

FCC PAR	15 SUBPART C TEST REPORT					
FCC PART 15.247						
Report Reference No: FCC ID	GTS20241129021-2-03 2BFAK-LP160					
Compiled by (position+printed name+signature) .:	File administrators Peter Xiao					
Supervised by (position+printed name+signature) .:	File administrators Peter Xiao Peter Xiao Test Engineer Evan Dulang					
Approved by (position+printed name+signature) .:	Manager Jason Hu					
Date of issue	Mar.18, 2025					
Representative Laboratory Name .:	Shenzhen Global Test Service Co.,Ltd.					
Address:	No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong,China					
Applicant's name	Shanghai Neardi Technology Co.Ltd.					
Address:	Room A201-60, Building 16, No.99, Huanhu West 1st Road, Lingang New Area, Shanghai, China					
Test specification:						
Standard:	FCC Part 15.247					
TRF Originator						
Master TRF	Dated 2014-12					
Global Test Service Co.,Ltd. is acknow Global Test Service Co.,Ltd. takes no r	whole or in part for non-commercial purposes as long as the Shenzhen ledged as copyright owner and source of the material. Shenzhen esponsibility for and will not assume liability for damages resulting from					
	luced material due to its placement and context.					
Test item description: Trade Mark	LPA3588 Embedded Intelligent Computer neardi					
Manufacturer	Shanghai Neardi Technology Co.Ltd.					
Model/Type reference:	LP160					
Listed Models	N/A					
Modulation Type						
Operation Frequency	From 2402MHz to 2480MHz					
Hardware Version	LP160 03					
Software Version	N/A					
Rating:	DC 9.0 -36.0 V					
Result:	PASS					

TEST REPORT

Test Report No. :	GT	S20241129021-2-03	Mar.18, 2025
Equipment under Test	:	LPA3588 Embedded Intelligen	
Model /Type	:	LP160	
Listed model	:	N/A	
Applicant	:	Shanghai Neardi Technology	/ Co.Ltd.
Address	:	Room A201-60, Building 16, N New Area, Shanghai, China	o.99, Huanhu West 1st Road, Lingang
Manufacturer	:	Shanghai Neardi Technology	/ Co.Ltd.
Address	:	Room A201-60, Building 16, N New Area, Shanghai, China	o.99, Huanhu West 1st Road, Lingang

