Dielectric Probe Calibration Report No.: TCT221212E022 # **Dielectric Probe Calibration Report** Ref: ACR.138.4.33.SATU.A SHENZHEN TCT TESTING TECHNOLOGY CO., LTD 2101&2201, ZHENCHANG FACTORY, RENSHAN INDUSTRIAL ZONE, FUHAI SUBDISTRICT, BAOAN DISTRICT, SHENZHEN, GUANGDONG, 518103, PEOPLES REPUBLIC OF CHINA # MVG COMOSAR DOSIMETRIC E-FIELD PROBE FREQUENCY: 0.3-6 GHZ SERIAL NO.: SN 19/15 OCPG 71 Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144 Calibration Date: 06/05/2022 ## Summary: This document presents the method and results from an accredited Dielectric Probe calibration performed in MVG USA using the LIMESAR test bench. All calibration results are traceable to national metrology institutions. ### SAR DIELECTRIC PROBE CALIBRATION REPORT Ref. ACR.138.4.33..SATU.A | 9 | Name | Function | Date | Signature | |---------------|---------------|-----------------|------------|-----------------| | Prepared by : | Jérôme LUC | Product Manager | 06/05/2022 | JES | | Checked by: | Jérôme LUC | Product Manager | 06/05/2022 | JES | | Approved by ; | Kim RUTKOWSKI | Quality Manager | 06/05/2022 | them futthments | | <u> </u> | Customer Name | |----------------|---| | Distribution ; | SHENZHEN TCT TESTING
TECHNOLOGY CO., LTD | | Issue | Date | Modifications | |-------|------------|-----------------| | A | 06/05/2022 | Initial release | | | | | | | | | | | | | Page: 2/7 ### SAR DIELECTRIC PROBE CALIBRATION REPORT Ref: ACR.138.4.33_SATU_A ## TABLE OF CONTENTS | 1 | Inti | roduction4 | | |---|------|-------------------------------------|--| | 2 | De | vice Under Test | | | 3 | Pro | oduct Description | | | | 3.1 | General Information | | | 4 | Me | asurement Method5 | | | | 4.1 | Liquid Permittivity Measurements | | | 5 | Me | asurement Uncertainty5 | | | | 5.1 | Dielectric Permittivity Measurement | | | 6 | Cal | libration Measurement Results6 | | | | 6.1 | Liquid Permittivity Measurement | | | 7 | Lis | t of Equipment 7 | | Page: 3/7 #### SAR DIELECTRIC PROBE CALIBRATION REPORT Ref. ACR 138.4.33 SATU A #### 1 INTRODUCTION This document contains a summary of the suggested methods and requirements set forth by the IEEE 1528 and CEI/IEC 62209 standards for liquid permittivity measurements and the measurements that were performed to verify that the product complies with the fore mentioned standards. ## 2 DEVICE UNDER TEST | Device Under Test | | | | | |-------------------------------------|--------------------------|--|--|--| | Device Type | LIMESAR DIELECTRIC PROBE | | | | | Manufacturer | MVG | | | | | Model | SCLMP | | | | | Serial Number | SN 19/15 OCPG 71 | | | | | Product Condition (new / used) Used | | | | | A yearly calibration interval is recommended. ## 3 PRODUCT DESCRIPTION # 3.1 GENERAL INFORMATION MVG's Dielectric Probes are built in accordance to the IEEE 1528 and CEI/IEC 62209 standards. The product is designed for use with the LIMESAR test bench only. Figure 1 - MVG LIMESAR Dielectric Probe Page: 4/7 #### SAR DIELECTRIC PROBE CALIBRATION REPORT Ref: ACR.138.4.33. SATU.A #### 4 MEASUREMENT METHOD The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209-1 & 2 standards outline techniques for dielectric property measurements. The LIMESAR test bench employs one of the methods outlined in the standards, using a contact probe or open-ended coaxial transmission-line probe and vector network analyzer. The standards recommend the measurement of two reference materials that have well established and stable dielectric properties to validate the system, one for the calibration and one for checking the calibration. The LIMESAR test bench uses De-ionized water as the reference for the calibration and either DMS or Methanol as the reference for checking the calibration. The following measurements were performed to verify that the product complies with the fore mentioned standards. ## 4.1 LIQUID PERMITTIVITY MEASUREMENTS The permittivity of a liquid with well established dielectric properties was measured and the measurement results compared to the values provided in the fore mentioned standards. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. ## 5.1 DIELECTRIC PERMITTIVITY MEASUREMENT The following uncertainties apply to the Dielectric Permittivity measurement: | ERROR SOURCES | Uncertainty
