

Report No.:

Test Report

Date of issue:	2024-11-12
Applicant:	Beijing Cozyla Technology Itd.
Product name:	Cozyla Calendar+ Go

MTi240925018-01E4

- Model(s): Cozyla CD-8S541P
- FCC ID: 2BCES-CD8S541P

Shenzhen Microtest Co., Ltd. http://www.mtitest.cn

The test report is only used for customer scientific research, teaching, internal quality control and other purposes, and is for internal reference only.

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of contents

1	Gene	eral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	5 8 8
2		mary of Test Result	
3	Test	Facilities and accreditations	10
	3.1	Test laboratory	10
4	List o	of test equipment	11
5	Evalu	uation Results (Evaluation)	12
	5.1	Antenna requirement	12
6	Radio	o Spectrum Matter Test Results (RF)	12
	6.1 6.2 6.3	Conducted Emission at AC power line Duty Cycle Emission bandwidth and occupied bandwidth	15
	6.4 6.5 6.6 6.7	Maximum conducted output power Power spectral density Band edge emissions (Radiated) Undesirable emission limits (below 1GHz)	
	6.8	Undesirable emission limits (above 1GHz)	
Pho	otogra	aphs of the test setup	89
Pho	otogra	aphs of the EUT	89
Ар	pendix	x A1: Emission bandwidth (26dB bandwidth)	91
	6.9 6.10	Appendix A2: Occupied channel bandwidth Appendix A3: Min emission bandwidth	
Ap	pendix	x B: Duty Cycle	119
Ар	pendix	x C: Maximum conducted output power	130
Ap	pendix	x D: Maximum power spectral density	141
Ap	pendix	x G: Frequency Stability	152
Pho	otogra	aphs of the Test Setup	156
Pho	otogra	aphs of the EUT	157

Test Result Certification					
Applicant:	Beijing Cozyla Technology Itd.				
Address: Room A419 Building1, No. 12 Shangdi Information Road, Haidia Beijing PRC 100080					
Manufacturer:	Beijing Cozyla Technology ltd.				
Address:	Room A419 Building1, No. 12 Shangdi Information Road, Haidian District, Beijing PRC 100080				
Product description					
Product name:	Cozyla Calendar+ Go				
Trade mark: N/A					
Model name: Cozyla CD-8S541P					
Series Model(s): N/A					
Standards:	47 CFR Part 15E				
Test Method:	KDB 789033 D02 General UNII Test Procedures New Rules v02r01 ANSI C63.10-2013				
Date of Test	Date of Test				
Date of test:	2024-11-04 to 2024-11-12				
Test result: Pass					

Test Engineer	:	James Qin
		(James Qin)
Reviewed By	:	Dowid. Cee
		(David Lee)
Approved By	:	(con chen
		(Leon Chen)

1 General Description

1.1 Description of the EUT

Product name:	Cozyla Calendar+ Go
Model name:	Cozyla CD-8S541P
Series Model(s):	N/A
Model difference:	N/A
Electrical rating:	Input: DC 9V/2.22A Battery: DC 3.85V 10000mAh
Accessories:	Adaptor: Adaptor: Model: KWY-PD20U Input: AC 100-240V~ 50/60Hz 0.5A Output: USB-C 5V/3A, 9V/2.22A, 12V/1.67A Cable: Type-C to Type-C cable (2.1m)*1
Hardware version:	A16-T616(EDP)V2.0
Software version:	ums9230_156_a16_user_W22.24.2_20241016
Test sample(s) number:	MTi240925018-01S1001
RF specification	
Operating frequency range:	802.11a/n(HT20)/ac(HT20)): U-NII 1: 5180MHz to 5240MHz; U-NII 3: 5745MHz to 5825MHz; 802.11n(HT40)/ac(HT40): U-NII 1: 5190MHz to 5230MHz; U-NII 3: 5755MHz to 5795MHz; 802.11ac(HT80): U-NII 1: 5210MHz; U-NII 3: 5775MHz
Channel number:	802.11a: 6,9,12,18,24,36,48,54Mbps; 802.11n(HT20/HT40): MCS0-MCS15; 802.11ac(VHT20): NSS1, MCS0-MCS8 802.11ac(VHT40): NSS1, MCS0-MCS9 802.11ac(VHT80) :NSS1,MCS0-MCS9
Modulation type:	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM); 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM);
Antenna(s) type:	FPC
Antenna(s) gain:	3.46dBi
1.2 Description of test	

1.2 Description of test modes

No.	Emission test modes
Mode1	802.11a mode
Mode2	802.11n20 mode
Mode3	802.11n40 mode

Mode4	802.11ac20 mode
Mode5	802.11ac40 mode
Mode6	802.11ac80 mode

1.2.1 Operation channel list

U-NII Band 1

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	38	5190	42	5210
40	5200	46	5230	/	/
44	5220	/	/	/	/
48	5240	/	/	/	/

U-NII Band 3

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	151	5755	155	5775
153	5765	159	5795	/	/
157	5785	/	1	/	/
161	5805	/	1	/	/
165	5825	/	/	/	/

Test Channel List Operation Band: 5150-5250 MHz

Bandwidth	Lowest Channel (LCH)	Middle Channel (MCH)	Highest Channel (HCH)
(MHz)	(MHz) (MHz)		(MHz)
20	5180	5200	5240
40	5190	/	5230
80	5210	5210	5210

Operation Band: 5725-5850 MHz

	Bandwidth	Bandwidth Lowest Channel (LCH)		Highest Channel (HCH)			
	(MHz)	(MHz)	(MHz)	(MHz)			
Ī	20	5745	5785	5825			
Ī	40	5755	/	5795			
Ī	80	5775	5775	5775			

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software: engineering pattern

For power setting, refer to below table.

Mode	LCH	MCH	HCH
802.11a	14	14	14
802.11n(HT20)	14	14	14
802.11n(HT40)	12	1	12
802.11ac(VHT20)	13	13	13
802.11ac(VHT40)	12	/	12
802.11ac(VHT80)	12	12	12

Mode	LCH	MCH	НСН
802.11a	15	15	15
802.11n(HT20)	15	15	15
802.11n(HT40)	15	/	15
802.11ac(VHT20)	15	15	15
802.11ac(VHT40)	302.11ac(VHT40) 15		15
802.11ac(VHT80)	15	15	15

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

Support equipment list							
Description	Model	Serial No.	Manufacturer				
1	1	/	/				
Support cable list	Support cable list						
Description	Length (m)	From	То				
1	1	/	1				

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB
Time	±1 %
Occupied channel bandwidth	±3 %
RF output power, conducted	±1 dB
Power Spectral Density, conducted	±1 dB
Radiated spurious emissions (above 1GHz)	±5.3dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Standard	Requirement	Result
1	Antenna requirement	47 CFR Part 15E	Part 15.203	Pass
2	Conducted Emission at AC power line	47 CFR Part 15E	47 CFR Part 15.207(a)	Pass
3	Duty Cycle	47 CFR Part 15E		Pass
4	Emission bandwidth and occupied bandwidth	47 CFR Part 15E	U-NII 1, U-NII 2A, U- NII 2C: No limits, only for report use. 47 CFR Part 15.407(e)	Pass
5	Maximum conducted output power	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)	Pass
6	Power spectral density	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)	Pass
7	Band edge emissions (Radiated)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass
8	Undesirable emission limits (below 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(9)	Pass
9	Undesirable emission limits (above 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.						
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China						
Telephone:	(86-755)88850135						
Fax:	(86-755)88850136						
CNAS Registration No.:	CNAS L5868						
FCC Registration No.:	448573						
IC Registration No.:	21760						
CABID:	CN0093						

4 List of test equipment

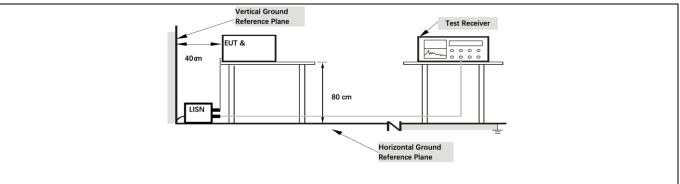
No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due			
	Conducted Emission at AC power line								
1	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2024-03-20	2025-03-19			
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2024-03-21	2025-03-20			
3	Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2024-03-20	2025-03-19			
		Power	onducted output spectral density Duty Cycle Ith and occupied						
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2024-03-20	2025-03-19			
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2024-03-21	2025-03-20			
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20			
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2024-03-21	2025-03-20			
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2024-03-21	2025-03-20			
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2024-03-21	2025-03-20			
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2024-03-21	2025-03-20			
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2024-03-20	2025-03-19			
9	DC Power Supply	Agilent	E3632A	MY40027695	2024-03-21	2025-03-20			
		Band edge Undesirable emi	emissions (Radi ssion limits (abo						
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19			
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06-17	2025-06-16			
3	Amplifier	Agilent	8449B	3008A01120	2024-03-20	2025-03-19			
4	MXA signal analyzer	Agilent	N9020A	MY54440859	2024-03-21	2025-03-20			
5	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20			
6	Horn antenna	Schwarzbeck	BBHA 9170	00987	2023-06-17	2025-06-16			
7	Pre-amplifier	Space-Dtronics	EWLAN1840 G	210405001	2024-03-21	2025-03-20			
		Undesirable emi	ission limits (bel	ow 1GHz)					
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19			
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10			
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03-23	2025-03-22			
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2024-03-20	2025-03-19			

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

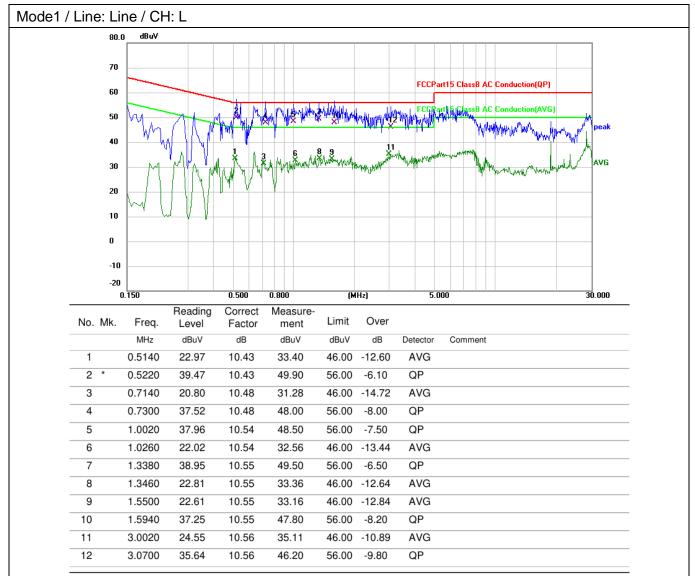
Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	---

6 Radio Spectrum Matter Test Results (RF)

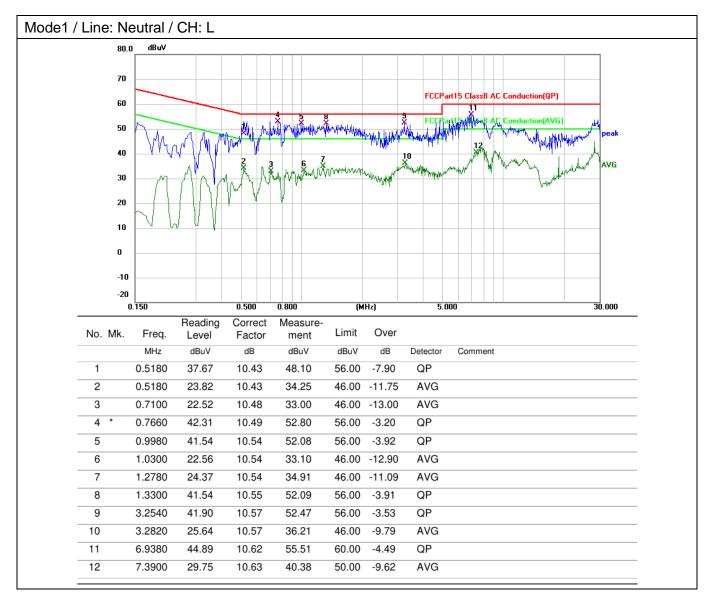

6.1 Conducted Emission at AC power line

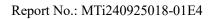
Test Requirement:	47 CFR Part 15.207(a)				
Test Limit:	Frequency of emission (MHz)	Conducted limit (d	BµV)		
		Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	*Decreases with the logarithm of the frequency.				
Test Method:	ANSI C63.10-2013 section 6.2				

