FCC Test Report # (Class II Permissive Change) | Product Name | Intel® Wi-Fi 6 AX200 | |--------------|----------------------| | Model No. | AX200D2WL | | FCC ID. | CJ6AX200D2WLWB | | Applicant | Dynabook Inc. | |-----------|---| | Address | 6-15, Toyosu 5-chome, Koto-ku, Tokyo, 135-8505, Japan | | Date of Receipt | Jan. 01, 2022 | |-----------------|-----------------------| | Issued Date | May 03, 2022 | | Report No. | 2210170R-RFUSBT2V01-B | | Report Version | V1.0 | The test results relate only to the samples tested. The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein. This report must not be used to claim product endorsement by TAF or any agency of the government. The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd. Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement. Report No.: 2210170R-RFUSBT2V01-B ## Test Report Issued Date: May 03, 2022 Report No.: 2210170R-RFUSBT2V01-B | Product Name | Intel® Wi-Fi 6 AX200 | | | | | |---------------------|---|--|--|--|--| | Applicant | Dynabook Inc. | | | | | | Address | 6-15, Toyosu 5-chome, Koto-ku, Tokyo, 135-8505, Japan | | | | | | Manufacturer | Intel Mobile Communications | | | | | | Model No. | AX200D2WL | | | | | | FCC ID. | CJ6AX200D2WLWB | | | | | | EUT Rated Voltage | AC 100-240V, 50-60Hz | | | | | | EUT Test Voltage | AC 120V / 60Hz | | | | | | Trade Name | Intel | | | | | | Applicable Standard | FCC CFR Title 47 Part 15 Subpart C | | | | | | | ANSI C63.4: 2014, ANSI C63.10: 2013 | | | | | | Test Result | Complied | | | | | | Documented By | Jinn Chen | | | | | | | (Superviser / Line Chan) | | | | | | | | (Supervisor / Jinn Chen) | |-------------|---|-----------------------------------| | Tested By | : | Ivan Chuang | | | | (Senior Engineer / Ivan Chuang) | | Approved By | : | San Chen | | | | (Senior Engineer / Alan Chen) | ## TABLE OF CONTENTS | Des | scription | Page | |-------|--|------| | 1. | GENERAL INFORMATION | 5 | | 1.1. | EUT Description | 5 | | 1.2. | Tested System Details | | | 1.3. | Configuration of Tested System | 7 | | 1.4. | EUT Exercise Software | | | 1.5. | Test Facility | 9 | | 1.6. | List of Test Equipment | | | 1.7. | Uncertainty | | | 2. | PEAK POWER OUTPUT | 12 | | 2.1. | Test Setup | 12 | | 2.2. | Limit | 12 | | 2.3. | Test Procedure | 12 | | 2.4. | Test Result of Peak Power Output | 13 | | 3. | RADIATED EMISSION | 16 | | 3.1. | Test Setup | | | 3.2. | Limits | | | 3.3. | Test Procedure | 18 | | 3.4. | Test Result of Radiated Emission | 19 | | 4. | BAND EDGE | 23 | | 4.1. | Test Setup | 23 | | 4.2. | Limit | | | 4.3. | Test Procedure | 24 | | 4.4. | Test Result of Band Edge | | | 5. | DUTY CYCLE | | | 5.1. | Test Setup | | | 5.2. | Test Procedure | | | 5.3. | Test Result of Duty Cycle | | | 6. | EMI REDUCTION METHOD DURING COMPLIANCE TESTING | | | Appen | ndix 1: EUT Test Photographs | | Appendix 2: Product Photos: Please refer to the file: 2210170R-Product Photos ## **Revision History** | Report No. | Version | Description | Issued Date | |-----------------------|---------|--------------------------|--------------------| | 2210170R-RFUSBT2V01-B | V1.0 | Initial issue of report. | May 03, 2022 | ## 1. GENERAL INFORMATION ## **1.1.