




# **TEST REPORT**

| : Bullitt Group   |
|-------------------|
| : 4G Mobile Phone |
| : S62             |
| : CAT             |
| : ZL5S62          |
|                   |

- STANDARD(S) : 47 CFR Part 15 Subpart C
- RECEIPT DATE : 2020-10-10
- TEST DATE : 2020-11-11 to 2021-01-26
- **ISSUE DATE** : 2021-02-19

Edited by :

Qijie Xiao Qijie Xiao Elvis Wang Approved by: -

Elvis Wang

NOTE: This report is issued by Morlab and may not be copied without written permission from Morlab. The test results in this report are only applicable to specific samples and specific tests. The information in this report can be verified and confirmed on our website.

XIAMEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.

Tel: +86 592 5612050 Fax: +86 592 5612095

Kehu-Morlab



### DIRECTORY

| 1. Technical Information                         | 3 |
|--------------------------------------------------|---|
| 1.1. Applicant and Manufacturer Information      | 3 |
| 1.2. Equipment Under Test (EUT) Description      | 3 |
| 1.3. Test Standards and Results                  | 5 |
| 1.4. Environmental Conditions                    | 5 |
| 2. 47 CFR Part 15C Requirements                  | 6 |
| 2.1. Antenna requirement                         | 6 |
| 2.2. Number of Hopping Frequency                 | 7 |
| 2.3. Peak Output Power1                          | 0 |
| 2.4. 20dB Bandwidth1                             | 7 |
| 2.5. Carried Frequency Separation2               | 4 |
| 2.6. Time of Occupancy (Dwell time)3             | 1 |
| 2.7. Conducted Spurious Emissions and Band Edge3 | 8 |
| 2.8. Restricted Frequency Bands5                 | 8 |
| 2.9. Conducted Emission7                         | 2 |
| 2.10. Radiated Emission7                         | 6 |
| Annex A Test Uncertainty13                       | 4 |
| Annex B Testing Laboratory Information13         | 5 |

| Change History                 |           |               |  |  |  |
|--------------------------------|-----------|---------------|--|--|--|
| Version Date Reason for change |           |               |  |  |  |
| 1.0                            | 2021-2-19 | First edition |  |  |  |

Kehu-Morlab<br/>Test LaboratoryXIAMEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.Tel: +86 592 5612050Unit 101, No.1732 Gangzhong Road, Xiamen Area, Pilot Free Trade Zone (Fujian), P. R. ChinaFax: +86 592 5612095



## **1.** Technical Information

Note: Provide by applicant.

### 1.1. Applicant and Manufacturer Information

| Applicant:            | Bullitt Group                                                        |
|-----------------------|----------------------------------------------------------------------|
| Applicant Address:    | One Valpy, Valpy Street, Reading, Berkshire, RG1 1AR, United         |
|                       | Kingdom                                                              |
| Manufacturer:         | Bullitt Group                                                        |
| Manufacturer Address: | One Valpy, Valpy Street, Reading, Berkshire, RG1 1AR, United Kingdom |

### 1.2. Equipment Under Test (EUT) Description

| Product Name:              | 4G Mobile Phone                               |                                        |  |  |  |  |
|----------------------------|-----------------------------------------------|----------------------------------------|--|--|--|--|
| Serial No:                 | (N/A, marked #1 by test site)                 |                                        |  |  |  |  |
| Hardware Version:          | Q190_V1                                       |                                        |  |  |  |  |
| Software Version:          | LTE_S02111.10_N_S62_0                         |                                        |  |  |  |  |
|                            | Bluetooth: FHSS                               |                                        |  |  |  |  |
| Modulation Type:           | GFSK(1Mbps),                                  |                                        |  |  |  |  |
| modulation Type.           | π/4-DQPSK(EDR 2                               | 2Mbps),                                |  |  |  |  |
|                            | 8-DPSK(EDR 3Mb                                | ps)                                    |  |  |  |  |
| Operating Frequency Range: | The frequency range used is 2402MHz – 2480MHz |                                        |  |  |  |  |
|                            | (79 channels, at intervals of 1MHz);          |                                        |  |  |  |  |
| Bluetooth Version:         | Bluetooth classic                             |                                        |  |  |  |  |
| Antenna Type:              | PIFA Antenna                                  |                                        |  |  |  |  |
| Antenna Gain:              | 0.18dBi                                       |                                        |  |  |  |  |
|                            | Battery                                       |                                        |  |  |  |  |
|                            | Manufacturer:                                 | Hunan Gaoyuan Battery Co., Ltd.        |  |  |  |  |
|                            | Brand Name:                                   | Gaoyuan Battery                        |  |  |  |  |
|                            | Model No.:                                    | XQ6602G                                |  |  |  |  |
| Accessory Information:     | Capacity: 4000mAh                             |                                        |  |  |  |  |
|                            | Rated Voltage:                                | 3.80V                                  |  |  |  |  |
|                            | Charge Limit:                                 | 4.35V                                  |  |  |  |  |
|                            | AC Adapter                                    |                                        |  |  |  |  |
|                            | Manufacturer:                                 | Jiangxi Jian Aohai Technology Co.,Ltd. |  |  |  |  |

#### Kehu-Morlab Test Laboratory XIAMEN MORLAB C Unit 101, No.1732 Gangzhong

**XIAMEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.** Unit 101, No.1732 Gangzhong Road, Xiamen Area, Pilot Free Trade Zone (Fujian), P. R. China



| Brand Name:   | AOHAI                    |
|---------------|--------------------------|
| Model No.:    | A138-120150C-US1         |
| Rated Input:  | 100-240V ~ 50/60Hz 0.5A  |
| Rated Output: | 5V=3.0A/9V=2.0A/12V=1.5A |

**Note 1:** The EUT contains Bluetooth Module operating at 2.4GHz ISM band; the frequencies is F(MHz)=2402+1\*n (0<=n<=78). The lowest, middle, highest channel numbers of the Bluetooth Module used and tested in this report are separately 0 (2402MHz), 39 (2441MHz) and 78 (2480MHz).

**Note 2:** The EUT connected to the serial port of the computer with a serial communication cable, we use the dedicated software to control the EUT into the test mode.

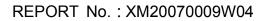
**Note 3:** For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.



### 1.3. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C for the EUT FCC ID Certification:

| No | Identity       | Document Title          |  |  |  |
|----|----------------|-------------------------|--|--|--|
| 1  | 47 CFR Part 15 | Radio Frequency Devices |  |  |  |


Test detailed items/section required by FCC rules and results are as below:

| No.  | Section in<br>CFR 47                                                                               | Description                    | Test Date              | Test Engineer | Result |  |  |
|------|----------------------------------------------------------------------------------------------------|--------------------------------|------------------------|---------------|--------|--|--|
| 1    | 15.203                                                                                             | Antenna Requirement            | N/A                    | N/A           | PASS   |  |  |
| 2    | 15.247(a)                                                                                          | Number of Hopping Frequency    | Nov 11, 2020           | Stefan Sun    | PASS   |  |  |
| 3    | 15.247(b)                                                                                          | Peak Output Power              | Nov 11, 2020           | Stefan Sun    | PASS   |  |  |
| 4    | 15.247(a)                                                                                          | 20dB Bandwidth                 | Nov 11, 2020           | Stefan Sun    | PASS   |  |  |
| 5    | 15.247(a)                                                                                          | Carrier Frequency Separation   | Nov 11, 2020           | Stefan Sun    | PASS   |  |  |
|      |                                                                                                    |                                | Jan 11, 2021           |               |        |  |  |
| 6    | 15.247(a)                                                                                          | Time of Occupancy (Dwell time) | Jan 11, 2021 Stefan Su |               | PASS   |  |  |
| 7    | 15.247(d)                                                                                          | Conducted Spurious Emission    | Nov 11, 2020           | Stefan Sun    | PASS   |  |  |
|      | 15.247 (u)                                                                                         | and Band Edge                  | Jan 22, 2021           | Stelan Sun    | FA33   |  |  |
| 8    | 15.247(d)                                                                                          | Restricted Frequency Bands     | Dec 05, 2020           | Yaming Luo    | PASS   |  |  |
| 9    | 15.209,                                                                                            | Dedicted Emission              |                        | Versing Lue   | DAGO   |  |  |
| 9    | 15.247(d)                                                                                          | Radiated Emission              | Dec 05, 2020           | Yaming Luo    | PASS   |  |  |
| 10   | 15.207                                                                                             | Conducted Emission             | Jan 26, 2021           | Yaming Luo    | PASS   |  |  |
| Note | <b>Note 1:</b> The tests were performed according to the method of measurements prescribed in ANSI |                                |                        |               |        |  |  |
| C63. | 10-2013.                                                                                           |                                |                        |               |        |  |  |

