

FCC 47 CFR Part 15 Subpart B, ICES-003 Issue 7

TEST REPORT

For

Bluetooth Headset

MODEL NUMBER: OTE990

REPORT NUMBER: 4791432944-4-EMC-1

ISSUE DATE: August 20, 2024

Prepared for GN Audio USA Inc.(FCC) 900 Chelmsfort St, Tower 2, Floor 8 Lowell, Massachusetts 01851 United States

GN Audio AS(ISED) Lautrupbjerg 7 Ballerup DK-2750 Denmark

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Revision History

Rev. Issue Date		Revisions	Revised By
V0	August 20, 2024	Initial Issue	

Summary of Test Results

Emission						
Standard	Test Item	Limit	Result			
	Conducted emissions	FCC Part 15.107 ICES-003 Issue 7, Section 3.2.1	Pass			
15 Subpart B, ICES-	Radiated emissions below 1GHz	FCC Part 15.109 ICES-003 Issue 7, Section 3.2.2	Pass			
	Radiated emissions above	FCC Part 15.109 ICES-003 Issue 7. Section 3.2.2	Pass (NOTE 1)			

Note:

1. If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz; If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz; If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, measurement shall only be made up to 5 GHz; If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 40 GHz, whichever is less.

*This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

*The measurement result for the sample received is <Pass> according to <FCC 47 CFR Part 15 Subpart B, ICES-003 Issue 7> when <Simple Acceptance> decision rule is applied.

CONTENTS

1.	ATTESTATION OF TEST RESULTS
2.	TEST METHODOLOGY
3.	FACILITIES AND ACCREDITATION6
4.	CALIBRATION AND UNCERTAINTY7
4	.1. MEASURING INSTRUMENT CALIBRATION7
4	.2. MEASUREMENT UNCERTAINTY7
5.	EQUIPMENT UNDER TEST
5	.1. DESCRIPTION OF EUT
5	.2. TEST MODE
5	.3. EUT ACCESSORY
5	.4. SUPPORT UNITS FOR SYSTEM TEST
6.	MEASURING EQUIPMENT AND SOFTWARE USED9
7.	EMISSION TEST10
7	1. CONDUCTED EMISSIONS
7	2. RADIATED EMISSIONS BELOW 1GHZ14
7	.3. RADIATED EMISSIONS ABOVE 1GHZ
API	PENDIX: PHOTOGRAPHS OF TEST CONFIGURATION26
API	PENDIX: PHOTOGRAPHS OF THE EUT

1. ATTESTATION OF TEST RESULTS

FCC				
Company Namo:	GN Audio USA Inc			
Address:	GN Audio USA Inc. 900 Chelmsfort St, Tower 2, Floor 8 Lowell, Massachusetts 01851 United States			
ISED				
Applicant Information				
Company Name:	GN Audio A/S			
Address:	Lautrupbjerg 7 Ballerup DK-2750 Denmark			
Manufacturer Information				
Company Name:	GN Audio A/S			
Address:	Lautrupbjerg 7 Ballerup DK-2750 Denmark			
EUT Information				
EUT Name:	Bluetooth Headset			
Model:	OTE990			
Brand:	Jabra			
Sample Received Date:	August 7, 2024			
Sample Status:	Normal			
Sample ID:	7502815			
Date of Tested:	August 9, 2024 to August 18, 2024			

APPLICABLE STANDARDS			
STANDARD TEST RESULTS			
FCC 47 CFR Part 15 Subpart B, ICES-003 Issue 7 Pass			

Prepared By:

Andy Xiong Engineer Project Associate

Checked By:

Emen Li Staff Engineering Associate

Approved By:

Stephen

Stephen Guo Operations Manager

2. TEST METHODOLOGY

All tests were performed in accordance with the standard FCC 47 CFR Part 15 Subpart B, ICES-003 Issue 7.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Declaration of Conformity (DoC) and Certification
	rules
	ISED (Company No.: 21320)
Accreditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Certificate	has been registered and fully described in a report filed with ISED.
	The Company Number is 21320 and the test lab Conformity Assessment
	Body Identifier (CABID) is CN0046.
	VCCI (Registration No.: G-20192, C-20153, T-20155 and R-20202)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20192 and R-20202
	Shielding Room B, the VCCI registration No. is C-20153 and T-20155

Note:

All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Measurement Frequency Range	к	U(dB)
Conducted emissions	0.15MHz - 30MHz	2	3.63
Radiated emissions below 1GHz	30MHz -1GHz	2	4.13
Radiated emissions above 1GHz	1GHz - 18GHz	2	5.64

Note1: This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.

