Prüfbericht - Produkte

Test Report - Products

Prüfbericht-Nr.: Test report no.:	60417370 003	Auftrags-Nr.: Order no.:	168280909	Seite 1 von 23 Page 1 of 23
Kunden-Referenz-Nr.: Client reference no.:	N/A	Auftragsdatum: Order date:	2020-09-01	
Auftraggeber: Client:	Edifier International Limited P.O. Box 6264 General Post	Office Hong Kong		
Prüfgegenstand: Test item:	Smart Home Speaker			
Bezeichnung / Typ-Nr.: Identification / Type no.:	MS30A (Trademark: EDIFIER)			
Auftrags-Inhalt: Order content.	Test Report			
Prüfgrundlage: Test specification:	CFR47 FCC Part 2: Section 2 IEEE Std 1528-2013 KDB 447498 D01 v06 KDB 865664 D01 v01r04 KDB 865664 D02 v01r02 KDB 248227 D01 v02r02	2.1093	RSS-102 Issue	5 March 2015
Wareneingangsdatum: Date of sample receipt:	2020-09-04			
Prüfmuster-Nr.: Test sample no:	A002902677-001 to 003			
Prüfzeitraum: Testing period:	2020-11-01 – 2020-12-16			uments
Ort der Prüfung: Place of testing:	TÜV Rheinland (Shenzhen) Co., Ltd.			
Prüflaboratorium: Testing laboratory:	TÜV Rheinland (Shenzhen) Co., Ltd.			
Prüfergebnis*: Test result*:	Pass			
geprüft von: tested by:	X Alex Lon	genehmigt von: authorized by:	х -И	line Hon
Datum: <i>Date:</i> 2021-01-21	Signed by: Alex Lan	Ausstellungsdatu Issue date: 2021-	um:	
Stellung / Position:	Senior Project Manager	Stellung / Position	n: Departmen	t Manager
Sonstiges / Other:				
FCC ID: FCC ID: Z9G-EDF IC: 10004A-EDF85 H	85 VIN: MS30A			
Zustand des Prüfgegen Condition of the test item	standes bei Anlieferung: at delivery:	Prüfmuster vollstä Test item complete	ndig und unbeschä e and undamaged	digt
		nicht o.g. Prüfgrundlage(n)	4 = ausreichend N/A = nicht anwendbar	
* Legend: 1 = very good P(ass) = passed a.	$\begin{array}{ll} 2 = good & 3 = satisfactory \\ m. \ test \ specification(s) & F(ail) = failed \ a.m. \end{array}$	test specification(s)	4 = sufficient N/A = not applicable	5 = poor N/T = not tested
auszugsweise verv	zieht sich nur auf das o.g. Prüfm ielfältigt werden. Dieser Bericht b to the a. m. test sample. Without pe	erechtigt nicht zur V	erwendung eines P	rüfzeichens.

Prüfbericht - Produkte *Test Report - Products*

Seite 2 von 23 60417370 003 Prüfbericht - Nr.: Page 2 of 23 Test Report No. **Table of Contents** 1 1.1 1.2 1.2.1 1.2.2 1.3 1.4 1.5 2 2.1 2.2 2.3 SAR Limits 3 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.2 SAR Reference Measurement (drift)10 3.2.1 3.2.2 3.2.3 3.2.4 3.3 3.4 3.5 3.5.1 3.5.2 3.5.3 3.5.4 4 4.1 WLAN Configuration and Testing16 4.1.1 4.2

Seite 3 von 23 60417370 003 Prüfbericht - Nr.: Page 3 of 23 Test Report No. 4.2.1 4.2.2 4.3 4.3.1 4.3.2 4.4 4.5 4.5.1 4.5.2 4.5.3 4.6 4.6.1 4.7

Test Report No.

Seite 4 von 23 Page 4 of 23

1 General Information

1.1 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for the EUT are as follows:

Equipment Class	Mode / Band	Highest Reported Body SAR-1g (1cm Gap) (W/Kg)	Highest Reported Extremity SAR-10g (0m Gap) (W/Kg)
DTS	2.4GHz WLAN	0.67	1.43
Max. SAR		0.67	1.43

Note: The WLAN and Bluetooth cannot transmit simultaneously.

1.2 EUT Description

1.2.1 General Description

Product Name	Smart Home Speaker
Model No.(EUT)	MS30A
FCC ID	Z9G-EDF85
IC	10004A-EDF85
Device Dimension	Length x Width x High: 92mm x 85mm x 92mm
HW Version	V1.0
SW Version	V1.0
Tx Frequency Bands	WLAN: 2412 to 2462MHz
	Bluetooth: 2402 to 2480MHz
Rx Frequency Bands	WLAN: 2412 to 2462MHz
	Bluetooth: 2402 to 2480MHz
Bandwidth	WLAN: 20MHz, 40MHz
Banuwiuth	Bluetooth: 1MHz
	802.11b: DSSS
Modulation	802.11g/n: OFDM
	Bluetooth: GFSK, PI/4-DQPSK, 8-DPSK
Power Class	Max output power for WLAN and Bluetooth
Device Class	В
Wireless Router (Hotspot)	Not Support
VOIP	Not Support
Antonno Tuno	WLAN: Integral Antenna
Antenna Type	Bluetooth: Integral Antenna
Antonno Coin	WLAN: 3.22 dBi
Antenna Gain	Bluetooth: 2.59 dBi
EUT Stage	Identical Prototype

Test Report No.

Seite 5 von 23 Page 5 of 23

1.2.2 List of Accessory

	Model Name	GP-ICR18650
Battery	Power Rating	3.7Vdc, 2500mAh
	Туре	Li-ion
	Model Name	DSA-10PF06-05FUS 050200
AC/DC Adapter	Poting	Input: 100-240Vac, 50/60Hz
	Kaung	Output: 5Vdc, 2A

1.3 Other Information

Sample Received Date:	2020-09-04	
Sample tested Date:	2020-11-01 ~ 2020-12-16	

1.4 Testing Facilities

TÜV Rheinland (Shenzhen) Co., Ltd.

362 Huanguan Road Middle Longhua District, Shenzhen 518110 People's Republic of China

A2LA Cert. No.: 5162.01 FCC Registration No.: CN1260

1.5 Guidance Standards

The tests documented in this report were performed in accordance with FCC 47 CFR Part 2 §2.1093, IEEE Std 1528-2013, ANSI/IEEE C95.1-1992, the following FCC Published RF exposure KDB procedures:

CFR47 FCC Part 2: Section 2.1093 IEEE Std 1528-2013 KDB 447498 D01 v06 KDB 865664 D01 v01r04 KDB 865664 D02 v01r02 KDB 248227 D01 v02r02 RSS-102 Issue 5 March 2015

The equipment have been tested by TÜV Rheinland (Shenzhen) Co., Ltd., and found compliance with the requirement of the above standards.

Test Report No.

Seite 6 von 23 Page 6 of 23

2 Specific Absorption Rate (SAR)

2.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling, by appropriate techniques, to produce specific absorption rates (SARs) as averaged over the whole-body, any 1 g or any 10 g of tissue (defined as a tissue volume in the shape of a cube). All SAR values are to be averaged over any six-minute period. When portable device was used within 20 cm of the user's body, SAR evaluation of the device will be required. The SAR limit in chapter 2.3.

2.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

2.3 SAR Limits

(A) Limits for Occupational/Controlled Exposure (W/kg)

· · ·	<u>, </u>			
	Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles	
	0.4	8.0	20.0	

(B) Limits for General Population/Uncontrolled Exposure (W/kg)

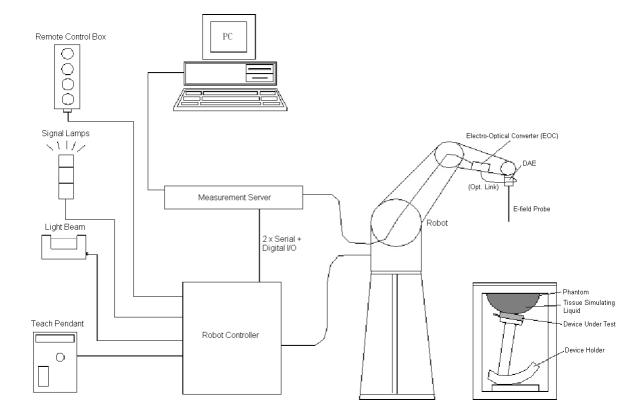
Ì	Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
	0.08	1.6	4.0
- N I	4 -		

Note:

1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

2. At frequencies above 6.0 GHz, SAR limits are not applicable and MPE limits for power density should be applied at 5 cm or more from the transmitting device.