### **1.4. Environmental Conditions**

During the measurement, the environmental conditions were within the listed ranges:

| Temperature (°C):           | 15 - 35  |
|-----------------------------|----------|
| Relative Humidity (%):      | 30 - 60  |
| Atmospheric Pressure (kPa): | 86 - 106 |





**2.** 47 CFR Part 15C Requirements

### 2.1. Antenna requirement

#### 2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

#### 2.1.2. Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.



### 2.2. Number of Hopping Frequency

#### 2.2.1. Requirement

According to FCC §15.247(a)(1)(iii), frequency hopping systems operating in the 2400MHz to 2483.5MHz bands shall use at least 15 hopping frequencies.

#### 2.2.2. Test Description

#### A. Test Setup:



The EUT (Equipment under the test) is coupled to the Spectrum analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in Spectrum analyzer.

#### 2.2.3. Test Procedure

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

#### B. Equipments List:

Please reference ANNEX B(4).



#### 2.2.4. Test Result

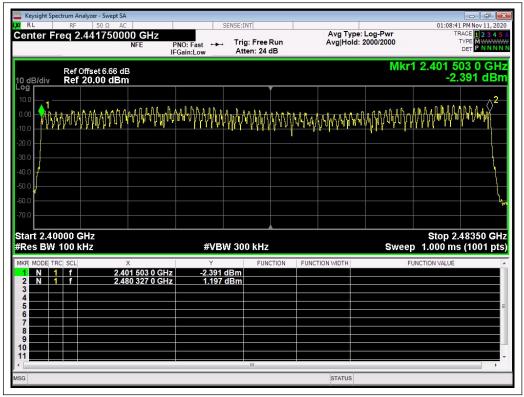
The Bluetooth Module operates at hopping-on test mode; the frequencies number employed is counted to verify the Module's using the number of hopping frequency.

#### A. Test Verdict:

| Test Mode | Frequency Block<br>(MHz) | Measured Channel Numbers | Min. Limit | Verdict |
|-----------|--------------------------|--------------------------|------------|---------|
| GFSK      | 2400 - 2483.5            | 79                       | 15         | PASS    |
| π/4-DQPSK | 2400 - 2483.5            | 79                       | 15         | PASS    |
| 8-DPSK    | 2400 - 2483.5            | 79                       | 15         | PASS    |

#### B. Test Plots:

|                                        | Gain:Low                  | Atten: 24 d | Run<br>IB  | Avg Hold: 2                  | .000/2000 | D                      |                     |
|----------------------------------------|---------------------------|-------------|------------|------------------------------|-----------|------------------------|---------------------|
| ef Offset 6.66 dB<br>ef 20.00 dBm      | Sumeow                    |             |            |                              | Mkr1      | 2.402 00               | 4 0 GH<br>26 dBn    |
|                                        |                           |             |            | ┍ <u>п</u> れれれれれ<br>↓↓↓↓↓↓↓↓ |           |                        |                     |
| 0 GHz<br>0 kHz<br><sup>CL</sup> X      | Y                         | V 300 kHz   | TION FUNCT | ION WIDTH                    |           | Stop 2.4<br>1.000 ms ( | 8350 GH<br>1001 pts |
| f 2.402 004 0 GHz<br>f 2.479 993 0 GHz | <u>3.726 (</u><br>7.538 ( |             |            |                              |           |                        |                     |
|                                        |                           |             |            |                              |           |                        |                     |


(GFSK)



#### REPORT No. : XM20070009W04

|                                                                                                                                                                                                                                                     |                        | g: Free Run<br>ten: 24 dB | Avg Type<br>Avg Hold:     | : Log-Pwr<br>2000/2000 | 10:39:05 AM Nov 11, 220<br>TRACE 2 3 4 5 5<br>TYPE MWWW<br>DET P NNNN |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------|---------------------------|------------------------|-----------------------------------------------------------------------|
| Ref Offset 6.66 dB Mkr1 2.40                                                                                                                                                                                                                        |                        |                           |                           |                        |                                                                       |
|                                                                                                                                                                                                                                                     | alatana ana kalana ata |                           | ₩₽₽ <mark>₽</mark> ₩₽₩₽₩₽ | ₰₺₯₰₳₰₳₲₩              |                                                                       |
| -20 0<br>-30.0<br>-40.0<br>-60.0                                                                                                                                                                                                                    |                        |                           |                           |                        | k                                                                     |
| -60.0<br>-70.0<br>Start 2.40000 GHz                                                                                                                                                                                                                 |                        |                           |                           |                        | Stop 2.48350 GHz                                                      |
| #Res BW 100 kHz                                                                                                                                                                                                                                     | #VBW 30                | 0 kHz                     |                           | Sweep                  | 1.000 ms (1001 pts)                                                   |
| MKR N 1 f 2.401 837 0 GHz   2 N 1 f 2.401 837 0 GHz   3 1 f 2.401 837 0 GHz   3 1 f 2.480 494 0 GHz   5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |                        | FUNCTION                  | FUNCTION WIDTH            | FL                     | E                                                                     |

#### (π/4-DQPSK)



(8- DPSK)

**XIAMEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.** Unit 101, No.1732 Gangzhong Road, Xiamen Area, Pilot Free Trade Zone (Fujian), P. R. China



### 2.3. Peak Output Power

#### 2.3.1. Requirement

According to FCC §15.247(b)(1), for frequency hopping systems that operates in the 2400MHz to 2483.5MHz band employing at least 75 hopping channels, the maximum peak output power of the intentional radiator shall not exceed 1Watt. For all other frequency hopping systems in the 2400MHz to 2483.5MHz band, it is 0.125Watts.

#### 2.3.2. Test Description

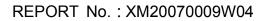
#### A. Test Setup:



The EUT (Equipment under the test) is coupled to the Spectrum analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in Spectrum analyzer.

#### B. Equipments List:

Please refer ANNEX B(4).


#### 2.3.3. Test procedure

The measured output power was calculated by the reading of the spectrum analyzer and calibration. Following is the test procedure for Peak Output Power test on the spectrum analyzer:

- a) Set analyzer center frequency to channel center frequency.
- b) Set the RBW to 3MHz
- c) Set VBW to 8MHz
- d) Set span to 10MHz
- e) Sweep time to auto couple.
- f) Detector=peak.
- g) Trace mode=max hold.
- h) Allow trace to fully stabilize.