Note 2: According to the standard CISPR 16-4-2, the MU for the Conducted emissions from the AC mains power ports using AMN should not exceed 3.8 in range of 9kHz to 150kHz and 3.4 in range of 150kHz to 30MHz. We have considered the test results containing the value of Ulab (in dB) for the measurement instrumentation actually used for the measurements.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Bluetooth Headset	
Model	OTE990	
EUT Classification	Class B	
Highest Internal Frequency	2480MHz	
Rated Input	DC5V	
Battery	DC 4.35V	

5.2. TEST MODE

Test Mode	Description
M01	Charging & BT Playing
M02	BT Playing powered by battery

5.3. EUT ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	USB-C Cable	N/A	N/A	1.2 m

5.4. SUPPORT UNITS FOR SYSTEM TEST

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Specification	Series No.
E-1	Mobile Phone	HUAWEI	Mate 30E	N/A N/A	
E-2	Adapter	XIAOMI	MDY-08-ES	Input:100-240VAC 50/60Hz, 0.5A Output: 5V3A /9V 2A/12V1.5A	4A41709 C2033B6B

The following cables were used to form a representative test configuration during the tests.

Item	Type of cable	Shielded Type	Ferrite Core	Length
/	/	/	/	/

6. MEASURING EQUIPMENT AND SOFTWARE USED

Test Equipment	of Conducted er	missions			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
EMI Test Receiver	ROHDE & SCHWARZ	ESR3	101961	Oct. 13, 2023	Oct. 12, 2024
Two-Line V- Network	ROHDE & SCHWARZ	ENV216	101983	Oct. 13, 2023	Oct. 12, 2024
Test Software for Conducted Emission	Farad	EZ-EMC	Ver.UL-3A1	N/A	N/A

Test Equipment	of Radiated emi	ssions below	1GHz		
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130960	Jun. 28, 2024	Jun. 27, 2027
Amplifier	HP	8447F	2944A03683	Oct. 12, 2023	Oct. 11, 2024
Test Software for Radiated Emission	Farad	EZ-EMC	Ver.UL-3A1	N/A	N/A

Test Equipment of Radiated emissions above 1GHz						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
EMI Measurement Receiver	ROHDE & SCHWARZ	ESR26	101377	Oct. 12, 2023	Oct. 11, 2024	
Preamplifier	TDK	PA-02-0118	TRS-305- 00066	Jun. 18, 2024	Jun. 17, 2025	
Horn Antenna	TDK	HRN-0118	130939	Apr. 29, 2022	Apr. 28, 2025	
Test Software for Radiated Emission	Farad	EZ-EMC	Ver.UL-3A1	N/A	N/A	

	Other Instrument				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Temperature humidity probe	OMEGA	ITHX-SD-5	18470007	Oct.21, 2023	Oct.20, 2024
Barometer	Yiyi	Baro	N/A	Oct.19, 2023	Oct.18, 2024

7. EMISSION TEST

7.1. CONDUCTED EMISSIONS

<u>LIMITS</u>

Frequency	Class A (dBµV)		Class B (dBµV)		
(MHz)	Quasi-peak	Average	Quasi-peak	Average	
0.15 -0.5	79	66	66 - 56 *	56 - 46*	
0.50 -5.0	73	60	56	46	
5.0 -30.0	73	60	60	50	

Note:

(1). The tighter limit applies at the band edges.

