

Report No.: KSCR250200028201 Page: 1 of 29

TEST REPORT

Application No.:	KSCR2502000282AT		
FCC ID;	2ANHJGDUNIPADSLIDE		
Applicant:	Shanghai shengzhen commercial & trade Ltd company		
Address of Applicant:	Xinlong road No.1373 Room 606 Minhang District Shanghai China		
Manufacturer:	Shanghai shengzhen commercial & trade Ltd company		
Address of Manufacturer:	Xinlong road No.1373 Room 606 Minhang District Shanghai China		
Equipment Under Test (EUT):			
EUT Name:	Garage Door Control		
Model No.:	GD UNI PAD SLIDE		
Standard(s) :	47 CFR Part 15, Subpart C 15.231		
Date of Receipt:	2025-02-21		
Date of Test:	2025-03-24 to 2025-04-10		
Date of Issue:	2025-04-14		
Test Result:	Pass*		

* In the configuration tested, the EUT complied with the standards specified above.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Compliance Certification Services (Kunshan) Inc.	No.10 Weiye Road, Development Zone, Kunshan, Jiangsu, China	t (86-512)57355888	www.sgsgroup.com.cn
程智电子科技(昆山)有限公司	中国・江苏省昆山开发区伟业路 10 号 215301	f (86-512)57370818	sgs.china@sgs.com

Report No.: KSCR250200028201 Page: 2 of 29

Revision Record							
VersionDescriptionDateRemark							
00	Original	2025-04-14	/				

Authorized for issue by:		
Tested By	Maker Qi Maker Qi /Project Engineer	
Approved By	Terry Hou /Reviewer	

Report No.: KSCR250200028201 Page: 3 of 29

2 Test Summary

Radio Spectrum Technical Requirement						
ltem	Standard	Method	Requirement	Result		
Antenna Requirement	47 CFR Part 15, Subpart C 15.231	N/A	47 CFR Part 15, Subpart C 15.203	Custo mer Declar ation		

Radio Spectrum Matter Part						
Item	Standard	Method	Requirement	Result		
20dB Bandwidth	47 CFR Part 15, Subpart C 15.231	ANSI C63.10 (2013) Section 6.9	47 CFR Part 15, Subpart C 15.231(c)	Pass		
Dwell Time (15.231(a1))		ANSI C63.10 (2013) Section 7.8.4	47 CFR Part 15, Subpart C 15.231(a1)	Pass		
Radiated Emissions below 1GHz		ANSI C63.10 (2013) Section 6.4&6.5	47 CFR Part 15C Section 15.231(b) and 15.209	Pass		
Field Strength of the Fundamental Signal (15.231(b))	500part 0 10.201	ANSI C63.10 (2013) Section 6.5	47 CFR Part 15, Subpart C 15.231(b)	Pass		
Radiated Emissions above 1GHz		ANSI C63.10 (2013) Section 6.6	47 CFR Part 15C Section 15.231(b) and 15.209	Pass		

Report No.: KSCR250200028201 Page: 4 of 29

3 Contents

		Page
1	cov	'ER PAGE 1
2	Test	Summary
3	Con	tents4
4	Gen	eral Information5
	4.1 4.2 4.3 4.4 4.5 4.6 4.7	Details of E.U.T.5Description of Support Units5Measurement Uncertainty5Test Location6Test Facility6Deviation from Standards6Abnormalities from Standard Conditions6
5	Equi	ipment List7
6	Radi	io Spectrum Technical Requirement9
	6.1	Antenna Requirement
7	Radi	io Spectrum Matter Test Results 10
	7.1 7.2 7.3 7.4 7.5	20dB Bandwidth10Dwell Time (15.231(a1))11Radiated Emissions below 1GHz12Field Strength of the Fundamental Signal (15.231(b))14Radiated Emissions above 1GHz16
8	Test	Setup Photo 19
9	EUT	Constructional Details (EUT Photos)19
10	0 App	endix
	10.1 10.2 10.3 10.4	Field Strength of the Fundamental Signal.20Spurious Emissions.2120dB Bandwidth24Dwell Time.27

Report No.: KSCR250200028201 Page: 5 of 29

4 General Information

4.1 Details of E.U.T.

Power supply:	DC 3V by Battery		
Operation Frequency	FL:310MHz; FM:315MHz; FH:390MHz		
Channel Numbers:	3		
Modulation Type:	FSK		
Antenna Type:	Internal antenna		
Transmitter type:	Manually		

4.2 Description of Support Units

Description	Manufacturer	Model No.	Serial No.
The EUT has been tested as	an independent unit.		

