Belkin International, Inc. 555 S. Aviation Blvd., Suite 180, El Segundo, CA 90245, USA

2025/01/23 To: Federal Communications Commission 7435 Oakland Mills Road Columbia, MD FCC ID: K7SWIA011 To Whom It May Concern:

This letter is to ascertain that (Belkin International, Inc.) Product (BoostCharge Pro Magnetic Wireless Charging Pad (WIA011), has been the units used for conducting FCC compliance testing, and it meets KDB 680106 D01 V04 Clause 5(2) all 6 conditions except criteria (4).

Criteria	Requirements	Yes	No	Explanation
(1)	The power transfer frequency is below 1 MHz.	\boxtimes		The power transfer
	,			frequency are
				127.7kHz/360.0kHz
(2)	The output power from each transmitting	\square		The maximum output
. ,	element (e.g., coil) is less than or equal to 15			power of each coil is less
	watts.			than 15 watts.
(3)	A client device providing the maximum permitted	\boxtimes		
X - 7	load is placed in physical contact with the			
	transmitter (i.e., the surfaces of the transmitter			
	and client device enclosures need to be in			
	physical contact)			
(4)	Only § 2.1091-Mobile exposure conditions apply	\square		
(5)	The E-field and H-field strengths, at and beyond			See the test report.
(-)	20 cm surrounding the device surface, are			
	demonstrated to be less than 50% of the			
	applicable MPE limit, per KDB 447498, Table 1.			
	These measurements shall be taken along the			
	principal axes of the device, with one axis			
	oriented along the direction of the estimated			
	maximum field strength, and for three points per			
	axis or until a $1/d$ (inverse distance from the			
	emitter structure) field strength decay is			
	observed. Symmetry considerations may be used			
	for test reduction purposes. The device shall be			
	operated in documented worst-case compliance			
	scenarios (i.e., the ones that lead to the maximum			
	field components), and while all the radiating			
	structures (e.g., coils or antennas) that by design			
	can simultaneously transmit are energized at their			
	nominal maximum power.			
(6)	For systems with more than one radiating	\square		The DUT(Device Under
(-)	structure, the conditions specified in (5) must be			Test) includes only one
	met when the system is fully loaded (i.e., clients			radiating structure, and
	absorbing maximum power available), and with			operating at maximum
	all the radiating structures operating at maximum			power
	power at the same time, as per design conditions.			P

Belkin International, Inc. 555 S. Aviation Blvd., Suite 180, El Segundo, CA 90245, USA

If the design allows one or more radiating		
structures to be powered at a higher level while		
other radiating structures are not powered,		
then those cases must be tested as well. For		
instance, a device may use three RF coils powered		
at 5 W, or one coil powered at 15 W: in this case,		
both scenarios shall be tested.		

If you have any question or concerns, please contact us.

Sincerely Yours,

k V 7

Name / Title: Zack Vogel/ Regulatory Compliance Engineer Company Name: Belkin International, Inc. Company Address: 555 S. Aviation Blvd., Suite 180, El Segundo, CA 90245, USA Tel: +1 310 751 5100 *2800 Fax: N/A Email: zack.vogel@belkin.com