** EUT Description | Product Name | Intel® Wi-Fi 6 AX200 | | | | |--------------------|---|--|--|--| | Trade Name | Intel | | | | | Model No. | AX200D2WL | | | | | FCC ID. | CJ6AX200D2WLWB | | | | | Frequency Range | 2402 – 2480MHz | | | | | Channel Number | 79 | | | | | Type of Modulation | FHSS: GFSK(1Mbps) / π /4DQPSK(2Mbps) / 8DPSK(3Mbps) | | | | | Antenna Type | Folded Dipole Antenna | | | | | Channel Control | Auto | | | | | Antenna Gain | Refer to the table "Antenna List" | | | | | Power Adapter #1 | MFR: Chicony, M/N: PA5177E-1AC3 | | | | | | Input: AC 100-240V~1.3A 50-60Hz | | | | | | Output: 19V==-2.37A | | | | | | Cable out: Non-Shielded, 1.8m. | | | | | | Power cord: Non-Shielded, 1.8m. | | | | | Power Adapter #2 | MFR: Chicony, M/N: PA5177U-1ACA | | | | | | Input: AC 100-240V~1.3A 50-60Hz | | | | | | Output: 19V==2.37A | | | | | | Cable out: Non-Shielded, 1.8m. | | | | | | Power cord: Non-Shielded, 1.8m. | | | | | Power Adapter #3 | MFR: Lite-On, M/N: PA5177E-1AC3 | | | | | | Input: AC 100-240V~1.3A 50-60Hz | | | | | | Output: 19V==2.37A | | | | | | Cable out: Non-Shielded, 1.8m. | | | | | | Power cord: Non-Shielded, 1.8m. | | | | | Power Adapter #4 | MFR: Lite-On, M/N: PA5177U-1ACA | | | | | | Input: AC 100-240V~1.3A 50-60Hz | | | | | | Output: 19V==2.37A | | | | | | Cable out: Non-Shielded, 1.8m. | | | | | | Power cord: Non-Shielded, 1.8m. | | | | ## Antenna List | No. | Manufacturer | Part No. (Vendor) | Antenna Type | Peak Gain | |-----|--------------|-------------------------|---------------|--------------------| | 1 | SLEing | SLEingB219790388 (Main) | Folded Dipole | 0.84dBi in 2.4 GHz | | | | SLEingB219790491 (Aux) | Folded Dipole | 1.64dBi in 2.4 GHz | Note: The antenna of EUT is conforming to FCC 15.203. ## Center Frequency of Each Channel: | Channel | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency | |-------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------| | Channel 00: | 2402 MHz | Channel 20: | 2422 MHz | Channel 40: | 2442 MHz | Channel 60: | 2462 MHz | | Channel 01: | 2403 MHz | Channel 21: | 2423 MHz | Channel 41: | 2443 MHz | Channel 61: | 2463 MHz | | Channel 02: | 2404 MHz | Channel 22: | 2424 MHz | Channel 42: | 2444 MHz | Channel 62: | 2464 MHz | | Channel 03: | 2405 MHz | Channel 23: | 2425 MHz | Channel 43: | 2445 MHz | Channel 63: | 2465 MHz | | Channel 04: | 2406 MHz | Channel 24: | 2426 MHz | Channel 44: | 2446 MHz | Channel 64: | 2466 MHz | | Channel 05: | 2407 MHz | Channel 25: | 2427 MHz | Channel 45: | 2447 MHz | Channel 65: | 2467 MHz | | Channel 06: | 2408 MHz | Channel 26: | 2428 MHz | Channel 46: | 2448 MHz | Channel 66: | 2468 MHz | | Channel 07: | 2409 MHz | Channel 27: | 2429 MHz | Channel 47: | 2449 MHz | Channel 67: | 2469 MHz | | Channel 08: | 2410 MHz | Channel 28: | 2430 MHz | Channel 48: | 2450 MHz | Channel 68: | 2470 MHz | | Channel 09: | 2411 MHz | Channel 29: | 2431 MHz | Channel 49: | 2451 MHz | Channel 69: | 2471 MHz | | Channel 10: | 2412 MHz | Channel 30: | 2432 MHz | Channel 50: | 2452 MHz | Channel 70: | 2472 MHz | | Channel 11: | 2413 MHz | Channel 31: | 2433 MHz | Channel 51: | 2453 MHz | Channel 71: | 2473 MHz | | Channel 12: | 2414 MHz | Channel 32: | 2434 MHz | Channel 52: | 2454 MHz | Channel 72: | 2474 MHz | | Channel 13: | 2415 MHz | Channel 33: | 2435 MHz | Channel 53: | 2455 MHz | Channel 73: | 2475 MHz | | Channel 14: | 2416 MHz | Channel 34: | 2436 MHz | Channel 54: | 2456 MHz | Channel 74: | 2476 MHz | | Channel 15: | 2417 MHz | Channel 35: | 2437 MHz | Channel 55: | 2457 MHz | Channel 75: | 2477 MHz | | Channel 16: | 2418 MHz | Channel 36: | 2438 MHz | Channel 56: | 2458 MHz | Channel 76: | 2478 MHz | | Channel 17: | 2419 MHz | Channel 37: | 2439 MHz | Channel 57: | 2459 MHz | Channel 77: | 2479 MHz | | Channel 18: | 2420 MHz | Channel 38: | 2440 MHz | Channel 58: | 2460 MHz | Channel 78: | 2480 MHz | | Channel 19: | 2421 MHz | Channel 39: | 2441 MHz | Channel 59: | 2461 MHz | | | #### Note: - 1. The EUT is an Intel® Wi-Fi 6 AX200 with built-in WLAN and Bluetooth transceiver, this report for Bluetooth. - 2. These tests were conducted on a sample for the purpose of demonstrating compliance of Bluetooth transmitter with Part 15 Subpart C Paragraph 15.247 for spread spectrum devices. - 3. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test. - 4. This is to request a Class II permissive change for FCC ID: CJ6AX200D2WLWB, originally granted on 03/28/2022. The major change filed under this application is: Change #1: Additional Chassis added, Product name: Notebook PC, Model number: SATELLITE C50D-B, SATELLITE PRO C50D-B Change #2: Reduce the Output Power through firmware, and SAR measurement were evaluated. (Only reduce Wi-Fi Output Power, Bluetooth Output Power haven't changes). Change #3: Addition a Folded Dipole Antenna, the antenna type is different with the original application. | Test Mode | Mode 1: Transmit - 1Mbps | |-----------|--------------------------| | | Mode 2: Transmit - 2Mbps | | | Mode 3: Transmit - 3Mbps | ## 1.2. Tested System Details The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are: | Pr | oduct | Manufacturer | Model No. | Serial No. | Power Cord | |----|---------------|--------------|------------------|-------------|--------------------| | 1 | Power Adapter | Chicony | PA-5177E-1AC3 | N/A | Non-shielded, 1.8m | | 2 | Monitor | Lenovo | A21215FS0 | V5DMD987 | Non-shielded, 1.8m | | 3 | External HDD | Transcend | TS1TSJ25MC | F30467-0011 | N/A | | 4 | External HDD | Transcend | TS1TSJ25H3B | F21786-0005 | N/A | | 5 | External HDD | Transcend | TS1TSJ25H3B | F21786-0103 | N/A | | 6 | Microphone & | Verbatim | C09024VB | N/A | N/A | | | Earphone | | | | | | 7 | Notebook PC | DELL | Inspiron 15 3000 | GT5JPJ2 | N/A | | Sign | al Cable Type | Signal cable Description | | | |------|-----------------------------|----------------------------|--|--| | A | Power Cable | Non-shielded, 1.8m | | | | В | HDMI Cable | Shielded, 1.8m | | | | C | USB Cable | Shielded, 1.5m, three PCS. | | | | D | Microphone & Earphone Cable | Non-shielded, 1.2m | | | | Е | LAN Cable | Non-shielded, 3m | | | ## 1.3. Configuration of Tested System Page: 7 of 36 ## 1.4. EUT Exercise Software - 1. Setup the EUT as shown in Section 1.3. - 2. Execute software "DRTU V22.21050.0.0-OEM.DRTU.12004" on the EUT. - 3. Configure the test mode, the test channel, and the data rate. - 4. Press "OK" to start the continuous Transmit. - 5. Verify that the EUT works properly. ## 1.5. Test Facility Ambient conditions in the laboratory: | Performed Item | Items | Required | Actual | |-------------------|------------------|----------|---------| | D 11 (1E 1 1 | Temperature (°C) | 10~40 °C | 23.8 °C | | Radiated Emission | Humidity (%RH) | 10~90 % | 62.4 % | | | Temperature (°C) | 10~40 °C | 21.6 ℃ | | Conductive | Humidity (%RH) | 10~90 % | 58.0 % | USA : FCC Registration Number: TW0033 Canada : CAB Identifier Number: TW0323 / Company Number: 26930 Site Description : Accredited by TAF Accredited Number: 3023 Test Laboratory : DEKRA Testing and Certification Co., Ltd Address : No. 5-22, Ruishukeng