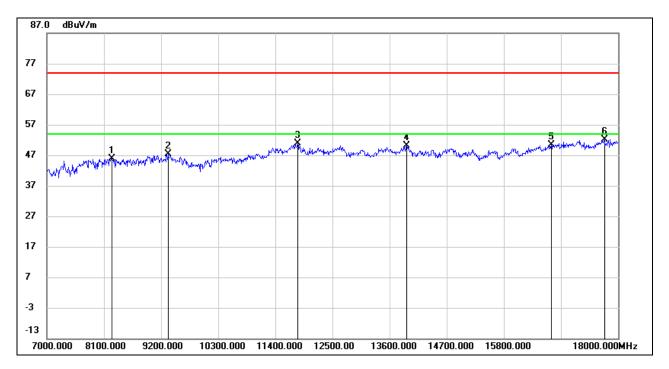
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8232.000	38.32	9.23	47.55	74.00	-26.45	peak
2	9134.000	37.49	9.73	47.22	74.00	-26.78	peak
3	11829.000	34.82	15.57	50.39	74.00	-23.61	peak
4	12599.000	34.81	15.29	50.10	74.00	-23.90	peak
5	16845.000	31.75	19.85	51.60	74.00	-22.40	peak
6	17912.000	29.39	22.69	52.08	74.00	-21.92	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

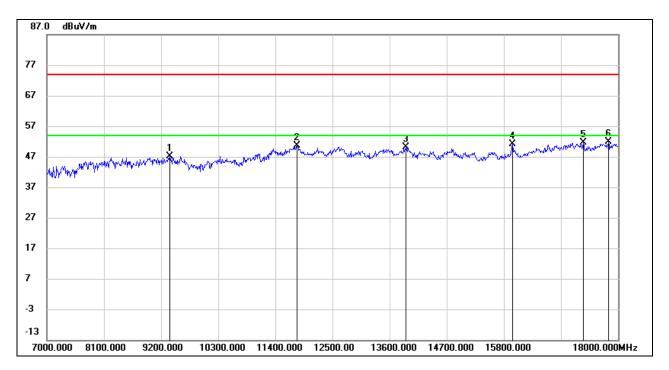
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	11356.000	36.02	14.09	50.11	74.00	-23.89	peak
2	11829.000	35.20	15.57	50.77	74.00	-23.23	peak
3	13875.000	33.56	16.92	50.48	74.00	-23.52	peak
4	15844.000	34.70	16.92	51.62	74.00	-22.38	peak
5	16746.000	31.58	19.68	51.26	74.00	-22.74	peak
6	17824.000	28.77	22.72	51.49	74.00	-22.51	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

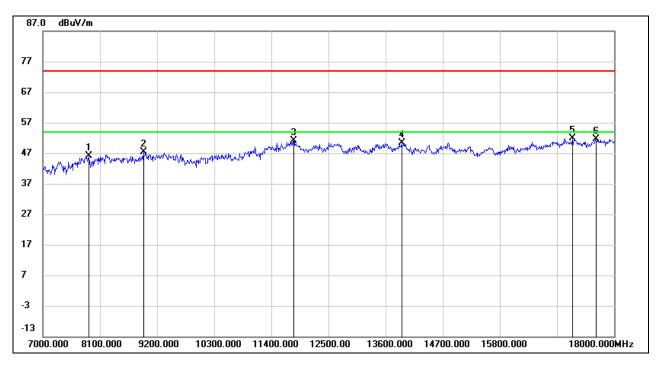
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8254.000	36.79	9.15	45.94	74.00	-28.06	peak
2	9332.000	37.46	9.97	47.43	74.00	-26.57	peak
3	11829.000	35.23	15.57	50.80	74.00	-23.20	peak
4	13930.000	33.27	16.89	50.16	74.00	-23.84	peak
5	16713.000	30.74	19.64	50.38	74.00	-23.62	peak
6	17736.000	29.91	22.22	52.13	74.00	-21.87	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

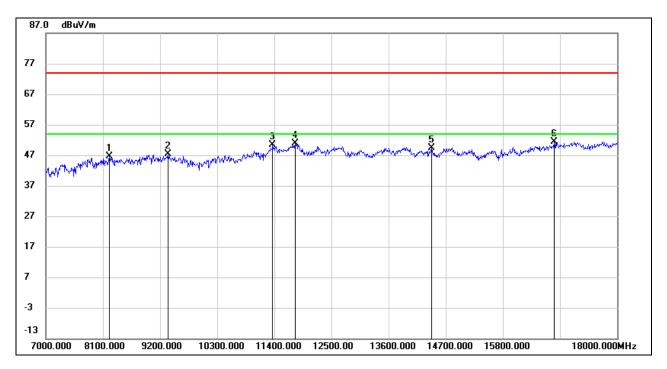
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9365.000	37.10	10.13	47.23	74.00	-26.77	peak
2	11818.000	35.06	15.58	50.64	74.00	-23.36	peak
3	13919.000	33.27	16.89	50.16	74.00	-23.84	peak
4	15965.000	34.07	17.16	51.23	74.00	-22.77	peak
5	17329.000	30.67	20.84	51.51	74.00	-22.49	peak
6	17813.000	29.18	22.72	51.90	74.00	-22.10	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

UNII-2C BAND

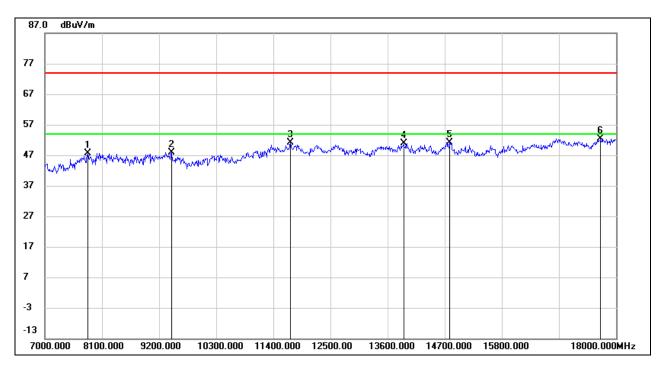
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7880.000	38.00	8.01	46.01	74.00	-27.99	peak
2	8936.000	37.45	9.96	47.41	74.00	-26.59	peak
3	11829.000	35.45	15.57	51.02	74.00	-22.98	peak
4	13908.000	33.59	16.90	50.49	74.00	-23.51	peak
5	17197.000	30.77	21.03	51.80	74.00	-22.20	peak
6	17648.000	30.06	21.54	51.60	74.00	-22.40	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

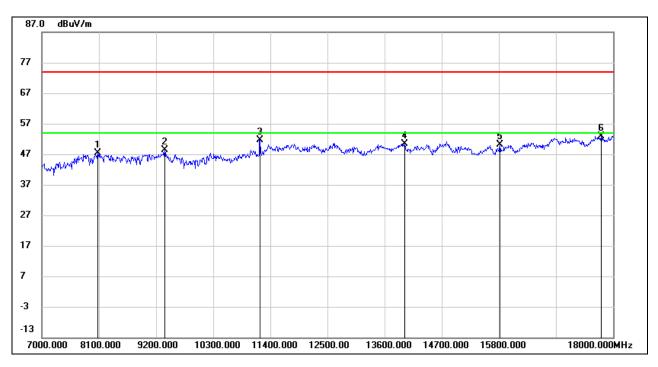
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8221.000	37.40	9.28	46.68	74.00	-27.32	peak
2	9354.000	37.20	10.07	47.27	74.00	-26.73	peak
3	11367.000	36.32	14.11	50.43	74.00	-23.57	peak
4	11796.000	35.39	15.59	50.98	74.00	-23.02	peak
5	14425.000	32.56	16.80	49.36	74.00	-24.64	peak
6	16790.000	31.71	19.73	51.44	74.00	-22.56	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

