

Appendix for the Report

Dosimetric Assessment of the Siemens SL55 (FCC ID: PWX-SL55) According to the FCC Requirements

Calibration Data

February 25, 2003 IMST GmbH Carl-Friedrich-Gauß-Str. 2 D-47475 Kamp-Lintfort

Customer Siemens Information & Communication Mobile LLC 16745 West Bernado Drive, Suite 400 San Diego-CA 92127

This report shall not be reproduced except in full without the written approval of the testing laboratory.

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate

1900 MHz System Validation Dipole

Type:	D1900V2
Serial Number:	535
Place of Calibration:	Zurich
Date of Calibration:	November 14, 2002
Calibration Interval:	24 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:

Approved by:

D. Velleto

Reproved by:

Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

DASY

Dipole Validation Kit

Type: D1900V2

Serial: 535

Manufactured: March 22, 2001

Calibrated:

November 14, 2002

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with head simulating glycol solution of the following electrical parameters at 1900 MHz:

Relative Dielectricity 39.8 $\pm 5\%$ Conductivity 1.45 mho/m $\pm 5\%$

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 5.2 at 1900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250 \text{mW} \pm 3$ %. The results are normalized to 1W input power.

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm³ (1 g) of tissue: 40.8 mW/g

averaged over 10 cm³ (10 g) of tissue: 20.7 mW/g

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay: 1.2184 ns (one direction)

Transmission factor: 0.995 (voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 1900 MHz: $Re\{Z\} = 50.9 \Omega$

Im $\{Z\} = 3.6 \Omega$

Return Loss at 1900 MHz -28.6 dB

4. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with body simulating glycol solution of the following electrical parameters at 1900 MHz:

Relative Dielectricity 52.2 \pm 5% Conductivity 1.57 mho/m \pm 5%

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 4.9 at 1900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250 \text{mW} \pm 3 \%$. The results are normalized to 1 W input power.

SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm3 (1 g) of tissue: 41.2 mW/g

averaged over 10 cm³ (10 g) of tissue: 21.0 mW/g

Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 1900 MHz: $Re\{Z\} = 46.5 \Omega$

Im $\{Z\} = 3.4 \Omega$

Return Loss at 1900 MHz -26.0 dB

7. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

8. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

Small end caps have been added to the dipole arms in order to improve matching when loaded according to the position as explained in Section 1. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

9. Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Date/Time: 11/14/02 17:19:55

Test Laboratory: SPEAG, Zurich, Switzerland

File Name: SN535caps_SN1507_HSL1900_141102.da4

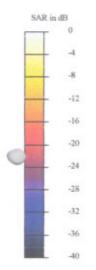
DUT: Dipole 1900 MHz Type & Serial Number: D1900V2 - SN535 Program: Dipole Calibration; Pin = 250 mW; d = 10 mm

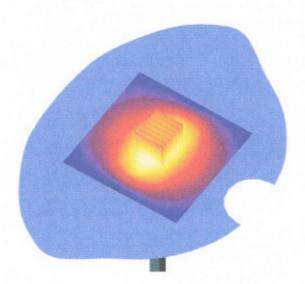
Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL 1900 MHz (σ = 1.45 mho/m, ϵ = 39.75, ρ = 1000 kg/m3) Phantom section: FlatSection

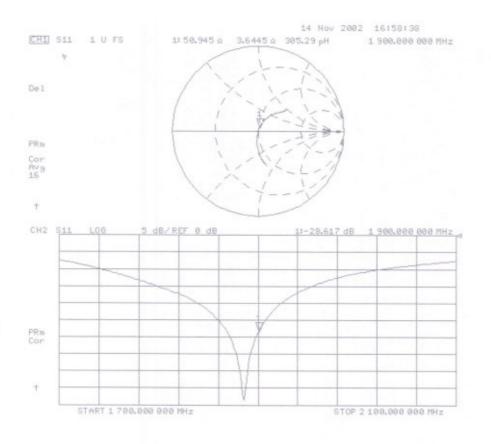
DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(5.2, 5.2, 5.2); Calibrated: 1/24/2002
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN410; Calibrated: 7/18/2002
- Phantom: SAM 4.0 TP:1006
- Software: DASY4, V4.0 Build 35

Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm


Reference Value = 94 V/m


Peak SAR = 18.5 mW/g

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.18 mW/g

Power Drift = -0.01 dB

Date/Time: 11/14/02 18:52:22

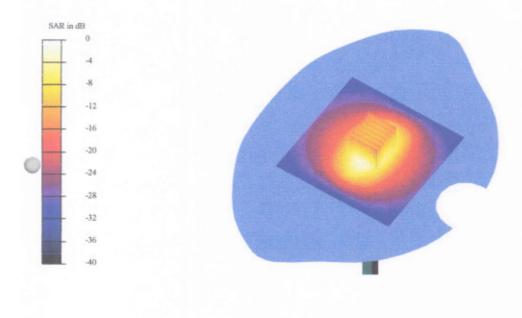
Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN535_SN1507_M1900_141102.da4

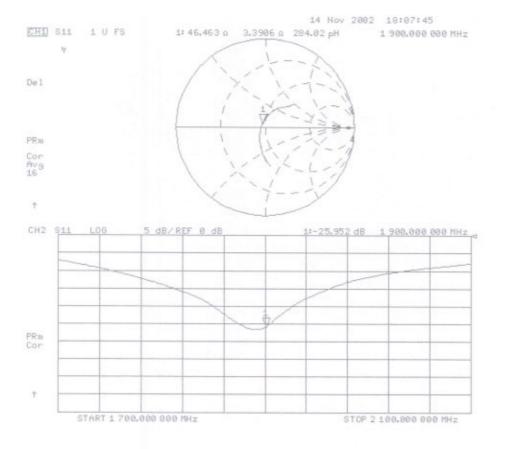
Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: Muscle 1900 MHz (σ = 1.57 mho/m, ϵ = 52.15, ρ = 1000 kg/m3) Phantom section: FlatSection

DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.9, 4.9, 4.9); Calibrated: 1/24/2002
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN410; Calibrated: 7/18/2002
- Phantom: SAM 4.0 TP:1006 - Software: DASY4, V4.0 Build 35

Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm


Reference Value = 90.7 V/m

Peak SAR = 18.8 mW/g

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.26 mW/g

Power Drift = -0.03 dB

Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate

Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1579
Place of Calibration:	Zurich
Date of Calibration:	May 3, 2002
Calibration Interval:	12 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

> D. Vellet Calibrated by:

Approved by:

Probe ET3DV6

SN:1579

Manufactured: May 7, 2001

Last calibration: January 29, 2002

Repaired: April 26, 2002 Recalibrated: May 3, 2002

Calibrated for System DASY3

DASY3 - Parameters of Probe: ET3DV6 SN:1579

Sensitivity in Free Space	Diode Compression
	= : = : = = : :

NormX	1.61 V/(V/m) ²	DCP X	93	mV
NormY	1.58 V/(V/m) ²	DCP Y	93	mV
NormZ	1.59 V/(V/m) ²	DCP Z	93	mV

