

Test Report

Page 1 of 44

Verified code: 938080

Report No.: E20240605493601-2

Customer:	Lumi United Technology Co., L	td		
Address:	B1, Chongwen Park, Nanshan i Nanshan District, Shenzhen, Ch		ie, Taoyuan Reside	ential District,
Sample Name:	Valve Controller T1			
Sample Model:	VC-X01E			
Receive Sample Date:	Jun.06,2024			
Test Date:	Jun.07,2024 ~ Jun.08,2024			
Test Date:	⊂ Juli.07,2024 ~ Juli.08,2024			
Reference Document:	CFR 47 FCC Part 15 Subpart C RADIO FREQUENCY DEVIC	ES:Subpart C—Inte	ntional Radiators	
Test Result:	Pass			
	1 435			
Prepared by: \mathcal{W}	a. Warner Reviewed by:	Un Wating	Approved by:	Xiao Liang
V	Wen Wenwen	Wu Haoting		Xiao Liang
		GRG METRO	LOGY & TEST G	ROUP CO., LTD
			Issued Date:	2024-07-10
	GRG METROLOGY & TH	EST GROUP CO., L	.TD.	
	(o.163, Pingyun Road, West of Hua 400-602-0999 FAX: (+86) (ingpu Avenue, Guai	ngzhou, Guangdon	•

Statement

1. The report is invalid without "special seal for inspection and testing"; some copies are invalid; The report is invalid if it is altered or missing; The report is invalid without the signature of the person who prepared, reviewed and approved it.

2. The sample information is provided by the client and responsible for its authenticity; The content of the report is only valid for the samples sent this time.

3. When there are reports in both Chinese and English, the Chinese version will prevail when the language problems are inconsistent.

4. If there is any objection concerning the report, please inform us within 15 days from the date of receiving the report.

5. Without the agreement of the laboratory, the client is not authorized to use the test results for unapproved propaganda.

6. The test report without CMA approval mark is only used for scientific research, teaching, internal quality co ntrol and other purposes.

----- The following blanks ------

570 AV

TABLE OF CONTENTS

1. TEST RESULT SUMMARY	5
2. GENERAL DESCRIPTION OF EUT	
2.1 APPLICANT	6
	IDER TEST
	EST
2.8 DUTY CYCLE	
3. LABORATORY	
4. ACCREDITATIONS	
	T
7.1 LIMITS	
7.2 TEST PROCEDURES	
7.3 TEST SETUP	
7.4 DATA SAMPLE	
7.5 TEST RESULTS	
8. 6DB BANDWIDTH	
8.1 LIMITS	
	27
10. POWER SPECTRAL DENSITY	
10.1 LIMITS	
10.4 TEST RESULTS	
11. CONDUCTED BAND EDGES AND SPURIO	US EMISSIONS
11.1 LIMITS	
	31
11.4 TEST RESULTS	
	38
12. RESTRICTED BANDS OF OPERATION	
12. RESTRICTED BANDS OF OPERATION 12.1 LIMITS	
12. RESTRICTED BANDS OF OPERATION 12.1 LIMITS 12.2 TEST PROCEDURES	38
 12. RESTRICTED BANDS OF OPERATION 12.1 LIMITS 12.2 TEST PROCEDURES	
12.RESTRICTED BANDS OF OPERATION12.1LIMITS12.2TEST PROCEDURES12.3TEST SETUP12.4TEST RESULTS	
12.RESTRICTED BANDS OF OPERATION12.1LIMITS12.2TEST PROCEDURES12.3TEST SETUP12.4TEST RESULTS	

REPORT ISSUED HISTORY

Report Version	Report No.	Description	Compile Date
1.0	E20240605493601-2	Original Issue	2024-07-08
	The follow	ving blanks	

1. TEST RESULT SUMMARY

Technical Requirements CFR 47, FCC Part 15 Subpart C (§15.247)						
Limit / Severity	Item	Result				
§15.207	Conducted emission AC power port	Not Applicable ¹				
§15.247(b)(3)	Maximum output power	Pass				
§15.247(e)	Power spectral density	Pass				
§15.247(a)(2)	6dB bandwidth	Pass				
§15.247(d)	RF conducted spurious emissions	Pass				
§15.247(d)	Band edge	Pass				
§15.247(d) & §15.209(a) & §15.205(a)(c)	Radiated spurious emissions & restricted bands of operation	Pass				
§15.203	Antenna requirement	Pass				

Note 1: The EUT is power by battery, not applicable.

----- The following blanks ------

Page 6 of 44

2. GENERAL DESCRIPTION OF EUT

VC-X01E.

2.1 APPLICANT

Name: Lumi United Technology Co., Ltd B1, Chongwen Park, Nanshan iPark, Liuxian Avenue, Taoyuan Residential Address: District, Nanshan District, Shenzhen, China 2.2 MANUFACTURER Name: Lumi United Technology Co., Ltd B1, Chongwen Park, Nanshan iPark, Liuxian Avenue, Taoyuan Residential Address: District, Nanshan District, Shenzhen, China 2.3 **BASIC DESCRIPTION OF EQUIPMENT UNDER TEST** Equipment: Valve Controller T1 Model No.: VC-X01E VC-X01D Adding Model: Model difference They have the same technical construction including circuit diagram, PCB descriptions: layout, hardware version and software version identical, only the model name is different. Trade Name: Agara Power Supply: 6V DC power by battery(AA*4) Battery AA LR6 1.5V No.3151B Specification: FCC ID: 2AKIT-VCX01 Frequency Range: ZigBee: 2405MHz-2480MHz Conducted maximum output 8.08dBm Power: Modulation type: **O-OPSK** Antenna FPC antenna 3.08dBi gain (Max.) Specification: **Temperature Range:** $-10 \ \mbox{C} \sim +50 \ \mbox{C}$ Hardware Version: V32 Software Version: 4.2.8 E20240605493601-0001, E20240605493601-0004 Sample No: The basic description of the EUT is provided by the applicant. This report is Note: made Solely yon the basis of such data and/or information. We accept no responsibility for the authenticity and completeness of the above data and information and the validity of the results and/or conclusions. The test model is

2.4 CHANNEL LIST

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
11	2405*	12	2410	13	2415	14	2420
15	2425	16	2430	17	2435	18	2440*
19	2445	20	2450	21	2455	22	2460
23	2465	24	2470	25	2475	26	2480*

* is the test frequency

2.5 TEST OPERATION MODE

Mode No.	Description of the modes	
1	Zigbee fixed frequency transmitting	

2.6 LOCAL SUPPORTIVE

No.	Name of Equipment	Manufacturer	Model	Serial Number	Note
А	Notebook	DELL	Latitude 3300	2C6CFW2	6#
В	Test board	/	/	/	15
		•	•	•	/_©^/

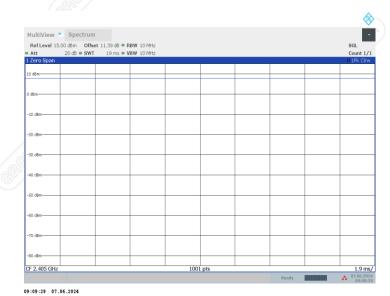
12	No.	Cable Type	Qty.	Shielded Type	Ferrite Core(Qty.)	Length
21/	1	serial cable	1	No	No	0.2m
	2	USB-MINI cable	1	No	No	0.5m

Note: The notebook is just used to produce fixed frequency transmitting.