Linkou District, New Taipei City, 24451, Taiwan Performed Location : No. 26, Huaya 1st Rd., Guishan Dist., Taoyuan City 333411, Taiwan, R.O.C. Phone number : +886-3-275-7255 Fax number : +866-3-327-8031 Email address : info.tw@dekra.com Website : http://www.dekra.com.tw ## 1.6. List of Test Equipment ## For Conducted measurements /SH2 | | Equipment | Manufacturer | Model No. | Serial No. | Cal. Date | Due. Date | |---|---------------------|--------------|-----------|------------|------------|------------| | X | Spectrum Analyzer | R&S | FSV30 | 103464 | 2022/03/25 | 2023/03/24 | | X | Peak Power Analyzer | KEYSIGHT | 8900B | MY51000539 | 2021/06/07 | 2022/06/06 | | X | Power Sensor | KEYSIGHT | N1923A | MY59240002 | 2021/05/17 | 2022/05/16 | | X | Power Sensor | KEYSIGHT | N1923A | MY59240003 | 2021/05/17 | 2022/05/16 | ## Note: - 1. All equipments are calibrated every one year. - 2. The test instruments marked with "X" are used to measure the final test results. - 3. Test Software version : DEKRA Conduction Test System V9.0.5. ## For Radiated measurements /966-3 | | Equipment | Manufacturer | Model No. | Serial No. | Cal. Date | Due. Date | |---|-------------------|---------------|-------------------|--------------|------------|------------| | | Loop Antenna | AMETEK | HLA6121 | 56736 | 2021/04/14 | 2022/04/13 | | X | Bi-Log Antenna | SCHWARZBECK | VULB9168 | 9168-675 | 2021/08/11 | 2022/08/10 | | X | Horn Antenna | ETS-Lindgren | 3117 | 00227700 | 2021/10/12 | 2022/10/11 | | | Horn Antenna | Com-Power | AH-840 | 101100 | 2021/10/04 | 2022/10/03 | | X | Pre-Amplifier | SGH | PRAMP118 | 20200202 | 2021/03/25 | 2022/03/24 | | X | Pre-Amplifier | EMCI | EMC001330 | 980302 | 2021/07/26 | 2022/07/25 | | | Pre-Amplifier | SGH | EM330 | 60736 | 2021.08.11 | 2022.08.10 | | X | Pre-Amplifier | EMCI | EMC051835SE | 980313 | 2021/11/24 | 2022/11/23 | | | Pre-Amplifier | EMCI | EMC05820SE | 980309 | 2021/09/27 | 2022/09/26 | | | Pre-Amplifier | EMCI | EMC05820SE | 980310 | 2021/07/07 | 2022/07/06 | | | Pre-Amplifier | EMCI | EMC184045SE | 980369 | 2021/04/27 | 2022/04/26 | | X | Coaxial Cable | EMCI | EMC102-KM-KM-600 | 1160314 | 2021/04/27 | 2022/04/26 | | | Coaxial Cable | EMCI | EMC102-KM-KM-7000 | 170242 | 2021/04/27 | 2022/04/26 | | X | Filter | MICRO TRONICS | BRM50702 | G251 | 2021/09/16 | 2022/09/15 | | | Filter | MICRO TRONICS | BRM50716 | G188 | 2021/09/16 | 2022/09/15 | | X | EMI Test Receiver | R&S | ESR3 | 102793 | 2021/12/15 | 2022/12/14 | | X | Spectrum Analyzer | R&S | FSV3044 | 101114 | 2022/02/11 | 2023/02/10 | | | Coaxial Cable | SGH | HA800 | GD20110222-3 | 2022/01/05 | 2023/01/04 | | X | Coaxial Cable | SGH | SGH18 | 20110223-1 | 2022/01/05 | 2023/01/04 | | Λ | Coaxial Cable | SGH | SGH18 | 2021005-3 | 2022/01/05 | 2023/01/04 | | | Coaxial Cable | SGH | SGH18 | 2021001-18 | 2022/01/05 | 2023/01/04 | - 1. All equipments are calibrated every one year. - 2. The test instruments marked with "X" are used to measure the final test results. - 3. Test Software version: AUDIX e3 V9. ## 1.7. Uncertainty Uncertainties have been calculated according to the DEKRA internal document. The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%. Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement. | Test item | Uncertainty | | | |-------------------|-------------|------------|--| | Peak Power Output | ±0.91 dB | | | | Dodicted Emission | Under 1GHz | Above 1GHz | | | Radiated Emission | ±4.06 dB | ±3.73 dB | | ## 2. Peak Power Output ## 2.1. Test Setup ## **2.2.