3. The SAR limit is specified in FCC 47 CFR Part 2 §2.1093, ANSI/IEEE C95.1-1992.


Prüfbericht - Nr.: 60417370 003 Test Report No.

Seite 7 von 23 Page 7 of 23

3 SAR Measurement System

3.1 SPEAG DASY System

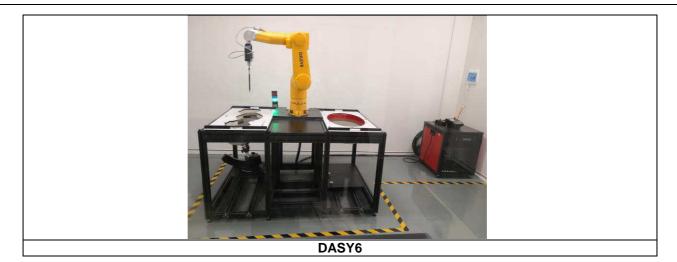
DASY system consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY5 software defined. The DASY software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC.

DASY Measurement System

3.1.1 Robot

The DASY system uses the high precision robots from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability ±0.035 mm)
- High reliability (industrial design)
- · Jerk-free straight movements
- · Low ELF interference (the closed metallic construction shields against motor control fields)


Seite 8 von 23

Page 8 of 23

Prüfbericht - Produkte Test Report - Products

Prüfbericht - Nr.: 60417370 003

Test Report No.

3.1.2 Probe

The SAR measurement is conducted with the dosimetric probe. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

Model	EX3DV4	
Construction	Symmetrical design with triangular core. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE).	
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB	
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)	
Dynamic Range	10 μW/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)	
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	

3.1.3 Data Acquisition Electronics (DAE)

Model	DAE3, DAE4	
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.	
Measurement	-100 to +300 mV (16 bit resolution and two range	
Range	settings: 4mV, 400mV)	
Input Offset Voltage	< 5µV (with auto zero)	
Input Bias Current	< 50 fA	
Dimensions	60 x 60 x 68 mm	

Seite 9 von 23

Page 9 of 23

Prüfbericht - Nr.: 60417370 003

Test Report No.

3.1.4 Phantom

Model	Twin SAM	
Construction The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.		
Material	Vinylester, glass fiber reinforced (VE-GF)	
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)	-
Dimensions Length: 1000 mm Width: 500 mm Height: adjustable feet		
Filling Volume	approx. 25 liters	
Model	ELI	
	Phantom for compliance testing of handheld and body- mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its	

performance and can be integrated into our standard

phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with

all SPEAG dosimetric probes and dipoles. Vinylester, glass fiber reinforced (VE-GF)

 2.0 ± 0.2 mm (bottom plate)

Major axis: 600 mm

Minor axis: 400 mm

approx. 30 liters

3.1.5 Device Holder

Shell Thickness

Dimensions

Filling Volume

Construction

Material

Model	Mounting Device	
Construction	In combination with the Twin SAM Phantom or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).	
Material	POM	

Prüfbericht - Jest Report No.	Nr.: 60417370 003	Seite 10 von 23 Page 10 of 23
Model	Laptop Extensions Kit	
Construction	Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner.	
Material	POM, Acrylic glass, Foam	1 million and 1

3.1.6 System Validation Dipoles

Model	D-Serial	
Construction	Symmetrical dipole with I/4 balun. Enables measurement of feed point impedance with NWA. Matched for use near flat phantoms filled with tissue simulating solutions.	
Frequency	750 MHz to 5800 MHz	
Return Loss	> 20 dB	
Power Capability	> 100 W (f < 1GHz), > 40 W (f > 1GHz)	C

3.2 SAR Scan Procedure

3.2.1 SAR Reference Measurement (drift)

Prior to the SAR test, local SAR shall be measured at a stationary reference point where the SAR exceeds the lower detection limit of the measurement system.

3.2.2 Area Scan

Measurement procedures for evaluating the SAR of wireless device start with a coarse measurement grid to determine the approximate location of the local peak SAR values. This is known as the area-scan procedure. All antennas and radiating structures that may contribute to the measured SAR or influence the SAR distribution must be included in the area scan. The area scan measurement resolution must enable the extrapolation algorithms of the SAR system to correctly identify the peak SAR location(s) for subsequent zoom scan measurements to correctly determine the 1-g SAR. Area scans are performed at a constant distance from the phantom surface, determined by the measurement frequencies. When a measured peak is closer than ½ the zoom scan volume dimension (x, y) from the edge of the area scan region, unless the entire peak and gram-averaging volume are both captured within the zoom scan volume, the area scan must be repeated by shifting and expanding the area scan region to ensure all peaks are away from the area scan boundary. The area scan resolutions specified in the table below must be applied to the SAR measurements.

	≤ 3 GHz	> 3 GHz		
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 mm ± 1 mm	$\frac{1}{2}$ ·δ·ln(2) mm ± 0.5 mm		
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°		
	≤ 2 GHz: ≤ 15 mm	3 – 4 GHz: ≤ 12 mm		
	2 – 3 GHz: ≤ 12 mm	4 – 6 GHz: ≤ 10 mm		
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in			
	the measurement plan	ne orientation, is smaller		
	than the above, the measurement resolution			

Test Report No.

_	
	must be \leq the corresponding x or y dimension of
	the test device with at least one measurement
	point on the test device.

3.2.3 Zoom Scan

To evaluate the peak spatial-average SAR values with respect to 1 g or 10 g cubes, fine resolution volume scans, called zoom scans, are performed at the peak SAR locations identified during the area scan. If the cube volume within the zoom scan chosen to calculate the peak spatial-average SAR touches any boundary of the zoom-scan volume, the zoom scan shall be repeated with the center of the zoom-scan volume shifted to the new maximum SAR location. For any secondary peaks found in the area scan that are within 2 dB of the maximum peak and are not within this zoom scan, the zoom scan shall be performed for such peaks, unless the peak spatial-average SAR at the location of the maximum peak is more than 2 dB below the applicable SAR limit (i.e., 1 W/kg for a 1.6 W/kg 1 g limit, or 1.26 W/kg for a 2 W/kg 10 g limit). The zoom scan resolutions specified in the table below must be applied to the SAR measurements.

			≤ 3 GHz	> 3 GHz				
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			≤ 2 GHz: ≤ 8 mm	3 – 4 GHz: ≤ 5 mm*				
	in spatial re	Solution. $\Delta x_{Zoom}, \Delta y_{Zoom}$	2 – 3 GHz: ≤ 5 mm*	4 – 6 GHz: ≤ 4 mm*				
				3 – 4 GHz: ≤ 4 mm				
	uniform g	Jrid: ΔZ _{zoom} (n)	≤ 5 mm	4 – 5 GHz: ≤ 3 mm				
Maximum zoom	_			5 – 6 GHz: ≤ 2 mm				
Scan spatial		$\Delta Z_{Zoom}(1)$: between		3 – 4 GHz: ≤ 3 mm				
resolution, normal	graded grid	1 ST two points closest	≤ 4 mm	4 – 5 GHz: ≤ 2.5 mm				
to phantom		to phantom surface		5 – 6 GHz: ≤ 2 mm				
surface		ΔZ_{Zoom} (n>1): between subsequent	≤ 1.5·ΔZ _{zoom} (n-1) mm					
		points	20011()					
Minimum zoom				3 – 4 GHz: ≥ 28 mm				
scan volume	x, y, z		≥ 30 mm	4 – 5 GHz: ≥ 25 mm				
Scall volullie				5 – 6 GHz: ≥ 22 mm				
Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.								

* When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

3.2.4 SAR Drift Measurement

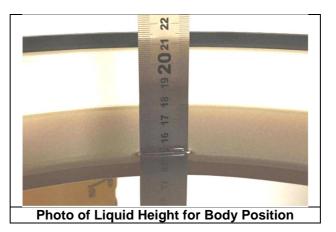
The local SAR (or conducted power) shall be measured at exactly the same location as in 3.2.1 section. The absolute value of the measurement drift (the difference between the SAR measured in 3.2.1 and 3.2.4 section) shall be recorded. The SAR drift shall be kept within \pm 5%.