6.1.1 E.U.T. Operation:

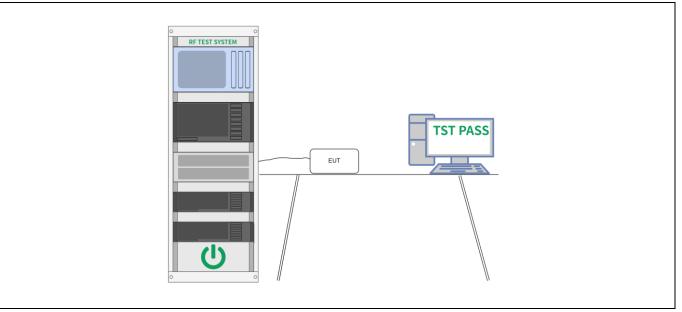

Operating Environment:						
Temperature: 25 °C Humidity: 59 % Atmospheric Pressure: 101 kPa						
Pre test mode:	Pre test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6					
Final test mode: All of the listed pre-test mode were tested, only the data of the worst mode (Mode1) is recorded in the report						

6.1.2 Test Setup Diagram:





6.1.3 Test Data:


6.2 Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Limit:	No limits, only for report use.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

6.2.1 E.U.T. Operation:

Operating Environment:						
Temperature:	Temperature: 25 °C Humidity: 59 % Atmospheric Pressure: 101 kPa					
Pre test mode:	Pre test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6					
Final test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6						

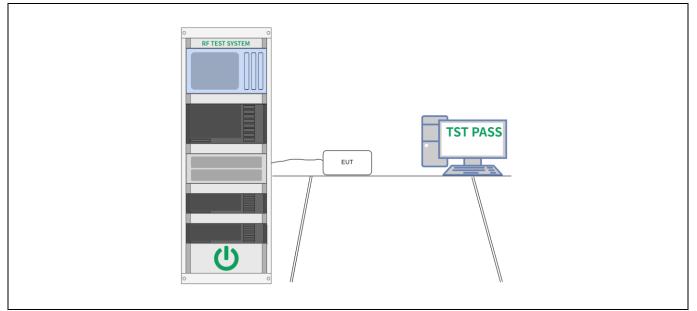
6.2.2 Test Setup Diagram:

6.2.3 Test Data:

Please Refer to Appendix for Details.

6.3 Emission bandwidth and occupied bandwidth

Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Test Limit:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 6.9 & 12.4 KDB 789033 D02, Clause C.2
Test Method: Procedure:	
	report the measured bandwidth. g) If the instrument does not have a 99% power bandwidth function, then the
	trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points,
	beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated
	until 99.5% of the



total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies. h) The occupied bandwidth shall be reported by providing plot(s) of the
measuring instrument display; the plot axes and the scale units per division shall be clearly labeled.
Tabular data may
be reported in addition to the plot(s).
6 dB emission bandwidth:
a) Set RBW = 100 kHz.
b) Set the video bandwidth (VBW) ≥ 3 >= RBW.
c) Detector = Peak.
d) Trace mode = max hold.
e) Sweep = auto couple.
f) Allow the trace to stabilize.
g) Measure the maximum width of the emission that is constrained by the
frequencies associated with the two outermost amplitude points (upper and
lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.3.1 E.U.T. Operation:

Operating Environment:						
Temperature: 25 °C Humidity: 59 % Atmospheric Pressure: 101 kPa						
Pre test mode:	Pre test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6					
Final test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6						

6.3.2 Test Setup Diagram:

6.3.3 Test Data:

Please Refer to Appendix for Details.

6.4 Maximum conducted output power

Test Requirement:	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)
Test Limit:	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to- point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems

	employing high gain directional antennas are used exclusively for fixed, point- to-point operations.
Test Method:	ANSI C63.10-2013, section 12.3
Procedure:	Refer to ANSI C63.10-2013 section 12.3

6.4.1 E.U.T. Operation:

Operating Environment:						
Temperature:25 °CHumidity:59 %Atmospheric Pressure:101 kPa						
Pre test mode:	Pre test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6					
Final test mode	Final test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6					

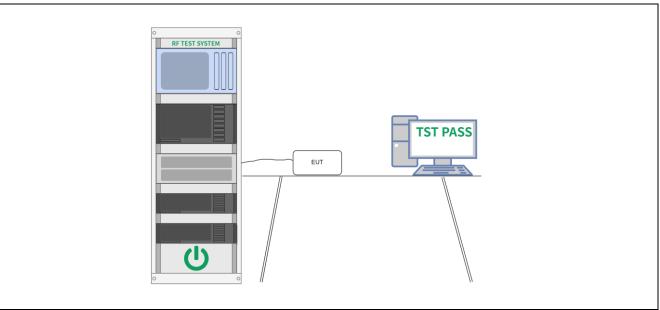
6.4.2 Test Setup Diagram:

6.4.3 Test Data:

Please Refer to Appendix for Details.

6.5 Power spectral density

Test Requirement:	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)
Test Limit:	 For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.
	maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1
	megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to- point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint
Test Method:	systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. ANSI C63.10-2013, section 12.5


Page 21 of 157

Procedure: Refer to ANSI C63.10-2013, section 12.5

6.5.1 E.U.T. Operation:

Operating Environment:						
Temperature:	25 °C		Humidity:	59 %	Atmospheric Pressure:	101 kPa
Pre test mode:	Pre test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6					
Final test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6						

6.5.2 Test Setup Diagram:

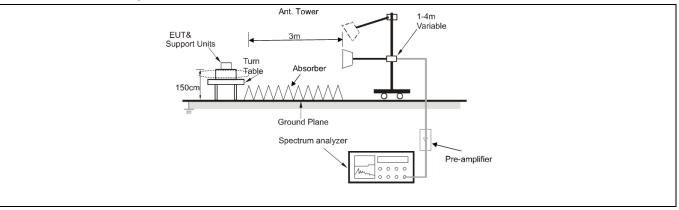
6.5.3 Test Data:

Please Refer to Appendix for Details.

6.6 Band edge emissions (Radiated)

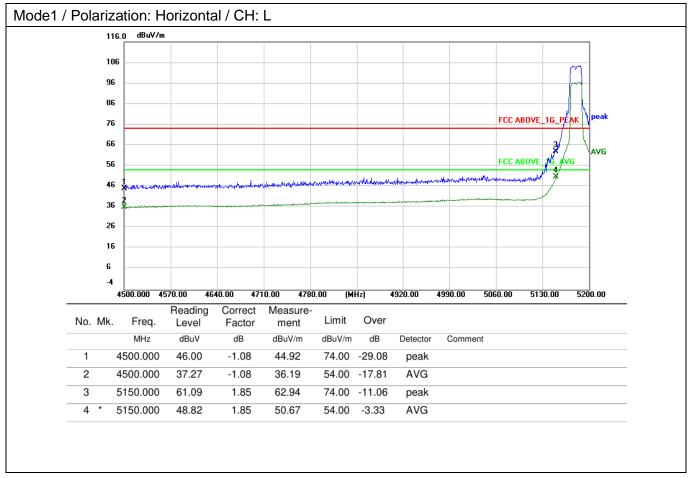
Test Requirement:	47 CFR Part 15.407 47 CFR Part 15.407 47 CFR Part 15.407	(b)(4)						
ēst Limit:		For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.						
	All emissions shall b	For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more						
	above or below the b							
	above or below the b							
	edge increasing lines							
	the band edge, and the band edge, and the band edge, and the band edge and the band			a edge increasing				
	linearly to a level of 2							
	MHz	MHz	MHz	GHz				
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
	¹ 0.495-0.505	16.69475- 16.69525	608-614	5.35-5.46				
	2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75				
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5				
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2				
	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5				
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4				
	6.31175-6.31225	123-138	2200-2300	14.47-14.5				
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4				
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
	12.51975- 12.52025	240-285	3345.8-3358	36.43-36.5				
	12.57675- 12.57725	322-335.4	3600-4400	(2)				
	13.36-13.41		1					
	¹ Until February 1, 19 ² Above 38.6	999, this restricted ba	and shall be 0.49	90-0.510 MHz.				
	 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The 							
	provisions in § 15.35	apply to these meas	urements.					
	Except as provided e intentional radiator s following table:							

	Frequency (MHz)	Field strength	Measurement				
		(microvolts/meter)	distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	2400/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
			-				
Test Method: Procedure:	 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in th frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under othe sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector except for the frequency bands is three bands are based on measurements employing an average detector ANSI C63.10-2013, section 12.7.4, 12.7.6, 12.7.7 Above 1GHz: a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving anten which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizon 						
	 then the antenna was to frequency of below 30M the rotatable table was maximum reading. e. The test-receiver sys Bandwidth with Maximuf. If the emission level of specified, then testing of would be reported. Other 	f the EUT in peak mode was ould be stopped and the pe erwise the emissions that die	r to 4 meters (for the test to heights 1 meter) and 0 degrees to find the Function and Specified s 10dB lower than the limit ak values of the EUT d not have 10dB margin				
	and then reported in a o g. Test the EUT in the lo channel.	would be re-tested one by one using peak or average method as specified and then reported in a data sheet.g. Test the EUT in the lowest channel, the middle channel, the Highest channel.					
	Transmitting mode, and case.	l found the X axis positioning	ements are performed in X, Y, Z axis positioning for found the X axis positioning which it is the worst				
	 i. Repeat above procedures until all frequencies measured was complete. Remark: 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. 						
	3. As shown in this sect	ion, for frequencies above 1	GHz, the field strength				

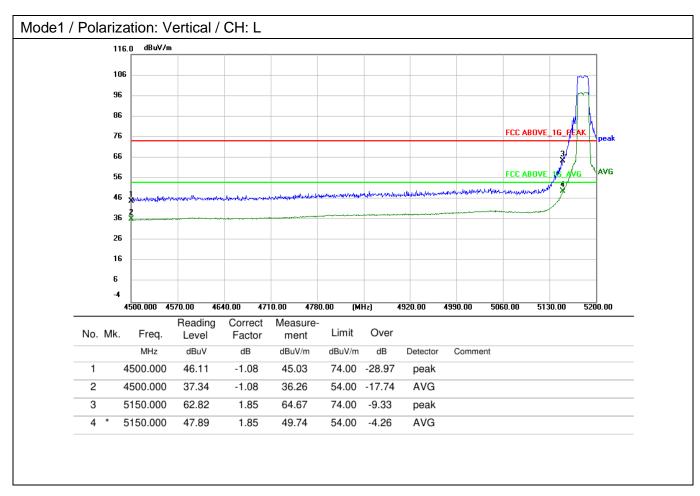


 limits are based on average limits. However, the peak field strength of emission shall not exceed the maximum permitted average limits spection above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the measurement is shown in the report. 4. The disturbance above 18GHz were very low and the harmonics whighest point could be found when testing, so only the above harmor been displayed. 	ecified e peak vere the
---	----------------------------------