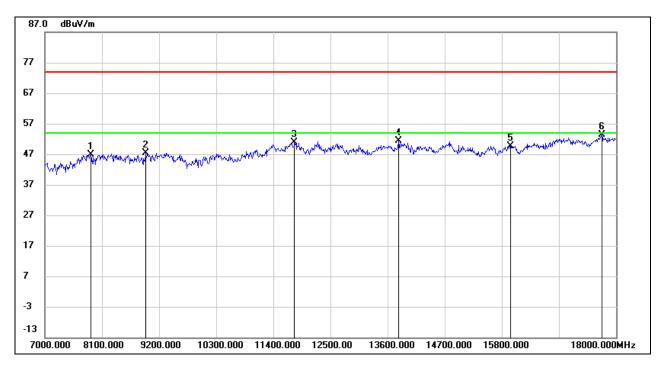
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7825.000	38.30	9.23	47.53	74.00	-26.47	peak
2	9442.000	37.14	10.78	47.92	74.00	-26.08	peak
3	11730.000	35.77	15.32	51.09	74.00	-22.91	peak
4	13908.000	33.35	17.54	50.89	74.00	-23.11	peak
5	14799.000	33.17	18.04	51.21	74.00	-22.79	peak
6	17703.000	28.90	23.49	52.39	74.00	-21.61	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

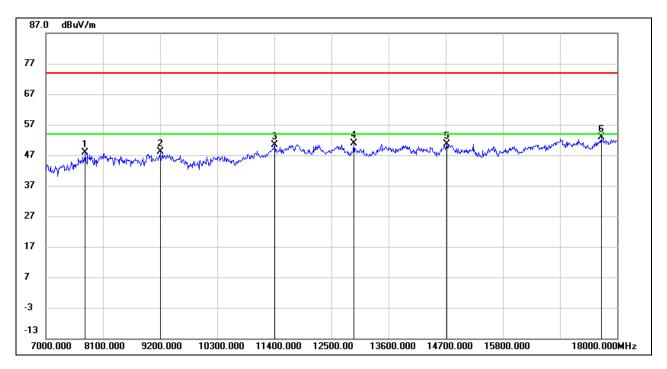
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8078.000	37.63	9.83	47.46	74.00	-26.54	peak
2	9365.000	37.53	10.77	48.30	74.00	-25.70	peak
3	11202.000	37.78	13.79	51.57	74.00	-22.43	peak
4	13985.000	32.84	17.65	50.49	74.00	-23.51	peak
5	15822.000	32.05	18.00	50.05	74.00	-23.95	peak
6	17769.000	29.10	23.87	52.97	74.00	-21.03	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

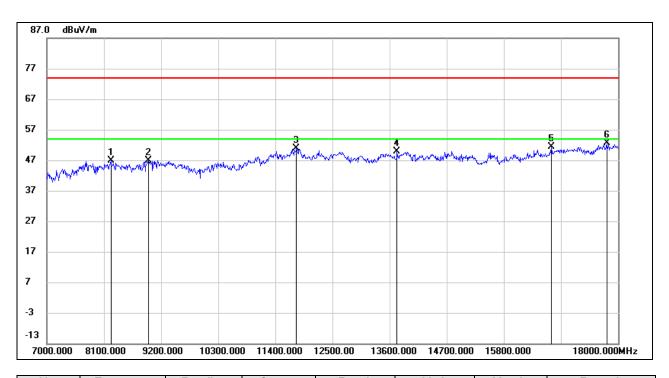
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7880.000	37.97	8.95	46.92	74.00	-27.08	peak
2	8936.000	37.31	10.06	47.37	74.00	-26.63	peak
3	11807.000	35.60	15.27	50.87	74.00	-23.13	peak
4	13809.000	33.78	17.60	51.38	74.00	-22.62	peak
5	15965.000	31.46	18.29	49.75	74.00	-24.25	peak
6	17725.000	29.78	23.61	53.39	74.00	-20.61	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

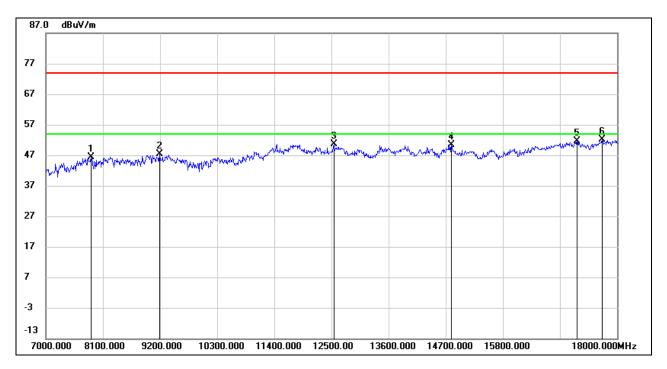
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7759.000	38.89	8.98	47.87	74.00	-26.13	peak
2	9200.000	38.17	9.91	48.08	74.00	-25.92	peak
3	11400.000	35.72	14.76	50.48	74.00	-23.52	peak
4	12929.000	34.48	16.29	50.77	74.00	-23.23	peak
5	14722.000	32.85	17.77	50.62	74.00	-23.38	peak
6	17692.000	29.43	23.41	52.84	74.00	-21.16	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

STRADDLE CHANNEL 144

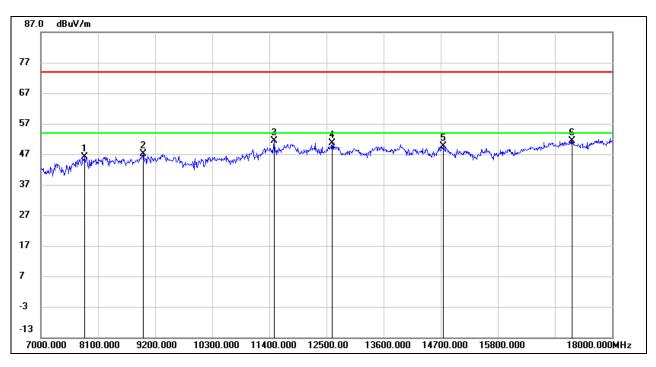
HARMONICS AND SPURIOUS EMISSIONS (HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8232.000	37.60	9.23	46.83	74.00	-27.17	peak
2	8958.000	36.76	10.19	46.95	74.00	-27.05	peak
3	11807.000	35.38	15.61	50.99	74.00	-23.01	peak
4	13743.000	33.00	16.80	49.80	74.00	-24.20	peak
5	16713.000	31.75	19.64	51.39	74.00	-22.61	peak
6	17780.000	30.06	22.57	52.63	74.00	-21.37	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