4.3 Measurement Uncertainty

No.	No. Item Measurement Uncertainty					
1	Radio Frequency	8.4 x 10 ⁻⁸				
2	Timeout	2s				
3	Duty Cycle	0.37%				
4	Occupied Bandwidth	3%				
5	RF Conducted Power	0.6dB				
6	RF Power Density	2.9dB				
7	Conducted Spurious Emissions	0.75dB				
8	RF Radiated Power	5.2dB (Below 1GHz)				
0	KF Radialed Fower	5.9dB (Above 1GHz)				
		4.2dB (Below 30MHz)				
9	Radiated Spurious Emission Test	4.5dB (30MHz-1GHz)				
9		5.1dB (1GHz-18GHz)				
		5.4dB (Above 18GHz)				
10	Temperature Test	1°C				
11	Humidity Test	3%				
12	Supply Voltages	1.5%				
13	Time	3%				
Note: approx	Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.					

Report No.: KSCR250200028201 Page: 6 of 29

4.4 Test Location

All tests were performed at:

Compliance Certification Services (Kunshan) Inc.

No.10 Weiye Rd, Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China. Tel: +86 512 5735 5888 Fax: +86 512 5737 0818

No tests were sub-contracted.

Note:

1. SGS is not responsible for wrong test results due to incorrect information (e.g., max. internal working frequency, antenna gain, cable loss, etc) is provided by the applicant. (If applicable).

2. SGS is not responsible for the authenticity, integrity and the validity of the conclusion based on results of the data provided by applicant. (If applicable).

3. Sample source: sent by customer.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• A2LA

Compliance Certification Services (Kunshan) Inc. is accredited by the American Association for Laboratory Accreditation (A2LA). Certificate No. 2541.01.

• FCC

Compliance Certification Services (Kunshan) Inc. has been recognized as an accredited testing laboratory. Designation Number: CN1172.

• ISED

Compliance Certification Services (Kunshan) Inc. has been recognized by Innovation, Science and Economic Development Canada (ISED) as an accredited testing laboratory. Company Number: 2324E

• VCCI

The 3m and 10m Semi-anechoic chamber and Shielded Room of Compliance Certification Services (Kunshan) Inc. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-20134, R-11600, C-11707, T-11499, G-10216 respectively.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Report No.: KSCR250200028201 Page: 7 of 29