3.3 Test Equipment

Equipment	Manufacturer	Model	SN	Cal. Data	Cal. interval
System Validation Dipole	SPEAG	D750V3	1109	Jun. 25, 2018	3 years
System Validation Dipole	SPEAG	D835V2	4d242	Jun. 06, 2018	3 years
System Validation Dipole	SPEAG	D900V2	1d200	Jun. 06, 2018	3 years
System Validation Dipole	SPEAG	D1750V2	1166	Jun. 11, 2018	3 years
System Validation Dipole	SPEAG	D1800V2	2d219	Jun. 11, 2018	3 years
System Validation Dipole	SPEAG	D1900V2	5d229	Jun. 12, 2018	3 years
System Validation Dipole	SPEAG	D2000V2	1089	Jun. 07, 2018	3 years
System Validation Dipole	SPEAG	D2300V2	1087	Jun. 07, 2018	3 years
System Validation Dipole	SPEAG	D2450V2	1014	Jun. 07, 2018	3 years
System Validation Dipole	SPEAG	D2600V2	1153	Jun. 07, 2018	3 years
System Validation Dipole	SPEAG	D3500V2	1063	Jun. 08, 2018	3 years
System Validation Dipole	SPEAG	D3700V2	1020	Jun. 06, 2018	3 years
System Validation Dipole	SPEAG	D5GHzV2	1280	May. 26, 2020	1 year
Dosimetric E-Field Probe	SPEAG	EX3DV4	7506	May. 29, 2020	1 year

Seite 11 von 23 Page 11 of 23

rüfbericht - Nr.: est Report No.	60417370	003			Seite 12 von 23 Page 12 of 23
Data Acquisition Electronics	SPEAG	DAE4	1557	May. 27, 2020	1 year
Wideband Radio Communication Tester	R&S	CMW500	166305	Sep. 29, 2020	1 year
Signal Analyzer	R&S	FSV 7	103665	Aug. 22, 2020	1 year
Vector Network Analyzer	R&S	ZNB 8	107040	Aug. 22, 2020	1 year
Dielectric assessment Kit	SPEAG	DAK-3.5	1269	May. 19, 2020	1 year
Signal Generator	R&S	SMB 100A	180840	Aug. 22, 2020	1 year
EPM Series Power Meter	Keysight	N1914A	MY58240005	Dec. 20, 2018	2 years
Power Sensor	Keysight	N8481H	MY58250002	Dec. 19, 2019	1 year
Power Sensor	Keysight	N8481H	MY58250006	Dec. 19, 2019	1 year
DC Power Supply	Topward	3303D	809332	Dec. 19, 2019	1 year
Coaxial Directional Couper	Keysight	773D	MY52180552	Dec. 19, 2019	1 year
Coaxial Directional Couper	shhuaxiang	DTO-0.4/3.9-10	18052101	Dec. 19, 2019	1 year
Coaxial attenuator	Keysight	8491A	MY52463219	Dec. 24, 2019	1 year
Coaxial attenuator	Keysight	8491A	MY52463210	Dec. 24, 2019	1 year
Coaxial attenuator	Keysight	8491A	MY52463222	Dec. 24, 2019	1 year
Digital Thermometer	ĹKM	DTM3000	3116	Dec. 19, 2019	1 year
Power Amplifier Mini circuit	mini-circuits	ZHL-42W	SN002101809	N/A	Ň/A
Power Amplifier Mini circuit	mini-circuits	ZVE-8G	SN070501814	N/A	N/A
PHANTOM	SPEAG	ELI V8.0	2094	N/A	N/A
PHANTOM	SPEAG	SAM-Twin V8.0	1961	N/A	N/A


3.4 Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

3.5 Tissue Dielectric Parameter Measurement & System Verification

3.5.1 Tissue Simulating Liquids

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed.

The body tissue simulating liquids, the dielectric properties are defined in KDB 865664 D01 Appendix A. The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using a dielectric assessment kit and a network analyzer.

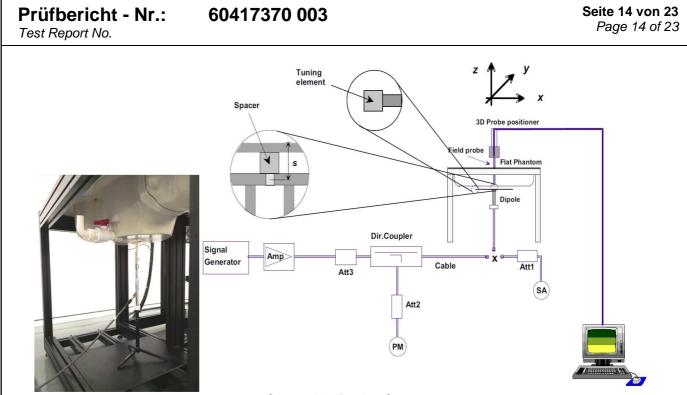
Prüfbericht - Produkte Test Report - Products

60417370 003

Test Report No.

Prüfbericht - Nr.:

	Table-3.1 Tis	sue Dielectric Parame	eters for Body	
Frequency	Target	Range of	Target	Range of
(MHz)	Permittivity	±5%	Conductivity	±5%
		For Body		
750	55.5	52.7 ~ 58.3	0.96	0.91 ~ 1.01
835	55.2	52.4 ~ 58.0	0.97	0.92 ~ 1.02
900	55.0	52.3 ~ 57.8	1.05	1.00 ~ 1.10
1450	54.0	51.3 ~ 56.7	1.30	1.24 ~ 1.37
1640	53.8	51.1 ~ 56.5	1.40	1.33 ~ 1.47
1750	53.4	50.7 ~ 56.1	1.49	1.42 ~ 1.56
1800	53.3	50.6 ~ 56.0	1.52	1.44 ~ 1.60
1900	53.3	50.6 ~ 56.0	1.52	1.44 ~ 1.60
2000	53.3	50.6 ~ 56.0	1.52	1.44 ~ 1.60
2300	52.9	50.3 ~ 55.5	1.81	1.72 ~ 1.90
2450	52.7	50.1 ~ 55.3	1.95	1.85 ~ 2.05
2600	52.5	49.9 ~ 55.1	2.16	2.05 ~ 2.27
3500	51.3	48.7 ~ 53.9	3.31	3.14 ~ 3.48
5200	49.0	46.6 ~ 51.5	5.30	5.04 ~ 5.57
5300	48.9	46.5 ~ 51.3	5.42	5.15 ~ 5.69
5500	48.6	46.2 ~ 51.0	5.65	5.37 ~ 5.93
5600	48.5	46.1 ~ 50.9	5.77	5.48 ~ 6.06
5800	48.2	45.8 ~ 50.6	6.00	5.70 ~ 6.30


Table-3.2 Recipes of Tissue Simulating Liquid

Tissue Type	Bactericide	DGBE	HEC	NaCl	Sucrose	Triton X-100	Water	Diethylene Glycol Mono- hexylether
H750	0.2	-	0.2	1.5	56.0	-	42.1	-
H835	0.2	-	0.2	1.5	57.0	-	41.1	-
H900	0.2	-	0.2	1.4	58.0	-	40.2	-
H1450	-	43.3	-	0.6	-	-	56.1	-
H1640	-	45.8	-	0.5	-	-	53.7	-
H1750	-	47.0	-	0.4	-	-	52.6	-
H1800	-	44.5	-	0.3	-	-	55.2	-
H1900	-	44.5	-	0.2	-	-	55.3	-
H2000	-	44.5	-	0.1	-	-	55.4	-
H2300	-	44.9	-	0.1	-	-	55.0	-
H2450	-	45.0	-	0.1	-	-	54.9	-
H2600	-	45.1	-	0.1	-	-	54.8	-
H3500	-	8.0	-	0.2	-	20.0	71.8	-
H5G	-	-	-	-	-	17.2	65.5	17.3
B750	0.2	-	0.2	0.8	48.8	-	50.0	-
B835	0.2	-	0.2	0.9	48.5	-	50.2	-
B900	0.2	-	0.2	0.9	48.2	-	50.5	-
B1450	-	34.0	-	0.3	-	-	65.7	-
B1640	-	32.5	-	0.3	-	-	67.2	-
B1750	-	31.0	-	0.2	-	-	68.8	-
B1800	-	29.5	-	0.4	-	-	70.1	-
B1900	-	29.5	-	0.3	-	-	70.2	-
B2000	-	30.0	-	0.2	-	-	69.8	-
B2300	-	31.0	-	0.1	-	-	68.9	-
B2450	-	31.4	-	0.1	-	-	68.5	-
B2600	-	31.8	-	0.1	-	-	68.1	-
B3500	-	28.8	-	0.1	-	-	71.1	-
B5G	-	-	-	-	-	10.7	78.6	10.7

3.5.2 **System Check Verification**

The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below.