** Limit The maximum peak power shall be less 1Watt. ## 2.3. Test Procedure Tested according to FHSS test procedure of KDB 558074 section 9 (b for compliance to FCC 47CFR 15.247 requirements. ## 2.4. Test Result of Peak Power Output Product : Intel® Wi-Fi 6 AX200 Test Item : Peak Power Output Test Mode : Mode 1: Transmit - 1Mbps Test Date : 2022/03/11 | Channel No. | Frequency | Measurement | Required Limit | Result | |-------------|-----------|-------------|----------------|--------| | | (MHz) | (dBm) | | | | Channel 00 | 2402.00 | 9.25 | 1 Watt= 30 dBm | Pass | | Channel 39 | 2441.00 | 9.75 | 1 Watt= 30 dBm | Pass | | Channel 78 | 2480.00 | 9.81 | 1 Watt= 30 dBm | Pass | Product : Intel® Wi-Fi 6 AX200 Test Item : Peak Power Output Test Mode : Mode 2: Transmit - 2Mbps Test Date : 2022/03/11 | Channel No. | Frequency | Measurement | Required Limit | Result | |-------------|-----------|-------------|----------------|--------| | | (MHz) | (dBm) | | | | Channel 00 | 2402.00 | 9.02 | 1 Watt= 30 dBm | Pass | | Channel 39 | 2441.00 | 9.37 | 1 Watt= 30 dBm | Pass | | Channel 78 | 2480.00 | 9.28 | 1 Watt= 30 dBm | Pass | Product : Intel® Wi-Fi 6 AX200 Test Item : Peak Power Output Test Mode : Mode 3: Transmit - 3Mbps Test Date : 2022/03/11 | Channel No. | Frequency | Measurement | Required Limit | Result | |-------------|-----------|-------------|----------------|--------| | | (MHz) | (dBm) | | | | Channel 00 | 2402.00 | 9.26 | 1 Watt= 30 dBm | Pass | | Channel 39 | 2441.00 | 9.37 | 1 Watt= 30 dBm | Pass | | Channel 78 | 2480.00 | 9.11 | 1 Watt= 30 dBm | Pass | ## 3. Radiated Emission ## 3.1. Test Setup Radiated Emission Under 30MHz Radiated Emission Below 1GHz Radiated Emission Above 1GHz Page: 16 of 36 ## 3.2. Limits ## **➤** General Radiated Emission Limits Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation. | FCC Part 15 Subpart C Paragraph 15.209 Limits | | | | | | | |---|-----------------------------------|------------------------------|--|--|--|--| | Frequency
MHz | Field strength (microvolts/meter) | Measurement distance (meter) | | | | | | 0.009-0.490 | 2400/F(kHz) | 300 | | | | | | 0.490-1.705 | 24000/F(kHz) | 30 | | | | | | 1.705-30 | 30 | 30 | | | | | | 30-88 | 100 | 3 | | | | | | 88-216 | 150 | 3 | | | | | | 216-960 | 200 | 3 | | | | | | Above 960 | 500 | 3 | | | | | Remarks: - 1. RF Voltage $(dBuV) = 20 \log RF \text{ Voltage } (uV)$ - 2. In the Above Table, the tighter limit applies at the band edges. - 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system. #### 3.3. Test Procedure The EUT was setup according to ANSI C63.10, 2013 and tested compliance to FCC 47CFR 15.247 requirements. Measuring the frequency range below 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1GHz, the EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters. The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2013 on radiated measurement. The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz. Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas. The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The measurement frequency range form 9kHz - 10th Harmonic of fundamental was investigated. ## 3.4. Test Result of Radiated Emission ## 4. Band Edge ## 4.1. Test Setup ## **RF** Conducted Measurement ## **RF Radiated Measurement:** #### **4.2.** Limit According to FCC Section 15.247(d). In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)). #### 4.3. Test Procedure The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10: 2013 on radiated measurement. The bandwidth setting below 1GHz and above 1GHz on the field strength meter is 120 kHz and 1MHz, respectively. ## 4.4. Test Result of Band Edge Site :966-3 Condition :3m ,Horizontal Mode :TX_bt1M_2402MHz Test BY :Ashton Chiu | No. | Frequency | Level | Limit