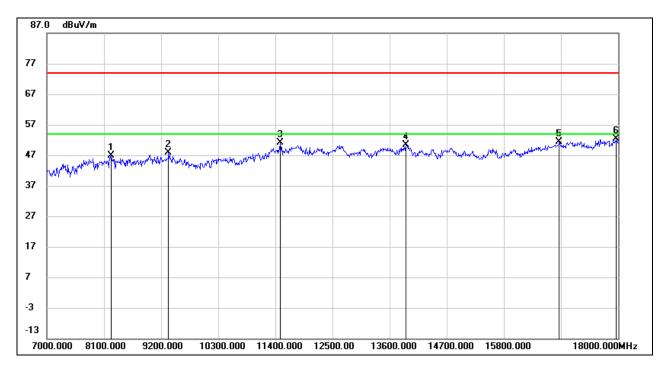
HARMONICS AND SPURIOUS EMISSIONS (VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7869.000	38.21	8.05	46.26	74.00	-27.74	peak
2	9189.000	38.09	9.36	47.45	74.00	-26.55	peak
3	12544.000	35.33	15.33	50.66	74.00	-23.34	peak
4	14810.000	33.62	16.80	50.42	74.00	-23.58	peak
5	17230.000	30.56	20.99	51.55	74.00	-22.45	peak
6	17714.000	30.01	22.04	52.05	74.00	-21.95	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

UNII-3 BAND

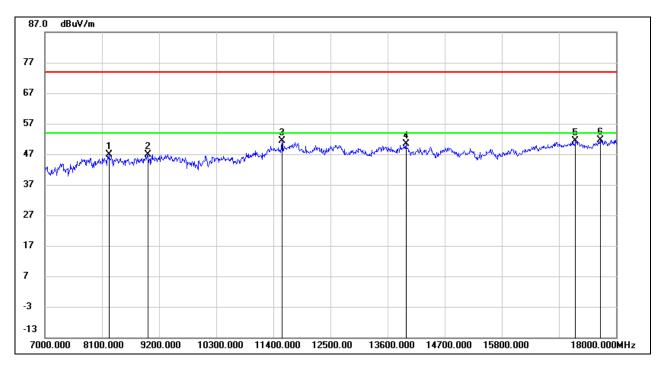
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7836.000	38.02	8.14	46.16	74.00	-27.84	peak
2	8969.000	36.80	10.31	47.11	74.00	-26.89	peak
3	11488.000	37.01	14.34	51.35	74.00	-22.65	peak
4	12610.000	35.25	15.30	50.55	74.00	-23.45	peak
5	14755.000	32.99	16.72	49.71	74.00	-24.29	peak
6	17230.000	30.35	20.99	51.34	74.00	-22.66	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

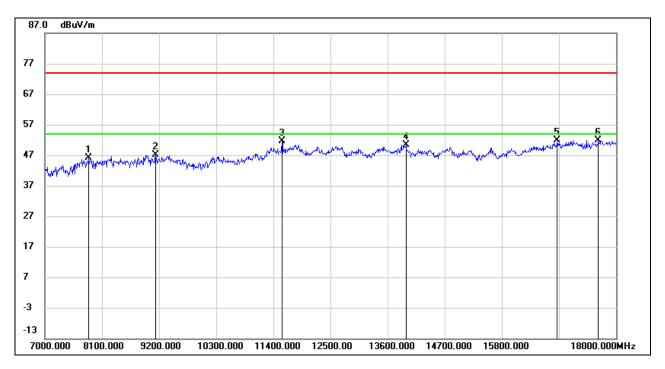
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8243.000	37.62	9.19	46.81	74.00	-27.19	peak
2	9343.000	37.75	10.02	47.77	74.00	-26.23	peak
3	11499.000	36.70	14.36	51.06	74.00	-22.94	peak
4	13908.000	33.45	16.90	50.35	74.00	-23.65	peak
5	16867.000	31.59	19.90	51.49	74.00	-22.51	peak
6	17967.000	29.75	22.67	52.42	74.00	-21.58	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

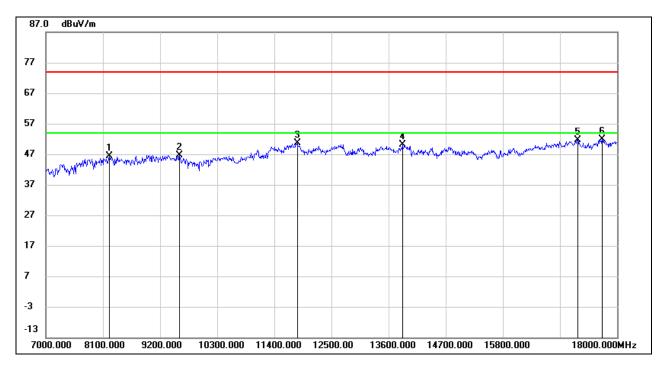
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8232.000	37.53	9.23	46.76	74.00	-27.24	peak
2	8980.000	36.55	10.41	46.96	74.00	-27.04	peak
3	11565.000	36.88	14.45	51.33	74.00	-22.67	peak
4	13952.000	33.62	16.88	50.50	74.00	-23.50	peak
5	17219.000	30.37	21.01	51.38	74.00	-22.62	peak
6	17692.000	29.88	21.87	51.75	74.00	-22.25	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

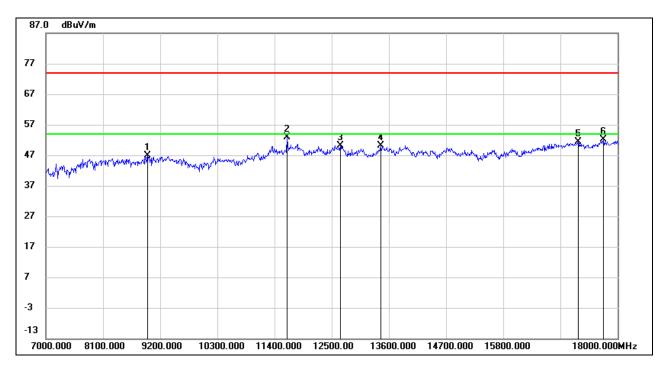
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7847.000	37.95	8.11	46.06	74.00	-27.94	peak
2	9134.000	37.42	9.73	47.15	74.00	-26.85	peak
3	11565.000	37.13	14.45	51.58	74.00	-22.42	peak
4	13952.000	33.50	16.88	50.38	74.00	-23.62	peak
5	16867.000	31.90	19.90	51.80	74.00	-22.20	peak
6	17659.000	30.26	21.63	51.89	74.00	-22.11	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

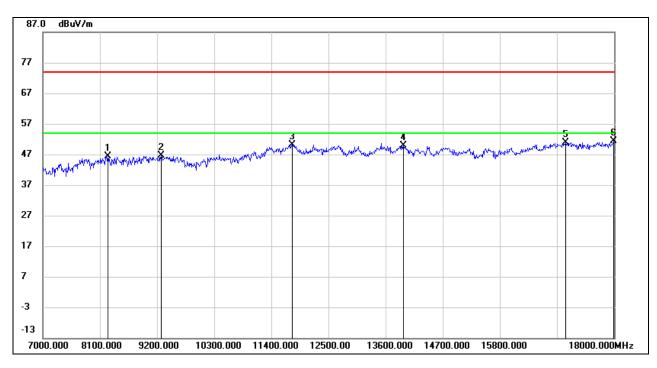


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8221.000	37.17	9.28	46.45	74.00	-27.55	peak
2	9574.000	36.25	10.46	46.71	74.00	-27.29	peak
3	11840.000	35.11	15.56	50.67	74.00	-23.33	peak
4	13864.000	33.15	16.92	50.07	74.00	-23.93	peak
5	17241.000	30.60	20.97	51.57	74.00	-22.43	peak
6	17714.000	29.72	22.04	51.76	74.00	-22.24	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