(2). The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

TEST PROCEDURE

- 1) The testing follows the guideline in ANSI C63.4-2014.
- 2) The EUT was placed on the top of a rotating table 0.8 meters above the horizontal ground plane and being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- 3) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- 4) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 5) Cables of hand-operated devices, such as keyboards and mice, shall be placed as for normal used.
- 6) LISN at least 80 cm from nearest part of EUT chassis.
- Conducted emissions from the EUT measured in the frequency range between 0.15MHz and 30MHz using CISPR Quasi-Peak and average detector mode, resolution bandwidth set 9kHz.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2 ℃	Relative Humidity	56.3%
Atmosphere Pressure	101kPa		

TEST DATE / ENGINEER

Test Date August 14, 2024 Test By Andy Xiong		Test Date	August 14, 2024	Test By	Andy Xiong
--	--	-----------	-----------------	---------	------------

TEST MODE

Pre-test Mode:	M01
Final Test Mode:	M01

TEST RESULTS

Test Mode:	M01	Line:	Line
Test Voltage:	AC 120V_60Hz		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1617	32.87	10.32	43.19	65.38	-22.19	QP
2	0.1617	4.98	10.32	15.30	55.38	-40.08	AVG
3	0.1782	31.29	10.28	41.57	64.57	-23.00	QP
4	0.1782	3.46	10.28	13.74	54.57	-40.83	AVG
5	0.1979	28.53	10.24	38.77	63.70	-24.93	QP
6	0.1979	1.63	10.24	11.87	53.70	-41.83	AVG
7	0.2355	23.23	10.24	33.47	62.25	-28.78	QP
8	0.2355	0.34	10.24	10.58	52.25	-41.67	AVG
9	0.5191	13.96	10.24	24.20	56.00	-31.80	QP
10	0.5191	6.81	10.24	17.05	46.00	-28.95	AVG
11	12.8095	12.07	10.45	22.52	60.00	-37.48	QP
12	12.8095	5.50	10.45	15.95	50.00	-34.05	AVG

Remark:

1. Result = Reading +Correct (Insertion Loss + Cable Loss + Attenuator Factor)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1546	33.75	10.23	43.98	65.75	-21.77	QP
2	0.1546	6.31	10.23	16.54	55.75	-39.21	AVG
3	0.1698	31.33	10.20	41.53	64.97	-23.44	QP
4	0.1698	4.90	10.20	15.10	54.97	-39.87	AVG
5	0.2405	25.23	10.13	35.36	62.08	-26.72	QP
6	0.2405	1.92	10.13	12.05	52.08	-40.03	AVG
7	0.2785	21.15	10.11	31.26	60.86	-29.60	QP
8	0.2785	2.46	10.11	12.57	50.86	-38.29	AVG
9	0.4804	12.59	10.05	22.64	56.33	-33.69	QP
10	0.4804	3.74	10.05	13.79	46.33	-32.54	AVG
11	0.6497	5.02	10.03	15.05	56.00	-40.95	QP
12	0.6497	-1.40	10.03	8.63	46.00	-37.37	AVG

1. Result = Reading +Correct (Insertion Loss + Cable Loss + Attenuator Factor)

2. Margin = Result - Limit

7.2. RADIATED EMISSIONS BELOW 1GHZ

LIMITS

CFR 47 FCC Part 15 Subpart B					
Frequency	Field strength	(dBuV/m@ 3 m)			
(MHz)	Class A	Class B			
30 - 88	49.5	40			
88 - 216	53.9	43.5			
216 - 960	56.9	46			
Above 960	60	54			

ICES-003 Issue 7					
Frequency	Field strength (dBuV/m@ 3 m)				
(MHz)	Class A	Class B			
30 - 88	50	40			
88 - 216	54	43.5			
216 - 230	56.9	46			
230 - 960	57	47			
Above 960	60	54			

Note:

(1). The tighter limit applies at the band edges

(2). The different between FCC Part 15 Subpart B limit and ICES-003 Issue 7 limit is only in frequency band 230 MHz to 960 MHz, the limit of FCC Part 15 Subpart B is 1 dB smaller than the limit of ICES-003 Issue 7, if the test result complies with FCC Part 15 Subpart B limit, it deemed to comply with ICES-003 Issue 7 limit.