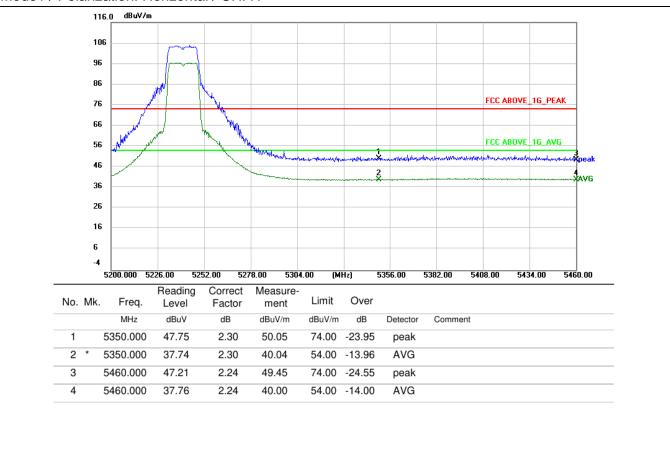
6.6.1 E.U.T. Operation:

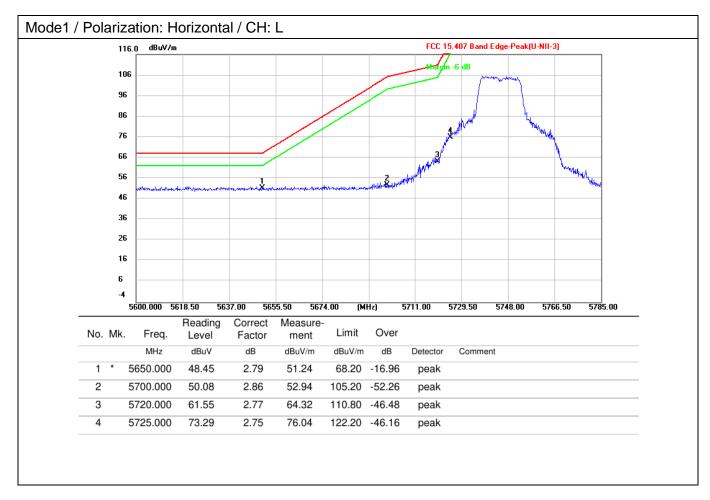

Operating Environment:						
Temperature:	24 °C		Humidity:	54 %	Atmospheric Pressure:	101 kPa
Pre test mode:	Pre test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6					
Final test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6						

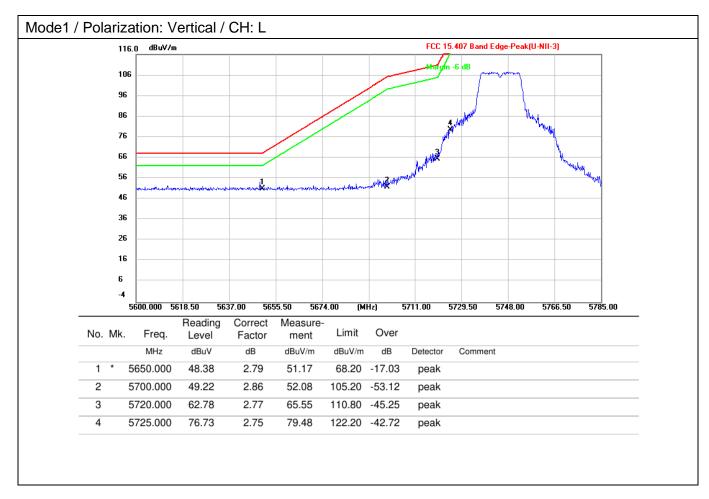
6.6.2 Test Setup Diagram:



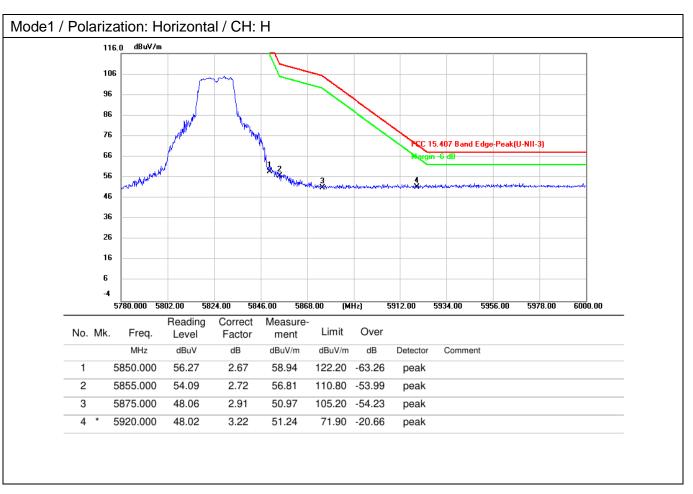
6.6.3 Test Data:

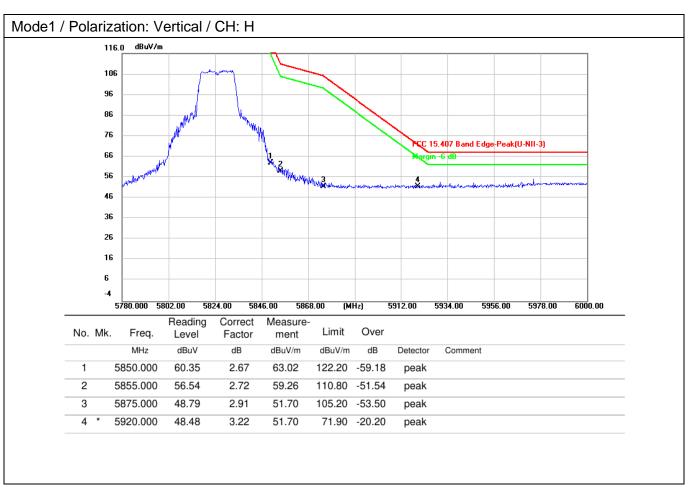


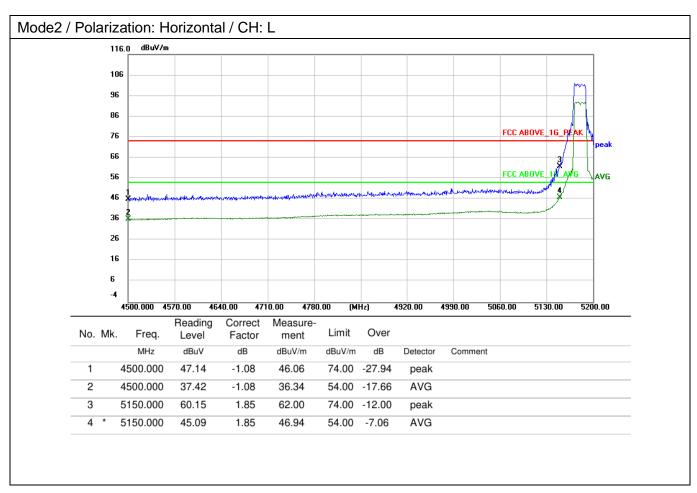

Mode1 / Polarization: Horizontal / CH: H

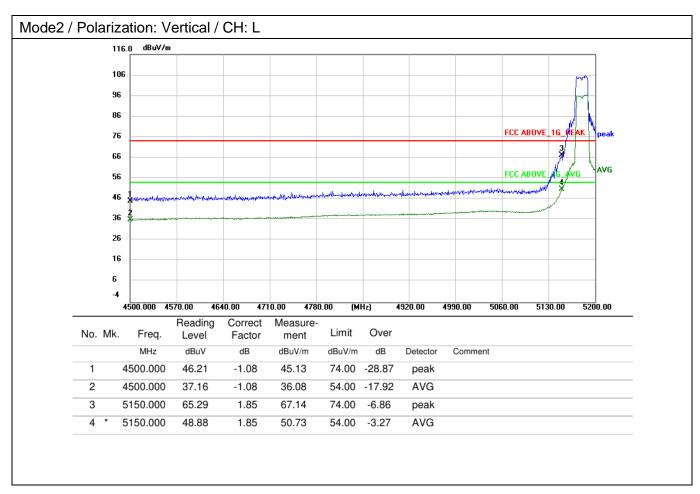


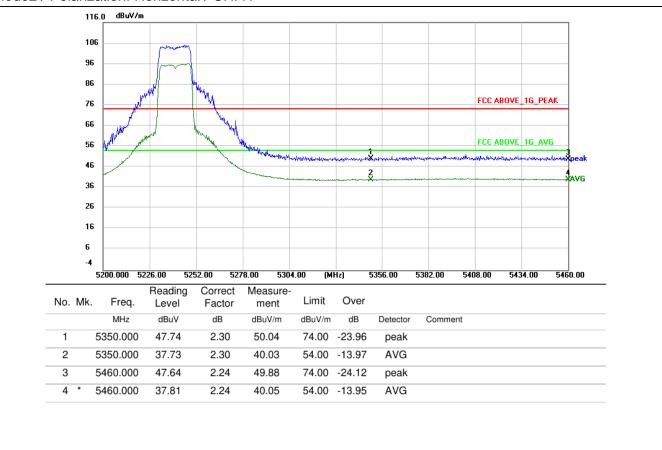
Mode1 / Polarization: Vertical / CH: H 116.0 dBu¥/m 106 96 86 FCC ABOVE_1G_PEAK 76 When the second 66 FCC ABOVE 16_AVG 56 Mahahaman alway month and the 46 3 AVG 36 26 16 6 -4 5460.00 5200.000 5226.00 5252.00 5278.00 5304.00 (MHz) 5356.00 5382.00 5408.00 5434.00 Reading Correct Measure Over Limit No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m dBuV/m dB Detector Comment 1 5350.000 46.33 2.30 48.63 74.00 -25.37 peak 2 5350.000 37.63 2.30 39.93 54.00 -14.07 AVG 3 5460.000 47.17 2.24 49.41 74.00 -24.59 peak 4 * 5460.000 37.91 2.24 40.15 54.00 -13.85 AVG