value (+/-%) | Probability
Distribution | Divisor | ci | Standard
Uncertainty (+/-%) | |---|-----------------------------|-----------------------------|---------|----|--------------------------------| | Repeatability (n repeats, mid-band) | 4.00% | N | 1 | 1 | 4.000% | | Deviation from reference liquid | 5.00% | R | √3 | 1 | 2.887% | | Network analyser-drift, linearity | 2.00% | R | √3 | 1 | 1.155% | | Test-port cable variations | 0.00% | U | √2 | 1 | 0.000% | | Combined standard uncertainty | | | | | 5.066% | | Expanded uncertainty (confidence level of 95%, k = 2) | | | | | 10.0% | | ERROR SOURCES | Uncertainty
value (+/-%) | Probability
Distribution | Divisor | ci | Standard
Uncertainty (+/-%) | |---|-----------------------------|-----------------------------|---------|----|--------------------------------| | Repeatability (n repeats, mid-band) | 3.50% | N | 1 | 1 | 3.500% | | Deviation from reference liquid | 3.00% | R | √3 | 1 | 1.732% | | Network analyser-drift, linearity | 2.00% | R | √3 | 1 | 1.155% | | Test-port cable variations | 0.00% | U | √2 | 1 | 0.000% | | Combined standard uncertainty | | | | | 4.072% | | Expanded uncertainty (confidence level of 95%, k = 2) | | | | | 8.1% | Page: 5/7 #### SAR DIELECTRIC PROBE CALIBRATION REPORT Ref. ACR.138.4.33_SATU.A ### 6 CALIBRATION MEASUREMENT RESULTS ### Measurement Condition | Software | LIMESAR | | |--------------------|---------|--| | Liquid Temperature | 21°C | | | Lab Temperature | 21°C | | | Lab Humidity | 44% | | # 6.1 LIQUID PERMITTIVITY MEASUREMENT A liquid of known characteristics (methanol at 20°C) is measured with the probe and the results (complex permittivity $\epsilon'+j\epsilon''$) are compared with the well-known theoretical values for this liquid. Page: 6/7 ## SAR DIELECTRIC PROBE CALIBRATION REPORT Ref. ACR.138.4.33..SATUA # 7 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | |------------------------------------|-------------------------|--------------------|-----------------------------|-----------------------------|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | LIMESAR Test Bench | Version 3 | NA | Validated. No cal required. | Validated. No cal required. | | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2022 | 02/2023 | | | Methanol CAS 67-56-1 | Alpha Aesar | Lot D13W011 | Validated. No cal required. | Validated. No cal required. | | | Temperature and
Humidity Sensor | Control Company | 11-661-9 | 02/2022 | 02/2023 | | **Appendix D: Dipole Calibration Report** SID2450 # **SAR Reference Dipole Calibration Report** Ref: ACR.156.9.15.SATU.A Report No.: TCT221212E022 # SHENZHEN TCT TESTING TECHNOLOGY CO., LTD 2101&2201, ZHENCHANG FACTORY, RENSHAN INDUSTRIAL FUHAI SUBDISTRICT, BAOAN DISTRICT, SHENZHEN, GUANGDONG, 518103, PEOPLES REPUBLIC OF CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 2450 MHZ SERIAL NO.: SN 16/15 DIP 2G450-374 Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144 Calibration Date: 06/05/2022 Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.9.15.SATU.A | | Name | Function | Date | Signature | |--------------|---------------|-----------------|------------|---------------| | Prepared by: | Jérôme LUC | Product Manager | 06/05/2022 | JES | | Checked by: | Jérôme LUC | Product Manager | 06/05/2022 | JES | | Approved by: | Kim RUTKOWSKI | Quality Manager | 06/05/2022 | Jum Puthowski | | Vis. | Customer Name | |----------------|----------------------| | Distribution : | SHENZHEN TCT TESTING | | Distribution . | TECHNOLOGY CO., LTD | | Issue | Date | Modifications | |----------|------------|-----------------| | A | 06/05/2022 | Initial release | | 53