5 Equipment List

Item	Equipment	Manufacturer	Model	Inventory No	Cal Date	Cal. Due Date
Conduc	ted Emission at Mains Terr	ninals				
1	EMI Test Receive	R&S	ESCI	KS301196	08/01/2024	07/31/2025
2	LISN	R&S	ENV216	KS301197	01/15/2025	01/14/2026
3	LISN	Schwarzbeck	NNLK 8129	KS301091	01/15/2025	01/14/2026
4	Pulse Limiter	R&S	ESH3-Z2	KUS1902E001	12/05/2024	12/04/2025
5	CE test Cable	Thermax	/	CZ301102	01/14/2025	01/13/2026
6	Test Software	Farad	EZ-EMC	/	N.C.R	N.C.R
RF Con	ducted Test					
1	Spectrum Analyzer	Keysight	N9020A	KUS1911E004-2	08/01/2024	07/31/2025
2	Spectrum Analyzer	Keysight	N9020A	KUS2001M001-2	08/01/2024	07/31/2025
3	Spectrum Analyzer	Keysight	N9030B	KSEM021-1	01/15/2025	01/14/2026
4	Signal Generator	R&S	SMBV100B	KSEM032	02/19/2025	02/18/2026
5	Signal Generator	R&S	SMW200A	KSEM020-1	08/02/2024	08/01/2025
6	Signal Generator	Agilent	N5182A	KUS2001M001-1	08/01/2024	07/31/2025
7	Radio Communication Test Station	Anritsu	MT8000A	KSEM001-1	08/01/2024	07/31/2025
8	Radio Communication Analyzer	Anritsu	MT8821C	KSEM002-1	02/19/2025	02/18/2026
9	Universal Radio Communication Tester	R&S	CMW500	KUS1911E004-1	08/13/2024	08/12/2025
10	Switcher	TST	FY562	KUS2001M001-4	01/15/2025	01/14/2026
11	AC Power Source	EXTECH	6605	KS301178	N.C.R	N.C.R
12	DC Power Supply	Aglient	E3632A	KS301180	N.C.R	N.C.R
13	Conducted Test Cable	Thermax	RF01-RF04	CZ301111- CZ301120	01/14/2025	01/13/2026
14	Temp. / Humidity Chamber	TERCHY	MHK-120AK	KSES104904	09/02/2024	09/01/2025
15	Temperature & Humidity Recorder	Renke Control	RS-WS-N01-6J	KSEM024-5	02/26/2025	02/25/2026
16	Software	BST	TST-PASS	/	NCR	NCR
RF Rad	iated Test	-				
1	Spectrum Analyzer	R&S	FSV40	KUS1806E003	08/06/2024	08/05/2025
2	Universal Radio Communication Tester	R&S	CMW500	KSEM009-1	02/18/2025	02/17/2026
3	Signal Generator	Agilent	E8257C	KS301066	08/06/2024	08/05/2025
4	Loop Antenna	COM-POWER	AL-130R	KUS1806E001	03/01/2025	02/28/2027
5	Bilog Antenna	TESEQ	CBL 6112D	KUS1806E005	06/29/2023	06/28/2025
6	Horn-antenna(1-18GHz)	Schwarzbeck	BBHA9120D	KS301079	03/23/2024	03/22/2026
8	Horn Antenna(18-40GHz)	Schwarzbeck	BBHA9170	CZ301058	01/07/2024	01/06/2026

CCSEM-TRF-001 Rev. 03 Dec 18, 2024

Report No.: KSCR250200028201 Page: 8 of 29

9	Amplifier(30MHz~18GHz)	PANSHAN TECHNOLOGY	LNA:1~18G	KSEM010-1	01/15/2025	01/14/2026
10	Amplifier(18~40GHz)	PANSHAN TECHNOLOGY	LNA180400G40	KSEM038	08/12/2024	08/11/2025
11	RE Test Cable	REBES MICROWAVE	/	CZ301097	08/23/2024	08/22/2025
12	Temperature & Humidity Recorder	Renke Control	RS-WS-N01-6J	KSEM024-4	02/26/2025	02/25/2026
13	Software	Faratronic	EZ_EMC-v 3A1	/	NCR	NCR
14	Software	ESE	E3_V 6.111221a	/	NCR	NCR

Report No.: KSCR250200028201 Page: 9 of 29

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203

6.1.2 Conclusion

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is Internal antenna and no consideration of replacement. Antenna location: Refer to Internal photos

Report No.: KSCR250200028201 Page: 10 of 29

7 Radio Spectrum Matter Test Results

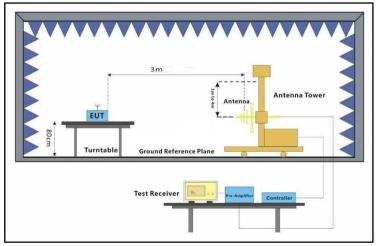
7.1 20dB Bandwidth

Test Requirement	47 CFR Part 15, Subpart C 15.231(c)
Test Method:	ANSI C63.10 (2013) Section 6.9
Measurement Distance:	3m

Limit:

Frequency range(MHz)	Limit
70-900	No wider than 0.25% of the center frequency
Above 900	No wider than 0.5% of the center frequency

7.1.1 E.U.T. Operation


Operating Environment:

Temperature:	23.5 °C	Humidity:	51.2 % RH	Atmospheric Pressure:	1010	mbar
--------------	---------	-----------	-----------	-----------------------	------	------

7.1.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	00	TX mode_Keep the EUT in transmitting mode

7.1.3 Test Setup Diagram

7.1.4 Measurement Procedure and Data

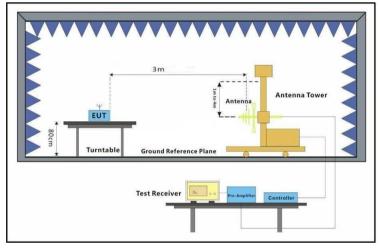
Please Refer to Appendix for Details

Report No.: KSCR250200028201 Page: 11 of 29

7.2 Dwell Time (15.231(a1))

Test Requirement47 CFR Part 15, Subpart C 15.231(a1)Test Method:ANSI C63.10 (2013) Section 7.8.4Measurement Distance:3m