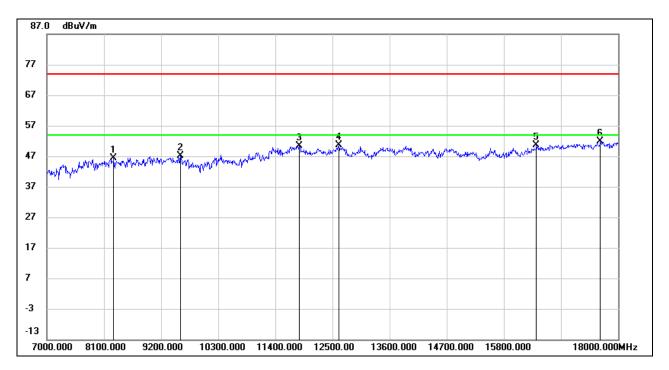
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8958.000	36.59	10.19	46.78	74.00	-27.22	peak
2	11642.000	38.10	14.74	52.84	74.00	-21.16	peak
3	12665.000	34.80	15.41	50.21	74.00	-23.79	peak
4	13446.000	33.74	16.36	50.10	74.00	-23.90	peak
5	17241.000	30.38	20.97	51.35	74.00	-22.65	peak
6	17725.000	30.01	22.13	52.14	74.00	-21.86	peak


- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

8.3.2. 802.11ac VHT20 MODE

UNII-1 BAND

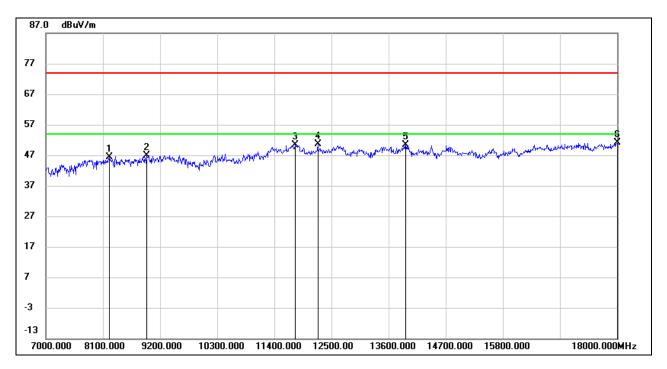
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8254.000	37.28	9.15	46.43	74.00	-27.57	peak
2	9277.000	37.03	9.67	46.70	74.00	-27.30	peak
3	11807.000	34.63	15.61	50.24	74.00	-23.76	peak
4	13941.000	33.08	16.88	49.96	74.00	-24.04	peak
5	17065.000	30.36	20.49	50.85	74.00	-23.15	peak
6	17989.000	28.72	22.67	51.39	74.00	-22.61	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

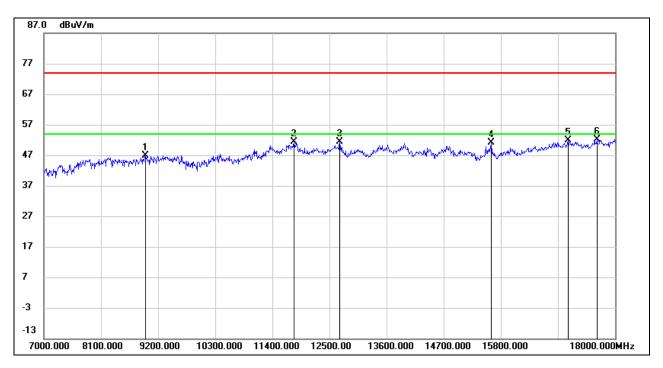
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8287.000	37.29	9.02	46.31	74.00	-27.69	peak
2	9574.000	36.75	10.46	47.21	74.00	-26.79	peak
3	11862.000	34.82	15.52	50.34	74.00	-23.66	peak
4	12621.000	35.31	15.33	50.64	74.00	-23.36	peak
5	16427.000	31.92	18.81	50.73	74.00	-23.27	peak
6	17659.000	30.19	21.63	51.82	74.00	-22.18	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

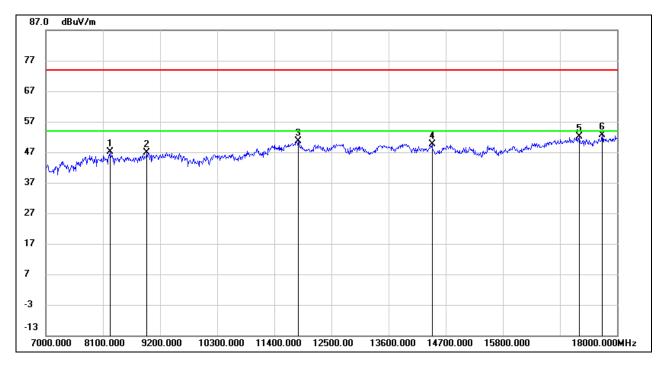
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8221.000	37.18	9.28	46.46	74.00	-27.54	peak
2	8947.000	36.85	10.07	46.92	74.00	-27.08	peak
3	11796.000	34.87	15.59	50.46	74.00	-23.54	peak
4	12236.000	35.34	15.18	50.52	74.00	-23.48	peak
5	13930.000	33.42	16.89	50.31	74.00	-23.69	peak
6	18000.000	28.36	22.67	51.03	74.00	-22.97	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

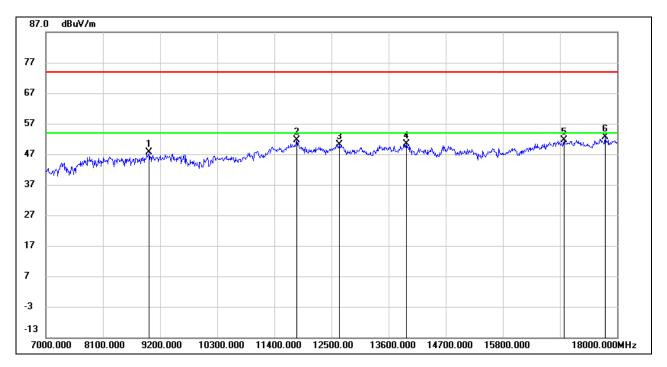
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8958.000	36.79	10.19	46.98	74.00	-27.02	peak
2	11818.000	35.84	15.58	51.42	74.00	-22.58	peak
3	12698.000	35.80	15.47	51.27	74.00	-22.73	peak
4	15613.000	34.32	16.71	51.03	74.00	-22.97	peak
5	17098.000	31.27	20.63	51.90	74.00	-22.10	peak
6	17648.000	30.57	21.54	52.11	74.00	-21.89	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