System Verification Setup

The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The spectrum analyzer measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power (250 mW is used for 700 MHz to 3 GHz, 100 mW is used for 3.5 GHz to 6 GHz) at the dipole connector and the power meter is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter.

After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %.

3.5.3 Tissue Verification

	Tissue Verification											
Tissue Type	Frequency (MHz)	Conductivity (σ)	Permittivity (εr)	Targeted Conductivity (σ)	Targeted Permittivity (εr)	Deviation Conductivity (σ)	Deviation Permittivity (εr)	Date				
	2450	1.827	37.969	1.80	39.20	1.50	-3.14	14/12/2020				
	2412	1.795	38.000	1.767	39.27	1.58	-3.23	14/12/2020				
H2450	2437	1.815	37.983	1.788	39.22	1.51	-3.15	14/12/2020				
	2462	1.837	37.954	1.812	39.18	1.38	-3.13	14/12/2020				
	2480	1.853	37.919	1.832	39.16	1.15	-3.17	14/12/2020				

The measuring results for tissue simulating liquid are shown as below.

Note:

The dielectric properties of the tissue simulating liquid must be measured within 24 hours before the SAR testing and within \pm 5% of the target values. The variation of the liquid temperature must be within \pm 2 °C during the test.

Seite 15 von 23

Page 15 of 23

60417370 003 Prüfbericht - Nr.:

Test Report No.

3.5.4 **System Verification**

The measuring result for system verification is tabulated as below.

	System Validation									
Frequency (MHz)	Targeted SAR 1g	Targeted SAR 10g	Measured SAR 1g	Measured SAR 10g	normalized SAR 1g	normalized SAR 10g	SAR 1g Deviation	SAR 10g Deviation	Date	
()	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(%)	(%)		
2450	51.40	23.80	13.20	5.94	52.80	23.76	2.72	-0.17	14/12/2020	

Note:

Comparing to the reference SAR value, the validation data should be within its specification of 10%. The result indicates the system check can meet the variation criterion and the plots can be referred to appendix A of this report.

60417370 003 Prüfbericht - Nr.:

Test Report No.

SAR Measurement Evaluation and Test Results 4

4.1 EUT Configuration and Setting

Connections between EUT and System Simulator

For WWAN SAR testing, the EUT was linked and controlled by base station emulator. Communication between the EUT and the emulator was established by air link. The distance between the EUT and the communicating antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during SAR testing.

4.1.1 WLAN Configuration and Testing

In general, various vendor specific external test software and chipset based internal test modes are typically used for SAR measurement. These chipset based test mode utilities are generally hardware and manufacturer dependent, and often include substantial flexibility to reconfigure or reprogram a device. A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement. The test frequencies established using test mode must correspond to the actual channel frequencies. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. In addition, a periodic transmission duty factor is required for current generation SAR systems to measure SAR correctly. The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

According to KDB 248227 D01, this device has installed WLAN engineering testing software which can provide continuous transmitting RF signal. During WLAN SAR testing, this device was operated to transmit continuously at the maximum transmission duty with specified transmission mode, operating frequency, lowest data rate, and maximum output power.

Initial Test Configuration

An initial test configuration is determined for OFDM transmission modes in 2.4 GHz and 5 GHz bands according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band.

Subsequent Test Configuration

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. When the highest reported SAR for the initial test configuration according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.

SAR Test Configuration and Channel Selection

When multiple channel bandwidth configurations in a frequency band have the same specified maximum output power, the initial test configuration is using largest channel bandwidth, lowest order modulation, lowest data rate, and lowest order 802.11 mode (i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n). After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. 1) The channel closest to mid-band frequency is selected for SAR measurement.

Seite 16 von 23 Page 16 of 23

Seite 17 von 23 Page 17 of 23

Test Report No.

2) For channels with equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements

When multiple channel bandwidth configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined by applying the following steps sequentially.

1) The largest channel bandwidth configuration is selected among the multiple configurations in a frequency band with the same specified maximum output power.

2) If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.

3) If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.

4) When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n.

4.2 EUT Testing Position

4.2.1 EUT Antenna Location

Antenna	To Front Rear	To Rear Rear	To Left Side	To Right Side	To Top Side	To Bottom Side
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
WLAN	75	5	10	50	10	50

All sides of the EUT were tested, although some of them can be exempted due to SAR exclusion.

4.2.2 Exposure Conditions

Body SAR:

When in boby-worn use, a least 10mm distance should be maintained. For testing, 10 mm adopted.

Extremity SAR:

0 mm test distace used.

Test Report No.

4.3 Measured Conducted Power Result

4.3.1 Conducted Power of WLAN

Mode	Mode 802.11b 802.11g						
Data Rate		1Mbps			6Mbps		
Channel	1	7	13	1	7	13	
Frequency (MHz)	2412	2437	2462	2412	2437	2462	
Peak. Power (dBm)	20.9	20.3	20.2	18.1	17.8	17.2	
Avg.Power (dBm)	19.36	18.76	18.54	9.81	9.63	9.26	
Max. (dBm)		19.36		9.81			
Mode		802.11n HT20)	802.11n HT40			
Data Rate		MCS0 6.5Mbp	S	MC	CS0 13.5Mbp	S	
Channel	1	7	13	3	7	11	
Frequency (MHz)	2412	2437	2462	2422	2437	2452	
Peak. Power (dBm)	17.6	17.4	17.2	17.2	16.9	16.2	
Avg.Power (dBm)	9.93	9.80	9.44	12.01	11.74	11.62	
Max. (dBm)		9.93	9.93 12.01				

4.3.2 Conducted Power of BT

Band	Bluetooth(8DPSK)				
Data Rate		3DH5			
Channel	0	39	78		
Frequency (MHz)	2402	2441	2480		
Peak. Power (dBm)	-4	-2.05	2.62		
Avg.Power (dBm)	-7.01	-5.02	-0.25		
Band	Bluetooth(GFSK)				
Data Rate		DH5			
Channel	0	39	78		
Frequency (MHz)	2402	2441	2480		
Peak. Power (dBm)	-1.80	0.10	4.79		
Avg.Power (dBm)	-3.15	-1.09	3.40		

RSS-102 Section 2.5.1, the higher of EIRP or time average conducted power is lower than threshold power 3.98mW @ 2402 MHz, SAR is exempted

KDB 447498 D01 Section 4.3.1, the maximum time average power is below than thethreshold power, thus SAR test is not required.

4.4 SAR Test Exclusion Evaluations

Wi-Fi: All sides of the EUT were tested, although some of them can be exempted due to SAR exclusion. **Bluetooth:** SAR is not required due to radiated power far below the threshold power in RSS-102 Section 2.5.1 and KDB 447498D01 Section 4.3.1.

Test Report No.

0 003

Seite 19 von 23 Page 19 of 23

TÜVRheinland®

Precisely Right.

4.5 SAR Testing Results

4.5.1 SAR Test Reduction Considerations

KDB 447498 D01 General RF Exposure Guidance

Testing of other required channels within the operating mode of a frequency band is not required when the *reported* SAR for the mid-band or highest output power channel is:

- a) ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- b) ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- c) ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

KDB 248227 D01 Wi-Fi SAR

- a) For handsets operating next to ear, hotspot mode or mini-tablet configurations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When the reported SAR of initial test position is <= 0.4 W/kg, SAR testing for remaining test positions is not required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is <= 0.8 W/kg or all test positions are measured.</p>
- b) For WLAN 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is <= 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2 W/kg.</p>
- c) For WLAN 5 GHz, the initial test configuration was selected according to the transmission mode with the highest maximum output power. When the reported SAR of initial test configuration is > 0.8 W/kg, SAR is required for the subsequent highest measured output power channel until the reported SAR result is <= 1.2 W/kg or all required channels are measured. For other transmission modes, SAR is not required when the highest reported SAR for initial test configuration is adjusted by the ratio of subsequent test configuration to initial test configuration specified maximum output power and it is <= 1.2 W/kg.</p>
- d) For WLAN MIMO mode, the power-based standalone SAR test exclusion or the sum of SAR provision in KDB 447498 to determine simultaneous transmission SAR test exclusion should be applied. Otherwise, SAR for MIMO mode will be measured with all applicable antennas transmitting simultaneously at the specified maximum output power of MIMO operation.
- e) Duty Cycle

For SAR test, the correct crest factor parameter in the SAR measurement system software was set. The duty cycle as below table.

	and	Duty Cycle
2.4	4G WLAN	Up to 100%

Note: Crest Factor = 1 / Duty Cycle

Test Report No.