2.7 CONFIGURATION OF SYSTEM UNDER TEST

Test software:

Software version	Test level
QCOM_V1.0	2405MHz: 80 2440MHz: 80
	2480MHz: 80


2.8 DUTY CYCLE

Environment: 25.0°C/49%RH/101.0kPa

Tested By: Huang tianmei

Test Mode	Antenna	Frequency [MHz]	ON Time [ms]	Period [ms]	DC [%]	T [s]
ZigBee	Ant1	2405	19	19	100	0.019

ZigBee_2405MHz

----- The following blanks ------

Page 8 of 44

.0

Voltage: DC 6V Date: 2024-06-07

Page 9 of 44

3. LABORATORY

The tests & measurements refer to this report were performed by Shenzhen EMC Laboratory of GRG METROLOGY & TEST GROUP CO., LTD.

Add:Address: No.1301 Guanguang Road Xinlan Community, Guanlan Street, Longhua
District Shenzhen, 518110, People's Republic of ChinaP.C.:518110Tel:0755-61180008

Fax : 0755-61180008

4. ACCREDITATIONS

USA

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025:2017.

USA	A2LA(Certificate #2861.01)

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada ISED (Company Number: 24897, CAB identifier:CN0069)

FCC (Registration Number: 759402, Designation Number:CN1198)

Copies of granted accreditation certificates are available for downloading from our web site, <u>http://www.grgtest.com</u>

------ The following blanks ------

5. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measure	ement	Frequency	Uncertainty
	X	9kHz~30MHz	4.4dB ¹⁾
	Y	9kHz~30MHz	4.4dB ¹⁾
	Z	9kHz~30MHz	4.4dB ¹⁾
A	Horizontal	30MHz~200MHz	4.6dB ¹⁾
		200MHz~1000MHz	4.8dB ¹⁾
Radiated Emission		1GHz~18GHz	5.0dB ¹⁾
		18GHz~26.5GHz	5.2dB ¹⁾
/		30MHz~200MHz	4.7dB ¹⁾
		200MHz~1000MHz	4.7dB ¹⁾
(Si ^S)	Vertical	1GHz~18GHz	5.1dB ¹⁾
		18GHz~26.5GHz	5.4dB ¹⁾
	1		

Measurement	Uncertainty
RF frequency	6.0×10 ⁻⁶
RF power conducted	0.80dB
Power spectral density conducted	0.80dB
Occupied channel bandwidth	0.40dB
Unwanted emission, conducted	0.70dB
Humidity	6.0%
Temperature	2.0°C

Note: ¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95%. This uncertainty represents an expanded uncertainty factor of k=2.

6. LIST OF USED TEST EQUIPMENT AT GRGI	

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Radiated Spurious E	mission & Restr	icted bands of operation	on	
Test S/W	Tonscend	JS32-RE/5.0.0		
Loop Antenna	Schwarzbeck	FMZB 1513-60	1513-60-56	2024-07-15
Bi-log Antenna	Schwarzbeck	VULB9160	VULB9160-3402	2024-10-06
Horn Antenna	Schwarzbeck	BBHA 9120D	02143	2024-09-23
Test Receiver	R&S	ESR26	101758	2024-09-22
Board-Band Horn Antenna	Schwarzbeck	BBHA 9170	BBHA 9170-497	2024-09-18
Amplifier	SHIRONG ELECTRONIC	DLNA-30M1G-G40	20200928001	2025-01-30
Amplifier	Tonscend	TAP01018048	AP20E8060075	2025-03-01
Amplifier	Tonscend	TAP184050	AP20E806071	2025-03-01
Amplifier	SHIRONG ELECTRONIC	DLNA-1G18G-G40	20200928005	2024-08-17
6dB Bandwidth &Co	nducted band ec	lges and Spurious Em	ission &Power Spectra	l Density
Spectrum Analyzer	R&S	FSW43	102072	2024-07-09
Automatic power test unit	TONSCEND	JS0806-2	21B8060365	2024-12-28
BT/WIFI System	Tonscend	JS1120-3		Se /
Maximum peak outp	ut power			
Pulse power sensor	Anristu	MA2411B	1126150	2025-01-11
Power meter	Anristu	ML2495A	1204003	2025-01-11

Note: The calibration cycle of the above instruments is 12 months.

7. RADIATED SPURIOUS EMISSIONS

7.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Frequency (MHz)	Quasi-peak(µV/m)	Measurement distance(m)	Quasi-peak(dBµV/m)@distance 3m
0.009-0.490	2400/F(kHz)	300	128.5~93.8
0.490-1.705	24000/F(kHz)	30	73.8~63
1.705-30.0	30	30	69.5
30~88	100	3	40
88~216	150	3	43.5
216~960	200	3	46
Above 960	500	3	54

NOTE: (1) The lower limit shall apply at the transition frequencies.

(2) Above 18GHz test distance is 1m, so the Peak Limit= $74+20*\log(3/1)=83.54$ (dBµV/m). The Avg Limit= $54+20*\log(3/1)=63.54$ (dBµV/m).

7.2 TEST PROCEDURES

a) Sequence of testing 9kHz to 30MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 0.8m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate fixedfrequencytransmitting conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3meter.
- --- The EUT was set into operation.

Pre measurement:

- --- The turntable rotates from 0 $^{\circ}$ to 360 $^{\circ}$.
- --- The antenna height is 1.0 meter.
- --- The antenna is polarized X,Y and Z.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the pre measurement the software maximizes by rotating the turntable position (0 ° to 360 °) and by rotating the elevation axes (0 ° to 360 °).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QP detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement and the limit will be stored.

b) Sequence of testing 30MHz to 1GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a table with 0.8m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate fixed frequency transmitting conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- ---- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Pre measurement:

- --- The turntable rotates from 0 ° to 360 °.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 4 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of pre measurement the software maximize the peaks by changing turntable rotates from 0 $^{\circ}$ to 360 $^{\circ}$ and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement with marked maximum final measurements and the limit will be stored.

c) Sequence of testing 1GHz to 18GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate fixed frequency transmitting conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Pre measurement:

- --- The turntable rotates from 0 ° to 360 °.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 4 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of pre measurement the software maximize the peaks by changing turntable rotates from 0° to 360° and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement with marked maximum final measurements and the limit will be stored.

d) Sequence of testing above 18GHz Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate fixed frequency transmitting conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

Pre measurement:

- --- The turntable rotates from 0 ° to 360 °.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 4 meter.

<98%, set VBW $\geq 1/T$, Where T is defined in section 2.8.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

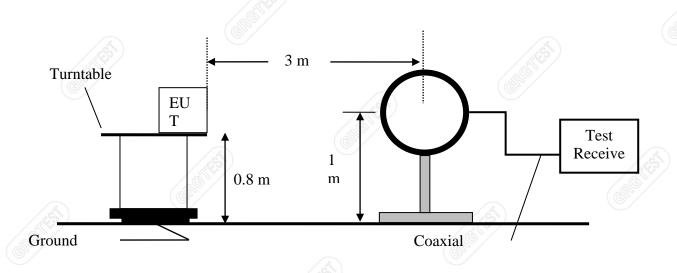
Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of pre measurement the software maximize the peaks by changing turntable rotates from 0 ° to 360 ° and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement with marked maximum final measurements and the limit will be stored.