7.2.1 E.U.T. Operation


Operating Environment:

Temperature: 23.5 °C Humidity: 51.2 % RH Atmospheric Pressure: 1010 mbar

7.2.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	00	TX mode_Keep the EUT in transmitting mode

7.2.3 Test Setup Diagram

7.2.4 Measurement Procedure and Data

Please Refer to Appendix for Details

Report No.: KSCR250200028201 Page: 12 of 29

7.3 Radiated Emissions below 1GHz

Test Requirement47 CFR Part 15C Section 15.231(b) and 15.209Test Method:ANSI C63.10 (2013) Section 6.4&6.5Measurement Distance:3m

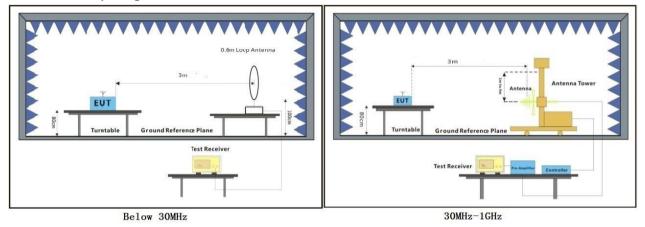
Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

7.3.1 E.U.T. Operation

Operating Environment:Temperature:23.5 °CHumidity:51.2 % RHAtmospheric Pressure:1010mbar


7.3.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	00	TX mode_Keep the EUT in transmitting mode

Report No.: KSCR250200028201 Page: 13 of 29

7.3.3 Test Setup Diagram

7.3.4 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report. Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

2) Scan from 9kHz to 1GHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Please Refer to Appendix for Details

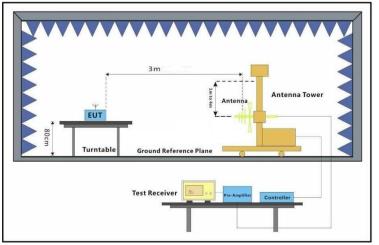
Report No.: KSCR250200028201 Page: 14 of 29

7.4 Field Strength of the Fundamental Signal (15.231(b))

Test Requirement	47 CFR Part 15, Subpart C 15.231(b)
Test Method:	ANSI C63.10 (2013) Section 6.5
Measurement Distance:	3m

Fundamental frequency(MHz)	Field strength of fundamental(microvolts/meter)	Field strength of spurious emissions(microvolts/meter)	
40.66-40.70	2250	225	
70-130	1250	125	
130-174	1250 to 3750	125 to 375	
174-260	3750	375	
260-470	3750 to 12500	375 to 1250	
Above 470	12500	1250	
Remark: the emission limit is based on measurement instrumentation employing an average detector at a distance of 3 meters. The frequencies above 1000MHz are based on average limits. However, the			

at a distance of 3 meters. The frequencies above 1000MHz are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.


7.4.1 E.U.T. Operation

Operating Environ	ment:					
Temperature:	23.5 °C	Humidity:	51.2 % RH	Atmospheric Pressure:	1010	mbar

7.4.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	00	TX mode_Keep the EUT in transmitting mode

7.4.3 Test Setup Diagram

Report No.: KSCR250200028201 Page: 15 of 29

7.4.4 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Please Refer to Appendix for Details

Report No.: KSCR250200028201 Page: 16 of 29

7.5 Radiated Emissions above 1GHz

Test Requirement47 CFR Part 15C Section 15.231(b) and 15.209Test Method:ANSI C63.10 (2013) Section 6.6Measurement Distance:3m

Limit:

For Restricted bands

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

For Other bands					
Fundamental Frequency MHz	Field Strength of Fundamental (dBµV/m @ 3 m)	Field Strength of Hasrmonics and Spurious Emissions (dBµV/m @ 3 m)			
40.66 to 40.70	67.04	47.04			
70 to 130	61.94	41.94			
130 to 174	**61.94 to 71.48	41.94 to 51.48			
174 to 260	71.48	51.48			
260 to 470	**71.48 to 81.94	51.48 to 61.94			
Above 470	81.94	61.94			
Detector:	Peak for pre-scan				
	QP for 30MHz to1000 MHz:120 kHz resolution bandwidth				
	Peak for Above 1 GHz: 1 MHz resolution bandwidth				

** linear interpolations

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

for the band 130-174 MHz, uV/m at 3 meters = 56.81818(F) - 6136.3636;

for the band 260-470 MHz, uV/m at 3 meters = 41.6667(F) - 7083.3333.