RSS-102 issue 5 March 2015

Per RSS-102 Issue 5, the SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in Table 1.

Frequency	Exemption Limits (mW)						
(MHz)	At separation distance of ≤5 mm	At separation distance of 10 mm	At separation distance of 15 mm	At separation distance of 20 mm	At separation distance of 25 mm		
≤300	71 mW	101 mW	132 mW	162 mW	193 mW		
450	52 mW	70 mW	88 mW	106 mW	123 mW		
835	17 mW	30 mW	42 mW	55 mW	67 mW		
1900	7 mW	10 mW	18 mW	34 mW	$60 \mathrm{mW}$		
2450	4 mW	7 mW	15 mW	30 mW	52 mW		
3500	2 mW	6 mW	16 mW	32 mW	55 mW		
5800	1 mW	6 mW	15 mW	27 mW	41 mW		

Table 1: SAR evaluation – Exemption limits for routine evaluation based on frequency and separation distance^{4,5}

Frequency		Exemption Limits (mW)					
(MHz)	At separation distance of 30 mm	At separation distance of 35 mm	At separation distance of 40 mm	At separation distance of 45 mm	At separation distance of ≥50 mm		
≤300	223 mW	254 mW	284 mW	315 mW	345 mW		
450	141 mW	159 mW	177 mW	195 mW	213 mW		
835	80 mW	92 mW	105 mW	117 mW	130 mW		
1900	99 mW	153 mW	225 mW	316 mW	431 mW		
2450	83 mW	123 mW	173 mW	235 mW	309 mW		
3500	86 mW	124 mW	170 mW	225 mW	290 mW		
5800	56 mW	71 mW	85 mW	97 mW	106 mW		

Seite 20 von 23 Page 20 of 23

Test Report No.

4.5.2 SAR Results for Body-worn Exposure Condition, 10mm test distance

WiFi SAR Test Results

Test Mode	Test Position	Channel	Maximum Tune-up (dBm)	Conducted Power (dBm)	Power Drift	Measured SAR 1g	Reported 1g SAR	Plot No.
802.11b	Front	1	23.0	22.58	0.06	0.013	0.014	/
802.11b	Rear	1	23.0	22.58	-0.12	0.612	0.67	1#
802.11b	Left	1	23.0	22.58	0.15	0.104	0.11	/
802.11b	Right	1	23.0	22.58	-0.08	0.053	0.06	/
802.11b	Тор	1	23.0	22.58	0.06	0.032	0.04	/
802.11b	Bottom	1	23.0	22.58	0.09	0.015	0.02	/
802.11b	Rear	6	23.0	21.98	0.06	0.521	0.66	/
802.11b	Rear	11	23.0	21.76	0.02	0.501	0.67	/

4.5.3 SAR Results for Extremity Exposure Condition, 0mm test distance

WiFi SAR Test Results

Test Mode	Test Position	Channel	Maximum Tune-up (dBm)	Conducted Power (dBm)	Power Drift	Measured SAR 10g	Reported 10g SAR	Plot No.
802.11b	Front	1	23.0	22.58	0.06	0.014	0.02	/
802.11b	Rear	1	23.0	22.58	-0.12	1.3	1.43	2#
802.11b	Left	1	23.0	22.58	0.02	0.271	0.30	/
802.11b	Right	1	23.0	22.58	0.06	0.133	0.15	/
802.11b	Тор	1	23.0	22.58	0.06	0.076	0.08	/
802.11b	Bottom	1	23.0	22.58	0.05	0.021	0.02	/
802.11b	Rear	6	23.0	21.98	0.01	1.03	1.30	/
802.11b	Rear	11	23.0	21.76	0.09	1.05	1.40	/

Note:

1. 802.11b channel 1 producing the highest power and selected as initial test configuration, SAR is optional for other channels if initial configuration SAR lower than 0.8W/kg (multipled by a factor of 2.5 for extremity SAR).

2. the highest *reported* SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg (kg (multipled by a factor of 2.5 for extremity SAR)), SAR test for OFDM is not required.

For Bluetooth:

The measured maximum conducted power of the EUT is 4.79dBm \approx 3.01 mW , which is far below the SAR exclusion threshold level 10mW (Appendix B, SAR Test Exclusion Thresholds for 100 MHz – 6 GHz and <50 mm), hence the EUT is excluded from SAR evaluation according to FCC KDB publication 447498 D01: Mobile and Portable RF Exposure. Guidance v06.

The measured maximum specified e.i.r.p (average) of the EUT is 5.99dBm \approx 3.97W, which is far below the SAR exclusion threshold level 4mW, hence the EUT is excluded from SAR evaluation according to RSS-102 Issue 5 section 2.5.1.

Seite 21 von 23 Page 21 of 23

Test Report No.

Seite 22 von 23 Page 22 of 23

4.6 SAR Measurement Variability

4.6.1 Repeated Measurement

According to KDB 865664 D01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent media. Alternatively, if the highest measured SAR for both head and body tissue-equivalent media are ≤ 1.45 W/kg and the ratio of these highest SAR values, i.e., largest divided by smallest value, is ≤ 1.10 , the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR repeated measurement procedure:

- 1. When the highest measured SAR is < 0.80 W/kg, repeated measurement is not required.
- 2. When the highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3. If the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20, or when the original or repeated measurement is >= 1.45 W/kg, perform a second repeated measurement.
- 4. If the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20, and the original, first or second repeated measurement is >= 1.5 W/kg, perform a third repeated measurement.

Note: All the measured SAR < 0.8w/kg, no repeated measurement is required.

4.7 Simultaneous Multi-band Transmission Evaluation

Note:

1. The WLAN and Bluetooth cannot transmit simultaneously.

Seite 23 von 23 Page 23 of 23

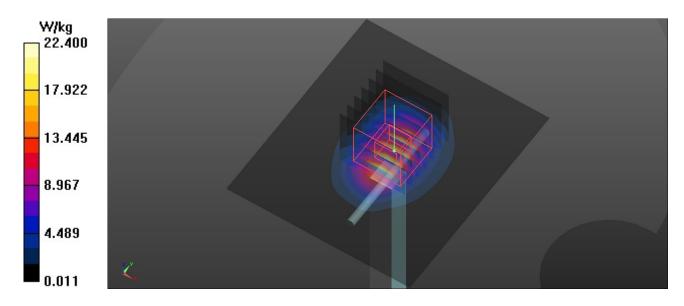
Test Report No.

Complementary Materials

All attachments are integral parts of this test report. This applies especially to the following Appendix: Appendix A: SAR Plots of System Verification Appendix B: Highest SAR Test Plots Appendix C: SAR Setup Phots Appendix D: Calibration Certificated of Probe and Dipole

System Check-D2450V2_H2450

DUT: Dipole 2450 MHz D2450V2 SN:1014


Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: H2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.827$ S/m; $\epsilon_r = 37.969$; $\rho = 1000$ kg/m³

DASY5 Configuration:

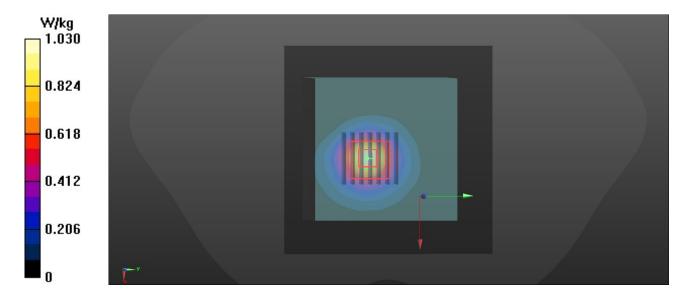
- Probe: EX3DV4 SN7506; ConvF(7.58, 7.58, 7.58) @ 2450 MHz; Calibrated: 2020/5/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1557; Calibrated: 2020/5/27
- Phantom: SAM 1; Type: QD 000 P40 CB; Serial: 1961
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

Pin=250 mW/Area Scan (71x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 22.4 W/kg

Pin=250 mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 113.6 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 27.3 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.12 W/kg Maximum value of SAR (measured) = 22.1 W/kg

P01 802.11b_Rear Face_1cm_Ch1

DUT: EUT


Communication System: 802.11b; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium: H2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.795$ S/m; $\varepsilon_r = 38$; $\rho = 1000$ kg/m³

DASY5 Configuration:

- Probe: EX3DV4 SN7506; ConvF(7.58, 7.58, 7.58) @ 2412 MHz; Calibrated: 2020/5/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1557; Calibrated: 2020/5/27
- Phantom: SAM 1; Type: QD 000 P40 CB; Serial: 1961
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