NOTE:

(1).The frequency from 9kHz to 150kHz, Set RBW=300Hz(for Peak&AVG), VBW=300Hz(for Peak&AVG). The frequency from 150kHz to 30MHz, Set RBW=9kHz, VBW=9kHz, (for QP Detector).
(2).The frequency from 30MHz to 1GHz, Set RBW=120kHz, VBW=300kHz, (for QP Detector).
(3).The frequency above 1GHz, for Peak detector: Set RBW=1MHz,VBW=3MHz.
(4). The frequency above 1GHz, for Avg detector: Set RBW=1MHz,if the EUT is configured to transmit with duty cycle ≥98%, set VBW≤RBW/100 (i.e.,10kHz) but not less than 10 Hz. If the EUT duty cycle is

1

Page 15 of 44

7.3 TEST SETUP

Figure 1. 9kHz to 30MHz radiated emissions test configuration

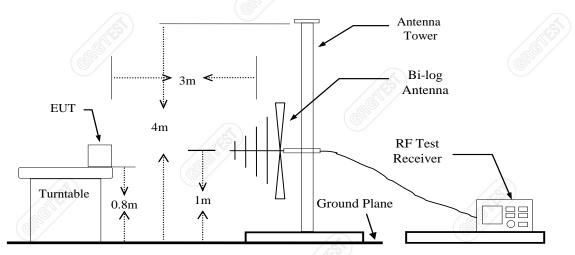


Figure 2. 30MHz to 1GHz radiated emissions test configuration

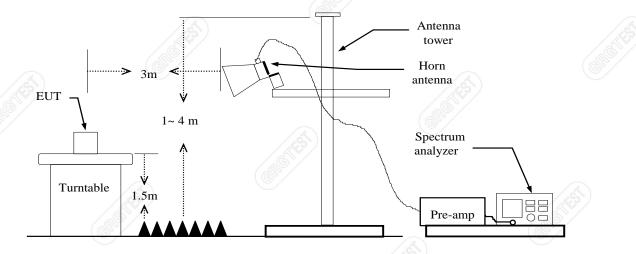


Figure 3. 1GHz to 18GHz radiated emissions test configuration

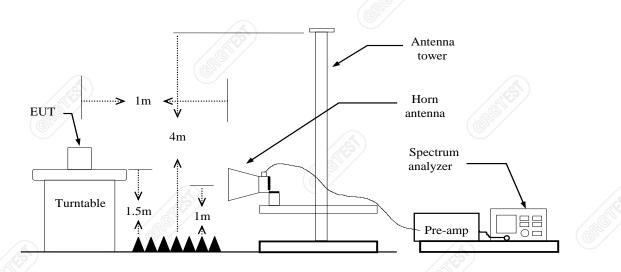


Figure 4. 18GHz to 26.5GHz radiated emissions test configuration

7.4 DATA SAMPLE

30MHz to 1GHz

Sus	pected Data	List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Height [cm]	Angle []	Polarity	Verdict	
xxx	XXX	57.15	25.66	-31.49	40.00	14.34	PK	200	359	Horizontal	PASS	
	Frequency (MHz) = Emission frequency in MHz											
	Reading (d	BμV/m)	= t	= Uncorrected Analyzer / Receiver reading								
	Factor (dB		= A	= Antenna factor + Cable loss – Amplifier gain								
	Result (dB	μV/m)	=	= Reading $(dB\mu V/m)$ + Factor (dB)								
	Limit (dBµ	ιV/m)	= I	limit stat	ed in standar							
	Margin (dł	3)	= H	= Result ($dB\mu V/m$)-Limit ($dB\mu V/m$)								
	Peak = Peak Reading											
	QP		=	= Quasi-peak Reading								

1GHz-18GHz

C

Suspected Data List												
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity			
XXX	XXX	49.54	40.49	-9.05	74.00	33.51	100	256	Horizontal			

Above 18GHz

Suspected Data List												
Freq. [MHz]	Reading [dBµV/m]	Level for 1m [dBµV/m]	Level for 3m [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity			
XXX	63.77	46.82	37.28	-16.95	74	36.72	100	307	Horizontal			
	Freq. [MHz]	Freq. Reading [MHz] [dBµV/m]	Freq. Reading [MHz] [dBµV/m] Level for 1m [dBµV/m]	$ \begin{array}{ c c c c c } Freq. & Reading & Level for & Level for \\ [MHz] & [dB\mu V/m] & 1m & 3m \\ \hline & [dB\mu V/m] & [dB\mu V/m] \end{array} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			

Frequency (MHz)

= Emission frequency in MHz

Reading (dB $\mu V/m)$

Factor (dB)

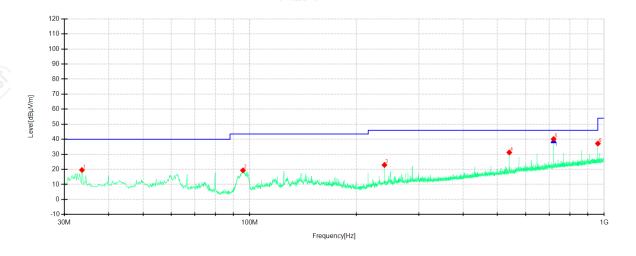
= Uncorrected Analyzer / Receiver reading= Antenna factor + Cable loss – Amplifier gain

Level for 1m (dBµV/m) Level for 3m (dBµV/m) Limit (dBµV/m) Margin (dB) Polarity Peak AVG

- = Reading (dBuV/m) + Factor (dB)
- = Level for 1m ($dB\mu V/m$) + 20*log(1/3)
- = Limit stated in standard
- $= Limit (dB\mu V/m) Level (dB\mu V/m)$
- = Antenna polarization
- = Peak Reading
- = Average Reading

----- The following blanks ------

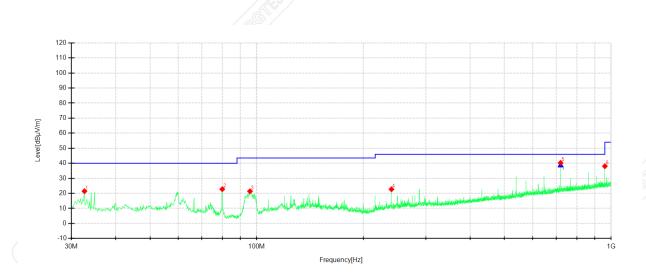
7.5 TEST RESULTS


Note: The test is according to the typical placement method of the product.

Below 1GHz

Note: If the margin of the pre test results is greater than 6dB, it meets the requirements of quasi peak or average values, and final testing is no longer required.