The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

The fundamental frequency of the EUT is 310.00 MHz $_{\sim}$ 315.00 MHz and 390.00MHz.

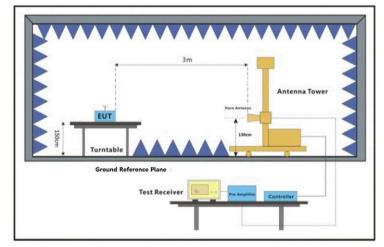
The limit for average or QP field strength dBuv/m for the fundamental emission= 75.32

Report No.: KSCR250200028201 Page: 17 of 29

dBµV/m(310MHz)、75.62 dBµV/m(315MHz) and 79.24dBµV/m(390MHz).

No fundamental is allowed in the restricted bands.

The limit for average field strength dBuv/m for the spurious emission=55.32 dBuV/m(310MHz), 55.62 dBuV/m(315MHz) and 59.24dB μ V/m(390MHz). Spurious in the restricted bands must be less than 55.32 dBuV/m(310MHz), 55.62 dBuV/m(315MHz) and 59.24dB μ V/m(390MHz) or 15.209, whichever limit permits a higher field strength.


7.5.1 E.U.T. Operation

Operating Environment:Temperature:23.5 °CHumidity:51.2 % RHAtmospheric Pressure:1010mbar

7.5.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	00	TX mode_Keep the EUT in transmitting mode

7.5.3 Test Setup Diagram

Report No.: KSCR250200028201 Page: 18 of 29

7.5.4 Measurement Procedure and Data

a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report. Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

2) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Please Refer to Appendix for Details

Report No.: KSCR250200028201 Page: 19 of 29

8 Test Setup Photo

Refer to Appendix - Test Setup Photo for KSCR2502000282AT

9 EUT Constructional Details (EUT Photos)

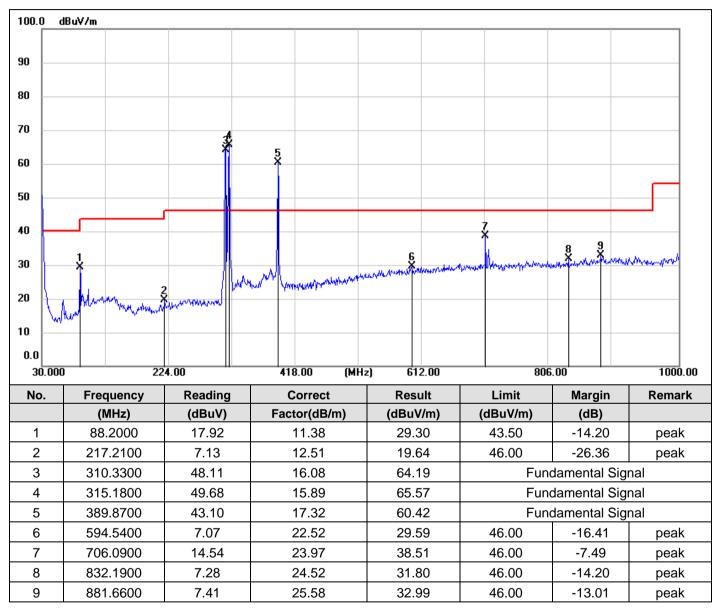
Refer to Appendix_Photographs of EUT Constructional Details for KSCR2502000282AT