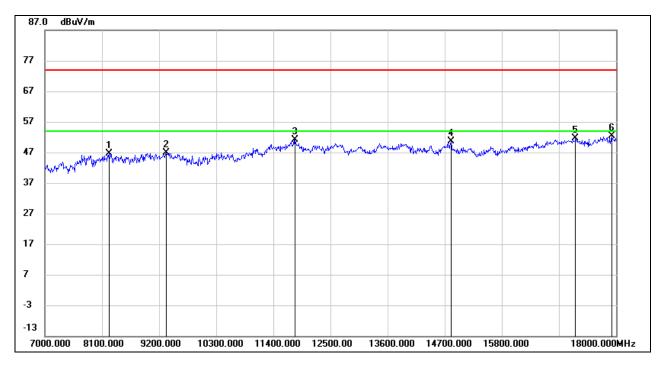
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8232.000	37.93	9.23	47.16	74.00	-26.84	peak
2	8947.000	36.92	10.07	46.99	74.00	-27.01	peak
3	11862.000	35.10	15.52	50.62	74.00	-23.38	peak
4	14436.000	32.91	16.79	49.70	74.00	-24.30	peak
5	17274.000	31.24	20.93	52.17	74.00	-21.83	peak
6	17714.000	30.66	22.04	52.70	74.00	-21.30	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

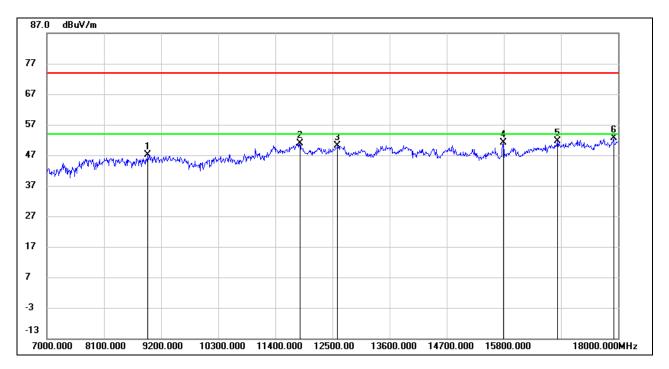
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8991.000	37.07	10.53	47.60	74.00	-26.40	peak
2	11829.000	36.03	15.57	51.60	74.00	-22.40	peak
3	12654.000	34.67	15.38	50.05	74.00	-23.95	peak
4	13941.000	33.47	16.88	50.35	74.00	-23.65	peak
5	16977.000	31.41	20.17	51.58	74.00	-22.42	peak
6	17769.000	30.14	22.48	52.62	74.00	-21.38	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

UNII-2A BAND

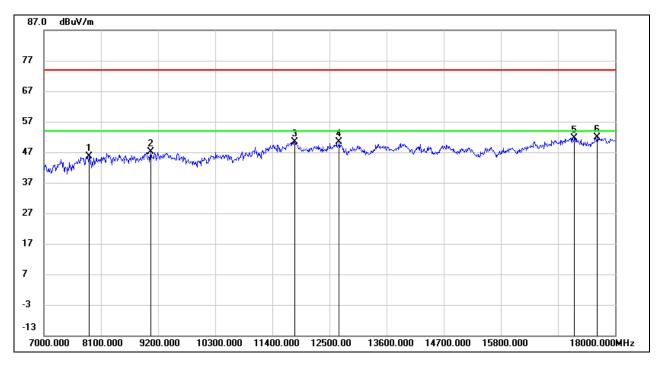
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8232.000	37.36	9.23	46.59	74.00	-27.41	peak
2	9332.000	36.85	9.97	46.82	74.00	-27.18	peak
3	11818.000	35.49	15.58	51.07	74.00	-22.93	peak
4	14821.000	33.78	16.81	50.59	74.00	-23.41	peak
5	17219.000	30.57	21.01	51.58	74.00	-22.42	peak
6	17912.000	29.61	22.69	52.30	74.00	-21.70	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

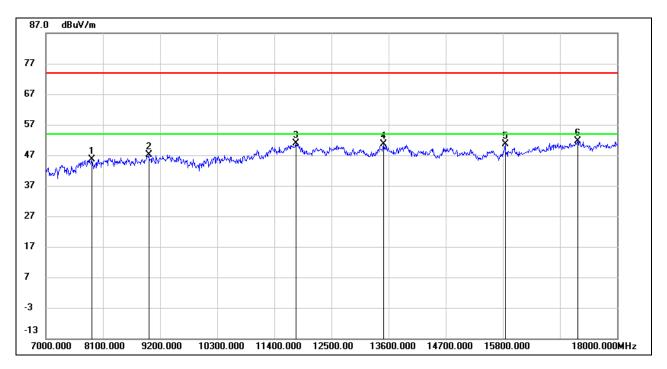
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8947.000	36.94	10.07	47.01	74.00	-26.99	peak
2	11873.000	35.39	15.50	50.89	74.00	-23.11	peak
3	12599.000	34.93	15.29	50.22	74.00	-23.78	peak
4	15789.000	34.33	16.82	51.15	74.00	-22.85	peak
5	16834.000	31.86	19.82	51.68	74.00	-22.32	peak
6	17912.000	29.87	22.69	52.56	74.00	-21.44	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

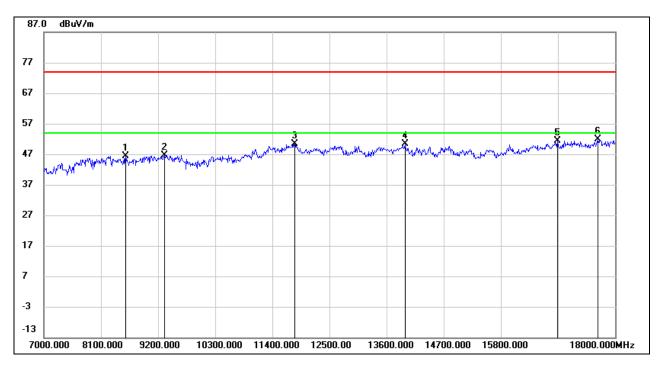
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7869.000	37.70	8.05	45.75	74.00	-28.25	peak
2	9057.000	36.77	10.26	47.03	74.00	-26.97	peak
3	11829.000	34.90	15.57	50.47	74.00	-23.53	peak
4	12687.000	35.05	15.45	50.50	74.00	-23.50	peak
5	17219.000	30.69	21.01	51.70	74.00	-22.30	peak
6	17659.000	30.36	21.63	51.99	74.00	-22.01	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

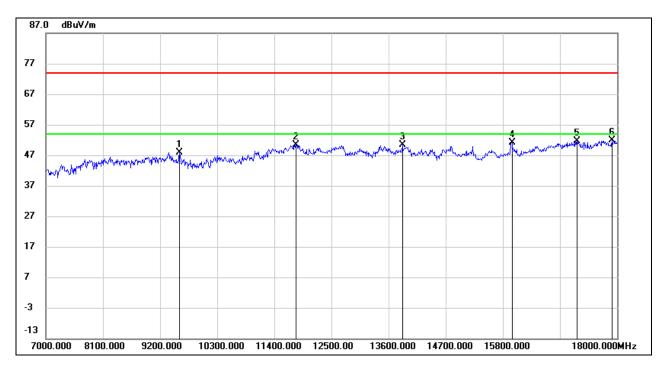
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7880.000	37.66	8.01	45.67	74.00	-28.33	peak
2	8980.000	36.68	10.41	47.09	74.00	-26.91	peak
3	11818.000	35.23	15.58	50.81	74.00	-23.19	peak
4	13501.000	34.19	16.41	50.60	74.00	-23.40	peak
5	15844.000	33.71	16.92	50.63	74.00	-23.37	peak
6	17241.000	30.66	20.97	51.63	74.00	-22.37	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