52 | | | | | | | | 122 | | | | | | | Page: 2/11 ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.9.15.SATU.A ## TABLE OF CONTENTS | 1 | Intr | oduction4 | | |---|------|--|---| | 2 | De | vice Under Test | | | 3 | Pro | duct Description | | | | 3.1 | General Information | 4 | | 4 | Me | asurement Method | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Me | asurement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | | | | 5.3 | Validation Measurement | 5 | | 6 | Cal | ibration Measurement Results | | | | 6.1 | Return Loss and Impedance In Head Liquid | 6 | | | 6.2 | Return Loss and Impedance In Body Liquid | 6 | | | 6.3 | Mechanical Dimensions | 6 | | 7 | Val | idation measurement | | | | 7.1 | Head Liquid Measurement | 7 | | | 7.2 | SAR Measurement Result With Head Liquid | 8 | | | 7.3 | Body Liquid Measurement | 9 | | | 7.4 | SAR Measurement Result With Body Liquid | | | 8 | Lie | t of Fouinment 11 | | Page: 3/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref. ACR.156.9.15.SATU.A #### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | Device Under Test | | | | | | |--------------------------------|-----------------------------------|--|--|--|--| | Device Type | COMOSAR 2450 MHz REFERENCE DIPOLE | | | | | | Manufacturer | MVG | | | | | | Model | SID2450 | | | | | | Serial Number | SN 16/15 DIP 2G450-374 | | | | | | Product Condition (new / used) | Used | | | | | A yearly calibration interval is recommended. # 3 PRODUCT DESCRIPTION # 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Page: 4/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref. ACR 156.9.15 SATU A Report No.: TCT221212E022 #### 4 MEASUREMENT METHOD The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. ## 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards. #### 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. ### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. ## 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | | Expanded Uncertainty on Return Loss | |----------------|-------------|-------------------------------------| | | 400-6000MHz | 0.1 dB | ## 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | | | |-------------|--------------------------------|--|--| | 3 - 300 | 0.05 mm | | | ### 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | 1 g | 20.3 % | Page: 5/11 ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.9.15.SATU.A | 10 g | 20.1 % | |------|--------| | | | ## 6 CALIBRATION MEASUREMENT RESULTS # 6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance
46.7 Ω - 0.2 iΩ | | |-----------------|------------------|------------------|------------------------------|--| | 2450 | -29.05 | -20 | | | # 6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------| | 2450 | -32.86 | -20 | 48.6 Ω - 1.9 jΩ | # 6.3 MECHANICAL DIMENSIONS | Frequency MHz | Ln | nm | hm | ım. | d r | nm | |---------------|-------------|----------|-------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | 22 | 250.0 ±1 %. | 8 8 | 6.35 ±1 %. | | Page: 6/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.9.15.SATU.A Report No.: TCT221212E022 | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | |------|-------------|------|-------------|----------|------------|-----| | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | .150.100 | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | PASS | 30.4 ±1 %. | PASS | 3.6 ±1 %. | PAS | | 2600 | 48.5 ±1 %. | | 28.8 ±1 %. | | 3.6 ±1 %. | | | 3000 | 41.5 ±1 %. | | 25.0 ±1 %. | | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | #### 7 VALIDATION MEASUREMENT The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. ## 7.1 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative per | mittivity (&.') | Conductivity (a) S/m | | | |------------------|--------------|-----------------|----------------------|----------|--| | | required | measured | required | measured | | | 300 | 45.3 ±5 % | | 0.87 ±5 % | | | | 450 | 43.5 ±5 % | | 0.87 ±5 % | | | | 750 | 41.9 ±5 % | | 0.89 ±5 % | | | | 835 | 41.5 ±5 % | | 0.90 ±5 % | | | | 900 | 41.5 ±5 % | | 0.97 ±5 % | | | | 1450 | 40.5 ±5 % | | 1.20 ±5 % | | | | 1500 | 40.4 ±5 % | | 1.23 ±5 % | | | | 1640 | 40.2 ±5 % | | 1.31 ±5 % | | | | 1750 | 40.1 ±5 % | | 1.37 ±5 % | | | Page: 7/11