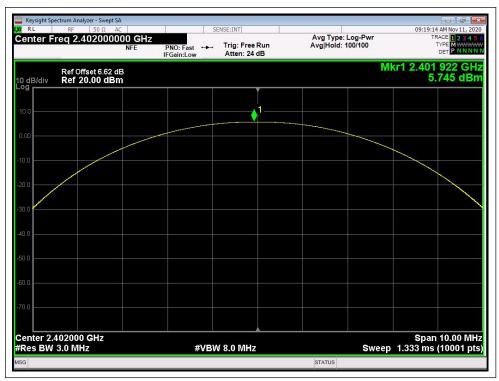
Use peak marker function to determine the peak amplitude level.

| Kehu-Morlab     | XIAMEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.                                           | Tel: +86 592 5612050 |
|-----------------|---------------------------------------------------------------------------------------------|----------------------|
| Test Laboratory | Unit 101, No.1732 Gangzhong Road, Xiamen Area, Pilot Free Trade Zone (Fujian) , P. R. China | Fax: +86 592 5612095 |



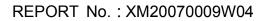


#### 2.3.4. Test Result

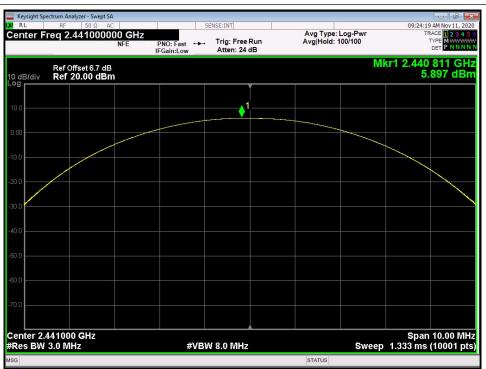

The Bluetooth Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the module.

#### GFSK Mode

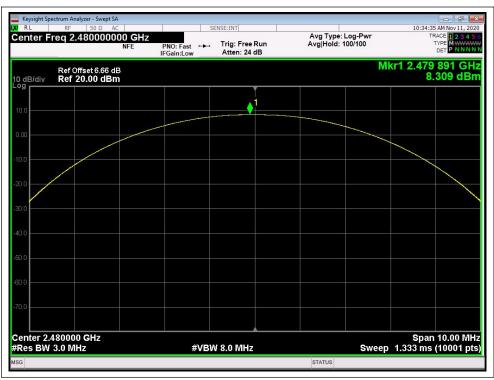
#### A. Test Verdict:


| Frequency |       | Measured Output Peak Power |       | Limit |       | Vardiat |  |
|-----------|-------|----------------------------|-------|-------|-------|---------|--|
| Channel   | (MHz) | dBm                        | W     | dBm   | W     | Verdict |  |
| 0         | 2402  | 5.745                      | 0.004 |       |       | PASS    |  |
| 39        | 2441  | 5.897                      | 0.004 | 21    | 0.125 | PASS    |  |
| 78        | 2480  | 8.309                      | 0.007 |       |       | PASS    |  |

#### B. Test Plots:




(GFSK, Channel 0, 2402MHz)


Kehu-Morlab<br/>Test LaboratoryXIAMEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.<br/>Unit 101, No.1732 Gangzhong Road, Xiamen Area, Pilot Free Trade Zone (Fujian), P. R. ChinaTel: +86 592 5612050<br/>Fax: +86 592 5612095







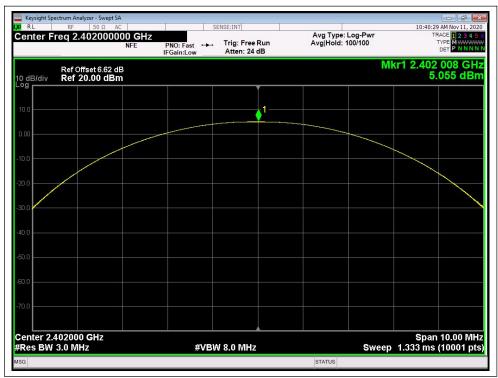
#### (GFSK, Channel 39, 2441MHz)



#### (GFSK, Channel 78, 2480MHz)

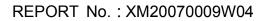
Kehu-Morlab Tel: +86 592 5612050 XIAMEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. **Test Laboratory** Unit 101, No.1732 Gangzhong Road, Xiamen Area, Pilot Free Trade Zone (Fujian), P. R. China

Fax: +86 592 5612095

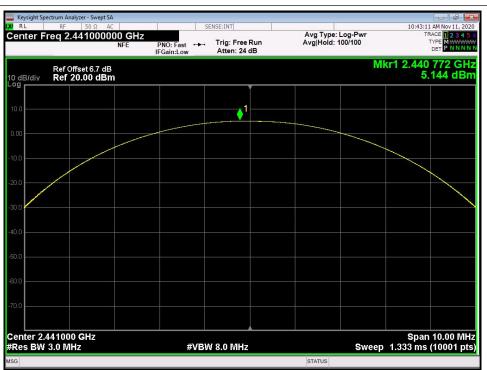



#### $\pi/4$ -DQPSK Mode

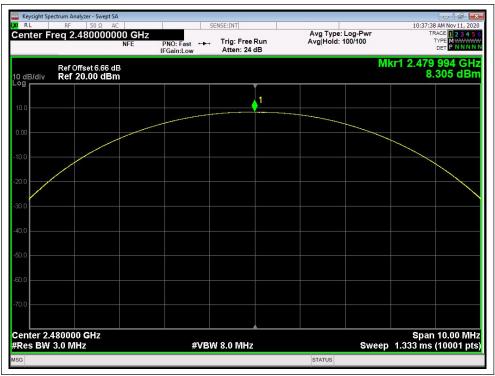
#### A. Test Verdict:


| Channel |       | Measured Output Peak Power |       | Limit |       | Verdict |  |
|---------|-------|----------------------------|-------|-------|-------|---------|--|
| Channel | (MHz) | dBm                        | W     | dBm   | W     | veruici |  |
| 0       | 2402  | 5.055                      | 0.003 |       |       | PASS    |  |
| 39      | 2441  | 5.144                      | 0.003 | 21    | 0.125 | PASS    |  |
| 78      | 2480  | 8.305                      | 0.007 | ]     |       | PASS    |  |

#### B. Test Plots:




(π/4-DQPSK, Channel 0, 2402MHz)


Kehu-Morlab<br/>Test LaboratoryXIAMEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.Tel: +86 592 5612050Unit 101, No.1732 Gangzhong Road, Xiamen Area, Pilot Free Trade Zone (Fujian), P. R. ChinaFax: +86 592 5612050





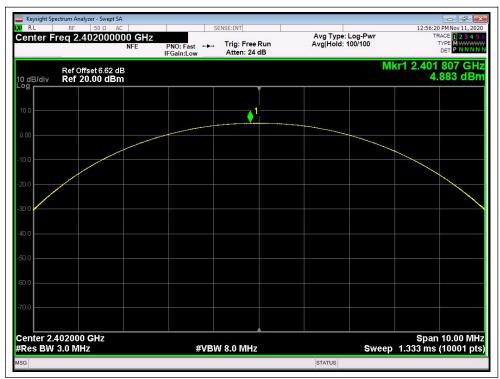


(π/4-DQPSK, Channel 39, 2441MHz)



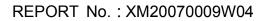
(π/4-DQPSK, Channel 78, 2480MHz)

Kehu-Morlab<br/>Test LaboratoryXIAMEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.TelUnit 101, No.1732 Gangzhong Road, Xiamen Area, Pilot Free Trade Zone (Fujian), P. R. ChinaFa