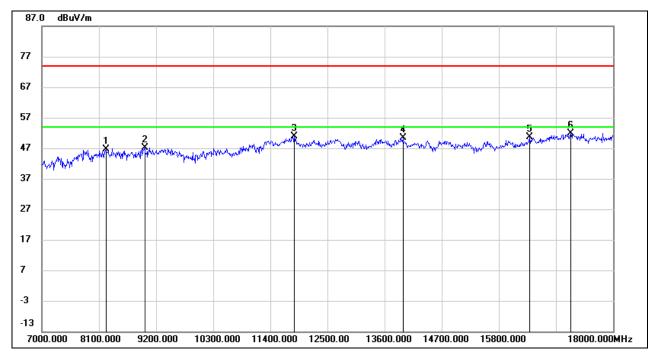
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8573.000	37.92	8.55	46.47	74.00	-27.53	peak
2	9321.000	36.84	9.91	46.75	74.00	-27.25	peak
3	11829.000	34.87	15.57	50.44	74.00	-23.56	peak
4	13952.000	33.46	16.88	50.34	74.00	-23.66	peak
5	16889.000	31.49	19.95	51.44	74.00	-22.56	peak
6	17670.000	30.14	21.70	51.84	74.00	-22.16	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

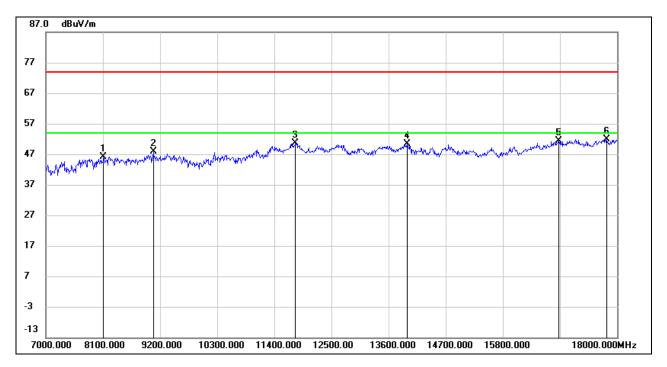
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9574.000	37.47	10.46	47.93	74.00	-26.07	peak
2	11818.000	34.92	15.58	50.50	74.00	-23.50	peak
3	13864.000	33.46	16.92	50.38	74.00	-23.62	peak
4	15976.000	33.93	17.19	51.12	74.00	-22.88	peak
5	17230.000	30.66	20.99	51.65	74.00	-22.35	peak
6	17901.000	29.07	22.69	51.76	74.00	-22.24	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

UNII-2C BAND

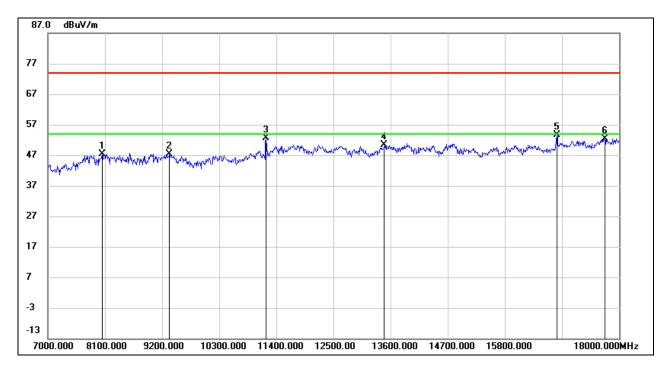
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8232.000	37.50	9.23	46.73	74.00	-27.27	peak
2	8980.000	36.83	10.41	47.24	74.00	-26.76	peak
3	11862.000	35.41	15.52	50.93	74.00	-23.07	peak
4	13952.000	33.61	16.88	50.49	74.00	-23.51	peak
5	16394.000	31.85	18.67	50.52	74.00	-23.48	peak
6	17186.000	30.82	20.98	51.80	74.00	-22.20	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

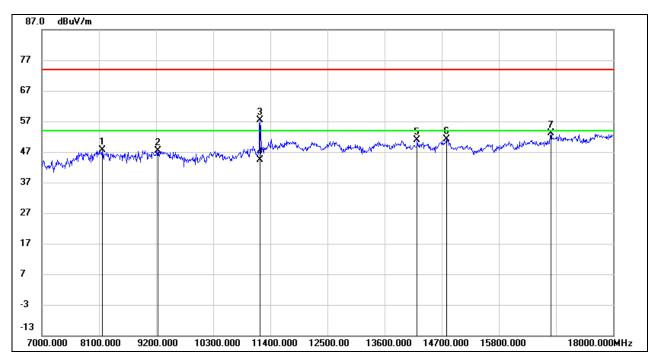
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8111.000	37.63	8.61	46.24	74.00	-27.76	peak
2	9068.000	37.75	10.17	47.92	74.00	-26.08	peak
3	11807.000	35.03	15.61	50.64	74.00	-23.36	peak
4	13952.000	33.38	16.88	50.26	74.00	-23.74	peak
5	16878.000	31.47	19.93	51.40	74.00	-22.60	peak
6	17802.000	29.16	22.72	51.88	74.00	-22.12	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

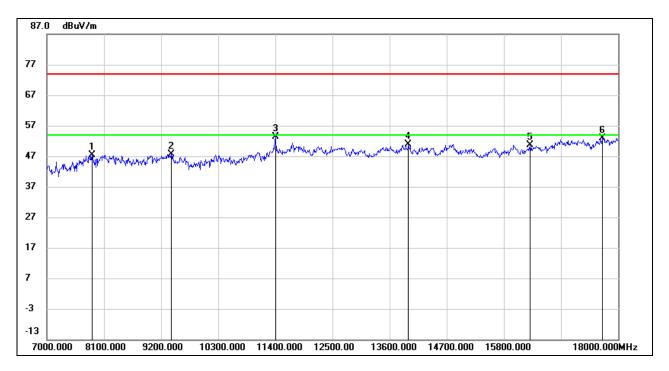
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8045.000	37.98	9.33	47.31	74.00	-26.69	peak
2	9343.000	36.86	10.64	47.50	74.00	-26.50	peak
3	11202.000	38.77	13.79	52.56	74.00	-21.44	peak
4	13479.000	33.16	17.17	50.33	74.00	-23.67	peak
5	16801.000	33.00	20.72	53.72	74.00	-20.28	peak
6	17725.000	28.70	23.61	52.31	74.00	-21.69	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

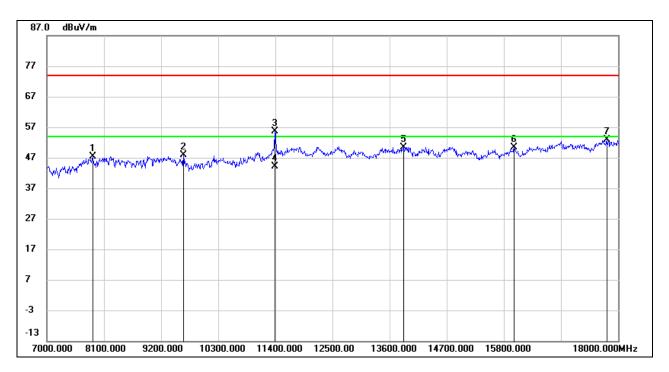
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8166.000	37.60	9.94	47.54	74.00	-26.46	peak
2	9233.000	37.37	10.08	47.45	74.00	-26.55	peak
3	11202.000	43.52	13.79	57.31	74.00	-16.69	peak
4	11202.000	30.71	13.79	44.50	54.00	-9.50	AVG
5	14227.000	33.07	17.88	50.95	74.00	-23.05	peak
6	14788.000	33.06	18.00	51.06	74.00	-22.94	peak
7	16801.000	32.37	20.72	53.09	74.00	-20.91	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