- Area Scan (101x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.03 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 15.64 V/m; Power Drift = -0.12 dB
Peak SAR (extrapolated) = 1.22 W/kg
SAR(1 g) = 0.612 W/kg; SAR(10 g) = 0.294 W/kg
Maximum value of SAR (measured) = 0.991 W/kg

P02 802.11b_Rear Face_0cm_Ch1

DUT: EUT

Communication System: 802.11b; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium: H2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.795$ S/m; $\varepsilon_r = 38$; $\rho = 1000$ kg/m³

DASY5 Configuration:

- Probe: EX3DV4 SN7506; ConvF(7.58, 7.58, 7.58) @ 2412 MHz; Calibrated: 2020/5/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1557; Calibrated: 2020/5/27
- Phantom: SAM 1; Type: QD 000 P40 CB; Serial: 1961
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

- Area Scan (101x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 5.77 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 30.16 V/m; Power Drift = -0.12 dB
Peak SAR (extrapolated) = 7.84 W/kg
SAR(1 g) = 3.35 W/kg; SAR(10 g) = 1.3 W/kg
Maximum value of SAR (measured) = 6.10 W/kg

Calibration Laborator Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zuric	-		Service suisse d'étalonnage Servizio svizzero di taratura
Accredited by the Swiss Accredita The Swiss Accreditation Service Multilateral Agreement for the r	e is one of the signatorie	es to the EA	Accreditation No.: SCS 0108
Client TüV China (Au	den)	Certificate I	No: D2450V2-1014_Jun18
CALIBRATION C	ERTIFICATE		
Object	D2450V2 - SN:10	014	
Calibration procedure(s)	Calibration proce	dure for dipole validation kits at	ove 700 MHz
Calibration date:	June 07, 2018		a the second sec
		ional standards, which realize the physical u robability are given on the following pages a	
All calibrations have been conduct		ry facility: environment temperature (22 \pm 3)	°C and humidity < 70%.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19 Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	D #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
Calibrated by:	Name Jeton Kastrati	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	Relly
			Issued: June 7, 2018
This calibration certificate shall n	ot be reproduced except in	n full without written approval of the laborato	ry.

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Accreditation No.: SCS 0108

Glossary:	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured
ConvF	sensitivity in TSL / NORM x,y,z

Multilateral Agreement for the recognition of calibration certificates

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the • nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.2 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.09 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.3 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.9 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.02 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.8 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.0 Ω + 3.3 jΩ
Return Loss	- 24.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.8 Ω + 4.1 jΩ		
Return Loss	- 27.7 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.144 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

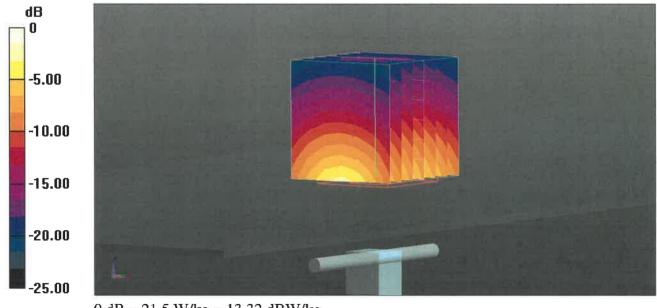
Manufactured by	SPEAG		
Manufactured on	October 17, 2017		

DASY5 Validation Report for Head TSL

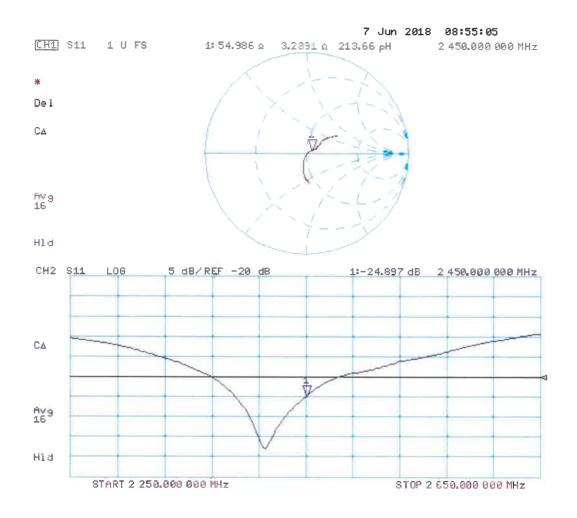
Date: 07.06.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:1014


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ S/m; $\varepsilon_r = 38.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 115.1 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 25.9 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.09 W/kg Maximum value of SAR (measured) = 21.5 W/kg

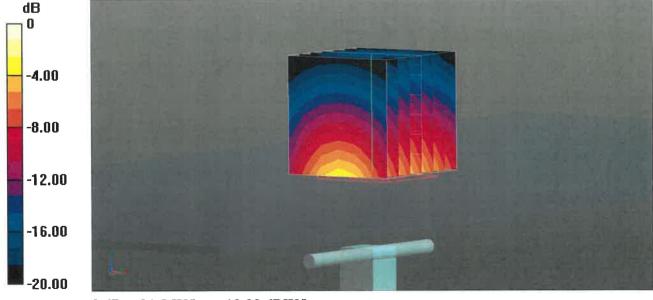
0 dB = 21.5 W/kg = 13.32 dBW/kg

DASY5 Validation Report for Body TSL

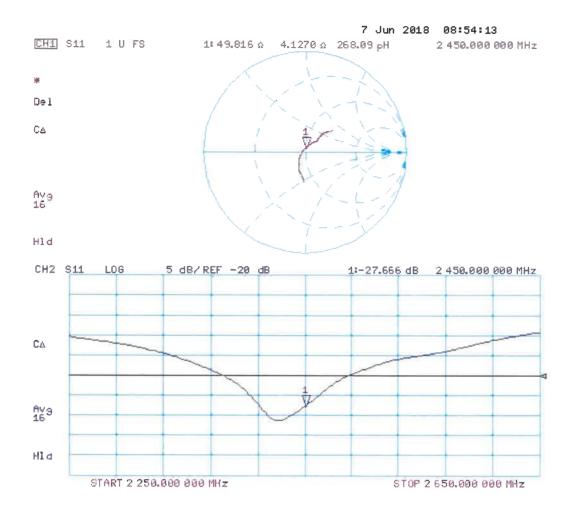
Date: 07.06.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:1014

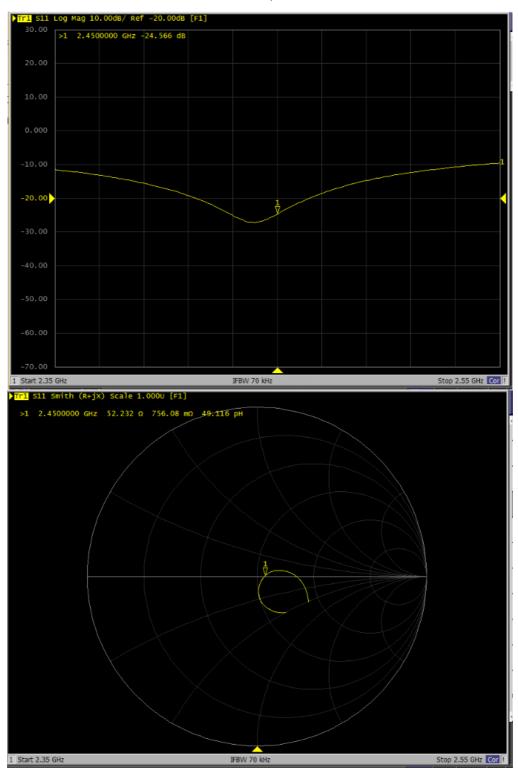

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ S/m; $\varepsilon_r = 52.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.01, 8.01, 8.01) @ 2450 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

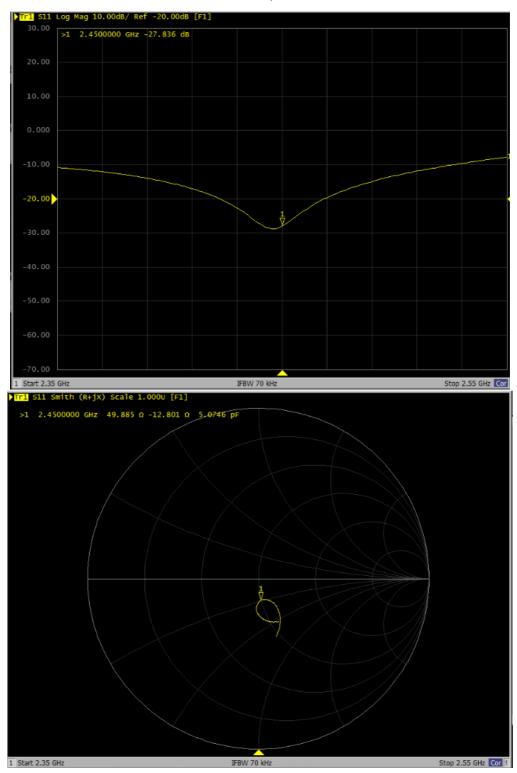
Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 107.4 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 25.5 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.02 W/kg Maximum value of SAR (measured) = 21.0 W/kg