Pretest all case, only the worst mode and channel were recorded in this report. (ZigBee 2480MHz)


EUT Name:	Valve Controller T1	Test Mode:	Mode 1
Model:	VC-X01E	Sample No:	E20240605493601-0003
Power supply:	DC 6V	Environmental Conditions:	25.3°C/59%RH/101.0kPa
Test Engineer:	Wen wenwen	Test Date:	2024-06-08

					(
Susp	Suspected Data List												
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Height [cm]	Angle []	Polarity	Verdict		
1	33.6380	49.30	19.59	-29.71	40.00	20.41	PK	100	130	Horizontal	PASS		
2	95.7257	52.05	19.34	-32.71	43.50	24.16	PK	100	195	Horizontal	PASS		
3	240.0313	52.58	22.94	-29.64	46.00	23.06	PK	100	93	Horizontal	PASS		
4	540.0413	51.76	31.26	-20.50	46.00	14.74	PK	100	302	Horizontal	PASS		
5	720.1200	57.72	40.18	-17.54	46.00	5.82	PK	200	253	Horizontal	PASS		
6	960.1038	51.87	37.17	-14.70	54.00	16.83	PK	200	332	Horizontal	PASS		
			$\langle n \rangle$										

F	Final Data List												
N	Ю.	Freq. [MHz]	Factor [dB]	QP Reading [dBµV/m]	Level [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]	Height [cm]	Angle []	Polarity	Verdict		
	1	720.0474	-17.54	56.89	39.35	46.00	6.65	200	338.2	Horizontal	PASS		

Susp	Suspected Data List												
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Height [cm]	Angle []	Polarity	Verdict		
1	32.6678	51.26	21.48	-29.78	40.00	18.52	PK	200	314	Vertical	PASS		
2	79.9612	56.51	22.80	-33.71	40.00	17.20	PK	200	183	Vertical	PASS		
3	95.7257	54.11	21.40	-32.71	43.50	22.10	PK	100	20	Vertical	PASS		
4	240.0313	52.37	22.73	-29.64	46.00	23.27	PK	200	300	Vertical	PASS		
5	720.1200	57.82	40.28	-17.54	46.00	5.72	PK	200	196	Vertical	PASS		
6	960.1038	52.78	38.08	-14.70	54.00	15.92	PK	200	106	Vertical	PASS		
				U					(n				

Final Data List

1 111001 1										
NO.	Freq. [MHz]	Factor [dB]	QP Reading [dBµV/m]	Level [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]	Height [cm]	Angle []	Polarity	Verdict
1	720.0474	-17.54	56.75	39.21	46.00	6.79	180	340	Vertical	PASS
			7			C				\bigcirc

Remark:

Radiated emissions measured in frequency range from 30MHz to 1GHz were made with an instrument 1

using Quasi-peak detector mode.

2

Measuring frequencies from 9kHz to the 1GHz. The IF bandwidth of Receiver between 30MHz to 1GHz was 120 kHz. 3

4 No emission found between lowest internal used/generated frequency to 30MHz.

1GHz-18GHz:

Mode: TX/ ZigBee Lowest Frequency (2405MHz) Environment: 25.3°C/59%RH/101.0kPa Tested By:Wen wenwen

Suspected Data List											
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle	Polarity		
1	1998.2000	56.61	52.72	-3.89	74.00	21.28	200	70	Horizontal		
2	2663.6000	55.60	52.94	-2.66	74.00	21.06	100	123	Horizontal		
3	3997.5000	54.79	44.46	-10.33	74.00	29.54	100	338	Horizontal		
4	4809.0000	50.86	43.73	-7.13	74.00	30.27	100	304	Horizontal		
5	5991.0000	52.14	48.55	-3.59	74.00	25.45	100	20	Horizontal		
6	13075.5000	36.40	50.10	13.70	74.00	23.90	200	153	Horizontal		
7	1994.6000	37.73	33.81	-3.92	54.00	20.19	100	307	Horizontal		
8	2662.4000	40.39	37.73	-2.66	54.00	16.27	100	139	Horizontal		
9	3996.0000	39.96	29.62	-10.34	54.00	24.38	100	338	Horizontal		
10	4810.5000	42.44	35.31	-7.13	54.00	18.69	100	304	Horizontal		
11	6505.5000	33.26	32.12	-1.14	54.00	21.88	100	187	Horizontal		
12	13306.5000	25.63	39.51	13.88	54.00	14.49	200	53	Horizontal		

Suspe	Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle	Polarity		
1	1999.2000	58.78	53.61	-5.17	74.00	20.39	200	206	Vertical		
2	2658.6000	54.91	52.22	-2.69	74.00	21.78	200	155	Vertical		
3	3981.0000	59.59	48.82	-10.77	74.00	25.18	100	237	Vertical		
4	4810.5000	52.65	45.46	-7.19	74.00	28.54	200	138	Vertical		
5	5977.5000	63.82	60.21	-3.61	74.00	13.79	100	254	Vertical		
6	11727.0000	37.84	50.14	12.30	74.00	23.86	100	204	Vertical		
7	1995.6000	40.52	35.39	-5.13	54.00	18.61	100	204	Vertical		
8	2665.6000	40.70	38.02	-2.68	54.00	15.98	200	206	Vertical		
9	3981.0000	44.32	33.55	-10.77	54.00	20.45	100	237	Vertical		
10	4810.5000	44.37	37.18	-7.19	54.00	16.82	200	138	Vertical		
11	5977.5000	38.74	35.13	-3.61	54.00	18.87	100	254	Vertical		
12	12150.0000	25.93	39.97	14.04	54.00	14.03	200	37	Vertical		

Page 20 of 44

Mode: TX/ ZigBee Middle Frequency (2440MHz) Environment: 25.3°C/59%RH/101.0kPa Tested By:Wen wenwen

Voltage: DC 6V
Date: 2024-06-08

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polari
1	1991.2000	55.71	51.78	-3.93	74.00	22.22	200	91	Horizon
2	2654.2000	50.85	48.23	-2.62	74.00	25.77	200	208	Horizo
3	3996.0000	53.11	42.77	-10.34	74.00	31.23	200	90	Horizon
4	4881.0000	52.01	45.12	-6.89	74.00	28.88	200	188	Horizo
5	5994.0000	48.66	45.07	-3.59	74.00	28.93	100	278	Horizo
6	12207.0000	38.15	50.77	12.62	74.00	23.23	200	55	Horizon
7	1296.0000	41.79	33.11	-8.68	54.00	20.89	100	3	Horizon
8	2792.8000	37.17	35.92	-1.25	54.00	18.08	100	289	Horizo
9	3979.5000	39.11	28.69	-10.42	54.00	25.31	100	261	Horizo
10	4879.5000	43.18	36.29	-6.89	54.00	17.71	200	172	Horizon
11	7321.5000	34.53	35.91	1.38	54.00	18.09	200	205	Horizon
12	12151.5000	26.37	40.51	14.14	54.00	13.49	100	142	Horizo

Suspe	Suspected Data List											
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle	Polarity			
1	1997.6000	61.78	56.62	-5.16	74.00	17.38	200	173	Vertical			
2	2664.8000	61.06	58.38	-2.68	74.00	15.62	100	156	Vertical			
3	3985.5000	63.07	52.30	-10.77	74.00	21.70	100	239	Vertical			
4	4881.0000	52.20	44.89	-7.31	74.00	29.11	200	189	Vertical			
5	5980.5000	66.50	62.90	-3.60	74.00	11.10	100	121	Vertical			
6	12147.0000	36.06	50.06	14.00	74.00	23.94	200	137	Vertical			
7	1196.4000	45.66	36.58	-9.08	54.00	17.42	100	339	Vertical			
8	2664.8000	42.99	40.31	-2.68	54.00	13.69	100	156	Vertical			
9	3985.5000	44.26	33.49	-10.77	54.00	20.51	100	239	Vertical			
10	4879.5000	43.45	36.14	-7.31	54.00	17.86	200	189	Vertical			
110	5980.5000	40.27	36.67	-3.60	54.00	17.33	100	121	Vertical			
12	12141.0000	25.78	39.69	13.91	54.00	14.31	200	221	Vertical			