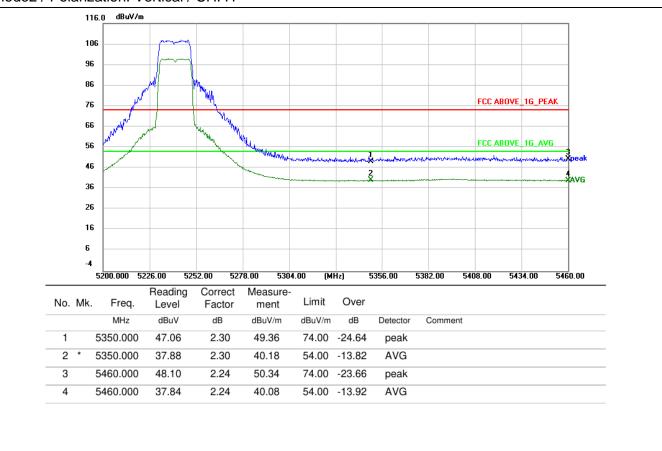




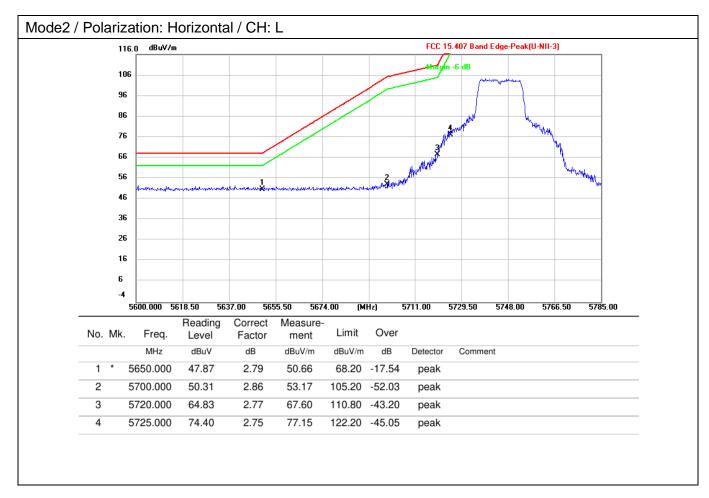




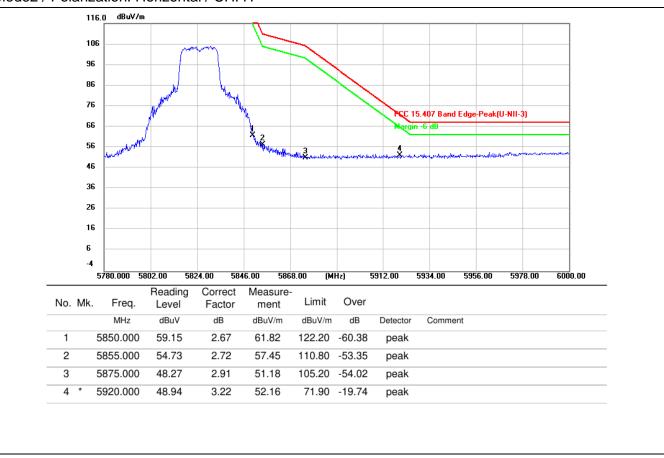


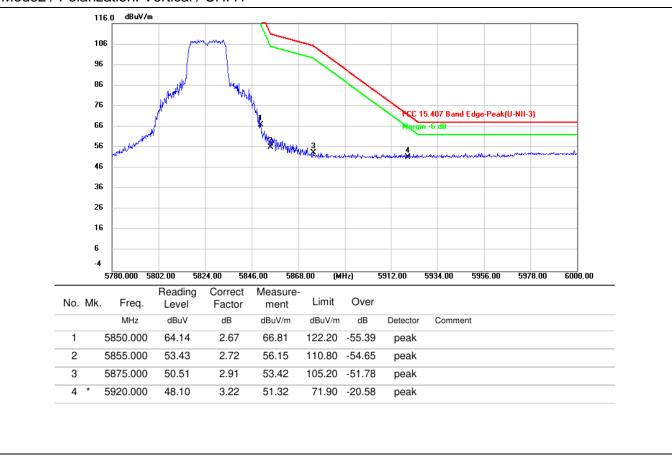


Mode2 / Polarization: Horizontal / CH: H

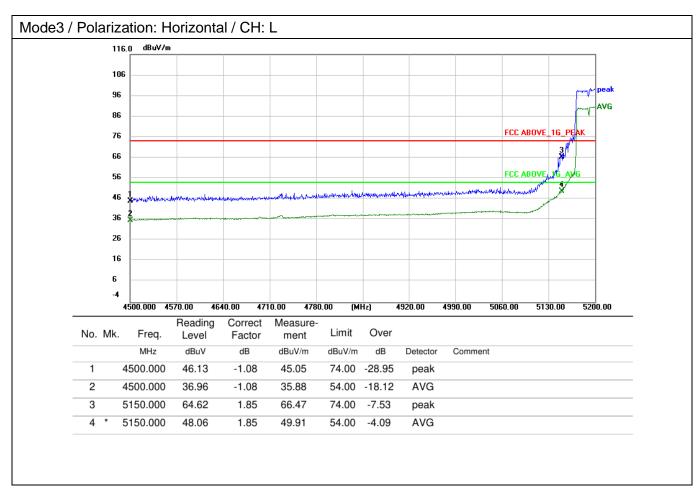


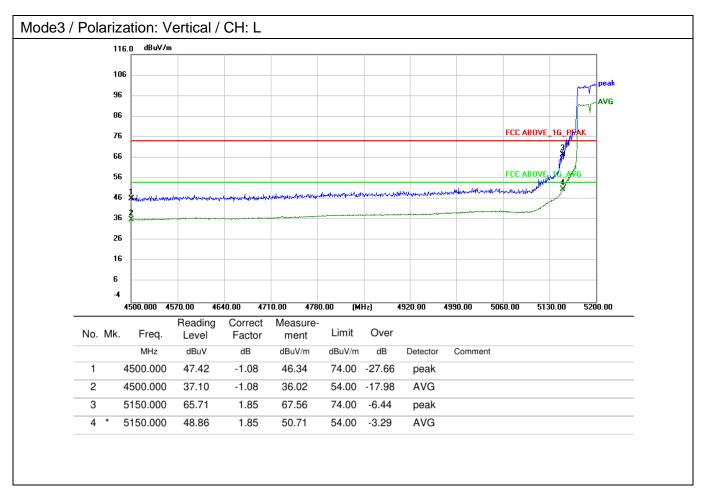
Mode2 / Polarization: Vertical / CH: H

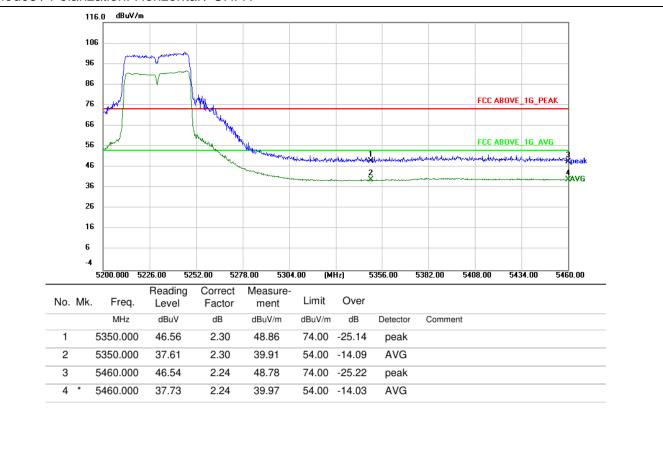


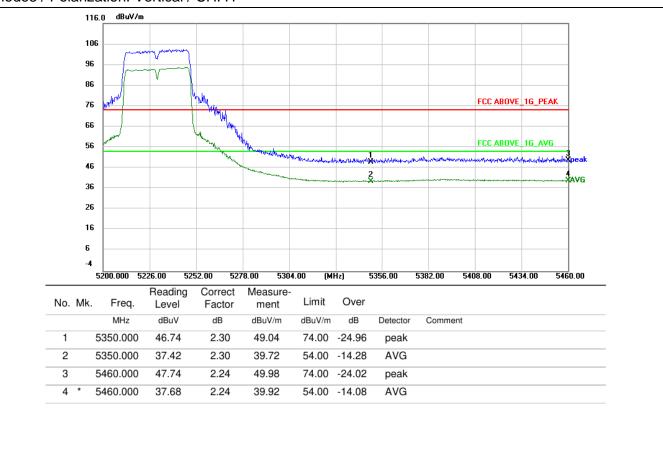


Mode2 / Polarization: Horizontal / CH: H

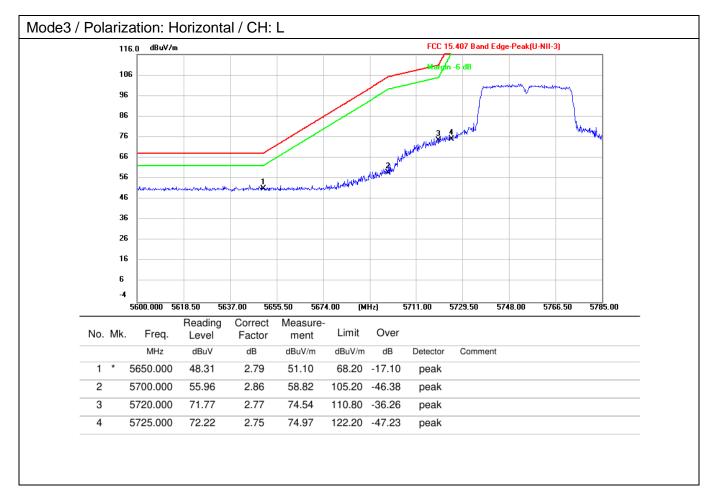


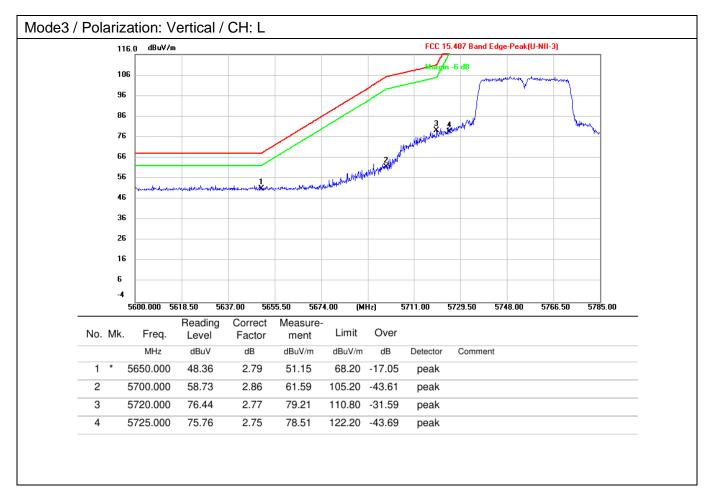

Mode2 / Polarization: Vertical / CH: H

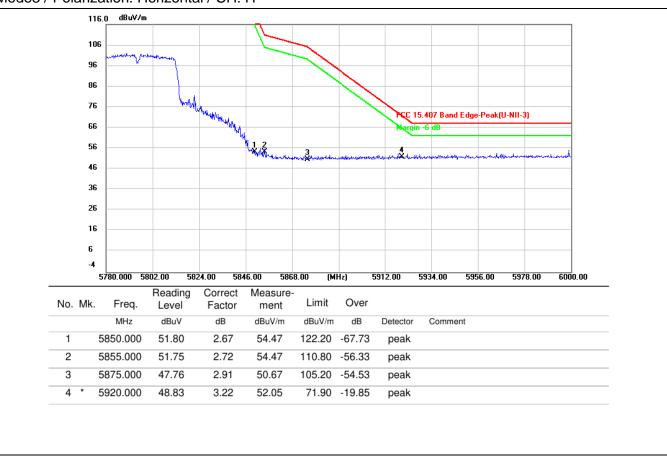