0 dB = 21.0 W/kg = 13.22 dBW/kg

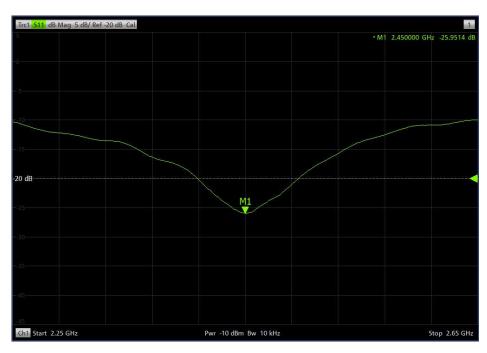
Dipole	Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)
Head 2450 MHz	Jun. 07, 2018	-24.9	-	55	-
	Apr. 17, 2019	-24.6	-1.20	52.2	-2.8

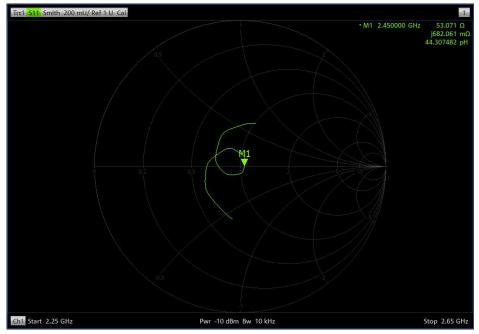
Justification for Extended SAR Dipole Calibrations


Note: The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification results meet the requirement of extended calibration.

Dipole	Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)
Body 2450 MHz	Jun. 07, 2018	-27.7	-	49.8	-
	Apr. 17, 2019	-27.8	0.36	49.9	0.1

Justification for Extended SAR Dipole Calibrations

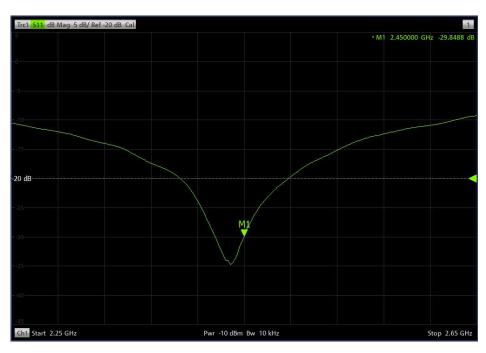

Note: The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification results meet the requirement of extended calibration.

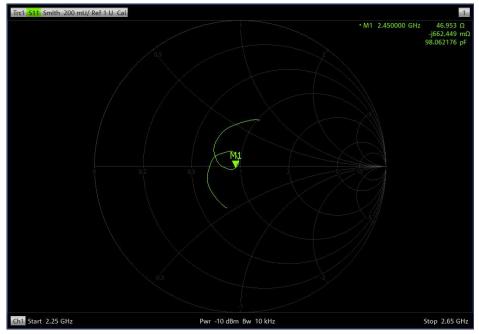


Justification	for	Extended	SAR	Dipole	Calibrations

Dipole	Date of Measurement	Return Loss (dB)	Delta (%)	Impedance(ohm)	Delta(ohm)
Head	Jun 07, 2018	-24.9	-	55.0	-
2450MHz	May 22, 2020	-26.0	4.22	53.1	-1.93

Note: The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification results meet the requirement of extended calibration.





Justification for Extended SAR Dipole Calibrations
--

Dipole	Date of Measurement	Return Loss (dB)	Delta (%)	Impedance(ohm)	Delta(ohm)
Body	Jun 07, 2018	-27.7	-	49.8	-
2450Mhz	May 22, 2020	-29.9	7.76	47.0	-2.85

Note: The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification results meet the requirement of extended calibration.

С

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- S Servizio svizzero di taratura
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

TUV-CN (Auden)

Certificate No: EX3-7506_May20

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:7506

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes

Calibration date:

May 29, 2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: CC2552 (20x)	31-Mar-20 (No. 217-03106)	Apr-21
DAE4	SN: 660	27-Dec-19 (No. DAE4-660_Dec19)	Dec-20
Reference Probe ES3DV2	SN: 3013	31-Dec-19 (No. ES3-3013_Dec19)	Dec-20
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20

	Name	Function	Signature
Calibrated by:	¹ Jeton Kastrati	Laboratory Technician	72 h
Approved by:	Katja Pokovic	Technical Manager	Ally
This calibration certificate	e shall not be reproduced except in ful	l without written approval of the laboratory	Issued: June 2, 2020

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- S Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., 8 = 0 is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization
 ⁹ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.56	0.42	0.51	± 10.1 %
DCP (mV) ^B	99.9	98.3	97.7	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	145.8	± 3.0 %	± 4.7 %
		Y	0.0	0.0	1.0		151.9		
		Z	0.0	0.0	1.0		142.5		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	61.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

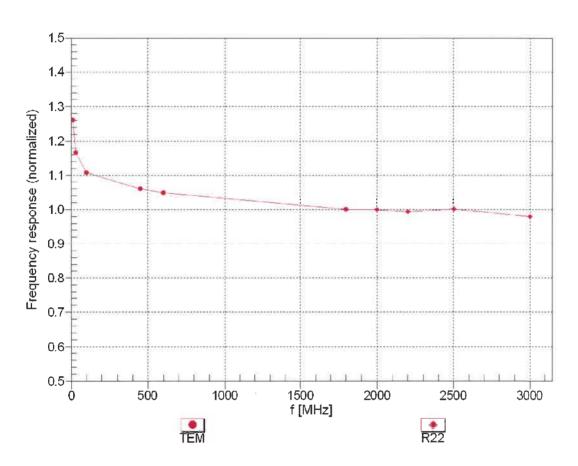
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	43.5	0.87	11.51	11.51	11.51	0.13	1.20	± 13.3 %
750	41.9	0.89	10.34	10.34	10.34	0.61	0.80	± 12.0 %
835	41.5	0.90	10.20	10.20	10.20	0.50	0.80	± 12.0 %
900	41.5	0.97	9.87	9.87	9.87	0.48	0.85	± 12.0 %
1450	40.5	1.20	8.89	8.89	8.89	0.41	0.80	± 12.0 %
1750	40.1	1.37	8.73	8.73	8.73	0.34	0.86	± 12.0 %
1900	40.0	1.40	8.42	8.42	8.42	0.31	0.86	± 12.0 %
2000	40.0	1.40	8.38	8.38	8.38	0.35	0.88	± 12.0 %
2300	39.5	1.67	8.00	8.00	8.00	0.34	0.90	± 12.0 %
2450	39.2	1.80	7.58	7.58	7.58	0.43	0.90	± 12.0 %
2600	39.0	1.96	7.39	7.39	7.39	0.41	0.92	± 12.0 %
3500	37.9	2.91	6.70	6.70	6.70	0.35	1.30	± 13.1 %
3700	37.7	3.12	6.62	6.62	6.62	0.35	1.30	± 13.1 %
5250	35.9	4.71	5.34	5.34	5.34	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.88	4.88	4.88	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.94	4.94	4.94	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

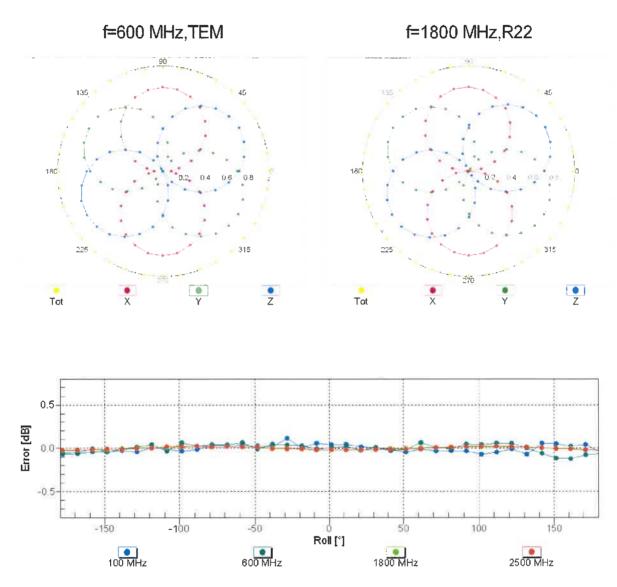
^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