Report No.: KSCR250200028201 Page: 20 of 29

10 Appendix

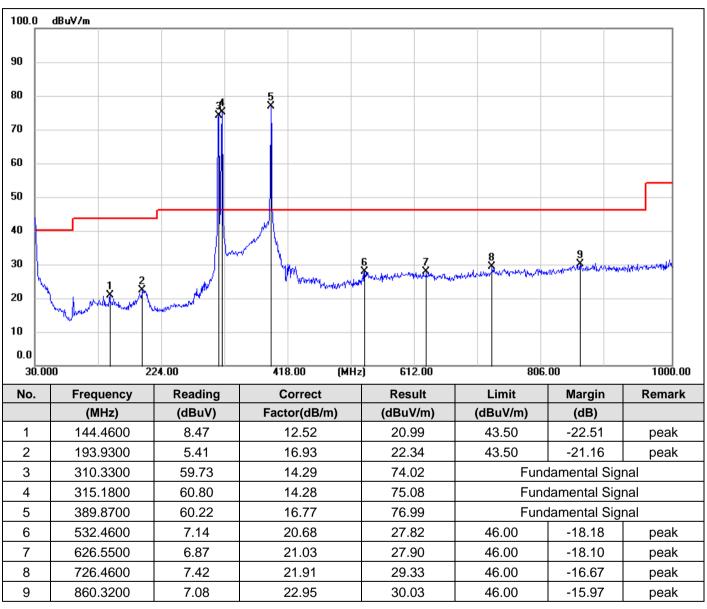
10.1 Field Strength of the Fundamental Signal

Test channel	Freq. (MHz)	Result Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Detector	Polarization
Channel 1	210	64.19	75.32	-11.13	Peak	Vertical
Channel 1	310	74.02	75.32	-1.3	Peak	Horizontal
Channel 2	315	65.57	75.62	-10.05	Peak	Vertical
		75.08	75.62	-0.54	Peak	Horizontal
Channel 3	390	60.42	79.24	-18.82	Peak	Vertical
		76.99	79.24	-2.25	Peak	Horizontal



Report No.: KSCR250200028201 Page: 21 of 29

10.2 Spurious Emissions


Below 1GHz:

Vertical:

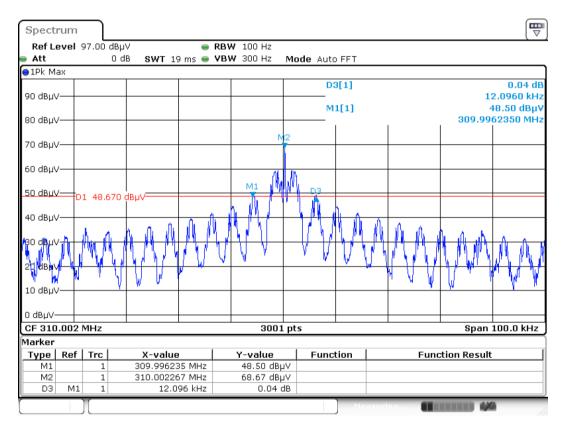
Report No.: KSCR250200028201 Page: 22 of 29

Horizontal:

Report No.: KSCR250200028201 Page: 23 of 29

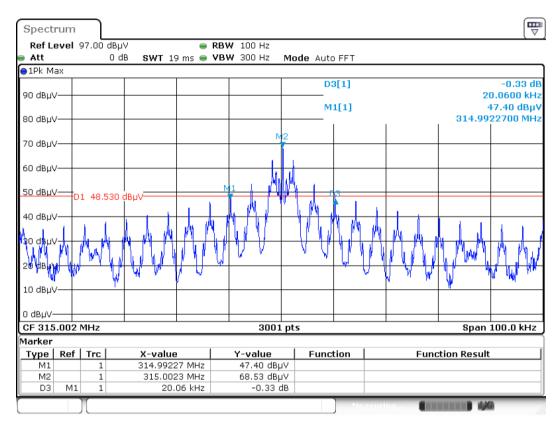
Mark	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	polarization
1	1760.250	60.42	-23.75	36.67	54.00	-17.33	peak	Vertical
2	2418.750	61.08	-19.46	41.62	54.00	-12.38	peak	Vertical
3	3468.750	60.44	-17.15	43.29	54.00	-10.71	peak	Vertical
4	1560.250	67.94	-24.19	43.75	54.00	-10.25	peak	Horizontal
5	1755.500	65.89	-23.76	42.13	54.00	-11.87	peak	Horizontal
6	2730.750	60.55	-18.49	42.06	54.00	-11.94	peak	Horizontal