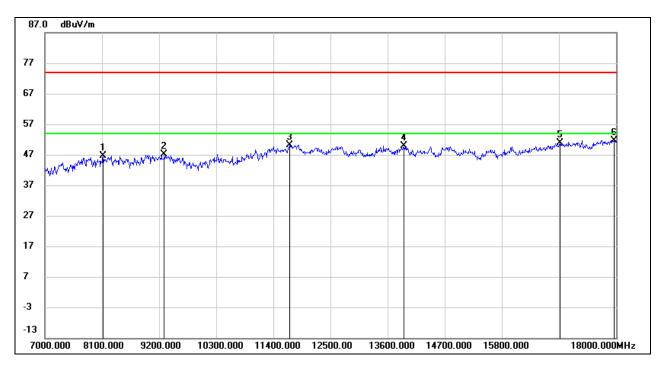
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7869.000	38.47	9.02	47.49	74.00	-26.51	QP
2	9398.000	36.79	10.96	47.75	74.00	-26.25	peak
3	11400.000	38.69	14.76	53.45	74.00	-20.55	peak
4	13963.000	33.16	17.61	50.77	74.00	-23.23	peak
5	16306.000	31.11	19.63	50.74	74.00	-23.26	peak
6	17692.000	29.41	23.41	52.82	74.00	-21.18	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

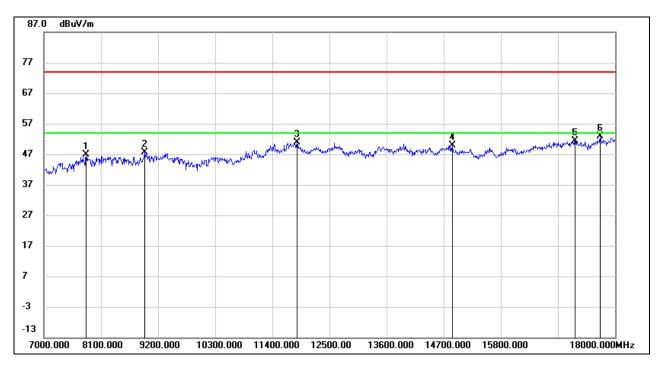
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7880.000	38.31	8.95	47.26	74.00	-26.74	peak
2	9629.000	37.02	10.89	47.91	74.00	-26.09	peak
3	11389.000	40.92	14.66	55.58	74.00	-18.42	peak
4	11389.000	29.54	14.66	44.20	54.00	-9.80	AVG
5	13864.000	32.95	17.55	50.50	74.00	-23.50	peak
6	15998.000	31.95	18.42	50.37	74.00	-23.63	peak
7	17780.000	28.84	23.94	52.78	74.00	-21.22	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

STRADDLE CHANNEL 144

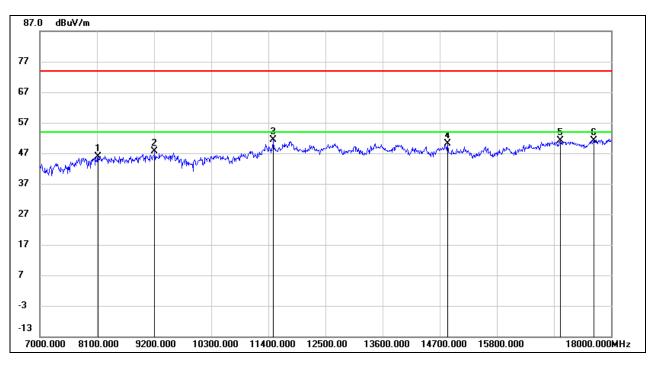
HARMONICS AND SPURIOUS EMISSIONS (HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8122.000	37.90	8.70	46.60	74.00	-27.40	peak
2	9299.000	37.34	9.80	47.14	74.00	-26.86	peak
3	11719.000	35.05	15.17	50.22	74.00	-23.78	peak
4	13908.000	33.05	16.90	49.95	74.00	-24.05	peak
5	16922.000	30.86	20.04	50.90	74.00	-23.10	peak
6	17967.000	29.03	22.67	51.70	74.00	-22.30	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

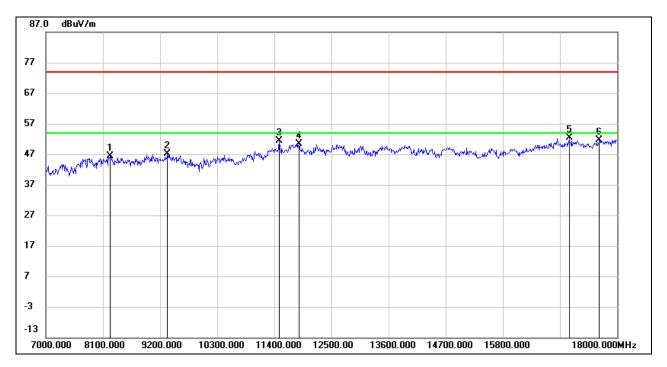
HARMONICS AND SPURIOUS EMISSIONS (VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7814.000	38.57	8.21	46.78	74.00	-27.22	peak
2	8947.000	37.62	10.07	47.69	74.00	-26.31	peak
3	11873.000	35.35	15.50	50.85	74.00	-23.15	peak
4	14865.000	32.99	16.83	49.82	74.00	-24.18	peak
5	17230.000	30.37	20.99	51.36	74.00	-22.64	peak
6	17714.000	30.80	22.04	52.84	74.00	-21.16	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

UNII-3 BAND

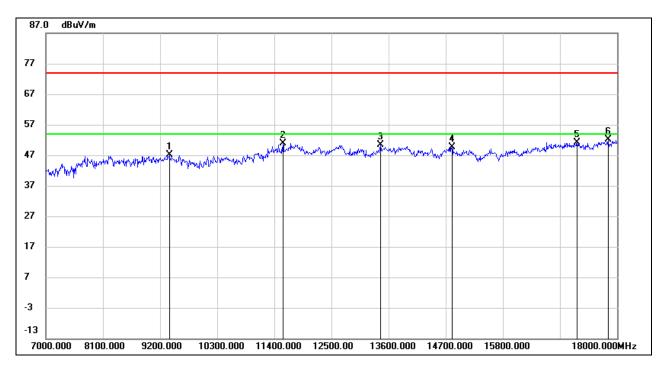
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8122.000	37.12	8.70	45.82	74.00	-28.18	peak
2	9211.000	38.31	9.34	47.65	74.00	-26.35	peak
3	11499.000	36.99	14.36	51.35	74.00	-22.65	peak
4	14854.000	33.33	16.83	50.16	74.00	-23.84	peak
5	17021.000	30.70	20.32	51.02	74.00	-22.98	peak
6	17670.000	29.33	21.70	51.03	74.00	-22.97	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