Mode: TX/ ZigBee Highest Frequency (2480MHz) Environment: 25.3°C/59%RH/101.0kPa Tested By:Wen wenwen

Voltage: DC 6V Date: 2024-06-08

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle	Polari
1	1992.8000	54.37	50.44	-3.93	74.00	23.56	200	88	Horizo
2	2665.2000	53.06	50.39	-2.67	74.00	23.61	100	138	Horizo
3	3987.0000	54.31	43.92	-10.39	74.00	30.08	200	239	Horizo
4	4959.0000	51.78	45.44	-6.34	74.00	28.56	200	137	Horizon
50	5985.0000	53.72	50.12	-3.60	74.00	23.88	100	20	Horizon
6	12588.0000	38.39	50.47	12.08	74.00	23.53	200	171	Horizoi
7	1928.4000	38.75	34.78	-3.97	54.00	19.22	200	255	Horizoi
8	2665.4000	39.33	36.66	-2.67	54.00	17.34	100	172	Horizoi
9	3987.0000	41.33	30.94	-10.39	54.00	23.06	200	239	Horizon
10	4960.5000	42.87	36.53	-6.34	54.00	17.47	200	137	Horizon
11	6489.0000	33.22	31.94	-1.28	54.00	22.06	200	223	Horizon
12	12147.0000	25.66	39.81	14.15	54.00	14.19	100	71	Horizon
12	12147.0000	25.66	39.81	14.15	54.00	14.19	100	/1	2

Suspe	Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle	Polarity		
1	1993.4000	62.38	57.27	-5.11	74.00	16.73	200	154	Vertical		
2	2662.2000	61.72	59.03	-2.69	74.00	14.97	200	154	Vertical		
3	3981.0000	58.39	47.62	-10.77	74.00	26.38	100	259	Vertical		
4	4960.5000	50.88	44.18	-6.70	74.00	29.82	200	171	Vertical		
5	5989.5000	61.73	58.14	-3.59	74.00	15.86	100	291	Vertical		
6	12091.5000	37.43	50.65	13.22	74.00	23.35	100	259	Vertical		
7	1997.2000	42.09	36.95	-5.14	54.00	17.05	200	154	Vertical		
8	2662.2000	43.93	41.24	-2.69	54.00	12.76	200	154	Vertical		
9	3996.0000	43.87	33.06	-10.81	54.00	20.94	100	207	Vertical		
10	4960.5000	43.42	36.72	-6.70	54.00	17.28	200	171	Vertical		
110	5991.0000	37.28	33.69	-3.59	54.00	20.31	100	259	Vertical		
12	12147.0000	26.07	40.07	14.00	54.00	13.93	200	325	Vertical		

18GHz to 26.5GHz

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Pre-scan all modes, only the worst case(TX/ZigBee_2480MHz) was recorded in this report. Mode: TX/ ZigBee Highest Frequency (2480MHz) Environment: 25.3°C/59%RH/101.0kPa Tested By:Wen wenwen

Voltage: DC 6V Date: 2024-06-08

NO.	Freq. [MHz]	Reading [dBµV/m]	Level in 1m [dBµV/m]	Level in 3m [dBµV/m]	Factor [dB]	Limit in 1m [dBµV/m]	Limit in 3m [dBµV/m]	Margin in 1m [dB]	Margin in 3m [dB]	Height [cm]	Angle []	Polarity
1	19375.3	62.62	45.73	36.19	-16.89	83.54	74	37.81	37.81	200	19	Horizontal
2	21113.125	62.51	46.55	37.01	-15.96	83.54	74	36.99	36.99	100	342	Horizontal
3	22635.05	63.04	48.1	38.56	-14.94	83.54	74	35.44	35.44	100	116	Horizontal
4	23764.7	64.38	49.72	40.18	-14.66	83.54	74	33.82	33.82	200	210	Horizontal
5	24090.25	64.47	50.22	40.68	-14.25	83.54	74	33.32	33.32	100	210	Horizontal
6	26008.275	64.43	50	40.46	-14.43	83.54	74	33.54	33.54	100	342	Horizontal

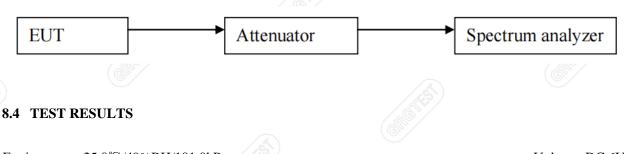
							/ 2					
NO	Freq. [MHz]	Reading [dBµV/m]	Level in 1m [dBµV/m]	Level in 3m [dBµV/m]	Factor [dB]	Limit in 1m [dBµV/m]	Limit in 3m [dBµV/m]	Margin in 1m [dB]	Margin in 3m [dB]	Height [cm]	Angle []	Polarity
1	18832.15	62.81	45.66	36.12	-17.15	83.54	74	37.88	37.88	100	187	Vertical
2	19687.25	62.61	45.65	36.11	-16.96	83.54	74	37.89	37.89	200	282	Vertical
3	22032.4	62.96	47.14	37.6	-15.82	83.54	74	36.40	36.40	100	220	Vertical
4	23744.725	64.85	50.26	40.72	-14.59	83.54	74	33.28	33.28	100	282	Vertical
5	24938.975	64.41	50.47	40.93	-13.94	83.54	74	33.07	33.07	100	282	Vertical
6	25916.05	64.84	50.49	40.95	-14.35	83.54	74	33.05	33.05	200	251	Vertical

Remark:

1 Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

- 2 Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3 Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4 Above 18G test distance is 1m, so the Level for 3m= Level for $1m + 20*\log(1/3)$.

8. 6dB BANDWIDTH

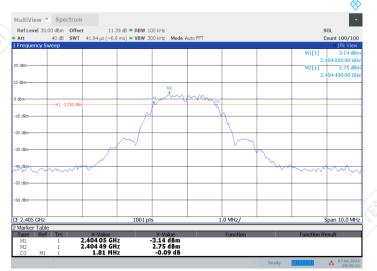

8.1 LIMITS

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

8.2 TEST PROCEDURES

- 1) Remove the antenna from the EUT, and then connect a low loss RF cable from antenna port to the spectrum analyzer.
- 2) Set resolution bandwidth (RBW) = 100kHz.Set the video bandwidth (VBW) $\ge 3 \times RBW$. Detector = Peak. Trace mode = max hold. Sweep = auto couple. Allow the trace to stabilize, record 6dB bandwidth value.
- 3) Repeat above procedures until all frequencies measured were complete.