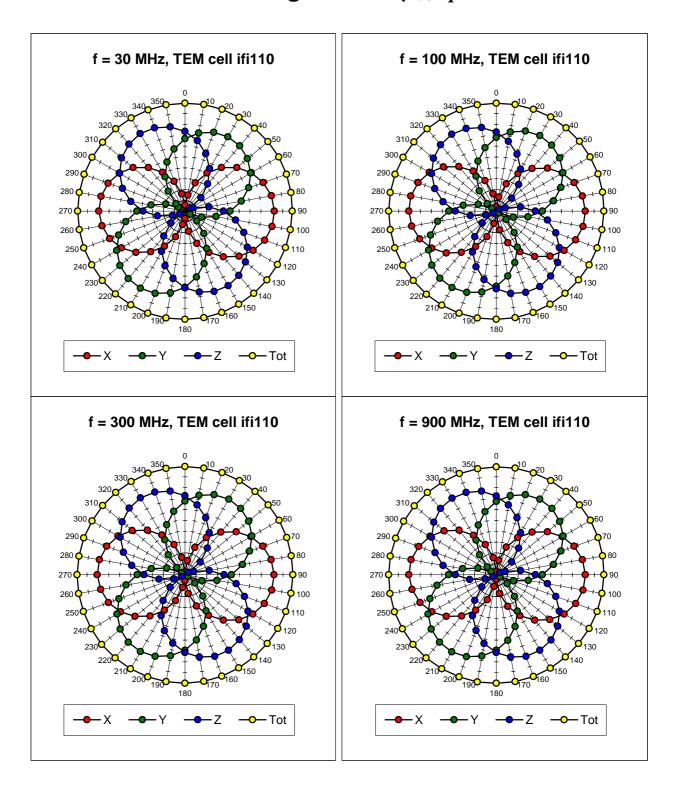
Sensitivity in Tissue Simulating Liquid

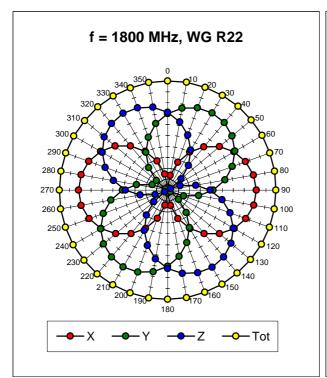
Head Head	900 MHz 835 MHz		$e_r = 41.5 \pm 5\%$ $e_r = 41.5 \pm 5\%$	$0.97 \pm 5\%$ $0.90 \pm 5\%$	
	ConvF X	6.7 ± 9.	5% (k=2)	Boundary	effect:
	ConvF Y	6.7 ± 9.	5% (k=2)	Alpha	0.32
	ConvF Z	6.7 ± 9.	5% (k=2)	Depth	2.54
Head Head	1800 MHz 1900 MHz		$e_r = 40.0 \pm 5\%$ $e_r = 40.0 \pm 5\%$	1.40 ± 5% 1.40 ± 5%	
	ConvF X	5.4 ± 9.	5% (k=2)	Boundary	effect:
	CONVI X	U. 0.	070 (N- <u>2</u>)	Dodinadiy	onoot.
	ConvF Y		5% (k=2)	Alpha	0.45

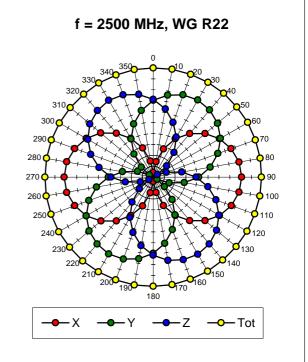
Boundary Effect

Head	900 MHz	Typical SAR gradient: 5 % per mm

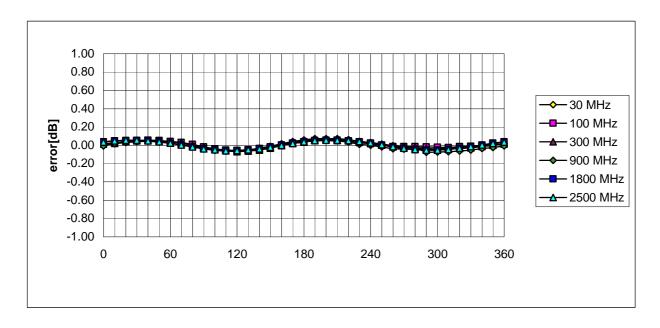
Probe Tip to Boundary		1 mm	2 mm
SAR _{be} [%]	Without Correction Algorithm	8.3	4.9
SAR _{be} [%]	With Correction Algorithm	0.3	0.4

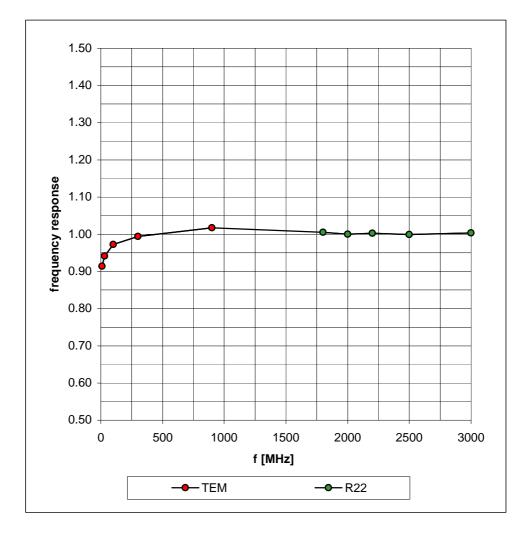

Head 1800 MHz Typical SAR gradient: 10 % per mm


Probe Tip to Boundary		1 mm	2 mm
SAR _{be} [%]	Without Correction Algorithm	11.2	7.6
SAR _{be} [%]	With Correction Algorithm	0.2	0.3