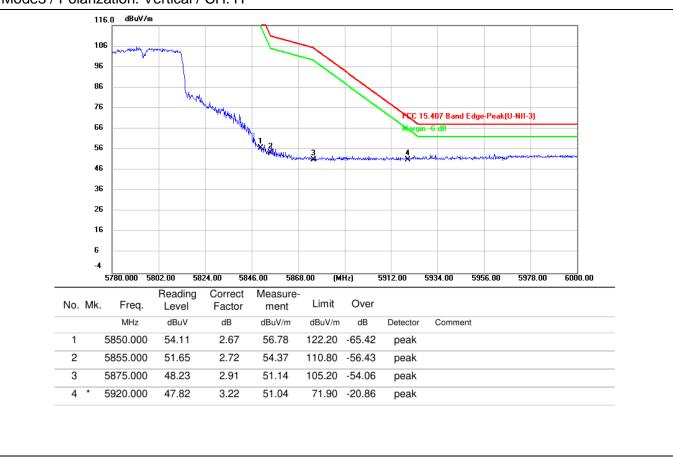


Mode3 / Polarization: Horizontal / CH: H

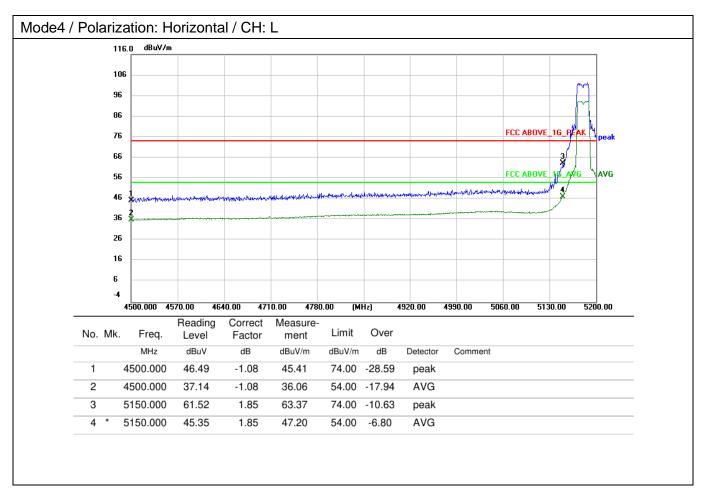


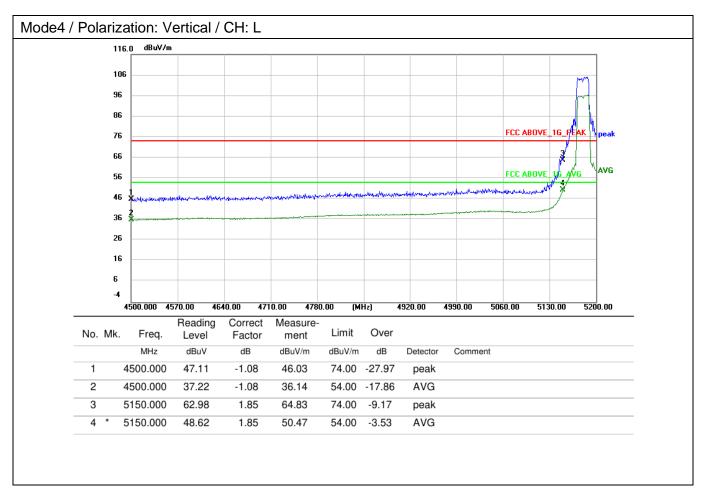

Mode3 / Polarization: Vertical / CH: H

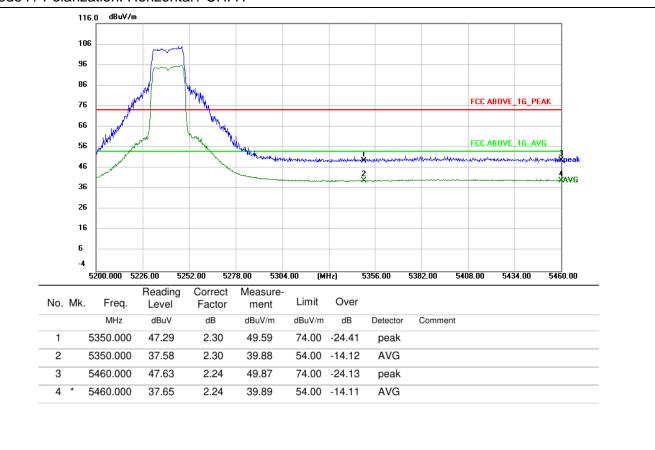


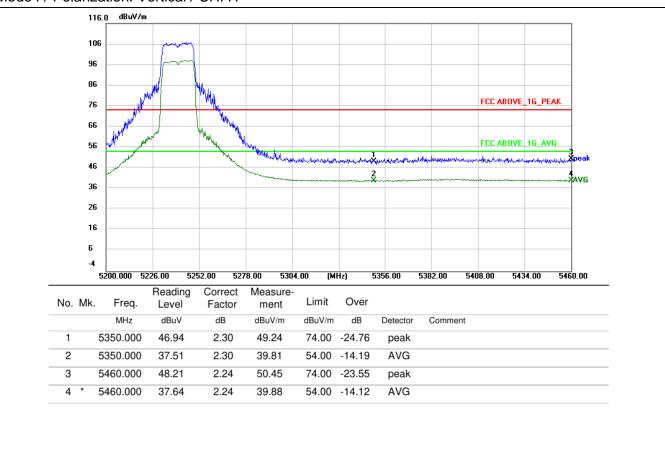


Mode3 / Polarization: Horizontal / CH: H

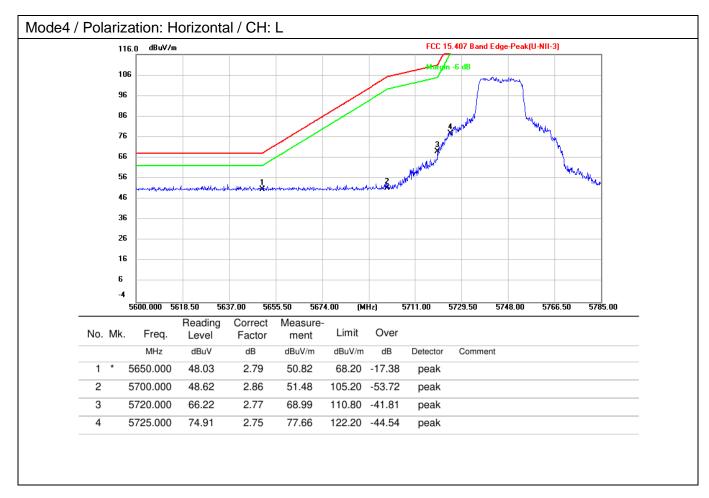


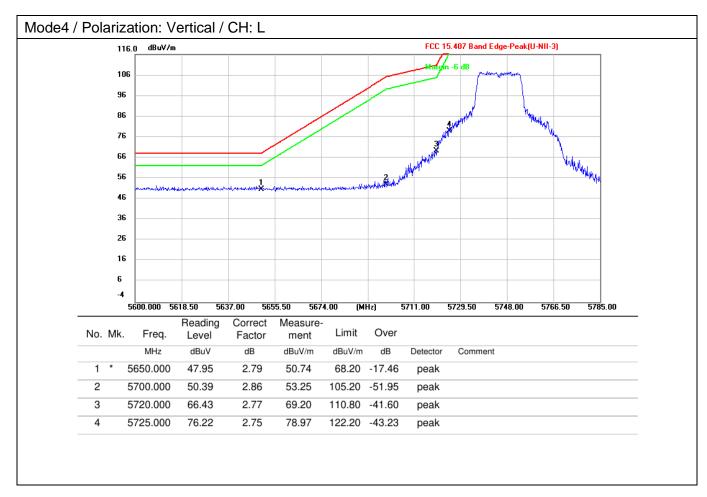

Mode3 / Polarization: Vertical / CH: H

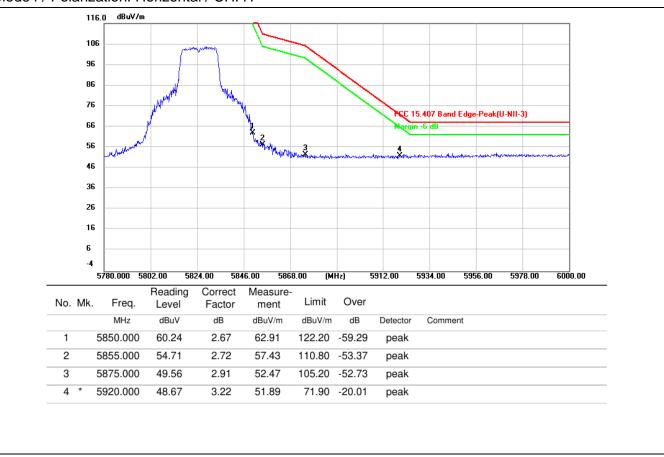


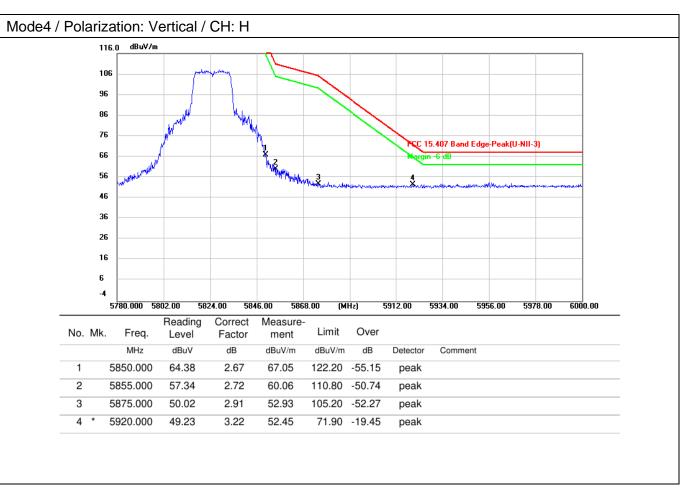


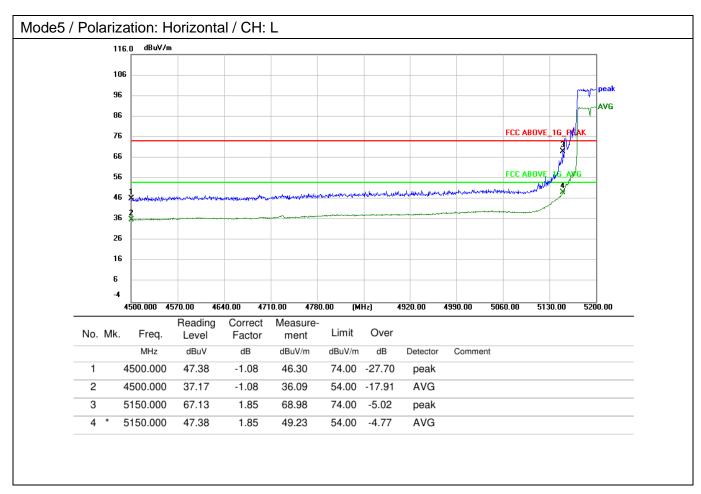
Mode4 / Polarization: Horizontal / CH: H