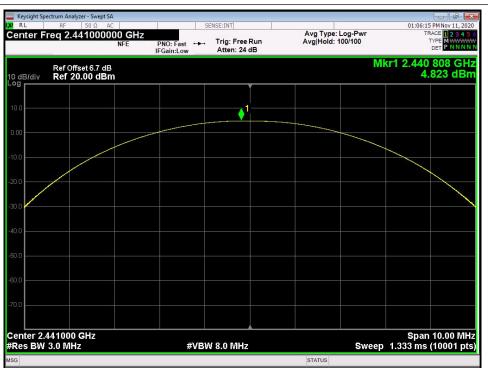



#### 8-DPSK Mode

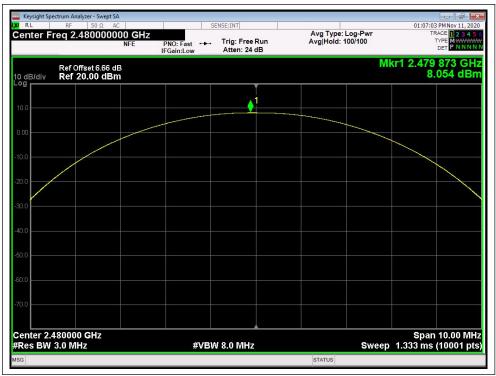
#### A. Test Verdict:


| Channel Frequency |       | Measured Output Peak Power |       | Limit |       | Verdict |  |
|-------------------|-------|----------------------------|-------|-------|-------|---------|--|
| Channel           | (MHz) | dBm                        | W     | dBm   | W     | veruici |  |
| 0                 | 2402  | 4.883                      | 0.003 |       |       | PASS    |  |
| 39                | 2441  | 4.823                      | 0.003 | 21    | 0.125 | PASS    |  |
| 78                | 2480  | 8.054                      | 0.006 | ]     |       | PASS    |  |

#### B. Test Plots:




(8-DPSK, Channel 0, 2402MHz)


Kehu-Morlab<br/>Test LaboratoryXIAMEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.<br/>Unit 101, No.1732 Gangzhong Road, Xiamen Area, Pilot Free Trade Zone (Fujian), P. R. ChinaTel: +86 592 5612050<br/>Fax: +86 592 5612095







(8-DPSK, Channel 39, 2441MHz)



(8-DPSK, Channel 78, 2480MHz)

Kehu-Morlab<br/>Test LaboratoryXIAMEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.TelUnit 101, No.1732 Gangzhong Road, Xiamen Area, Pilot Free Trade Zone (Fujian), P. R. ChinaFax



#### 2.4.1. Definition

According to FCC §15.247(a)(1), the 20dB bandwidth is known as the 99% emission bandwidth, or 20dB bandwidth (10\*log1% = 20dB) taking the total RF output power.

#### 2.4.2. Test Description

#### A. Test Setup:



The EUT (Equipment under the test) is coupled to the Spectrum analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in Spectrum analyzer.

#### B. Equipments List:

Please refer ANNEX B(4).

#### 2.4.3. Test procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Reapeat above procedures until all frequencies measured were complete.





#### 2.4.4. Test Result

The Bluetooth Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to record the 20dB bandwidth of the Module.

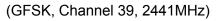
#### **GFSK Mode**

#### A. Test Verdict:

| Channel | Frequency (MHz) | 20dB Bandwidth (MHz) | Result |
|---------|-----------------|----------------------|--------|
| 0       | 2402            | 0.940                | PASS   |
| 39      | 2441            | 0.944                | PASS   |
| 78      | 2480            | 0.944                | PASS   |

#### B. Test Plots:




(GFSK, Channel 0, 2402MHz)







| Keysight Spectrum Analyzer - Occupied BW            |                         |                                                                         |                            |                                                                  |
|-----------------------------------------------------|-------------------------|-------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------|
| X RF 50 Ω AC   Center Freq 2.441000000 NI           |                         | SENSE:INT<br>Center Freq: 2.44100000<br>Trig: Free Run<br>#Atten: 10 dB | 0 GHz<br>Avg Hold: 100/100 | 09:24:25 AM Nov 11, 2020<br>Radio Std: None<br>Radio Device: BTS |
| Ref Offset 6.7 dB<br>10 dB/div Ref 26.70 dBm<br>Log |                         |                                                                         |                            |                                                                  |
| 16.7<br>6.70                                        |                         |                                                                         |                            |                                                                  |
| -3.30                                               |                         |                                                                         | m                          |                                                                  |
| -23.3                                               |                         |                                                                         |                            | North and                                                        |
| -43.3                                               |                         |                                                                         |                            |                                                                  |
| -63.3<br>Center 2.441 GHz<br>#Res BW 30 kHz         |                         | #VBW 100 kH                                                             |                            | Span 2 MHz<br>Sweep 3.333 ms                                     |
| Occupied Bandwidt                                   |                         | Total Power                                                             | 11.5 dBm                   | Gweep 3.333 ms                                                   |
| 8<br>Transmit Freq Error                            | 66.32 kHz<br>-1.715 kHz | % of OBW Powe                                                           | r 99.00 %                  |                                                                  |
| x dB Bandwidth                                      | 944.4 kHz               | x dB                                                                    | -20.00 dB                  |                                                                  |
|                                                     |                         |                                                                         |                            |                                                                  |
| MSG                                                 |                         |                                                                         | STATUS                     |                                                                  |





(GFSK, Channel 78, 2480MHz)

Kehu-Morlab Test Laboratory

**XIAMEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.** Unit 101, No.1732 Gangzhong Road, Xiamen Area, Pilot Free Trade Zone (Fujian), P. R. China

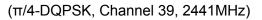


#### $\pi/4$ -DQPSK Mode

#### A. Test Verdict:

| Channel | Frequency (MHz) | 20dB Bandwidth (MHz) | Result |
|---------|-----------------|----------------------|--------|
| 0       | 2402            | 0.945                | PASS   |
| 39      | 2441            | 0.946                | PASS   |
| 78      | 2480            | 0.946                | PASS   |

#### B. Test Plots:




(π/4-DQPSK, Channel 0, 2402MHz)











(π/4-DQPSK, Channel 78, 2480MHz)

Kehu-Morlab Test Laboratory

**XIAMEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.** Unit 101, No.1732 Gangzhong Road, Xiamen Area, Pilot Free Trade Zone (Fujian), P. R. China



#### 8-DPSK Mode

#### A. Test Verdict:

| Channel | Frequency (MHz) | 20dB Bandwidth (MHz) | Result |
|---------|-----------------|----------------------|--------|
| 0       | 2402            | 0.942                | PASS   |
| 39      | 2441            | 0.941                | PASS   |
| 78      | 2480            | 0.948                | PASS   |

#### B. Test Plots:

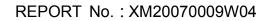


(8-DPSK, Channel 0, 2402MHz)





| Keysight Spectrum Ana           | alyzer - Occupied BW                  |             |                                            |                   |                                |
|---------------------------------|---------------------------------------|-------------|--------------------------------------------|-------------------|--------------------------------|
| KA RL RF                        | 50 Ω AC                               |             | SENSE:INT                                  |                   | 01:06:22 PM Nov 11, 2020       |
| Center Freq 2.                  | 441000000 G                           |             | Center Freq: 2.441000000<br>Trig: Free Run | Avg Hold: 100/100 | Radio Std: None                |
|                                 | NFL                                   | #IFGain:Low | #Atten: 10 dB                              |                   | Radio Device: BTS              |
|                                 | f Offset 6.7 dB<br>f <b>26.70 dBm</b> | (           |                                            |                   |                                |
| 16.7                            |                                       |             |                                            |                   |                                |
| 6.70                            |                                       | <u></u>     |                                            |                   |                                |
| -3.30                           |                                       |             | warman and a second                        |                   |                                |
| -13.3                           |                                       | m           |                                            | m                 | 9                              |
| -23.3                           | source -                              |             |                                            | and the second    | mm                             |
| -33.3                           | ~                                     |             |                                            |                   | m                              |
| -43.3                           |                                       | <u></u>     |                                            |                   | har                            |
| -53.3                           |                                       |             |                                            |                   |                                |
| -63.3                           |                                       | - 2         |                                            |                   | б                              |
| Center 2.441 G<br>#Res BW 30 kF |                                       |             | #VBW 100 kH;                               | z                 | Span 2 MHz<br>Sweep   3.333 ms |
| Occupied                        | Bandwidth                             |             | Total Power                                | 10.5 dBm          |                                |
|                                 |                                       | 6.50 kHz    |                                            |                   |                                |
| Transmit Fre                    | eq Error                              | -4.620 kHz  | % of OBW Power                             | 99.00 %           |                                |
| x dB Bandw                      | idth                                  | 941.2 kHz   | x dB                                       | -20.00 dB         |                                |
|                                 |                                       |             |                                            |                   |                                |
|                                 |                                       |             |                                            |                   |                                |
| ISG                             |                                       |             |                                            | STATUS            |                                |