Above 1GHz

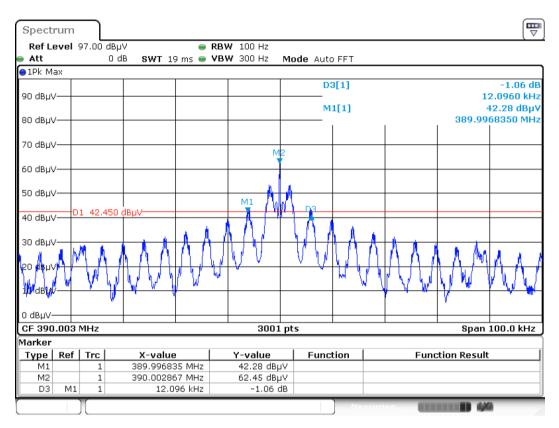

Report No.: KSCR250200028201 Page: 24 of 29

10.3 20dB Bandwidth

Measurement Data:


Frequency (MHz)	Frequency (MHz) 20dB bandwidth (kHz)		Results
310	12.096	775	Pass
315	20.060	787.5	Pass
390	12.096	975	Pass

Test plot as follows:



Report No.: KSCR250200028201 Page: 25 of 29

Report No.: KSCR250200028201 Page: 26 of 29

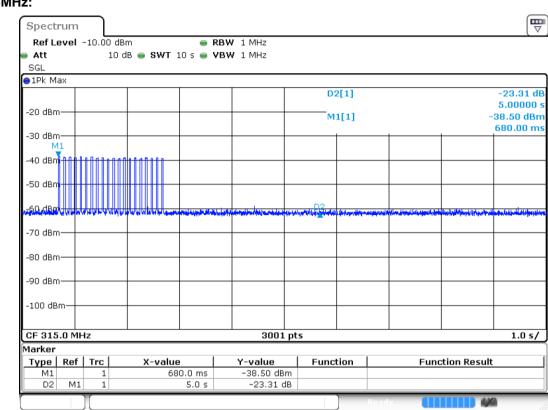
Report No.: KSCR250200028201 Page: 27 of 29

10.4 Dwell Time

Measurement Data:

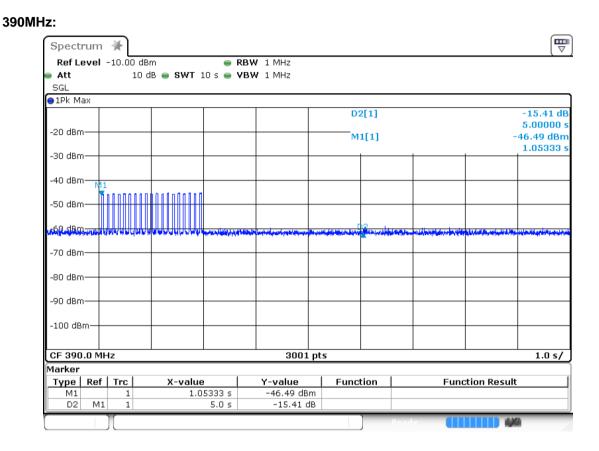
Test item	Limit (s)	Results	
Transmission Duration	≪5s	Pass	

Test plot as follows:


310MHz:

Spectru						
Ref Lev	el 0.00 dBm	e Re	W 1 MHz			()
👄 Att	10 dB	🔵 SWT 10 s 👄 VE	W 1 MHz			
SGL						
⊖1Pk Max						
				D2[1]		-24.13 dB
-10 dBm—				M1[1]		5.00000 s -38.87 dBm
				(urfr)		70.00 ms
-20 dBm—						
-30 dBm—						
-30 ubiii— 41						
140 Øøm A						
-90 dBm						
	เมษะการสมุญสาราชุญ	a the second second state and share as the	with the state of		فالمحويلة فالعنبا العقر مقيلة وعجاج والمحاد	we we have the left of the set of a state of the set of
-70 dBm—						
-80 dBm—						
-90 dBm—						
CF 310.0	MHz		3001 pt	ts		1.0 s/
Marker	<u>() -)</u>		· · ·	1		
Type R M1	ef Trc	X-value 70.0 ms	Y-value -38.87 dBm	Function	Func	tion Result
	M1 1	5.0 s	-24.13 dB			
	1				Peady	444

L



Report No.: KSCR250200028201 Page: 28 of 29

Report No.: KSCR250200028201 Page: 29 of 29

- End of the Report -