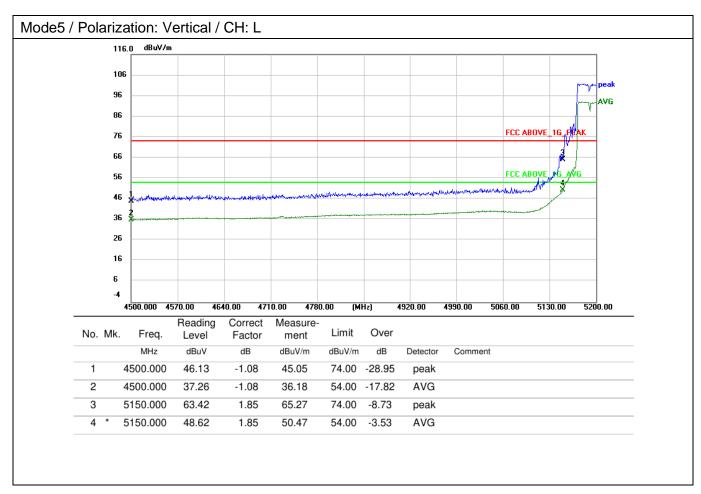


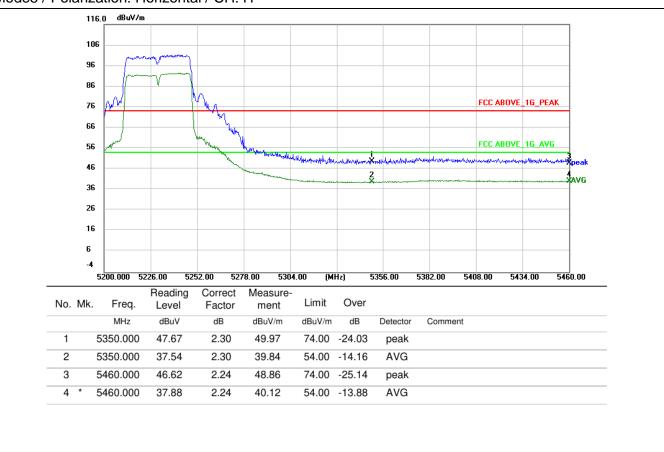

Mode4 / Polarization: Vertical / CH: H

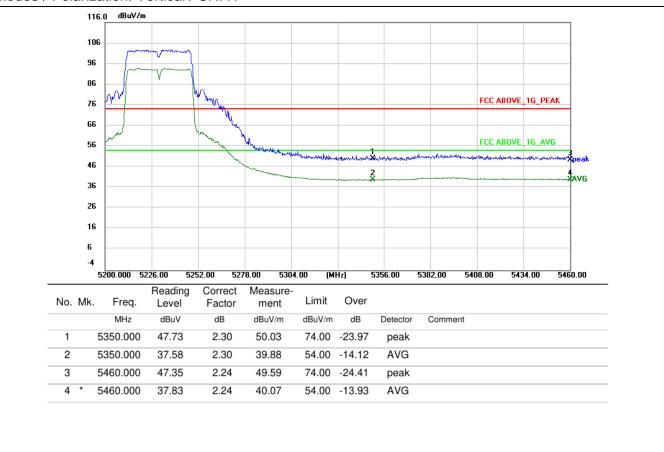




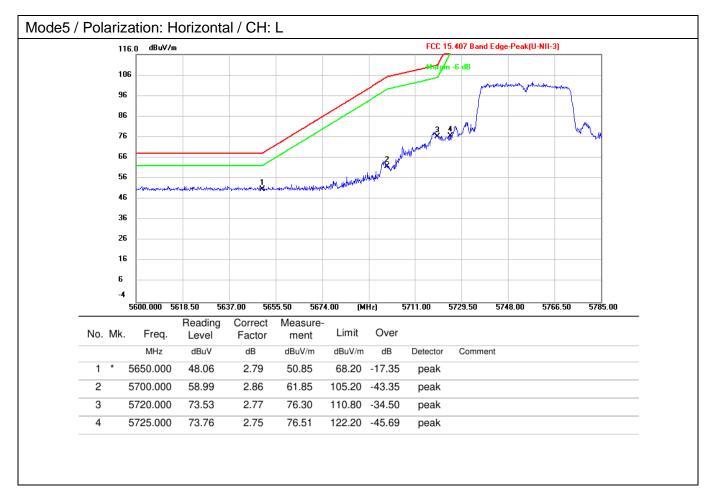

Mode4 / Polarization: Horizontal / CH: H

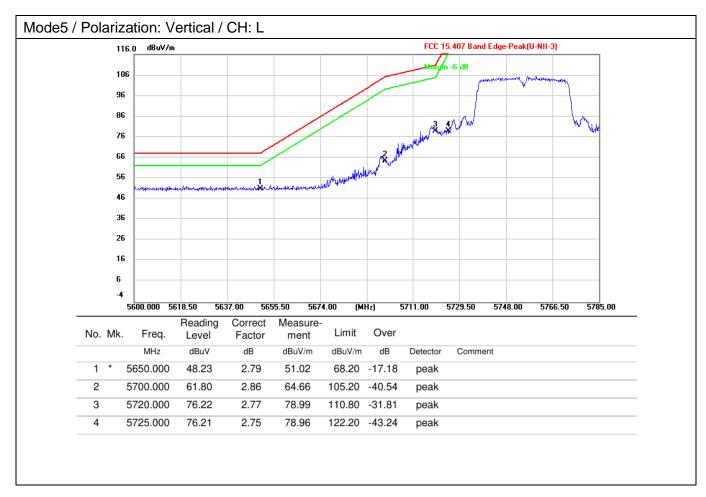


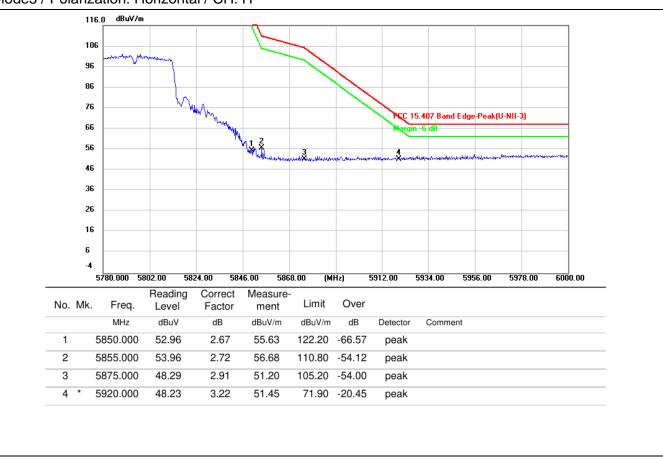


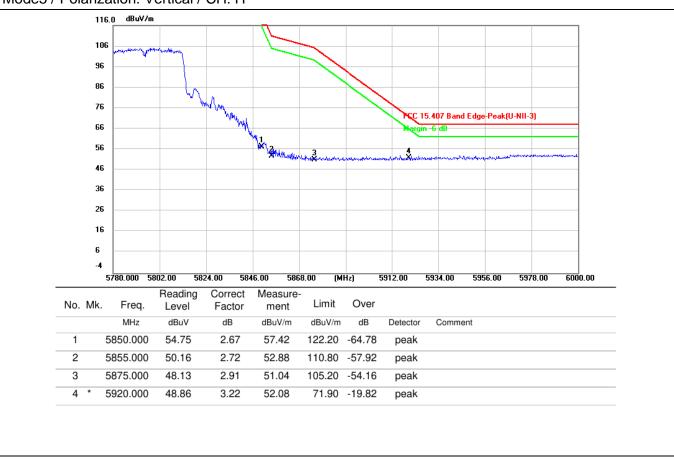


Mode5 / Polarization: Horizontal / CH: H

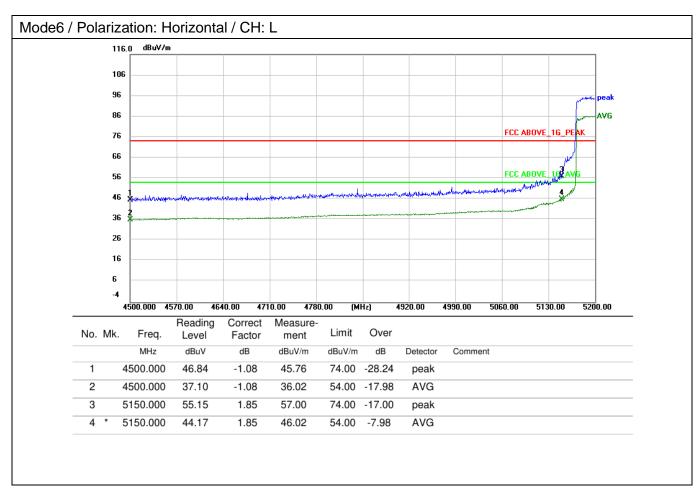


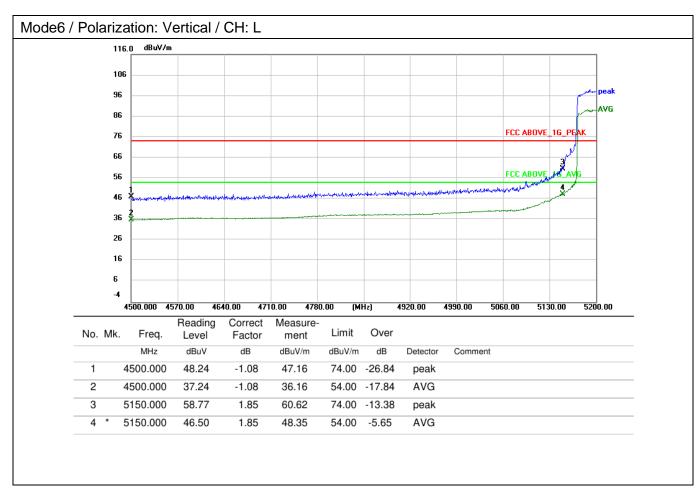

Mode5 / Polarization: Vertical / CH: H

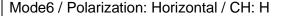


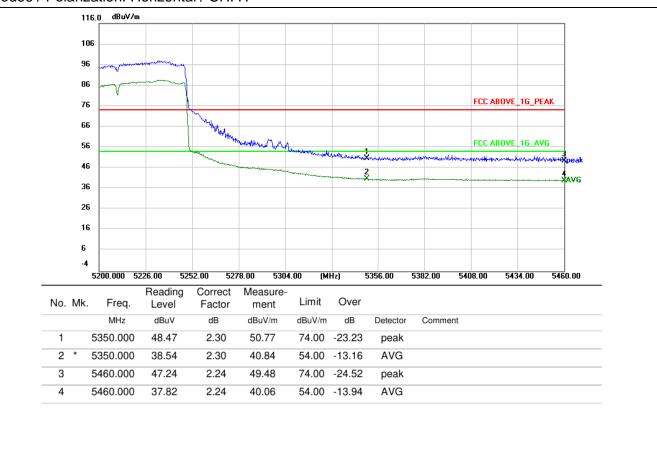


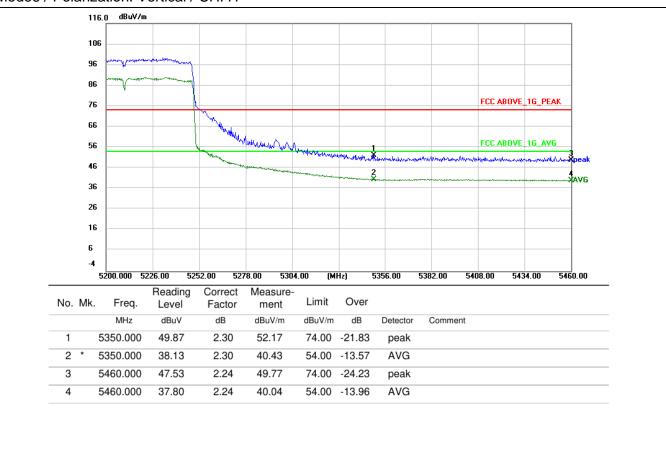
Mode5 / Polarization: Horizontal / CH: H