(8-DPSK, Channel 78, 2480MHz)

Kehu-Morlab Test Laboratory

**XIAMEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.** Unit 101, No.1732 Gangzhong Road, Xiamen Area, Pilot Free Trade Zone (Fujian), P. R. China





### 2.5. Carried Frequency Separation

#### 2.5.1. Definition

According to FCC §15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

#### 2.5.2. Test Description

#### A. Test Setup:



The EUT (Equipment under the test) is coupled to the Spectrum analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in Spectrum analyzer.

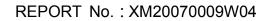
#### B. Equipments List:

Please refer ANNEX B(4).

#### 2.5.3. Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA mark function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

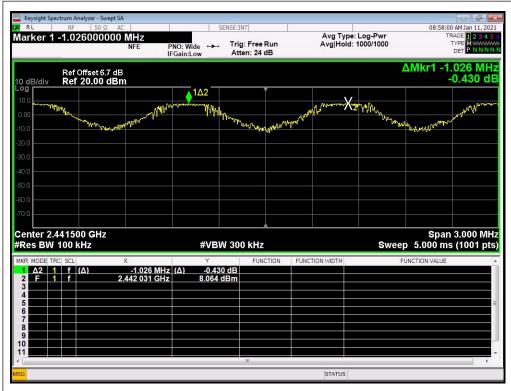



#### 2.5.4. Test Result

The Bluetooth Module operates at hopping-on test mode. For any adjacent channels (e.g. the channel 39 and 40 as showed below), the Module does have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel (refer to section 2.4.4), whichever is greater. So, the verdict is PASS.

|                 | Measured            | Carried Frequency       | 20dB        | Min. Limit <sub>Note1</sub> |         |
|-----------------|---------------------|-------------------------|-------------|-----------------------------|---------|
| Test Mode       | Channel             | Separation              | bandwidth   |                             | Verdict |
|                 | Numbers             | (MHz)                   | (MHz)       | (MHz)                       |         |
|                 | 0 and 1             | 1.014                   | 0.940       | 0.627                       | PASS    |
| GFSK            | 39 and 40           | 1.026                   | 0.944       | 0.629                       | PASS    |
|                 | 77 and 78           | 1.008                   | 0.944       | 0.629                       | PASS    |
|                 | 0 and 1             | 0.987                   | 0.945       | 0.630                       | PASS    |
| π/4-DQPSK       | 39 and 40           | 1.035                   | 0.946       | 0.631                       | PASS    |
|                 | 77 and 78           | 1.023                   | 0.946       | 0.631                       | PASS    |
|                 | 0 and 1             | 1.155                   | 0.942       | 0.628                       | PASS    |
| 8-DPSK          | 39 and 40           | 1.131                   | 0.941       | 0.627                       | PASS    |
|                 | 77 and 78           | 1.146                   | 0.948       | 0.632                       | PASS    |
| Note 1:Min. Lin | nit is equal to the | e two-thirds of the 20d | B bandwidth |                             | 1       |

**Test Plots** 


XIAMEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. Unit 101, No.1732 Gangzhong Road, Xiamen Area, Pilot Free Trade Zone (Fujian), P. R. China

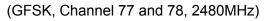





Keysight Spectrum Analyzer - Swept SA 09:20:24 AM Nov 11, 20 RI Center Freq 2.402500000 GHz Avg Type: Log-Pwr Avg|Hold: 2000/2000 Trig: Free Run Atten: 24 dB PNO: Wide IFGain:Low ΔMkr1 1.014 MH -0.302 dE Ref Offset 6.62 dB Ref 20.00 dBm ▲1∆2 Name him 12m May all all more and and and L'Angertante haber way Span 3.000 MHz Sweep 5.000 ms (1001 pts) Center 2.402500 GHz #Res BW 100 kHz #VBW 300 kHz FUNCTION WIDTH 1.014 MHz (Δ) 2.401 849 GHz (A) -0.302 dB 5.520 dBm STATUS

#### (GFSK, Channel 0 and 1, 2402MHz)

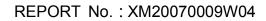



(GFSK, Channel 39 and 40, 2441MHz)

Kehu-Morlab<br/>Test LaboratoryXIAMEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.TelUnit 101, No.1732 Gangzhong Road, Xiamen Area, Pilot Free Trade Zone (Fujian), P. R. ChinaFa













(π/4-DQPSK, Channel 0 and 1, 2402MHz)

Kehu-Morlab<br/>Test LaboratoryXIAMEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.Tel: +1Unit 101, No.1732 Gangzhong Road, Xiamen Area, Pilot Free Trade Zone (Fujian), P. R. ChinaFax: +1

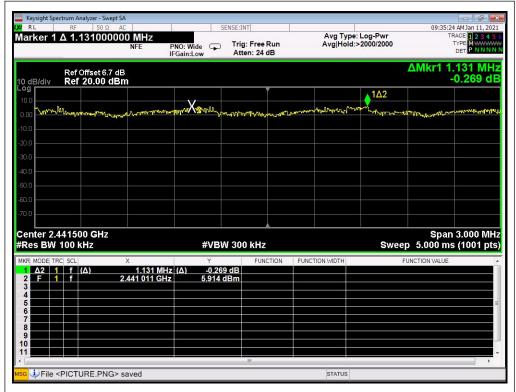




Keysight Spectrum Analyze 09:30:34 AM Jan 11, 2021 SENSE:INT Marker 1 -1.035000000 MHz Avg Type: Log-Pwr Avg|Hold: 2000/2000 RACE Trig: Free Run Atten: 24 dB PNO: Wide IFGain:Low ΔMkr1 -1.035 MH Ref Offset 6.7 dB Ref 20.00 dBm -1.318 dE 0 dB/di 1Δ2 willing Center 2.441500 GHz #Res BW 100 kHz Span 3.000 MHz Sweep 5.000 ms (1001 pts) #VBW 300 kHz FUNCTION f (Δ) -1.035 MHz (Δ) 2.442 136 GHz -1.318 dB 6.062 dBm File <PICTURE.PNG> saved STATUS






(π/4-DQPSK, Channel 77 and 78, 2480MHz)

Kehu-Morlab<br/>Test LaboratoryXIAMEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.TeUnit 101, No.1732 Gangzhong Road, Xiamen Area, Pilot Free Trade Zone (Fujian), P. R. ChinaFa



Keysight Spectrum Analyzer - Swept SA R 12:57:23 PM Nov 11, 2 Center Freq 2.402500000 GHz Avg Type: Log-Pwr Avg|Hold: 2000/2000 Trig: Free Run Atten: 24 dB PNO: Wide IFGain:Low -ΔMkr1 1.155 MHz -0.183 dE Ref Offset 6.62 dB Ref 20.00 dBm og 142 MX 1 Minan MM 1 J M MM 1 Y. Center 2.402500 GHz #Res BW 100 kHz Span 3.000 MHz Sweep 5.000 ms (1001 pts) #VBW 300 kHz -0.183 dB 2.950 dBm 1 f 1 f 1.155 MHz 2.401 849 GHz