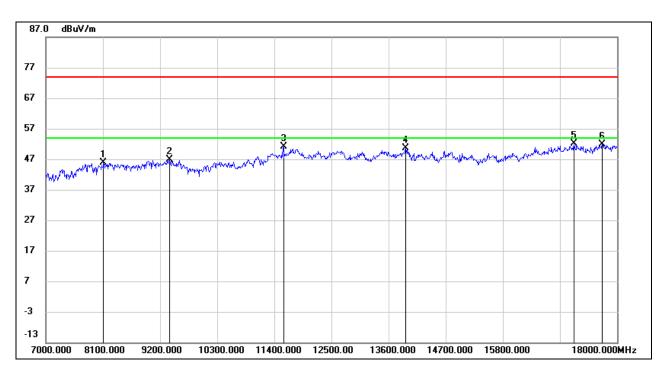
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8243.000	37.21	9.19	46.40	74.00	-27.60	peak
2	9343.000	37.01	10.02	47.03	74.00	-26.97	peak
3	11488.000	36.96	14.34	51.30	74.00	-22.70	peak
4	11873.000	34.90	15.50	50.40	74.00	-23.60	peak
5	17076.000	31.73	20.54	52.27	74.00	-21.73	peak
6	17659.000	30.09	21.63	51.72	74.00	-22.28	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

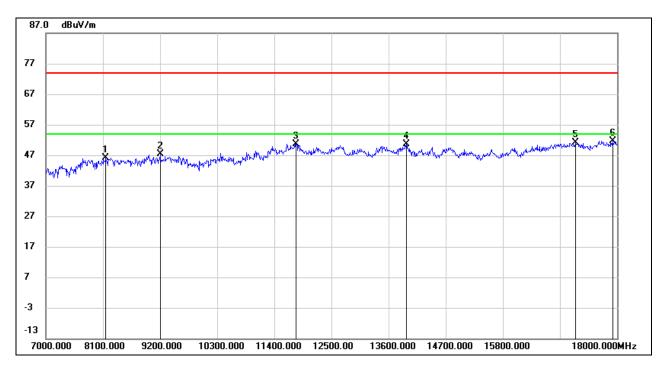
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9376.000	36.87	10.19	47.06	74.00	-26.94	peak
2	11565.000	36.49	14.45	50.94	74.00	-23.06	peak
3	13446.000	33.97	16.36	50.33	74.00	-23.67	peak
4	14821.000	32.90	16.81	49.71	74.00	-24.29	peak
5	17230.000	30.18	20.99	51.17	74.00	-22.83	peak
6	17824.000	29.35	22.72	52.07	74.00	-21.93	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

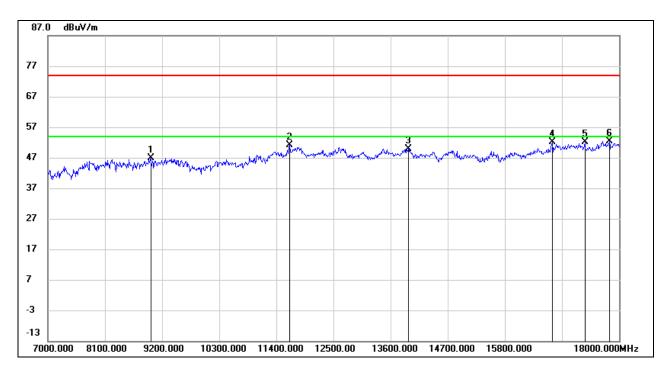
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8111.000	37.35	8.61	45.96	74.00	-28.04	peak
2	9387.000	36.67	10.24	46.91	74.00	-27.09	peak
3	11576.000	36.75	14.48	51.23	74.00	-22.77	peak
4	13930.000	33.64	16.89	50.53	74.00	-23.47	peak
5	17164.000	31.24	20.89	52.13	74.00	-21.87	peak
6	17714.000	29.75	22.04	51.79	74.00	-22.21	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

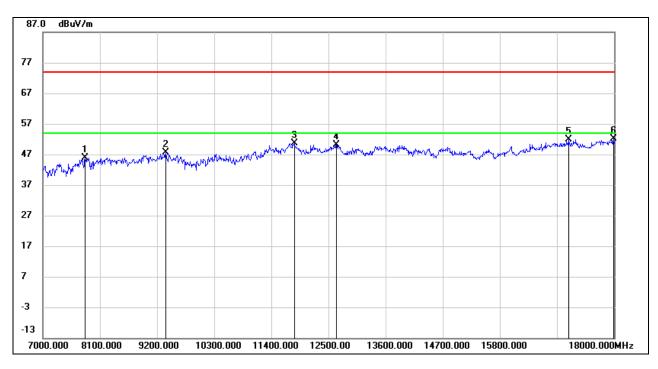


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8155.000	37.05	8.98	46.03	74.00	-27.97	peak
2	9200.000	38.13	9.29	47.42	74.00	-26.58	peak
3	11818.000	35.15	15.58	50.73	74.00	-23.27	peak
4	13941.000	33.87	16.88	50.75	74.00	-23.25	peak
5	17197.000	30.07	21.03	51.10	74.00	-22.90	peak
6	17912.000	29.00	22.69	51.69	74.00	-22.31	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

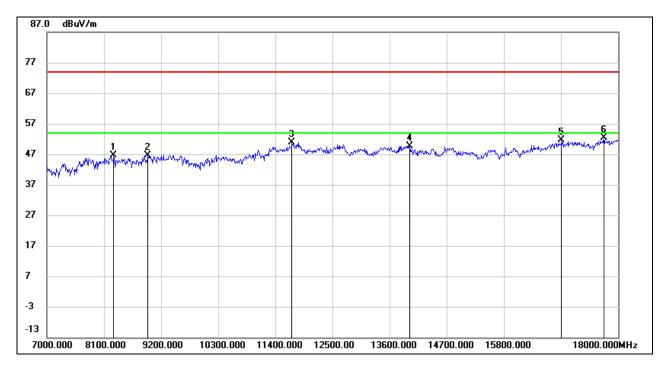
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8980.000	36.57	10.41	46.98	74.00	-27.02	peak
2	11653.000	36.30	14.80	51.10	74.00	-22.90	peak
3	13941.000	33.12	16.88	50.00	74.00	-24.00	peak
4	16713.000	32.42	19.64	52.06	74.00	-21.94	peak
5	17340.000	31.33	20.82	52.15	74.00	-21.85	peak
6	17813.000	29.77	22.72	52.49	74.00	-21.51	peak


- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

8.3.3. 802.11ac VHT40 MODE

UNII-1 BAND

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7814.000	37.78	8.21	45.99	74.00	-28.01	peak
2	9365.000	37.43	10.13	47.56	74.00	-26.44	peak
3	11840.000	35.02	15.56	50.58	74.00	-23.42	peak
4	12654.000	34.69	15.38	50.07	74.00	-23.93	peak
5	17120.000	31.25	20.72	51.97	74.00	-22.03	peak
6	17989.000	29.40	22.67	52.07	74.00	-21.93	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8287.000	37.61	9.02	46.63	74.00	-27.37	peak
2	8947.000	36.66	10.07	46.73	74.00	-27.27	peak
3	11719.000	35.76	15.17	50.93	74.00	-23.07	peak
4	13985.000	32.88	16.86	49.74	74.00	-24.26	peak
5	16911.000	31.64	20.02	51.66	74.00	-22.34	peak
6	17725.000	30.15	22.13	52.28	74.00	-21.72	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27dBm/MHz (68.2dBuV/m) limit.