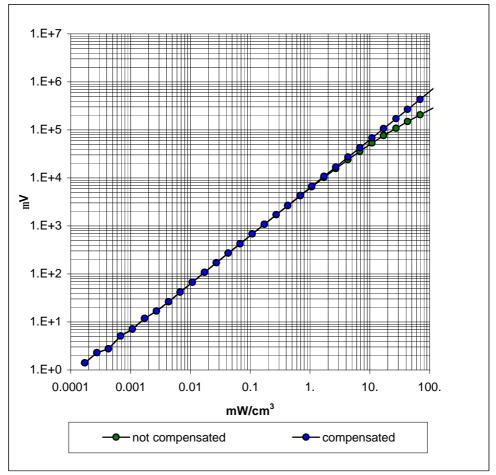

Sensor Offset

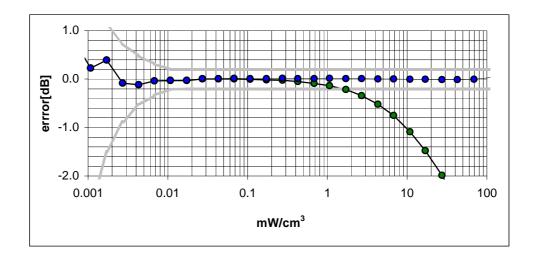
Probe Tip to Sensor Center	2.7	mm
Optical Surface Detection	1.5 ± 0.2	mm


Receiving Pattern (f), $q = 0^{\circ}$

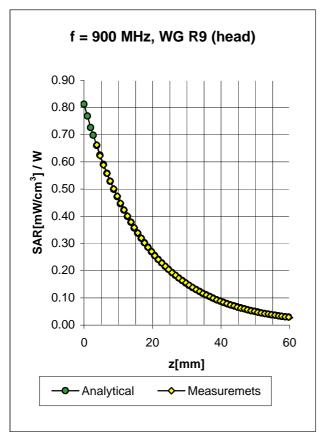


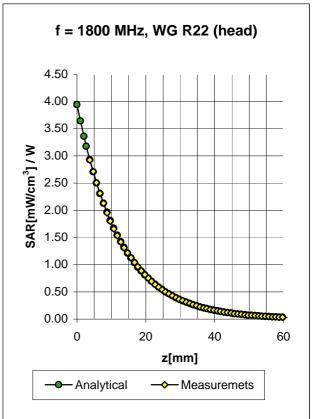
Isotropy Error (f), $q = 0^{\circ}$


Frequency Response of E-Field


(TEM-Cell:ifi110, Waveguide R22)

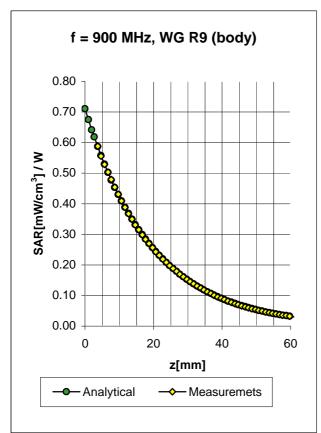
Dynamic Range f(SAR_{brain})

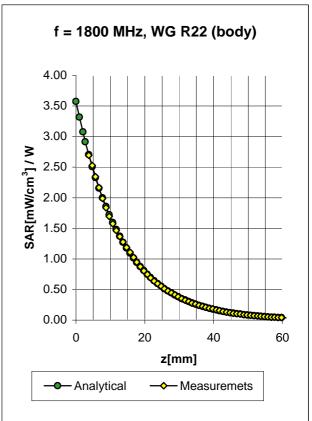

(Waveguide R22)