#### (8-DPSK, Channel 0 and 1, 2402MHz)



(8-DPSK, Channel 39 and 40, 2441MHz)

Kehu-Morlab<br/>Test LaboratoryXIAMEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.TeUnit 101, No.1732 Gangzhong Road, Xiamen Area, Pilot Free Trade Zone (Fujian), P. R. ChinaFa



| Keysight Spectrum Analyzer - Swept SA<br>R L RF 50 Ω AC | SENSE:                 | NT                        |                                   | 01-09-2                | 4 PM Nov 11, 20                          |
|---------------------------------------------------------|------------------------|---------------------------|-----------------------------------|------------------------|------------------------------------------|
| enter Freq 2.479500000 GHz                              | PNO: Wide Tri          | g: Free Run<br>ten: 24 dB | Avg Type: Log-<br>Avg Hold: 2000/ | Pwr T                  | RACE 1 2 3 4<br>TYPE MWWW<br>DET P N N N |
| Ref Offset 6.66 dB<br>dB/div Ref 20.00 dBm              |                        |                           |                                   | ΔMkr1 1                | .146 MH<br>-0.049 d                      |
| 99<br>                                                  | X                      |                           | 1∆2                               |                        |                                          |
|                                                         | 12 and parts           | W.M.                      |                                   | m hall                 |                                          |
| 0                                                       |                        |                           |                                   |                        | how                                      |
| 0                                                       |                        |                           |                                   |                        |                                          |
| .0                                                      |                        |                           |                                   | 5<br>5                 |                                          |
| enter 2.479500 GHz<br>tes BW 100 kHz                    | #VBW 30                | 0 kHz                     |                                   | Span<br>Sweep 5.000 ms | 3.000 M<br>s (1001 pi                    |
|                                                         | Υ<br>1Hz (Δ) -0.049 dB | FUNCTION F                | UNCTION WIDTH                     | FUNCTION VALUE         |                                          |
| F 1 f 2.478 858 0                                       |                        |                           |                                   |                        |                                          |
|                                                         |                        |                           |                                   |                        |                                          |
|                                                         |                        |                           |                                   |                        |                                          |
|                                                         |                        |                           |                                   |                        |                                          |
|                                                         |                        |                           |                                   |                        |                                          |
|                                                         |                        |                           |                                   |                        |                                          |
|                                                         |                        |                           |                                   |                        |                                          |
|                                                         |                        | m.                        |                                   |                        |                                          |

(8-DPSK, Channel 77 and 78, 2480MHz)



### 2.6. Time of Occupancy (Dwell time)

#### 2.6.1. Requirement

According to FCC §15.247(a) (1) (iii), frequency hopping systems in the 2400 - 2483.5MHz band shall use at least 15 non-overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

#### 2.6.2. Test Description

#### A. Test Setup:



The EUT (Equipment under the test) is coupled to the Spectrum analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in Spectrum analyzer.

The EUT was working in channel hopping; Spectrum SPAN was set as 0. Sweep was set as 0.4 \* channel no.(s), the quantity of pulse was get from single sweep. In addition, the time of single pulses was tested.

Dwell time = time slot length \* hop rate / number of hopping channels \* 31.6s Hop rate = 1600/s

#### B. Equipments List:

Please refer ANNEX B(4).

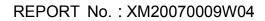


#### 2.6.3. Test Result

For time of occupancy, all of mode were tested separately, we only recorded the worst test result(DH5/2DH5/3DH5) in this report.

**GFSK Mode** 

#### A. Test Verdict:


| Mode | Frequency<br>(MHz) | Pulse Width<br>(ms) | Dwell Time<br>(ms) | Limit<br>(sec) | Verdict |
|------|--------------------|---------------------|--------------------|----------------|---------|
|      | 2402               | 2.885               | 273.498            |                | PASS    |
| DH1  | 2441               | 2.884               | 273.451            | 0.4            | PASS    |
|      | 2480               | 2.884               | 273.451            |                | PASS    |

#### B. Test Plots:

| RL RF                                          | 50 Ω AC                      | SENSE:I                  | nt<br>g Delay-1.000 n                     | Δ <b>Τ</b>     | pe: Log-Pwr | 09:43:02 AM Jan 11, 2021<br>TRACE 1 2 3 4 5                    |
|------------------------------------------------|------------------------------|--------------------------|-------------------------------------------|----------------|-------------|----------------------------------------------------------------|
| enter Freq 2.4                                 |                              | O Wide ++ Tri            | g Delay-1.000 n<br>g: Video<br>ten: 24 dB | is Avgiy       | pe: Log-Pwr | TYPE WWWWW<br>DET PNNNN                                        |
| dB/div Ref 2                                   | set 6.62 dB<br>0.00 dBm      |                          |                                           |                | 8           | ΔMkr1 2.885 ms<br>-0.73 dE                                     |
| o.o                                            |                              |                          |                                           |                | _1Δ2        |                                                                |
| .00                                            | X2                           |                          |                                           |                |             |                                                                |
| 0.0                                            |                              |                          |                                           |                |             | TRIG LVL                                                       |
| 0.0                                            |                              |                          |                                           |                |             |                                                                |
|                                                |                              |                          |                                           |                |             |                                                                |
|                                                |                              |                          |                                           |                |             |                                                                |
|                                                |                              |                          |                                           |                |             |                                                                |
| n n midis indentiti de Harri                   | s has a dealers              |                          |                                           |                | ունգի       | isted the difference of the                                    |
| p.o. <mark>patrik liste kul ali talik l</mark> | <mark>K ka luhisina d</mark> |                          |                                           |                | اربي بريانا | r <mark>a selit, sin, hall alia, hall a tari a su pi</mark> li |
|                                                |                              |                          |                                           |                |             |                                                                |
| enter 2.402000<br>es BW 1.0 MHz                |                              | #VBW 3.0                 | ) MHz                                     |                | Sweep 5     | Span 0 Ha<br>000 ms (10001 pts.                                |
| KR MODE TRC SCL                                | X                            | Y                        | FUNCTION                                  | FUNCTION WIDTH | FUNC        | TION VALUE                                                     |
| 1 Δ2 1 t (Δ΄<br>2 F 1 t                        | ) 2.885 ms<br>1.001 ms       | (Δ) -0.73 dB<br>7.47 dBm |                                           |                |             |                                                                |
|                                                |                              |                          |                                           |                |             |                                                                |
|                                                |                              |                          |                                           |                |             |                                                                |
| 5                                              |                              |                          |                                           | <u>.</u>       |             | E                                                              |
| 4<br>5<br>6<br>7                               |                              |                          |                                           |                |             |                                                                |
| 3<br>4<br>5<br>6<br>7<br>7<br>8<br>9           |                              |                          |                                           |                |             |                                                                |
| 4<br>5<br>6<br>7<br>8                          |                              |                          |                                           |                |             |                                                                |

(DH1\_2402MHz, GFSK)