TEST PROCEDURE

- 1) The testing follows the guidelines in ANSI C63.4-2014.
- 2) The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3) The EUT was placed on a turntable with 80cm above ground.
- 4) The EUT was set 3 meters from the interference receiving antenna, test antenna mast is remotely controlled and can be varied in height form 1m to 4m.
- 5) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- 6) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

- 7) Cables of hand-operated devices, such as keyboards and mice, shall be placed as for normal used.
- 8) For measurement below 1 GHz, the initial step in collecting radiated emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode remeasured.

The setting of the spectrum analyser

RBW	100kHz
VBW	300kHz
Detector	Peak / Quasi Peak [#]
Trace	Max hold

#: Peak for pre-scan, Quasi Peak for the final result.

TEST SETUP

Below 1 GHz and above 30 MHz

TEST ENVIRONMENT

Temperature	22.4 ℃	Relative Humidity	53%
Atmosphere Pressure	101kPa		

TEST DATE / ENGINEER

Test Date August 9, 2024 Test By Deacon Tan

TEST MODE

Pre-test Mode:	M01 ~ M02
Final Test Mode:	M01

Note: All test modes had been tested, but only the worst data recorded in the report.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST RESULTS

Test Mode:	M01	Polarity:	Vertical
Test Voltage:	AC120V_60Hz		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.9700	34.74	-14.37	20.37	40.00	-19.63	QP
2	71.7100	34.14	-16.16	17.98	40.00	-22.02	QP
3	227.8800	37.46	-13.03	24.43	46.00	-21.57	QP
4	527.6100	26.80	-7.00	19.80	46.00	-26.20	QP
5	760.4099	26.74	-2.07	24.67	46.00	-21.33	QP
6	847.7100	27.97	-1.94	26.03	46.00	-19.97	QP

Remark:

1. Result = Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.9700	34.82	-14.37	20.45	40.00	-19.55	QP
2	227.8800	34.68	-13.03	21.65	46.00	-24.35	QP
3	391.8100	25.55	-9.30	16.25	46.00	-29.75	QP
4	582.9000	24.20	-6.15	18.05	46.00	-27.95	QP
5	781.7500	27.76	-2.12	25.64	46.00	-20.36	QP
6	887.4800	28.81	-1.12	27.69	46.00	-18.31	QP

1. Result = Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.9700	33.53	-14.37	19.16	40.00	-20.84	QP
2	226.9100	34.64	-12.98	21.66	46.00	-24.34	QP
3	413.1500	24.94	-9.04	15.90	46.00	-30.10	QP
4	631.4000	26.83	-5.82	21.01	46.00	-24.99	QP
5	757.5000	26.92	-2.11	24.81	46.00	-21.19	QP
6	921.4300	28.14	-1.11	27.03	46.00	-18.97	QP

1. Result = Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.9700	31.40	-14.37	17.03	40.00	-22.97	QP
2	228.8500	35.32	-13.08	22.24	46.00	-23.76	QP
3	368.5300	24.05	-9.25	14.80	46.00	-31.20	QP
4	592.6000	25.30	-5.97	19.33	46.00	-26.67	QP
5	782.7199	26.58	-2.13	24.45	46.00	-21.55	QP
6	899.1200	27.07	-0.86	26.21	46.00	-19.79	QP

1. Result = Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)

7.3. RADIATED EMISSIONS ABOVE 1GHZ

LIMITS

	Field strength (dBuV/m@ 3 m)						
	Clas	ss A	Class B				
	Peak	Average	Peak	Average			
Above 1000	80	60	74	54			

TEST PROCEDURE

- 1) The testing follows the guidelines in ANSI C63.4-2014.
- 2) The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3) The EUT was placed on a turntable with 80cm above ground.
- 4) The EUT was set 3 meters from the interference receiving antenna, test antenna mast is remotely controlled and can be varied in height form 1m to 4m.
- 5) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- 6) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 7) Cables of hand-operated devices, such as keyboards and mice, shall be placed as for normal used.
- 8) For measurement above 1 GHz, the peak emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the peak limit specified in Section 15.109.

