

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358

Web: www.mrt-cert.com

Report No.: 1611RSU04003 Report Version: Issue Date: 02-08-2017

RF Exposure Evaluation Declaration

FCC ID: 188C424G

Zyxel Communications Corporation APPLICANT:

Application Type: Certification

Product: Indoor GPON HGU

Model No.: PMG5717-B10A, C424G

Trademark: ZYXEL, ADTRAN

Part Number: 1287781F1C

Test Procedure(s): KDB 447498 D01v06

FCC Classification: Digital Transmission System (DTS)

Unlicensed National Information Infrastructure (UNII)

: Robin Wu)
: Marlinchen Reviewed By

Approved By

(Marlin Chen)

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standards through the calibration of the equipment and evaluated measurement uncertainty herein.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

FCC ID: 188C424G Page Number: 1 of 7

Revision History

Report No.	Version	Description	Issue Date	Note
1611RSU04003	Rev. 01	Initial report	02-08-2017	Valid

FCC ID: I88C424G Page Number: 2 of 7

1. PRODUCT INFORMATION

1.1. Equipment Description

Product Name	Indoor GPON HGU			
Model No.	PMG5717-B10A, C424G			
Brand Name	ZYXEL, ADTRAN			
Wi-Fi Specification	802.11a/b/g/n/ac			
Frequency Range	2.4GHz:			
	For 802.11b/g/n-HT20:			
	2412 ~ 2462 MHz			
	For 802.11n-HT40:			
	2422 ~ 2452 MHz			
	5GHz:			
	For 802.11a/n-HT20/ac-VHT20:			
	5180~5240MHz, 5745~5825MHz			
	For 802.11n-HT40/ac-VHT40:			
	5190~5230MHz, 5755~5795MHz			
	For 802.11ac-VHT80:			
	5210MHz, 5775MHz			
Type of Modulation	802.11b: DSSS			
	802.11g/a/n/ac: OFDM			
Maximum Average Output	For 2.4GHz Band:			
Power	802.11b: 23.65dBm			
	802.11g: 23.75dBm			
	802.11n-HT20: 26.10dBm			
	802.11n-HT40: 26.09dBm			
	For 5GHz Band:			
	802.11a: 25.73dBm			
	802.11n-HT20: 25.86dBm			
	802.11n-HT40: 25.40dBm			
	802.11ac-VHT20: 25.51			
	802.11ac-VHT40: 25.56			
	802.11ac-VHT80: 25.06dBm			

FCC ID: I88C424G Page Number: 3 of 7

Report No.: 1611RSU04003

1.2. Antenna Description

For 2.4GHz SISO Mode

Antenna	Mode	Frequency	T _X Paths	Antenna Gain (dBi)	
Туре		Band (GHz)		Ant 0	Ant 1
PCB	802.11b	0.4	1	3.4	
Antenna	802.11g/n	2.4	2	3.4	2.7

For 2.4GHz MIMO mode

Antenna	Mode	Frequency	nd	Directional Gain (dBi)	
Туре		Band (GHz)		Non Beam Forming	Beam Forming
PCB Antenna	802.11n	2.4	2	2.92	

Note:

- 1. The EUT not supports Beam Forming mode at 2.4GHz.
- 2. Completely uncorrelated signals include those transmitted in the following modes, if they are not combined with any correlated modes, such as beamforming:
 - Space Time Block Codes (STBC) or Space Time Codes (STC) for which different digital data is carried by each transmit antenna during any symbol period (e.g., WiMAX Matrix A [Alamouti coding]).
 - Spatial Multiplexing MIMO (SM-MIMO), for which independent data streams are sent to each transmit antenna (e.g., WiMAX Matrix B). WiMAX Matrix C, which adds diversity, also produces uncorrelated transmit signals.
- 3. Unequal antenna gains, with equal transmit powers. For antenna gains given by $G_1,\,G_2,\,...,\,G_N$ dBi
 - transmit signals are uncorrelated, then
 - Directional gain = 10 log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}] dBi [Note the "20"s in the denominator of each exponent and the square of the sum of terms; the object is to combine the signal levels coherently.]

FCC ID: I88C424G Page Number: 4 of 7

For 5GHz MIMO mode

Antenna	Frequency Band	T _X Paths	Directional Gain (dBi)		
Type	(GHz)		Beam Forming	CDD	
PCB	5.2	4	9.91	9.91	
Antenna	5.8	4	10.13	10.13	

Note:

- 1. The EUT support Beam Forming technology at 802.11n/ac mode, and support CDD technology at 802.11a mode.
- 2. Correlated signals include, but are not limited to, signals transmitted in any of the following modes:
 - Any transmit Beam Forming mode, whether fixed or adaptive (e.g., phased array modes, closed loop MIMO modes, Transmitter Adaptive Antenna modes, Maximum Ratio Transmission (MRT) modes, and Statistical Eigen Beam Forming (EBF) modes).
 - CDD signals are correlated and create unintended array gain that varies with signal bandwidth, antenna geometry, and cyclic delay values. Consequently, depending on system parameters, it may be appropriate to use different values of array gain for compliance with power limits versus compliance with powerspectral density limits.
- 3. Unequal antenna gains, with equal transmit powers. For antenna gains given by $G_1,\,G_2,\,...,\,G_N$ dBi
 - transmit signals are correlated, then
 - Directional gain = 10 log[(10G1/20 + 10G2/20 + ... + 10GN/20)2/NANT] dBi [Note the "20"s in the denominator of each exponent and the square of the sum of terms; the object is to combine the signal levels coherently.]

FCC ID: I88C424G Page Number: 5 of 7

2. RF Exposure Evaluation

2.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Average Time		
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm ²)	(Minutes)		
	(A) Limits for	Occupational/ Contr	ol Exposures			
300-1500			f/300	6		
1500-100,000			5	6		
	(B) Limits for General Population/ Uncontrolled Exposures					
300-1500			f/1500	6		
1500-100,000			1	30		

f= Frequency in MHz

Calculation Formula: $Pd = (Pout*G)/(4*pi*r^2)$

Where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

r = distance between observation point and center of the radiator in cm

Pd is the limit of MPE, 1mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

FCC ID: I88C424G Page Number: 6 of 7

2.2. Test Result of RF Exposure Evaluation

Product	Indoor GPON HGU
Test Item	RF Exposure Evaluation

Antenna Gain: refer to the section 1.2

For 2.4GHz ISM Band:

Test Mode	Frequency Band (MHz)	Maximum Average Output Power (dBm)	Power Density at r = 20 cm (mW/cm ²)	Limit (mW/cm²)
802.11b/g/n-HT20/ n-HT40	2412 ~ 2462	26.10	0.1588	1

For 5GHz UNII Band:

Test Mode	Frequency Band (MHz)	Maximum Average Output Power (dBm)	Power Density at r = 20 cm (mW/cm ²)	Limit (mW/cm²)
802.11a/n-HT20/	5180 ~ 5240	25.86	0.7512	1
n-H40/ac-VHT20 ac-VHT40/ac-VHT80	5745 ~ 5825	25.69	0.7599	1

CONCULISON:

Both of the 2.4GHz Wi-Fi and 5GHz Wi-Fi can transmit simultaneously. Therefore, the Max Power Density at r (20 cm) = $0.1588 \text{mW/cm}^2 + 0.7599 \text{mW/cm}^2 = 0.9187 \text{mW/cm}^2 < 1 \text{mW/cm}^2$ So the EUT complies with the FCC requirement.

The End

FCC ID: I88C424G Page Number: 7 of 7