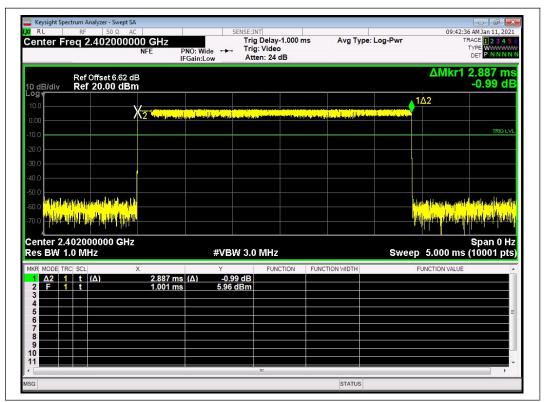

| RL RF                                                                   | Analyzer - Swept SA<br>50 Ω AC     | SENSE                              | E:INT                                            |               | 09                           | 🕞                                         |
|-------------------------------------------------------------------------|------------------------------------|------------------------------------|--------------------------------------------------|---------------|------------------------------|-------------------------------------------|
|                                                                         | 2.441000000 GHz                    | PNO: Wide                          | rig Delay-1.000 ms<br>rig: Video<br>Atten: 24 dB | Avg Type: Lo  |                              | TRACE 1 2 3 4<br>TYPE WWWW<br>DET P N N N |
| Ref<br>dB/div <b>R</b> ef                                               | Offset 6.7 dB<br>f 20.00 dBm       |                                    |                                                  |               | ΔMk                          | r1 2.885 m<br>1.55 d                      |
|                                                                         |                                    |                                    |                                                  |               | 1Δ2                          |                                           |
| 00                                                                      | Xullar                             |                                    |                                                  |               |                              | TRIG L                                    |
|                                                                         |                                    |                                    |                                                  |               |                              |                                           |
|                                                                         |                                    |                                    |                                                  |               |                              |                                           |
| ).0                                                                     |                                    |                                    |                                                  |               |                              |                                           |
| ).0<br>10 <mark>diagathtayatatht</mark>                                 | مر مع مع من من الألوا والألوا والم |                                    |                                                  |               | ikon sidelitada (1910)       | Andre Issailling Lather                   |
| o.o <mark>Alperal (1986)</mark>                                         | alitiyy (t. Alex, it., p. 147)     |                                    |                                                  |               | <mark> 4  80  50   80</mark> |                                           |
| enter 2.4410<br>es BW 1.0 M                                             |                                    | #VBW 3                             | 8.0 MHz                                          |               | Sweep 5.000                  | Span 0  <br>ms (10001 p                   |
| 55 DVV 1.0 IVI                                                          |                                    | Y                                  |                                                  | INCTION WIDTH | FUNCTION VA                  | ALUE                                      |
| R MODE TRC SCL                                                          |                                    |                                    |                                                  |               |                              |                                           |
| R MODE TRC SCL<br>A2 1 t<br>2 F 1 t                                     |                                    | 5 ms (Δ) 1.55 dl<br>1 ms -3.95 dBn |                                                  |               |                              |                                           |
| R MODE TRC SCL<br>A2 1 t<br>F 1 t<br>1 1                                | (Δ) 2.885                          |                                    |                                                  |               |                              |                                           |
| R MODE TRC SCL                                                          | (Δ) 2.885                          |                                    |                                                  |               |                              |                                           |
| MODE TRC SCL <b>A2</b> 1 t <b>F</b> 1 t <b>5</b> 5 5 <b>7 6 7 8 6 7</b> | (Δ) 2.885                          |                                    |                                                  |               |                              |                                           |
| MODE TRC SCL <b>A2</b> 1 t <b>F</b> 1 t <b>5</b> 5 5 <b>7 2 5</b>       | (Δ) 2.885                          |                                    |                                                  |               |                              |                                           |

### (DH1\_2441M, GFSK)

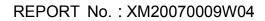


(DH1\_2480M, GFSK)

Kehu-Morlab<br/>Test LaboratoryXIAMEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.TelevisionUnit 101, No.1732 Gangzhong Road, Xiamen Area, Pilot Free Trade Zone (Fujian), P. R. ChinaFile



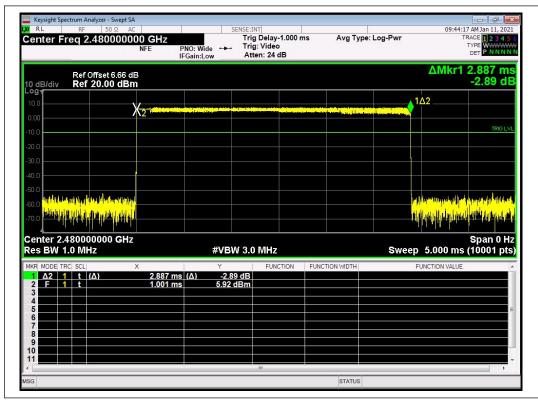

#### $\pi/4$ -DQPSK Mode


#### A. Test Verdict:

| Mode | Frequency<br>(MHz) | Pulse Width<br>(ms) | Dwell Time<br>(ms) | Limit<br>(sec) | Verdict |
|------|--------------------|---------------------|--------------------|----------------|---------|
|      | 2402               | 2.887               | 273.640            |                | PASS    |
| 2DH1 | 2441               | 2.874               | 272.455            | 0.4            | PASS    |
|      | 2480               | 2.887               | 273.640            |                | PASS    |

#### B. Test Plots:




(2DH1\_2402M, π/4-DQPSK)





| RL RF<br>enter Freq 2.44                                                                                                                                                                                                                                                                                           | 50 Ω AC<br>41000000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  | SENSE:INT<br>Trig Delay-1.000 ms<br>Trig: Video | Avg Type       | : Log-Pwr | 09:43:43 AM Jai<br>TRACE<br>TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 234                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------|----------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
|                                                                                                                                                                                                                                                                                                                    | NFE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PNO: Wide                        | Atten: 24 dB                                    |                |           | DET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NNN                                         |
| dB/div Ref 20                                                                                                                                                                                                                                                                                                      | set 6.7 dB<br>).00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |                                                 |                |           | ΔMkr1 2.87<br>1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74 m<br>71 d                                |
| 9 <b>9</b>                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                                                 |                | 14        | Δ2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             |
| .00                                                                                                                                                                                                                                                                                                                | Xaabiiti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                 |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRIG L                                      |
| ).0                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <mark>dalahirkan se bisik</mark> |                                                 |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRIGL                                       |
| ).0                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                                                 |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| 0.0                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |                                                 |                |           | ð                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |
|                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                                                 |                |           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |
|                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                                                 |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| 0.0<br>141 Manufacture at the second                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                                                 |                |           | المتاحض واللقان محسا المالية والمح                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             |
| o.o<br>o.o<br>o.o <mark>Hidisudu aski as</mark>                                                                                                                                                                                                                                                                    | , se bale alte addi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                                                 |                |           | na fila da las las principals da substituti<br>Novas terro II. Instrum V. Parta - Vista                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ddadad)<br><mark>Hol<sup>h</sup>lari</mark> |
| 0.0<br>141 Manufacture at the second                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                                                 |                |           | in the life of the could be a set of the set |                                             |
| 2.0<br>11/10/14/14/14/14/14/14/14/14/14/14/14/14/14/                                                                                                                                                                                                                                                               | Del durd<br>del |                                  |                                                 |                |           | Spa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n 0 I                                       |
| 2.0<br>00<br>00<br>enter 2.4410000<br>es BW 1.0 MHz                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  | W 3.0 MHz                                       |                |           | 5.000 ms (100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | un 0 H<br>01 pt                             |
| 2.0<br>00<br>00<br>enter 2.4410000<br>es BW 1.0 MHz                                                                                                                                                                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Y                                | FUNCTION                                        | FUNCTION WIDTH |           | Spa<br>5.000 ms (100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n 0 H<br>01 pt                              |
| 0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0                                                                                                                                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Υ<br>ms (Δ) 1.7                  |                                                 | FUNCTION WIDTH |           | 5.000 ms (100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n 0 H<br>01 pi                              |
| 0.0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 | ×<br>2.874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Υ<br>ms (Δ) 1.7                  | FUNCTION                                        | FUNCTION WIDTH |           | 5.000 ms (100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n 0 I<br>01 p                               |
| (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                                                                                                                                                                                                                            | ×<br>2.874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Υ<br>ms (Δ) 1.7                  | FUNCTION                                        | FUNCTION WIDTH |           | 5.000 ms (100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n 0 H<br>01 pi                              |
| 0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0                                                                                                                                              | ×<br>2.874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Υ<br>ms (Δ) 1.7                  | FUNCTION                                        | FUNCTION WIDTH |           | 5.000 ms (100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n 0 H                                       |
| 0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0                                                                                                          | ×<br>2.874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Υ<br>ms (Δ) 1.7                  | FUNCTION                                        | FUNCTION WIDTH |           | 5.000 ms (100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | un 0 I<br>01 p                              |