8.3 TEST SETUP


Environment: 25.0°C/49%RH/101.0kPa

Tested By: Huang tianmei

Voltage: DC 6V Date: 2024-06-07

Channel	Frequency (MHz)	Bandwidth [kHz]	Limit[kHz]	Verdict
Lowest	2405	1810		PASS
Middle	2440	1720	>500	PASS
Highest	2480	1630		PASS

Lowest channel (2405MHz)

09:09:35 07.06.2024

Middle channel (2440 MHz)



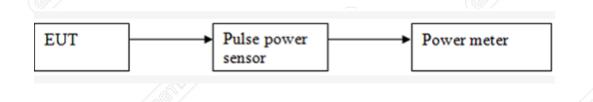
09:13:01 07.06.2024

Highest channel (2480MHz)

09:18:19 07.06.2024

----- The following blanks -----

9. MAXIMUM OUTPUT POWER


9.1 LIMITS

The maximum Peak output power measurement is 1W

9.2 TEST PROCEDURES

- 1) Place the EUT on a bench and set it in transmitting mode.
- 2) Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power meter.

9.3 TEST SETUP

9.4 TEST RESULTS

Environment: 25.0°C/49%RH/101.0kPa

Tested By: Huang tianmei

Voltage: DC 6V Date: 2024-06-07

Channel	Frequency (MHz)	Conducted maximum output power (dBm)	Limit	Peak/ Average	Result
Lowest	2405	8.08	1157		Pass
Middle	2440	7.80	1W (30dBm)	Peak	Pass
Highest	2480	7.44			Pass

10. POWER SPECTRAL DENSITY

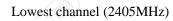

10.1 LIMITS

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

10.2 TEST PROCEDURES

- 1) Remove the antenna from the EUT, and then connect a low loss RF cable from antenna port to the spectrum analyzer.
- 2) Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3) Set the analyzer span to 1.5 times the DTS bandwidth. Set the RBW = 3 kHz. Set the VBW ≥3 RBW. Detector = peak. Ensure that the number of measurement points in the sweep ≥ 2 x span/RBW (use of a greater number of measurement points than this minimum requirement is recommended).
- 4) Repeat above procedures until all frequencies measured were complete.

10.3 TEST SETUP

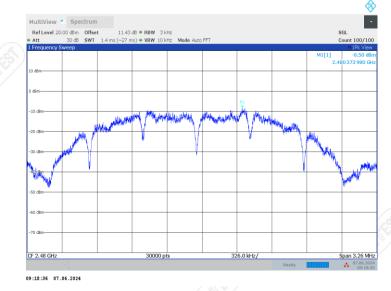


10.4 TEST RESULTS

Environment: 25.0°C/49%RH/101.0kPa Tested By: Huang tianmei Voltage: DC 6V Date: 2024-06-07

Channel No.	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result
Lowest	2405	-7.45	8.00	Pass
Middle	2440	-8.21	8.00	Pass
Highest	2480	-8.50	8.00	Pass


X


09:09:52 07.06.2024

Middle channel (2440 MHz)

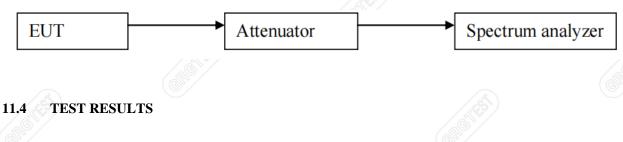
09:13:17 07.06.2024

Highest channel (2480MHz)

11. CONDUCTED BAND EDGES AND SPURIOUS EMISSIONS

11.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

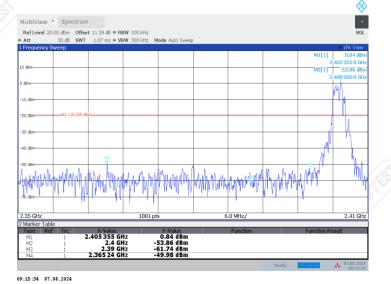

11.2 TEST PROCEDURES

Test procedures follow KDB 558074 D01 DTS Measurement Guidance v05r02.

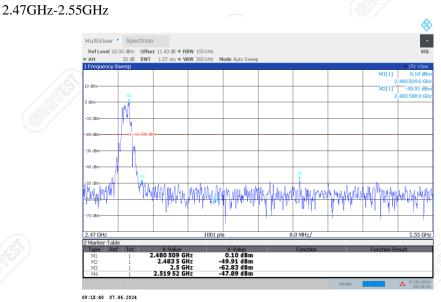
Remove the antenna from the EUT and then connect a low attenuation cable from the antenna port to the spectrum.

- 1) Remove the antenna from the EUT and then connect a low attenuation cable from the antenna port to the spectrum.
- 2) Set the spectrum analyzer: RBW =100KHz; VBW =300KHz, Span = 10MHz to 26.5GHz; Sweep = auto; Detector Function = Peak. Trace = Max, hold.
- 3) Measure and record the results in the test report.
- 4) The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 5) Measurements are made over the 9 kHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels. No emission found between lowest internal used/generated frequency to 10MHz, it is only recorded 10MHz to 26GHz.

11.3 TEST SETUP


Environment: 25.0°C/49%RH/101.0kPa Tested By: Huang tianmei Voltage: DC 6V Date: 2024-06-07

Band edge							(S)
TestMode	Iode Antenna ChName		Channel	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
Zichoo	Ant1	Low	2405	0.84	-49.98	≤-19.16	PASS
Zigbee	Ant1	High	2480	0.10	-47.89	≤-19.9	PASS


Page 32 of 44

Lowest channel (2405MHz)

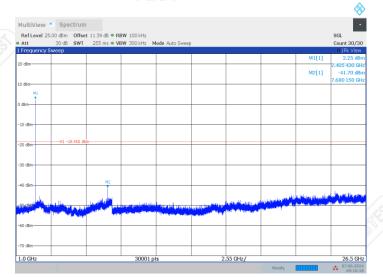
2.35GHz-2.41GHz

Highest channel (2480MHz)

Page 33 of 44

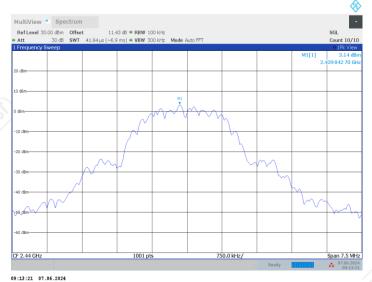
Conducted Spurious Emission

TestMode	Antenna	Channel	FreqRange [MHz]	RefLevel [dBm]	Result[dBm]	Limit[dBm]	Verdict
	(5)		Reference	1.55	1.55		PASS
/		2405	30~1000	1.55	-57.33	≤-18.45	PASS
(&	5		1000~26500	1.55	-41.7	≤-18.45	PASS
C	Ant1		Reference	3.14	3.14	<u> </u>	PASS
Zigbee		2440	30~1000	3.14	-57.02	≤-16.86	PASS
			1000~26500	3.14	-43.63	≤-16.86	PASS
		/	Reference	1.93	1.93		PASS
		2480	30~1000	1.93	-57.82	≤-18.07	PASS
			1000~26500	1.93	-43.87	≤-18.07	PASS


Lowest channel (2405MHz)