Line | Over
Limit | Read
Level | Factor | Remark | |-----|-----------|--------|---------------|---------------|---------------|--------|--------| | | MHz | dBuV/m | dBuV/m | dB | dBuV | dB | | | 1 | 2390.000 | 45.89 | 74.00 | -28.11 | 32.98 | 12.91 | Peak | | 2 | 2400.000 | 73.34 | | | 60.37 | 12.97 | Peak | | 3 | 2402.000 | 107.09 | | | 94.12 | 12.97 | Peak | #### Note: - 1. Level = Read Level + Factor - 2. Factor = Antenna Factor + Cable Loss Preamp Factor - 3. Over Limit = Level Limit Line | Frequency | Peak | Duty Cycle | Measurement | Margin | Limit | |-------------------|-------------|------------|-------------|---------|--------| | | Measurement | Factor | Level | | | | MHz | dBuV/m | dB | dBuV/m | dB | dBuV/m | | Horizontal | | | | | | | Average Detector: | | | | | | | 2390 | 45.89 | -24.761 | 21.129 | -32.871 | 54.000 | | 2400 | 73.34 | -24.761 | 48.579 | | | | 2402 | 107.09 | -24.761 | 82.329 | | | - 1. Average Measurement=Peak Measurement + Duty Cycle Factor. - 2. The Duty Cycle is refer to section 5. Condition :3m ,VERTICAL Mode :TX_bt1M_2402MHz Test BY :Ashton Chiu | No. | Frequency | Level | Limit
Line | Over
Limit | Read
Level | Factor | Remark | |-----|-----------|--------|---------------|---------------|---------------|--------|--------| | | MHz | dBuV/m | dBuV/m | dB | dBuV | dB | | | 1 | 2389.400 | 44.91 | 74.00 | -29.09 | 32.00 | 12.91 | Peak | | 2 | 2400.000 | 71.70 | | | 58.73 | 12.97 | Peak | | 3 | 2402.000 | 105.51 | | | 92.54 | 12.97 | Peak | ## Note: - Level = Read Level + Factor - 2. Factor = Antenna Factor + Cable Loss Preamp Factor - 3. Over Limit = Level Limit Line | Frequency | Peak | Duty Cycle | Duty Cycle Measurement | | Limit | |-------------------|-------------|------------|------------------------|---------|--------| | | Measurement | Factor | Level | | | | MHz | dBuV/m | dB | dBuV/m | dB | dBuV/m | | Vertical | | | | | | | Average Detector: | | | | | | | 2389.4 | 44.91 | -24.761 | 20.149 | -33.851 | 54.000 | | 2400 | 71.7 | -24.761 | 46.939 | | | | 2402 | 105.51 | -24.761 | 80.749 | | | - 1. Average Measurement=Peak Measurement + Duty Cycle Factor. - 2. The Duty Cycle is refer to section 5. Condition :3m ,Horizontal Mode :TX_bt1M_2480MHz Test BY :Ashton Chiu | No. | Frequency | Level | Limit
Line | Over
Limit | Read
Level | Factor | Remark | |-----|-----------|--------|---------------|---------------|---------------|--------|--------| | | MHz | dBuV/m | dBuV/m | dB | dBuV | dB | | | 1 | 2480.200 | 106.31 | | | 93.24 | 13.07 | Peak | | 2 | 2483.600 | 55.88 | 74.00 | -18.12 | 42.80 | 13.08 | Peak | #### Note: - 1. Level = Read Level + Factor - 2. Factor = Antenna Factor + Cable Loss Preamp Factor - 3. Over Limit = Level Limit Line | Frequency | Peak | Duty Cycle | Measurement | Margin | Limit | |-------------------|-------------|------------|-------------|---------|--------| | | Measurement | Factor | Level | | | | MHz | dBuV/m | dB | dBuV/m | dB | dBuV/m | | Horizontal | | | | | | | Average Detector: | | | | | | | 2480.2 | 106.31 | -24.761 | 81.549 | | | | 2483.6 | 55.88 | -24.761 | 31.119 | -22.881 | 54.000 | - $1. \quad Average\ Measurement = Peak\ Measurement + Duty\ Cycle\ Factor.$ - 2. The Duty Cycle is refer to section 5. Condition :3m ,Vertical Mode :TX_bt1M_2480MHz Test BY :Ashton Chiu | No. | Frequency | Level | Limit