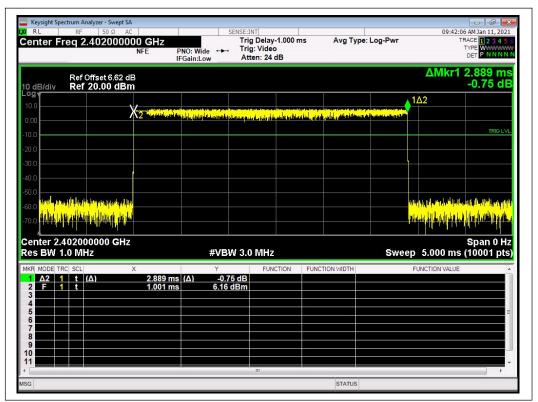
(2DH1\_2441M, π/4-DQPSK)



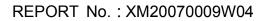
(2DH1\_2480M, π/4-DQPSK)

Kehu-Morlab Test Laboratory

**XIAMEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.** Unit 101, No.1732 Gangzhong Road, Xiamen Area, Pilot Free Trade Zone (Fujian), P. R. China

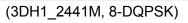


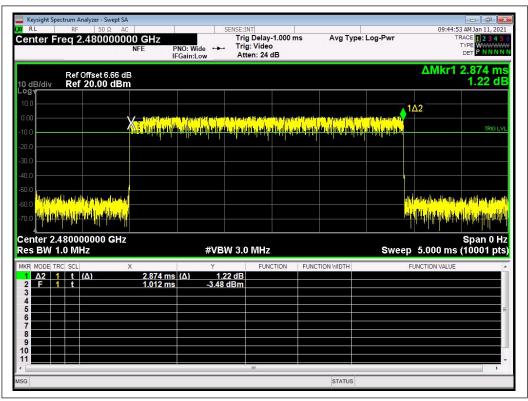

#### 8-DPSK mode


#### A. Test Verdict:

| Mode | Frequency<br>(MHz) | Pulse<br>Width<br>(ms) | Dwell Time<br>(ms) | Limit<br>(sec) | Verdict |
|------|--------------------|------------------------|--------------------|----------------|---------|
|      | 2402               | 2.889                  | 273.830            |                | PASS    |
| 3DH1 | 2441               | 2.874                  | 272.455            | 0.4            | PASS    |
|      | 2480               | 2.874                  | 272.455            |                | PASS    |

#### B. Test Plots:





(3DH1\_2402M, 8-DQPSK)





| Variate Ca                           | ectrum Analyzer - Swe                                                                                           | -1.54                       |                  |                                                                      |                                   |                                                    |                                                                                                                 |                                                                                                                 |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------|------------------|----------------------------------------------------------------------|-----------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| XI RL                                | RF 50 Ω                                                                                                         | AC                          | SENSE            |                                                                      |                                   |                                                    |                                                                                                                 | AM Jan 11, 202                                                                                                  |
| Center F                             | req 2.44100                                                                                                     | NFE I                       | NO Wide ++ T     | rig Delay-1.000 ms<br>rig: Video<br>Atten: 24 dB                     | Avg Type:                         | Log-Pwr                                            |                                                                                                                 | RACE 1 2 3 4 5<br>TYPE W                                                                                        |
| 10 dB/div<br>Log                     | Ref Offset 6.7<br>Ref 20.00 d                                                                                   |                             |                  |                                                                      |                                   |                                                    | ∆Mkr1                                                                                                           | 2.874 ms<br>1.56 dE                                                                                             |
| 10.0                                 |                                                                                                                 |                             |                  |                                                                      | 2 - 0 - 7 - 7 - 7 - 7 - 7 - 7 - 7 | l terre a ser se se se 🔴 👘                         | Δ2                                                                                                              |                                                                                                                 |
| -10.0                                |                                                                                                                 | Xellini                     |                  | and all and and the local data<br>And the local data from the source |                                   |                                                    | 0<br>                                                                                                           | TRIG LVI                                                                                                        |
| -20.0                                |                                                                                                                 |                             |                  |                                                                      |                                   |                                                    |                                                                                                                 |                                                                                                                 |
| -40.0                                |                                                                                                                 |                             |                  |                                                                      |                                   |                                                    |                                                                                                                 |                                                                                                                 |
| -50.0<br>-60.0 <mark>([[1]</mark> ]) | and the House of the second                                                                                     | huy                         |                  |                                                                      |                                   | 110                                                | and the first of the | an a la state de la state d |
| -70.0                                |                                                                                                                 |                             |                  |                                                                      |                                   | <mark>                                     </mark> | <mark>elulų įkristo isteria</mark> .                                                                            | i popular de la del de de la de                                                                                 |
| Center 2.<br>Res BW 1                | 441000000 G<br>I.0 MHz                                                                                          | Hz                          | #VBW 3           | .0 MHz                                                               |                                   | Sweep                                              | 5.000 ms                                                                                                        | Span 0 H<br>(10001 pts                                                                                          |
|                                      | A CONTRACTOR OF | X 0.074                     | γ<br>(Δ) 1.56 dE | FUNCTION                                                             | FUNCTION WIDTH                    | F                                                  | UNCTION VALUE                                                                                                   |                                                                                                                 |
| 2 F 1                                |                                                                                                                 | <u>2.874 ms</u><br>1.012 ms |                  |                                                                      |                                   |                                                    |                                                                                                                 |                                                                                                                 |
| 4                                    |                                                                                                                 |                             |                  |                                                                      |                                   |                                                    |                                                                                                                 |                                                                                                                 |
| 6                                    |                                                                                                                 |                             |                  |                                                                      |                                   |                                                    |                                                                                                                 |                                                                                                                 |
| 8                                    |                                                                                                                 |                             |                  |                                                                      |                                   |                                                    |                                                                                                                 |                                                                                                                 |
| 9                                    |                                                                                                                 |                             |                  |                                                                      |                                   |                                                    |                                                                                                                 |                                                                                                                 |
| 11 <u> </u>                          |                                                                                                                 |                             |                  | m                                                                    |                                   |                                                    |                                                                                                                 | Þ                                                                                                               |
| SG                                   |                                                                                                                 |                             |                  |                                                                      | STATUS                            |                                                    |                                                                                                                 |                                                                                                                 |





(3DH1\_2480M, 8-DQPSK)

Kehu-Morlab Test Laboratory

**XIAMEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.** Unit 101, No.1732 Gangzhong Road, Xiamen Area, Pilot Free Trade Zone (Fujian), P. R. China





### 2.7. Conducted Spurious Emissions and Band Edge

#### 2.7.1. Requirement

According to FCC §15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

#### 2.7.2. Test Description

#### A. Test Setup:



The EUT (Equipment under the test) is coupled to the Spectrum analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in Spectrum analyzer.

#### B. Equipments List:

Please refer ANNEX B(4).

#### 2.7.3. Test Procedure

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100kHz and 300kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.



#### 2.7.4. Test Result

The Bluetooth Module operates at hopping-off test mode. The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions.

#### **GFSK Mode**



Kehu-Morlab Tel: +86 592 5612050 XIAMEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. **Test Laboratory** Unit 101, No.1732 Gangzhong Road, Xiamen Area, Pilot Free Trade Zone (Fujian), P. R. China