0.03GHz-1GHz

Ref Level 15.00 dBm Offs Att 20 dB SWT	30.1 ms • VBW 300		2D				SGL Count 30/30
Frequency Sweep	_						01Pk View
						M1[1]	-57.33 dBm
.0 dBm							555.351 0 MHz
) dBm							
10 dBm							
20 d8m H1 -18.450 d	18m						
20 Obin-							
30 dBm							
-40 dBm							
40 dbin							
50 dBm-							
			M1				
60 dBm	المتعقبة والمتعارفة والمتعادية	1. Brancher & House	a and the states	lipelaterheiden	nika)niw(kywana)	and substantial of	Similing efflored in
rina a planting i fai thanken kir 70 dBm	to restante lating beliefanses	stream in the second states of the	a and the fight of the	And the second second	Approximation and the providence of the providen	the Articipatite dail	selection for the second s
70 dBm	ne e e						
80 dBm-							
ou ubm							


1GHz-26.5GHz

09:10:18 07.06.2024

Middle channel (2440MHz)

0.03GHz-1GHz

Att		30.1 ms 🖷 V	/BW 300 kHz N	lode Auto Sweep	1				Count 30/30
Frequency	Sweep			1					01Pk View
.0 dBm								M1[1]	-57.02 dBm 620.856 0 MHz
) dBm									
10 dBm									
20 dBm	H1 -16.860 dB	m							
30 dBm									
40 d8m									
50 dBm						M1			
60 dBm-	Accession data at	المتحدثة والمتحدثة	and the state of t	e des registres en la r	ga atalahiyikina a	Jarlynalopae		on hanna the bill w	t Northead and the set
olifolger fret 70 dBm	al mangalang sa shing a mangalang sa	the fleet of a second sec	Control to particular in the	ability of an Astrophysical	a a di Chilippi anta	hepere hyppheneger (adpared Alfady 9	bergegie das barres	an a

09:13:23 07.06.2024

1GHz-26.5GHz

Ref Level 25.00 d									SGL
		255 ms 🖶 VB	W 300 kHz M	ode Auto Sweep)				Count 30/
Frequency Swee	p							M1[1]	0 1Pk Vie 1.75 d
20 dBm-								MILI	2.439 430
								M2[1]	-43.63 c
									7.680 150
LO dBm									
M1									
) dBm									+
10 dBm									
	1 -16.860 dBm								-
-20 dBm									
30 dBm									
40 dBm									
		Ť							
					4		للمستعلمية والملاحسين	References	and the second
50 dBm	C. Margaret	and a start	in the second	and the second second	dipendent server all the server	In additional second	a shape for the state	a second a second s	
hand a set and	and a holizer			a she was a second s	Personal sub-				
-60 dBm									
70 dBm									
re dan									
1.0 GHz			30001 pt	S	2.	.55 GHz/			26.5 0

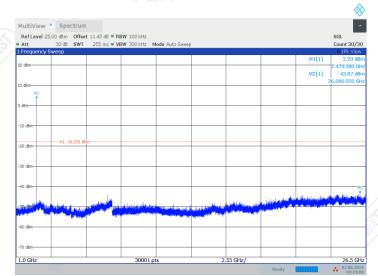
Page 36 of 44

Highest channel (2480MHz)

0.03GHz-1GHz

Att		t 11.43 dB • R 30.1 ms • V	BW 300 kHz N	lode Auto Sweep					SGL Count 30/30
1 Frequenc	y Sweep					-		-	O1Pk View
10 dBm								M1[1]	-57.82 dBr
10 dBm-									617.8170 MH
0 dBm									
-10 dBm	-								
-20 d8m	H1 -18.070 dB	n							
-30 dBm									
-40 d8m-									
-40 Obiii-									
-50 dBm									
						41 ¥			
-60 dBm-	and the second second	. La danistration		abbilaterators	uplar" Additions	h philosophilopo	hegi kili kiengi k	A SHITTER AND A	Hulperplicha
roundate	tereben der die state	Transferentiation	share to be balance	a Marilanth, adu	apart the provide	performance for the second	(Addition) (Addition of the	in a standard	A TON AND A DA
-70 dBm	sing independent Alem In a water in all a setter	all talks, a socie, in						1.1.1.1	
			1	1					1

09:18:46 07.06.2024



T

1GHz-26.5GHz

09:19:00 07.06.2024

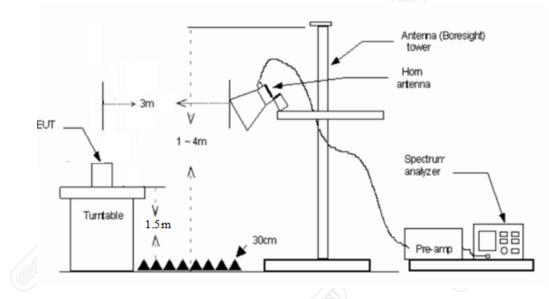
----- The following blanks ------

12. RESTRICTED BANDS OF OPERATION

12.1 LIMITS

Section 15.247(d) In addition, Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	
13.36 - 13.41			
	S.		A


12.2 TEST PROCEDURES

Test procedures follow KDB 558074 D01 DTS Meas Guidance v03r01.

- 1) The EUT is placed on a turntable, which is 1.5m above the ground plane.
- 2) The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4) Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - a) PEAK: RBW=1MHz / VBW=1MHz / Sweep=AUTO
 - b) AVERAGE: RBW=1MHz / VBW=1/T / Sweep=AUTO
- 5) Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

12.3 TEST SETUP

12.4 TEST RESULTS

Note: The test is according to the typical placement method of the product.

2.340

2.33G

2.34G

2.350

2.36G

Frequency[Hz

2.320

2.36G

Frequency[Hz

2.37G

2.37G

2.38G

2.390

Environment: 25.3°C/59%RH/101.0kPa

Tested By: Wen wenwen

Voltage: DC 6V Date: 2024-06-08

Lowest Channel Channel 2405MHz Detector mode: Peak

> 120 110 100

> > 10

[ml/uldBuV/m] 40 30

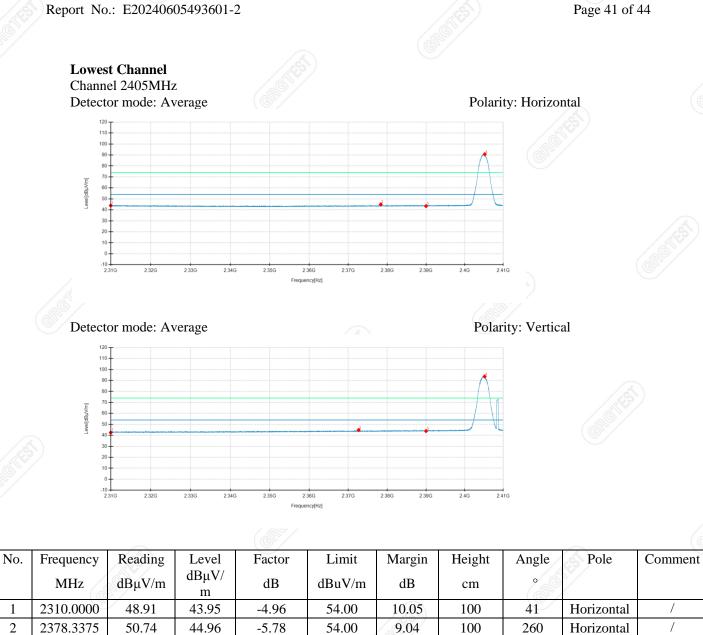
2.380

Detector mode: Peak

Polarity: Vertical

2.410

2.41G


2.4G

2.4G

					•)					
No.	Frequency	Reading	Level	Factor	Limit	Margin	Height	Angle	Pole	Comment
	MHz	dBµV/m	dBµV/ m	dB	dBuV/m	dB	cm	o	15	Ċ
1	2310.0000	58.97	54.01	-4.96	74.00	19.99	100	340	Horizontal	/
2	2372.2750	60.96	55.20	-5.76	74.00	18.80	200	244	Horizontal	/
3	2390.0000	59.20	53.37	-5.83	74.00	20.63	100	327	Horizontal	
4	2404.4125	99.90	94.04	-5.86	/	<u></u>	200	152	Horizontal	N/A
1	2310.0000	58.72	53.06	-5.66	74.00	20.94	100	97	Vertical	/
2	2363.3250	60.56	55.04	-5.52	74.00	18.96	200	340	Vertical	125)
3	2390.0000	58.81	53.40	-5.41	74.00	20.60	200	14	Vertical	
4	2405.4750	102.49	97.15	-5.34			100	124	Vertical	N/A