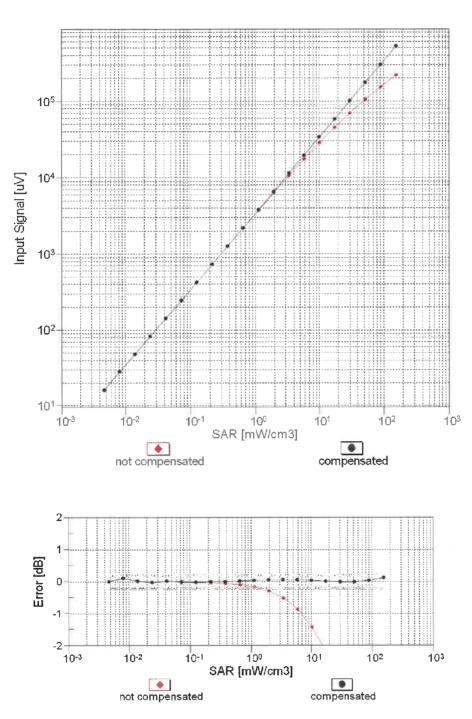

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	56.7	0.94	10.97	10.97	10.97	0.07	1.20	± 13.3 %
750	55.5	0.96	10.37	10.37	10.37	0.44	0.80	± 12.0 %
835	55.2	0.97	10.01	10.01	10.01	0.47	0.80	± 12.0 %
900	55.0	1.05	9.98	9.98	9.98	0.45	0.80	± 12.0 %
1450	54.0	1.30	8.63	8.63	8.63	0.35	0.80	± 12.0 %
1750	53.4	1.49	8.35	8.35	8.35	0.41	0.86	± 12.0 %
1900	53.3	1.52	8.08	8.08	8.08	0.39	0.86	± 12.0 %
2000	53.3	1.52	8.02	8.02	8.02	0.25	1.07	± 12.0 %
2300	52.9	1.81	7.83	7.83	7.83	0.38	0.90	± 12.0 %
2450	52.7	1.95	7.51	7.51	7.51	0.36	0.95	± 12.0 %
2600	52.5	2.16	7.48	7.48	7.48	0.28	0.95	± 12.0 %
3500	51.3	3.31	6.51	6.51	6.51	0.45	1.35	± 13.1 %
3700	51.0	3.55	6.44	6.44	6.44	0.45	1.35	± 13.1 %
5250	48.9	5.36	5.00	5.00	5.00	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.28	4.28	4.28	0.50	1.90	± 13.1 %
5800	48.2	6.00	4.32	4.32	4.32	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

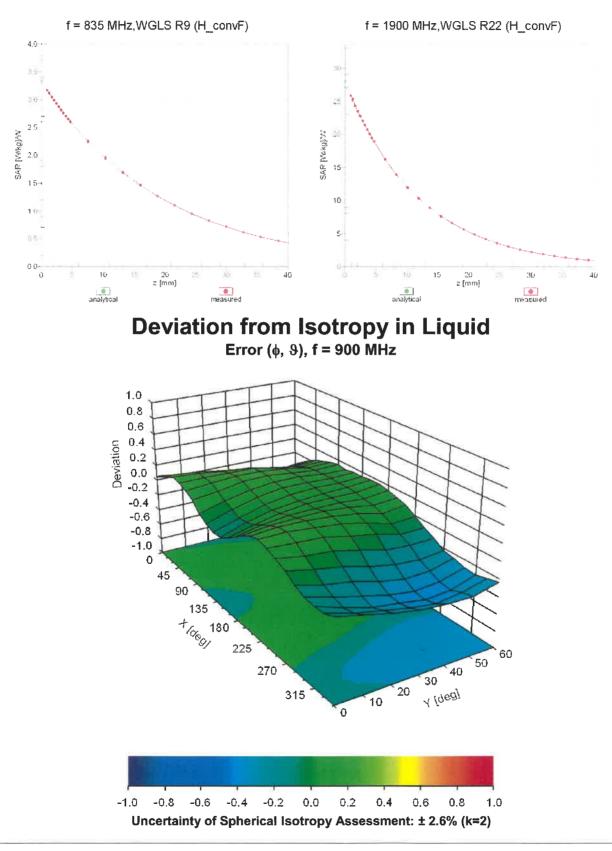
^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to


^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (\phi), \vartheta = 0^{\circ}

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss

IMPORTANT NOTICE

USAGE OF THE DAE4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is fixed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

С Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: DAE4-1557_May20

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

TUV - CN (Auden) Client

1

CALIBRATION C	ERTIFICATE				
Object	DAE4 - SD 000 D04 BN - SN: 1557				
Calibration procedure(s)	QA CAL-06.v30 Calibration procedure for the data acquisition electronics (DAE)				
Calibration date:	May 27, 2020				
The measurements and the uncerta	ainties with confidence pro ed in the closed laboratory	al standards, which realize the physical units of r bability are given on the following pages and are facility: environment temperature (22 \pm 3)°C and	part of the certificate.		
	1.0.4	Cal Data (Cartificata No.)	Scheduled Calibration		
Primary Standards Keithley Multimeter Type 2001	ID # SN: 0810278	Cal Date (Certificate No.) 03-Sep-19 (No:25949)	Sep-20		
Secondary Standards Auto DAE Calibration Unit	ID # SE UWS 053 AA 1001	Check Date (in house) 09-Jan-20 (in house check)	Scheduled Check In house check: Jan-21		
Calibrator Box V2.1	SE UMS 006 AA 1002	09-Jan-20 (in house check)	In house check: Jan-21		
	Name	Function	Signature		
Calibrated by:	Eric Hainfeld	Laboratory Technician	5111		
			apple		
Approved by:	Sven Kühn	Deputy Manager	IN Rollin		
			Issued: May 27, 2020		
This calibration certificate shall no	t be reproduced except in f	full without written approval of the laboratory.			

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

data acquisition electronics

DAE Connector angle

information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of • the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter • corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of . zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset • current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

Calibration Factors	X	Y	Z
High Range	405.289 ± 0.02% (k=2)	405.178 ± 0.02% (k=2)	405.197 \pm 0.02% (k=2)
Low Range	3.97947 ± 1.50% (k=2)	3.99466 ± 1.50% (k=2)	$3.98552 \pm 1.50\%$ (k=2)

Connector Angle

Connector Angle to be used in DASY system	52.5 ° ± 1 °

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

o ronage intearty	1		
High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200029.55	-2.46	-0.00
Channel X + Input	20005.92	0.59	0.00
Channel X - Input	-20001.82	3.53	-0.02
Channel Y + Input	200029.75	-2.41	-0.00
Channel Y + Input	20003.61	-1.61	-0.01
Channel Y - Input	-20006.67	-1.22	0.01
Channel Z + Input	200030.84	-0.96	-0.00
Channel Z + Input	20004.04	-1.15	-0.01
Channel Z - Input	-20006.22 /	-0.69	0.00

Low Range		Reading (µV)	Difference (µV)	Error (%)	
Channel X +	Input	2001.39	0.21	0.01	
Channel X +	- Input	201.54	0.25	0.12	
Channel X -	Input	-198.18	0.72	-0.36	
Channel Y +	- Input	2000.56	-0.53	-0.03	
Channel Y +	- Input	200.72	-0.45	-0.22	
Channel Y -	Input	-199.74	-0.78	0.39	
Channel Z +	- Input	2000.72	-0.26	-0.01	
Channel Z	Input	200.24	-0.84	-0.42	
Channel Z -	Input	-199.49	-0.50	0.25	

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-1.05	-3.33
	- 200	5.29	3.02
Channel Y	200	6.21	5.86
	- 200	-7.68	-7.90
Channel Z	200	-6.48	-6.61
	- 200	6.14	5.65

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (µV)
Channel X	200	-	-1.44	-1.34
Channel Y	200	5.60	-	-0.01
Channel Z	200	10.31	2.62	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15898	15573
Channel Y	15698	15240
Channel Z	16003	17017

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	-0.24	-1.14	0.68	0.33
Channel Y	-0.84	-1.92	0.61	0.43
Channel Z	-1.33	-3.33	-0.37	0.44

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9