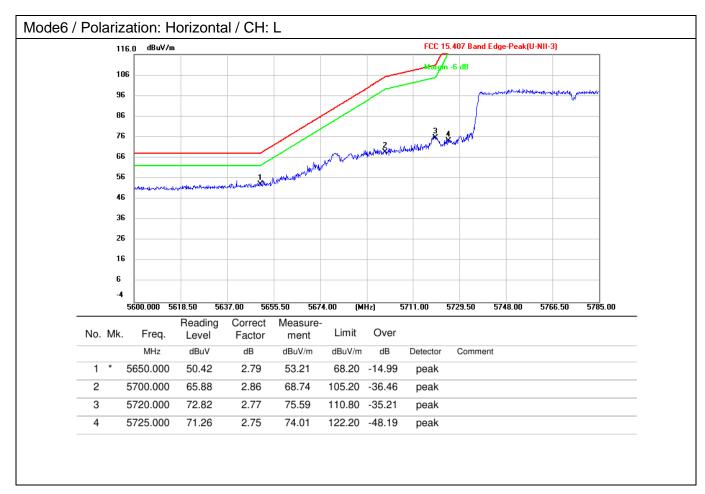


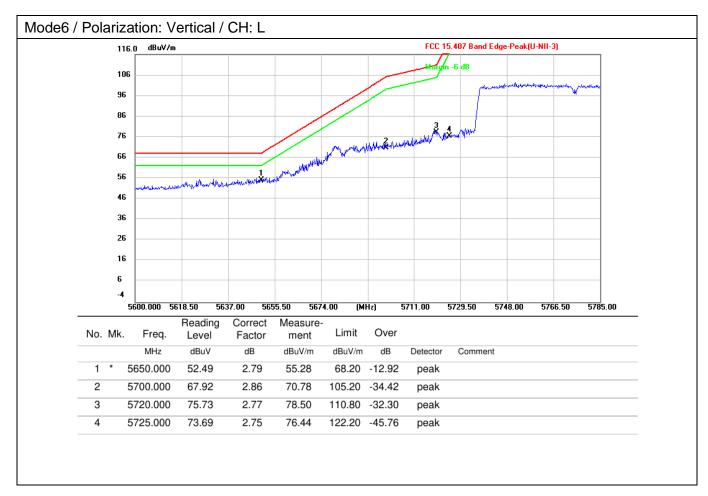

Mode5 / Polarization: Vertical / CH: H

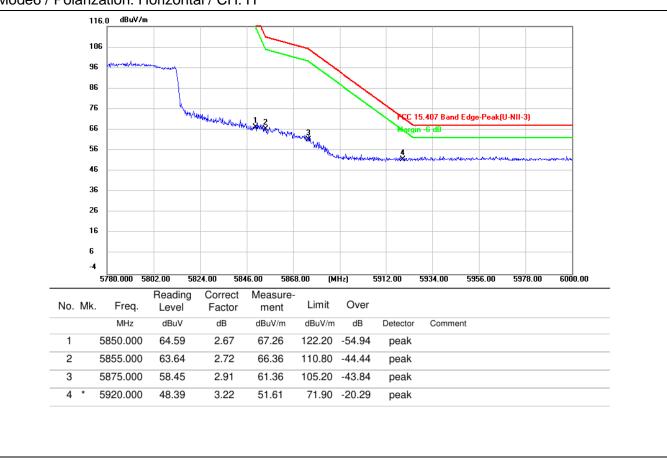









Mode6 / Polarization: Vertical / CH: H





Mode6 / Polarization: Horizontal / CH: H

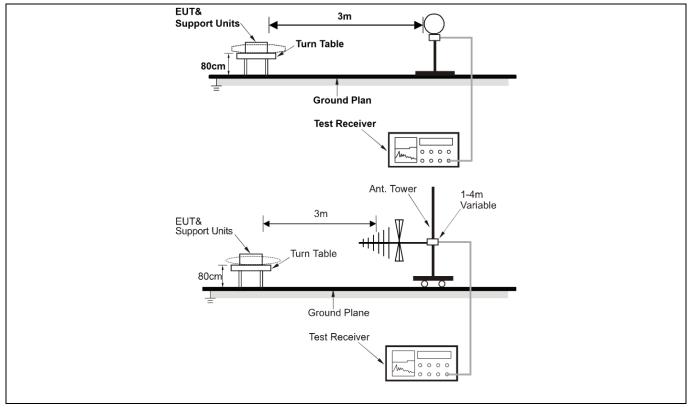
Mode6 / Polarization: Vertical / CH: H

6.7 Undesirable emission limits (below 1GHz)

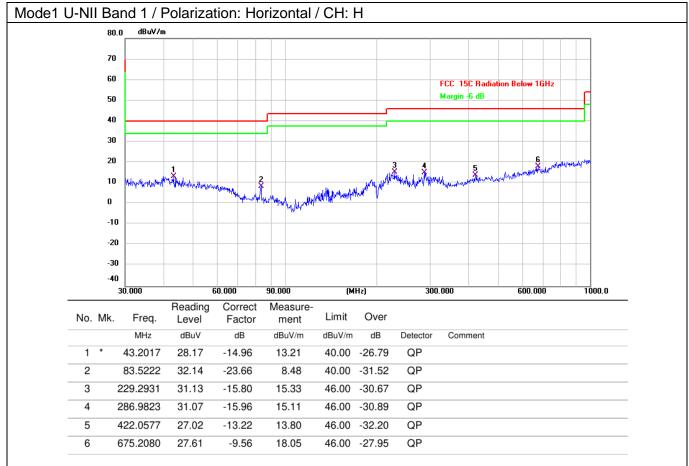
Test Requirement:	47 CFR Part 15.407(b)(9)		
Test Limit:	Unwanted emissions belo	w 1 GHz must comply with the	e general field
	strength limits set forth in		0
	-		
		here in this subpart, the emiss	
		not exceed the field strength level	vels specified in the
	following table:	I 	
	Frequency (MHz)	Field strength	Measurement
		(microvolts/meter)	distance (motors)
	0.009-0.490	2400/F(kHz)	(meters) 300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
		baragraph (g), fundamental em	issions from
	intentional radiators operation	ating under this section shall no	ot be located in the
		Hz, 76-88 MHz, 174-216 MHz	
	However, operation within	n these frequency bands is per	mitted under other
	sections of this part, e.g.,		
		ve, the tighter limit applies at th	
		n in the above table are based	
		i-peak detector except for the f	
		oove 1000 MHz. Radiated emis n measurements employing an	
Toot Mothody	ANSI C63.10-2013, section		
Test Method: Procedure:		511 12.7.4, 12.7.5	
Procedure.	Below 1GHz:		natating table 0.0
		UT was placed on the top of a at a 3 meter semi-anechoic ch	
	Ĵ,	to determine the position of the	
		10 meters away from the interfe	
		nted on the top of a variable-he	0
		varied from one meter to four m	•
		naximum value of the field stre	
	and vertical polarizations	of the antenna are set to make	e the measurement.
		nission, the EUT was arranged	
		ed to heights from 1 meter to 4	
	. ,	z, the antenna was tuned to he	č ,
	maximum reading.	rned from 0 degrees to 360 de	grees to find the
		m was set to Peak Detect Fund	ction and Specified
	Bandwidth with Maximum		
		he EUT in peak mode was 100	B lower than the limit
		uld be stopped and the peak va	
	would be reported. Other	wise the emissions that did not	have 10dB margin
		/ one using quasi-peak methoo	d as specified and
	then reported in a data sh		
	g. Test the EUT in the low channel.	est channel, the middle chann	el, the Highest
		ments are performed in X, Y, Z	axis positioning for
		ound the X axis positioning whi	
	case.		
		es until all frequencies measur	red was complete.
·	· · ·	•	•

 Remark: 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor 2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. 3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.
emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

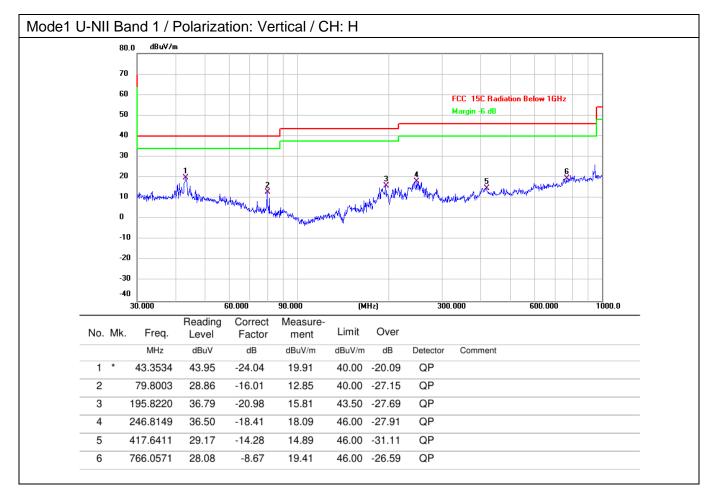
6.7.1 E.U.T. Operation:

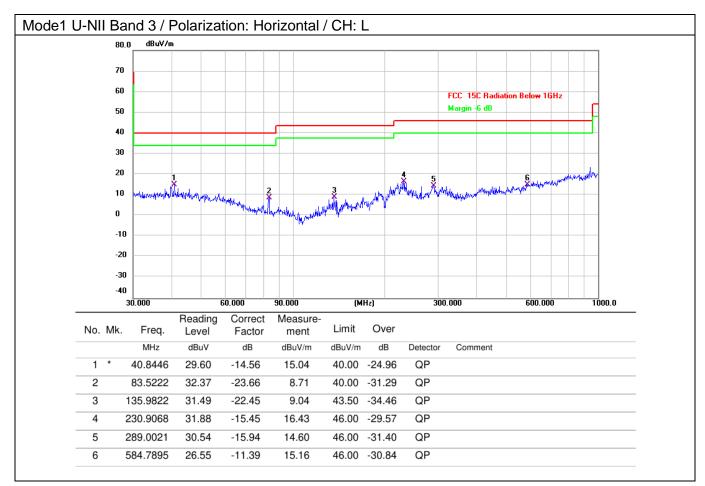

Operating Environment:

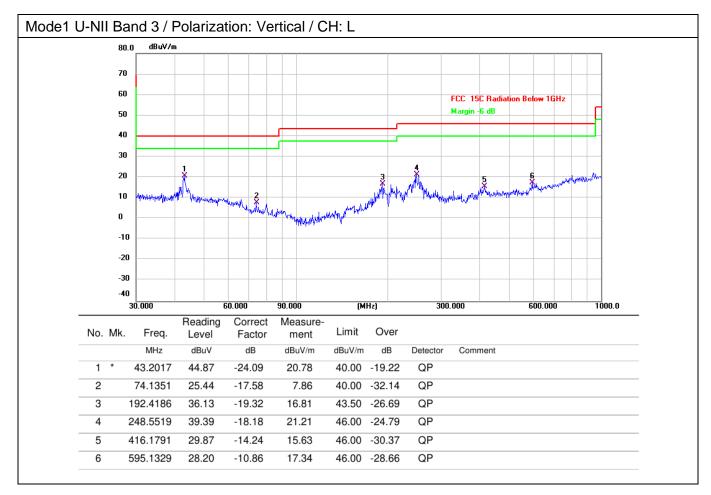
Page 75 of 157


Temperature:	24 °C		Humidity:	54 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1, Mode2, I	Mode3, Mode4	, Mode5, Mode6	
Final test mode	e:			re-test mode w ded in the repo	ere tested, only the data or rt	of the worst mode

6.7.2 Test Setup Diagram:




6.7.3 Test Data:



6.8 Undesirable emission limits (above 1GHz)

Test Requirement:	47 CFR Part 15.407(47 CFR Part 15.407(47 CFR Part 15.407)	(b)(4)		
Test Limit:	For transmitters oper of the 5.15-5.35 GHz	rating in the 5.15-5.2		
	For transmitters oper			
	All emissions shall b			
	above or below the b			
	above or below the below t			
	the band edge, and f			
	linearly to a level of 2			
	MHz	MHz	MHz	GHz
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
	10.495-0.505	16.69475-	608-614	5.35-5.46
	0.400 0.000	16.69525	000 014	0.00 0.40
	2.1735-2.1905	16.80425-	960-1240	7.25-7.75
		16.80475		
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
	4.20725-4.20775	73-74.6	1645.5-	9.3-9.5
			1646.5	
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4
	6.31175-6.31225	123-138	2200-2300	14.47-14.5
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
	12.51975- 12.52025	240-285	3345.8-3358	36.43-36.5
	12.57675-	322-335.4	3600-4400	(2)
	12.57725			
	13.36-13.41			
	¹ Until February 1, 19 ² Above 38.6			
	The field strength of not exceed the limits 1000 MHz, complian measurement instrur Above 1000 MHz, co demonstrated based provisions in § 15.35	shown in § 15.209. ce with the limits in § nentation employing ompliance with the er on the average valu	At frequencies e 15.209shall be a CISPR quasi- mission limits in e of the measu	equal to or less that demonstrated usin -peak detector. § 15.209shall be
	Except as provided e intentional radiator s following table:			