ET3DV6 SN:1579 May 3, 2002

Conversion Factor Assessment

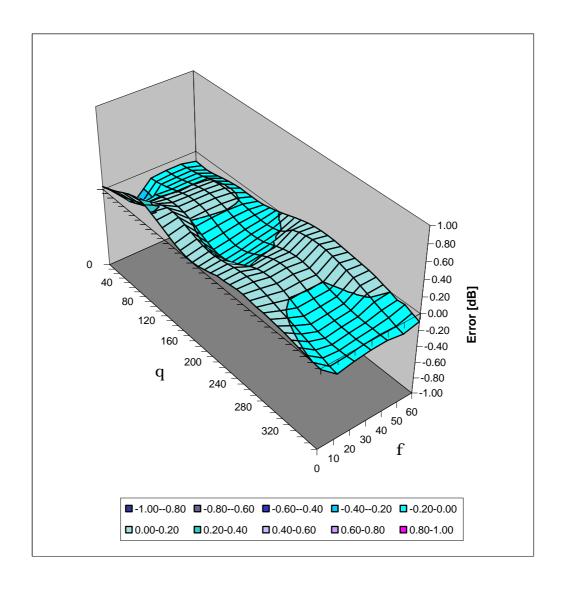



Head	900 MHz	e_r = 41.5 ± 5%	$s = 0.97 \pm 5\% \text{ mho/m}$
Head	835 MHz	e_r = 41.5 ± 5%	s = 0.90 ± 5% mho/m
	ConvF X	6.7 ± 9.5% (k=2)	Boundary effect:
	ConvF Y	6.7 ± 9.5% (k=2)	Alpha 0.32
	ConvF Z	6.7 ± 9.5% (k=2)	Depth 2.54

Head	1800 MHz	$e_r = 40.0 \pm 5\%$	$s = 1.40 \pm 5\% \text{ mho/m}$	
Head	1900 MHz	e_r = 40.0 ± 5%	s = 1.40 ± 5% mho/m	
	ConvF X	5.4 ± 9.5% (k=2)	Boundary effect:	
	ConvF Y	5.4 ± 9.5% (k=2)	Alpha 0.	45
	ConvF Z	5.4 ± 9.5% (k=2)	Depth 2.	48

ET3DV6 SN:1579 May 3, 2002

Conversion Factor Assessment


Body	900 MHz	$e_r = 55.0 \pm 5\%$	$s = 1.05 \pm 5\% \text{ mho/m}$
Body	835 MHz	e_r = 55.2 ± 5%	s = 0.97 ± 5% mho/m
	ConvF X	6.4 \pm 9.5% (k=2)	Boundary effect:
	ConvF Y	6.4 \pm 9.5% (k=2)	Alpha 0.33
	ConvF Z	6.4 \pm 9.5% (k=2)	Depth 2.60

Body	1800 MHz	$e_r = 53.3 \pm 5\%$	$s = 1.52 \pm 5\%$ mho/m
Body	1900 MHz	e_r = 53.3 ± 5%	s = 1.52 ± 5% mho/m
	ConvF X	5.1 ± 9.5% (k=2)	Boundary effect:
	ConvF Y	5.1 ± 9.5% (k=2)	Alpha 0.56
	ConvF Z	5.1 ± 9.5% (k=2)	Depth 2.39

ET3DV6 SN:1579 May 3, 2002

Deviation from Isotropy in HSL

Error (q,f), f = 900 MHz

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1579
Place of Assessment:	Zurich
Date of Assessment:	May 8, 2002
Probe Calibration Date:	May 3, 2002

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Dosimetric E-Field Probe ET3DV6 SN:1579

Conversion factor (± standard deviation)

835 MHz	ConvF	6.8 ± 8%	$\epsilon_r = 41.5 \pm 5\%$ $\sigma = 0.90 \pm 5\% \text{ mho/m}$ (head tissue)
835 MHz	ConvF	6.6 ± 8%	ϵ_r = 55.2 ± 5% σ = 0.97 ± 5% mho/m (body tissue)
1900 MHz	ConvF	5.2 ± 8%	ϵ_r = 40.0 ± 5% σ = 1.40 ± 5% mho/m (head tissue)
1900 MHz	ConvF	4.8 ± 8%	$\varepsilon_r = 53.3 \pm 5\%$ $\sigma = 1.52 \pm 5\% \text{ mho/m}$ (body tissue)