Line | Over
Limit | Read
Level | Factor | Remark | |-----|-----------|--------|---------------|---------------|---------------|--------|--------| | | MHz | dBuV/m | dBuV/m | dB | dBuV | dB | | | 1 | 2480.200 | 103.08 | | | 90.01 | 13.07 | Peak | | 2 | 2483.600 | 52.58 | 74.00 | -21.42 | 39.50 | 13.08 | Peak | #### Note: - 1. Level = Read Level + Factor - 2. Factor = Antenna Factor + Cable Loss Preamp Factor - 3. Over Limit = Level Limit Line | Frequency | Peak | Duty Cycle | Measurement | Margin | Limit | |-------------------|-------------|------------|-------------|---------|--------| | | Measurement | Factor | Level | | | | MHz | dBuV/m | dB | dBuV/m | dB | dBuV/m | | Vertical | | | | | | | Average Detector: | | | | | | | 2480.2 | 103.08 | -24.761 | 78.319 | | | | 2483.6 | 52.58 | -24.761 | 27.819 | -26.181 | 54.000 | - 1. Average Measurement=Peak Measurement + Duty Cycle Factor. - 2. The Duty Cycle is refer to section 5. Condition :3m ,Horizontal Mode :TX_bt3M_2402MHz Test BY :Ashton Chiu | No. | Frequency | Level | Limit
Line | Over
Limit | Read
Level | Factor | Remark | |-----|-----------|--------|---------------|---------------|---------------|--------|--------| | | MHz | dBuV/m | dBuV/m | dB | dBuV | dB | | | 1 | 2390.000 | 53.75 | 74.00 | -20.25 | 40.84 | 12.91 | Peak | | 2 | 2400.000 | 85.66 | | | 72.69 | 12.97 | Peak | | 3 | 2402.000 | 107.55 | | | 94.58 | 12.97 | Peak | ## Note: - 1. Level = Read Level + Factor - 2. Factor = Antenna Factor + Cable Loss Preamp Factor - 3. Over Limit = Level Limit Line | Frequency | Peak | Duty Cycle Measurement | | Margin | Limit | |-------------------|-------------|------------------------|--------|---------|--------| | | Measurement | Factor | Level | | | | MHz | dBuV/m | dB | dBuV/m | dB | dBuV/m | | Horizontal | | | | | | | Average Detector: | | | | | | | 2390 | 53.75 | -25.036 | 28.714 | -25.286 | 54.000 | | 2400 | 85.66 | -25.036 | 60.624 | - | | | 2402 | 107.55 | -25.036 | 82.514 | - | | - 1. Average Measurement=Peak Measurement + Duty Cycle Factor. - 2. The Duty Cycle is refer to section 5. Condition :3m ,Vertical Mode :TX_bt3M_2402MHz Test BY :Ashton Chiu | No. | Frequency | Level | Limit
Line | Over
Limit | Read
Level | Factor | Remark | |-----|-----------|--------|---------------|---------------|---------------|--------|--------| | | MHz | dBuV/m | dBuV/m | dB | dBuV | dB | | | 1 | 2389.200 | 50.55 | 74.00 | -23.45 | 37.64 | 12.91 | Peak | | 2 | 2400.000 | 85.18 | | | 72.21 | 12.97 | Peak | | 3 | 2402.000 | 106.15 | | | 93.18 | 12.97 | Peak | #### Note: - 1. Level = Read Level + Factor - 2. Factor = Antenna Factor + Cable Loss Preamp Factor - 3. Over Limit = Level Limit Line | Frequency | Peak | Duty Cycle | Duty Cycle Measurement | | Limit | |-------------------|-------------|------------|------------------------|---------|--------| | | Measurement | Factor | Level | | | | MHz | dBuV/m | dB | dBuV/m | dB | dBuV/m | | Vertical | | | | | | | Average Detector: | | | | | | | 2389.2 | 50.55 | -25.036 | 25.514 | -28.486 | 54.000 | | 2400 | 85.18 | -25.036 | 60.144 | - | | | 2402 | 106.15 | -25.036 | 81.114 | | | - 1. Average Measurement=Peak Measurement + Duty Cycle Factor. - 2. The Duty Cycle is refer to section 5. Condition :3m ,Horizontal Mode :TX_bt3M_2480MHz Test BY :Ashton Chiu | No. | Frequency | Level | | Over