	Frequency (MHz)	Field strength	Measurement
		(microvolts/meter)	distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	2400/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
			-
Test Method: Procedure:	intentional radiators oper frequency bands 54-72 However, operation with sections of this part, e.g. In the emission table at The emission limits sho employing a CISPR qua kHz, 110–490 kHz and three bands are based ANSI C63.10-2013, sec Above 1GHz: a. For above 1GHz, the meters above the grour rotated 360 degrees to b. The EUT was set 3 m which was mounted on c. The antenna height is ground to determine the and vertical polarization	n paragraph (g), fundamenta erating under this section sh MHz, 76-88 MHz, 174-216 hin these frequency bands is g., §§ 15.231 and 15.241. bove, the tighter limit applies wn in the above table are ba asi-peak detector except for above 1000 MHz. Radiated on measurements employin ction 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top ad at a 3 meter fully-anechoi determine the position of the neters away from the interfer the top of a variable-height s varied from one meter to for e maximum value of the field as of the antenna are set to r emission, the EUT was arran	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these g an average detector. of a rotating table 1.5 c chamber. The table was e highest radiation. rence-receiving antenna, antenna tower. our meters above the d strength. Both horizontal make the measurement.
	 then the antenna was to frequency of below 30M the rotatable table was maximum reading. e. The test-receiver sys Bandwidth with Maximuf. If the emission level of specified, then testing of would be reported. Other 	uned to heights from 1 mete IHz, the antenna was tuned turned from 0 degrees to 36 tem was set to Peak Detect im Hold Mode. If the EUT in peak mode was could be stopped and the pe erwise the emissions that did	r to 4 meters (for the test to heights 1 meter) and 0 degrees to find the Function and Specified s 10dB lower than the limit ak values of the EUT d not have 10dB margin
	and then reported in a o g. Test the EUT in the lo channel.	owest channel, the middle cl	nannel, the Highest
	Transmitting mode, and case.	rements are performed in X, I found the X axis positioning	g which it is the worst
	Remark: 1. Level= Read Level+ 2. Scan from 18GHz to The points marked on a when testing, so only a	ures until all frequencies me Cable Loss+ Antenna Facto 40GHz, the disturbance abo bove plots are the highest e pove points had been displa in the radiator which are atte t be reported.	r- Preamp Factor ove 18GHz was very low. missions could be found yed. The amplitude of
	3. As shown in this sect	ion, for frequencies above 1	GHz, the field strength

	 limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report. 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.
--	--

6.8.1 E.U.T. Operation:

Operating Env	ironment					
Temperature:	24 °C		Humidity:	54 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1, Mode2, I	Mode3, Mode4	, Mode5, Mode6	
Final test mode	e:			re-test mode w ded in the repo	ere tested, only the data or rt	of the worst mode

6.8.2 Test Data:

Mode1 L	J-NII B	Band	1 / Polarizat	tion: Horizo	ntal / CH: L					
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	_
	1	1	10360.000	44.20	10.75	54.95	74.00	-19.05	peak	_
	2	1	10360.000	33.93	10.75	44.68	54.00	-9.32	AVG	-
	3	-	15540.000	46.45	13.16	59.61	74.00	-14.39	peak	-
	4	* -	15540.000	36.41	13.16	49.57	54.00	-4.43	AVG	-

	Band Mk.		tion: Vertica Reading Level	al / CH: L Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	1	10360.000	44.29	10.75	55.04	74.00	-18.96	peak
2	1	10360.000	34.37	10.75	45.12	54.00	-8.88	AVG
3	1	15540.000	47.01	13.16	60.17	74.00	-13.83	peak
4	* 1	15540.000	37.16	13.16	50.32	54.00	-3.68	AVG

Page 84 of 157

1 2 3	110400.00044.210400.00034.315600.00046.	BuV dB I.50 10.85 I.39 10.85 S.77 12.71	.85 55.35 .85 45.24	54.00	0 -18.65 0 -8.76	
2	2 10400.000 34. 3 15600.000 46.	1.39 10.85 5.77 12.71	.85 45.24	54.00	0 -8.76	
	3 15600.000 46.	6.77 12.71				3 AVG
3			.71 59.48	74.00		
	4 * 15600.000 36.	00 10 71			0 -14.52	2 peak
4		5.86 12.71	.71 49.57	54.00	0 -4.43	B AVG
		ading Correct	rect Measur		Over	
	Read o. Mk. Freq. Lev	ading Correct evel Factor	rect Measur ctor ment	t Limit		
No.	Read o. Mk. Freq. Lev MHz dB	ading Correct evel Factor BuV dB	rect Measur ctor ment B dBuV/m	t Limit n dBuV/m	m dB	Detector
No. 1	Read o. Mk. Freq. Lev MHz dB 1 10400.000 44.	ading Correct evel Factor BuV dB I.33 10.85	rect Measur ctor ment B dBuV/m .85 55.18	Limit n dBuV/m 3 74.00	m dB 0 -18.82	Detector 2 peak
No.	Read o. Mk. Freq. Lev MHz dB 1 10400.000 44. 2 10400.000 34.	ading Correct evel Factor BuV dB	rect Measur ctor ment B dBuV/m .85 55.18 .85 45.32	Limit n dBuV/m 3 74.00 2 54.00	m dB 0 -18.82 0 -8.68	Detector 2 peak 3 AVG

Page 85 of 157

		Иk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		10	480.000	44.68	10.65	55.33	74.00	-18.67	peak
2		10	480.000	34.61	10.65	45.26	54.00	-8.74	AVG
3		15	5720.000	46.38	12.68	59.06	74.00	-14.94	peak
4	1	* 15	5720.000	36.69	12.68	49.37	54.00	-4.63	AVG
			/ Polariza Freq.	tion: Vertica Reading Level	al / CH: H Correct Factor	Measure- ment	Limit	Over	
NII I No.				Reading	Correct		Limit dBuV/m	Over	Detector
	. N	Иk.	Freq.	Reading Level	Correct Factor	ment			Detector
No.	. N	Ик. 10	Freq. MHz	Reading Level dBuV	Correct Factor dB	ment dBuV/m	dBuV/m	dB	
No.	. N	Vlk. 10 10	Freq. MHz 0480.000	Reading Level dBuV 44.58	Correct Factor dB 10.65	ment dBuV/m 55.23	dBuV/m 74.00	dB -18.77	peak

Page 86 of 157

	. IV	lk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		114	490.000	43.87	12.51	56.38	68.20	-11.82	peak
2		114	490.000	33.73	12.51	46.24	54.00	-7.76	AVG
3		17	235.000	45.75	14.54	60.29	68.20	-7.91	peak
4	*	17	235.000	35.93	14.54	50.47	54.00	-3.53	AVG
NII I			/ Polariza Freq.	tion: Vertica Reading Level	al / CH: L Correct Factor	Measure- ment	Limit	Over	
				Reading	Correct		Limit dBuV/m	Over dB	Detector
	. M	lk.	Freq.	Reading Level	Correct Factor	ment			Detector
No.	. M	lk. 114	Freq. MHz	Reading Level dBuV	Correct Factor dB	ment dBuV/m	dBuV/m	dB	
No.	. M	lk. 114 114	Freq. MHz 490.000	Reading Level dBuV 43.68	Correct Factor dB 12.51	ment dBuV/m 56.19	dBuV/m 68.20	dB -12.01	peak

Page 87 of 157

MHz dBuV dB dBuV/m dBuV/m dB Detector 1 11570.000 44.97 12.37 57.34 68.20 -10.86 peak 2 11570.000 34.90 12.37 47.27 54.00 -6.73 AVG 3 17355.000 45.91 14.60 60.51 68.20 -7.69 peak	No.	М	k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
2 11570.000 34.90 12.37 47.27 54.00 -6.73 AVG 3 17355.000 45.91 14.60 60.51 68.20 -7.69 peak				MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
3 17355.000 45.91 14.60 60.51 68.20 -7.69 peak	1		11	570.000	44.97	12.37	57.34	68.20	-10.86	peak
	2		11	570.000	34.90	12.37	47.27	54.00	-6.73	AVG
	3		17	355.000	45.91	14.60	60.51	68.20	-7.69	peak
4 17355.000 35.54 14.60 50.14 54.00 -3.86 AVG	4	*	17	355.000	35.54	14.60	50.14	54.00	-3.86	AVG

Mode1	U-NII B	Band 3	/ Polariza	tion: Vertica	al / CH: M				
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1	11	570.000	45.00	12.37	57.37	68.20	-10.83	peak
	2	11	570.000	35.01	12.37	47.38	54.00	-6.62	AVG
	3	17	7355.000	45.66	14.60	60.26	68.20	-7.94	peak
	4	* 17	7355.000	35.87	14.60	50.47	54.00	-3.53	AVG

Page 88 of 157

	N	lk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		11	650.000	44.81	12.19	57.00	68.20	-11.20	peak
2		11	650.000	33.29	12.19	45.48	54.00	-8.52	AVG
3		17	475.000	46.75	14.88	61.63	68.20	-6.57	peak
4	*	17	475.000	36.12	14.88	51.00	54.00	-3.00	AVG
				tion: Vertica Reading	Correct	Measure-	Limit	Over	
NII E No.			Freq.	Reading Level	Correct Factor	ment	Limit	Over	Datastas
No.	N	lk.	Freq. MHz	Reading Level dBuV	Correct Factor dB	ment dBuV/m	dBuV/m	dB	Detector
No. 1	. N	1k. 11	Freq. MHz 650.000	Reading Level dBuV 44.93	Correct Factor dB 12.19	ment dBuV/m 57.12	dBuV/m 68.20	dB -11.08	peak
No. 1 2	. N	1k. 11 11	Freq. MHz 650.000 650.000	Reading Level dBuV 44.93 33.17	Correct Factor dB 12.19 12.19	ment dBuV/m 57.12 45.36	dBuV/m 68.20 54.00	dB -11.08 -8.64	peak AVG
No. 1	. N	/k. 11 11	Freq. MHz 650.000	Reading Level dBuV 44.93	Correct Factor dB 12.19	ment dBuV/m 57.12	dBuV/m 68.20	dB -11.08	peak

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Photographs of the EUT

Refer to Appendix - EUT Photos

Appendix

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.Tel: 0755-88850135-1439Mobile: 131-4343-1439 (Wechat same number)Web: http://www.mtitest.cnE-mail: mti@51mti.com

Appendix A1: Emission bandwidth (26dB bandwidth)

Test Result

Test Mode	Antenna	Frequency	26db EBW
	Antenna	[MHz]	[MHz]
		5180	21.320
		5200	25.200
11A	Ant1	5240	26.760
ПА	Anti	5745	27.120
		5785	24.760
		5825	26.240
		5180	29.240
		5200	29.920
111/200100	A == 14	5240	30.840
11N20SISO	Ant1	5745	30.280
		5785	30.240
		5825	30.240
		5190	62.320
11N40SISO	A pt1	5230	67.120
1111403130	Ant1	5755	65.360
		5795	64.240
		5180	24.720
		5200	28.080
11AC20SISO	Ant1	5240	33.320
TIAC205150	Anti	5745	25.040
		5785	22.800
		5825	25.760
		5190	68.800
114 C405150	A mt1	5230	69.200
11AC40SISO	Ant1	5755	61.040
		5795	54.080
114 090 010 0	A n+1	5210	88.640
11AC80SISO	Ant1	5775	84.480

Test Graphs