If peak result complies with average limit, average result is deemed to comply with average limit.

- 9) The average emission measurement will be measured by the RMS detector and must comply with the average limit specified in Section 15.109.
- 10) The setting of the spectrum analyser

RBW	1MHz
VBW	3MHz
Detector	Peak value: Peak; Average value: RMS
Trace	Max hold

TEST SETUP

Above 1GHz

TEST ENVIRONMENT

Temperature	24.3 ℃	Relative Humidity	55.8%
Atmosphere Pressure	101kPa		

TEST DATE / ENGINEER

TEST MODE

Pre-test Mode:	M01 ~ M02
Final Test Mode:	M01

Note: All test modes had been tested, but only the worst data recorded in the report.

5

3000.000 MHz

2600.000

2400.000

TEST RESULTS

80

70

60

50

40

30 20.0

1000.000

Test	Mode: N		M01	M01		Polarity:		Horizontal		
Test	Voltage		AC120	0V_60Hz						
120.0) dBuV/m									
110										
100										
90										

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1722.000	13.85	30.59	44.44	74.00	-29.56	peak
2	2162.000	14.43	31.67	46.10	74.00	-27.90	peak
3	2402.000	12.94	32.83	45.77	/	/	Remark 3
4	2480.000	13.51	32.75	46.26	/	/	Remark 3
5	2796.000	14.64	33.52	48.16	74.00	-25.84	peak
6	2958.000	15.27	33.89	49.16	74.00	-24.84	peak

2000.00

2 X

2200.000

Remark:

1. Result = Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)

1800.000

2. Margin = Result – Limit

1200.000

1400.000

1600.000

3. All the frequencies between mark 3 and mark 4 are the fundamental frequency which were transmitted by wireless module from EUT

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1828.000	14.80	31.62	46.42	74.00	-27.58	peak
2	1958.000	14.28	31.73	46.01	74.00	-27.99	peak
3	2402.000	28.62	33.65	62.27	/	/	Remark 3
4	2480.000	26.28	33.55	59.83	/	/	Remark 3
5	2748.000	15.14	34.36	49.50	74.00	-24.50	peak
6	2838.000	15.73	34.76	50.49	74.00	-23.51	peak

1. Result = Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)

2. Margin = Result – Limit

3. All the frequencies between mark 3 and mark 4 are the fundamental frequency which were transmitted by wireless module from EUT

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7035.000	36.89	7.39	44.28	74.00	-29.72	peak
2	8985.000	37.95	11.07	49.02	74.00	-24.98	peak
3	10950.000	34.65	14.56	49.21	74.00	-24.79	peak
4	11835.000	32.75	17.29	50.04	74.00	-23.96	peak
5	13365.000	29.08	20.92	50.00	74.00	-24.00	peak
6	17940.000	21.92	28.01	49.93	74.00	-24.07	peak

1. Result = Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)

2. Margin = Result – Limit

3. The high pass filter loss factor already add into the correct factor.

4. Proper operation of the transmitter prior to adding the filter to the measurement chain.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	6015.000	38.89	4.18	43.07	74.00	-30.93	peak
2	7755.000	38.11	8.03	46.14	74.00	-27.86	peak
3	9240.000	37.69	10.41	48.10	74.00	-25.90	peak
4	11835.000	34.39	16.06	50.45	74.00	-23.55	peak
5	14205.000	28.50	21.01	49.51	74.00	-24.49	peak
6	17715.000	25.18	25.41	50.59	74.00	-23.41	peak

- 1. Result = Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)
- 2. Margin = Result Limit
- 3. The high pass filter loss factor already add into the correct factor.
- 4. Proper operation of the transmitter prior to adding the filter to the measurement chain.

APPENDIX: PHOTOGRAPHS OF TEST CONFIGURATION

APPENDIX: PHOTOGRAPHS OF THE EUT

External Photos

Internal Photos

END OF REPORT