----- The following blanks -----

	S* /	III							
2310.0000	48.91	43.95	-4.96	54.00	10.05	100	41	Horizontal	/
2378.3375	50.74	44.96	-5.78	54.00	9.04	100	260	Horizontal	/
2390.0000	49.24	43.41	-5.83	54.00	10.59	200	60	Horizontal	/
2405.2000	96.54	90.68	-5.86	-		200	151	Horizontal	N/A
2310.0000	48.22	42.56	-5.66	54.00	11.44	100	320	Vertical	1
2372.6625	50.33	44.85	-5.48	54.00	9.15	200	92	Vertical	
2390.0000	49.32	43.91	-5.41	54.00	10.09	200	144	Vertical	\sim /

100

124

Vertical

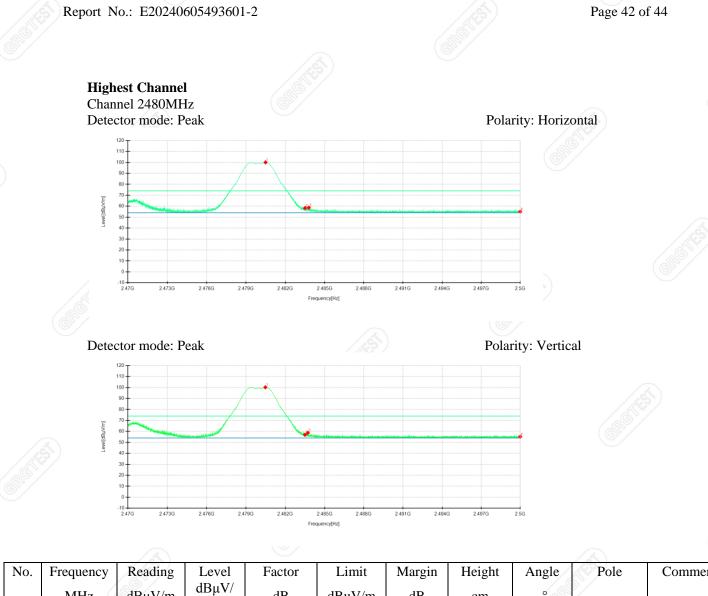
N/A

3 4

1

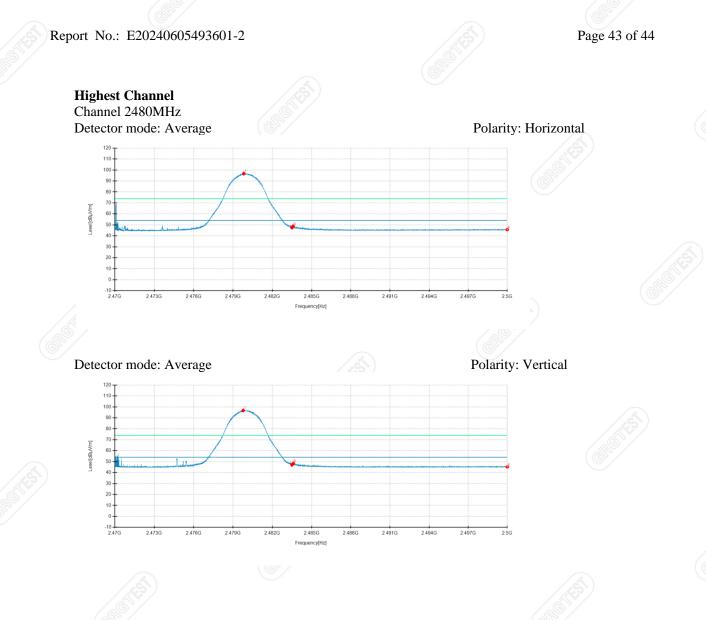
2

3


4

2405.1625

99.01


93.66

-5.35

No.	Frequency	Reading	Level	Factor	Limit	Margin	Height	Angle	Pole	Comment
	MHz	dBµV/m	dBµV/ m	dB	dBuV/m	dB	cm	•	2	
1	2480.4888	105.20	100.04	-5.16			100	302	Horizontal	N/A
2	2483.5000	63.36	58.26	-5.10	74.00	15.74	100	302	Horizontal	/
3	2483.7963	63.70	58.61	-5.09	74.00	15.39	100	314	Horizontal	1
4	2500.0000	59.87	55.08	-4.79	74.00	18.92	100	262	Horizontal	
1	2480.4738	105.25	100.20	-5.05			200	106	Vertical	N/A
2	2483.5000	61.93	56.90	-5.03	74.00	17.10	100	294	Vertical	
3	2483.7213	63.75	58.72	-5.03	74.00	15.28	200	106	Vertical	/
4	2500.0000	60.21	55.22	-4.99	74.00	18.78	100	360	Vertical	/

Page 42 of 44

1	No.	Frequency	Reading	Level	Factor	Limit	Margin	Height	Angle	Pole	Comment
/		MHz	$dB\mu V/m$	dBµV/ m	dB	dBuV/m	dB	cm	0		
	1	2479.8213	101.91	96.74	-5.17	(9/	100	313	Horizontal	N/A
	2	2483.5000	52.59	47.49	-5.10	54.00	6.51	100	326	Horizontal	<u> </u>
	3	2483.5825	53.75	48.65	-5.10	54.00	5.35	100	313	Horizontal	
	4	2500.0000	50.45	45.66	-4.79	54.00	8.34	200	34	Horizontal	
	1	2479.7763	101.81	96.76	-5.05			200	107	Vertical	N/A
	2	2483.5000	52.15	47.12	-5.03	54.00	6.88	200	107	Vertical	/
	3	2483.5938	53.27	48.24	-5.03	54.00	5.76	200	107	Vertical	/
	4	2500.0000	50.11	45.12	-4.99	54.00	8.88	100	336	Vertical	/
						1.00 /					

Remark: Max field strength in 3m distance. No any other emission which falls in restricted bands can be detected and be reported.

Page 44 of 44

APPENDIX A. PHOTOGRAPH OF THE TEST CONNECTION DIAGRAM

Please refer to the attached document E20240605493601-test setup photo-FCC+IC.

----- End of Report ------

APPENDIX B. PHOTOGRAPH OF THE EUT

Please refer to the attached document E20240605493601-EUT photo.

2112