Limit | | Factor | Remark | |-----|-----------|--------|--------|---------------|-------|--------|--------| | | MHz | dBuV/m | dBuV/m | dB | dBuV | dB | | | 1 | 2480.200 | 105.84 | | | 92.77 | 13.07 | Peak | | 2 | 2484.000 | 63.19 | 74.00 | -10.81 | 50.11 | 13.08 | Peak | ## Note: - 1. Level = Read Level + Factor - 2. Factor = Antenna Factor + Cable Loss Preamp Factor - 3. Over Limit = Level Limit Line | Frequency | Peak | Duty Cycle | Measurement | Margin | Limit | |-------------------|-------------|------------|-------------|---------|--------| | | Measurement | Factor | Level | | | | MHz | dBuV/m | dB | dBuV/m | dB | dBuV/m | | Horizontal | | | | | | | Average Detector: | | | | | | | 2480.2 | 105.84 | -25.036 | 80.804 | | | | 2484 | 63.19 | -25.036 | 38.154 | -15.846 | 54.000 | - 1. Average Measurement=Peak Measurement + Duty Cycle Factor. - 2. The Duty Cycle is refer to section 5. Condition :3m ,Vertical Mode :TX_bt3M_2480MHz Test BY :Ashton Chiu | No. | Frequency | Level | | Over
Limit | Read
Level | Factor | Remark | |-----|-----------|--------|--------|---------------|---------------|--------|--------| | | MHz | dBuV/m | dBuV/m | dB | dBuV | dB | | | 1 | 2480.200 | 102.48 | | | 89.41 | 13.07 | Peak | | 2 | 2483.600 | 59.67 | 74.00 | -14.33 | 46.59 | 13.08 | Peak | #### Note: - 1. Level = Read Level + Factor - 2. Factor = Antenna Factor + Cable Loss Preamp Factor - 3. Over Limit = Level Limit Line | Frequency | Peak | Duty Cycle | Measurement | Margin | Limit | |-------------------|-------------|--------------------------|-------------|--------|-------| | | Measurement | Factor | Level | | | | MHz | dBuV/m | ıV/m dB dBuV/m dB | | dBuV/m | | | Vertical | | | | | | | Average Detector: | | | | | | | 2480.2 | 102.48 | -25.036 | 77.444 | | | | 2483.6 | 59.67 | -25.036 34.634 -19.366 5 | | 54.000 | | - 1. Average Measurement=Peak Measurement + Duty Cycle Factor. - 2. The Duty Cycle is refer to section 5. ## 5. Duty Cycle ## 5.1. Test Setup ## **5.2.** Test Procedure The EUT was setup according to ANSI C63.10 2013; tested according to ANSI C63.10 2013 for compliance to FCC 47CFR 15.247 requirements. ## **5.3.** Test Result of Duty Cycle Product : Intel® Wi-Fi 6 AX200 Test Item : Duty Cycle Test Mode : Mode 1: Transmit - 1Mbps Time on of 100ms= 5.78ms Duty Cycle= 5.78ms / 100ms= 0.0578 Duty Cycle correction factor= 20 LOG 0.0578= -24.761dB | Duty Cycle correction factor | -24.761 | dB | |-------------------------------------|---------|----| |-------------------------------------|---------|----| Product : Intel® Wi-Fi 6 AX200 Test Item : Duty Cycle Test Mode : Mode 3: Transmit - 3Mbps Time on of 100ms= 5.6ms Duty Cycle= 5.6ms / 100ms= 0.056 Duty Cycle correction factor= 20 LOG 0.056= -25.036dB | Duty Cycle correction factor | -25.036 | dB | |-------------------------------------|---------|----| |-------------------------------------|---------|----| | 6. | EMI Re | duction | Method | During | Compliance | Testing | |----|---------------|---------|--------|---------------|------------|----------------| |----|---------------|---------|--------|---------------|------------|----------------| No modification was made during testing.