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

2. SUMMARY 5 2.1. General Remarks 5 2.2. Product Description 5 2.3. Equipment Under Test 7 2.4. Short description of the Equipment under Test (EUT) 7 2.5. EUT operation mode 7 2.6. Block Diagram of Test Setup 8 2.7. EUT Exercise Software 8 2.8. Special Accessories 8 2.9. External I/O Cable 8 2.10. Related Submittal(s) / Grant (s) 8 2.11. Modifications 8 3.1 Address of the test laboratory 9 3.2. Test Facility 9 3.3. Environmental conditions 9 3.4. Statement of the measurement uncertainty 9 3.5. Test Description 10 3.6. Equipments Used during the Test 11 4. TEST CONDITIONS AND RESULTS 12 4.1. AC Power Conducted Emission 12 4.1. AC Power Conducted Emission 12 4.1. AC Power Conducted Emission 12 4.2. Radiated Emission 12 4.3. Maximum Peak Output Power 19 4.4. Power Spectral Density. 20 <	1. TEST STANDARDS	4
2.2. Product Description 5 2.3. Equipment Under Test 7 2.4. Short description of the Equipment under Test (EUT) 7 2.5. EUT operation mode 7 2.6. Block Diagram of Test Setup 8 2.7. EUT Exercise Software 8 2.8. Special Accessories 8 2.9. External I/O Cable 8 2.10. Related Submittal(s) / Grant (s) 8 2.11. Modifications 8 3. TEST ENVIRONMENT 9 3.1. Address of the test laboratory 9 3.2. Test Facility 9 3.3. Environmental conditions 9 3.4. Statement of the measurement uncertainty 9 3.5. Test Description 10 3.6. Equipments Used during the Test 11 4. TEST CONDITIONS AND RESULTS 12 4.1. AC Power Conducted Emission 12 4.2. Radiated Emission 12 4.3. Maximum Peak Output Power 19 4.4. Power Spectral Density 20 4.5. 99% and 6dB Bandwidth 21 4.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission. 22 4.7. Antenna Requirement	2. SUMMARY	5
2.3. Equipment Under Test 7 2.4. Short description of the Equipment under Test (EUT) 7 2.5. EUT operation mode 7 2.6. Block Diagram of Test Setup 8 2.7. EUT Exercise Software 8 2.8. Special Accessories 8 2.9. External I/O Cable 8 2.10. Related Submittal(s) / Grant (s) 8 2.11. Modifications 8 3.1. Address of the test laboratory 9 3.2. Test Facility 9 3.3. Environmental conditions 9 3.4. Statement of the measurement uncertainty 9 3.5. Test Description 10 3.6. Equipments Used during the Test 11 4.1 AC Power Conducted Emission 12 4.1. AC Power Spectral Density 20 4.2. Radiated Emission 11 4.3. Maximum Peak Output Power 19 4.4. Power Spectral Density 20 4.5. 99% and 6dB Bandwidth 21 4.6. Conducted Spurious Emissions and Band E	2.1. General Remarks	5
2.4. Short description of the Equipment under Test (EUT) 7 2.5. EUT operation mode 7 2.6. Block Diagram of Test Setup 8 2.7. EUT Exercise Software 8 2.8. Special Accessories 8 2.9. External I/O Cable 8 2.10. Related Submittal(s) / Grant (s) 8 2.11. Modifications 8 3.TEST ENVIRONMENT 9 3.1. Address of the test laboratory 9 3.2. Test Facility 9 3.3. Environmental conditions 9 3.4. Statement of the measurement uncertainty 9 3.5. Test Description 10 3.6. Equipments Used during the Test 11 4. TEST CONDITIONS AND RESULTS 12 4.1. AC Power Conducted Emission 12 4.2. Radiated Emission 12 4.3. Maximum Peak Output Power 19 4.4. Power Spectral Density 20 4.5. 99% and 6dB Bandwidth 21 4.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission 22 4.7. Antenna Requirement 24	2.2. Product Description	5
2.5. EUT operation mode 7 2.6. Block Diagram of Test Setup 8 2.7. EUT Exercise Software 8 2.8. Special Accessories 8 2.9. External I/O Cable 8 2.10. Related Submittal(s) / Grant (s) 8 2.11. Modifications 8 3.1. Address of the test laboratory 9 3.1. Address of the test laboratory 9 3.2. Test Facility 9 3.3. Environmental conditions 9 3.4. Statement of the measurement uncertainty 9 3.5. Test Description 10 3.6. Equipments Used during the Test 11 4. TEST CONDITIONS AND RESULTS 12 4.1. AC Power Conducted Emission 12 4.2. Radiated Emission 14 4.3. Maximum Peak Output Power 19 4.4. Power Spectral Density 20 4.5. 99% and 6dB Bandwidth 21 4.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission 22 4.7. Antenna Requirement 24	2.3. Equipment Under Test	7
2.6. Block Diagram of Test Setup82.7. EUT Exercise Software82.8. Special Accessories82.9. External I/O Cable82.10. Related Submittal(s) / Grant (s)82.11. Modifications83. TEST ENVIRONMENT93.1. Address of the test laboratory93.2. Test Facility93.3. Environmental conditions93.4. Statement of the measurement uncertainty93.5. Test Description103.6. Equipments Used during the Test114. TEST CONDITIONS AND RESULTS124.1. AC Power Conducted Emission124.2. Radiated Emission124.3. Maximum Peak Output Power194.4. Power Spectral Density204.5. 99% and 6dB Bandwidth214.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission224.7. Antenna Requirement245. TEST SETUP PHOTOS OF THE EUT25	2.4. Short description of the Equipment under Test (EUT)	7
2.7. EUT Exercise Software82.8. Special Accessories82.9. External I/O Cable82.10. Related Submittal(s) / Grant (s)82.11. Modifications83.1. Address of the test laboratory93.1. Address of the test laboratory93.2. Test Facility93.3. Environmental conditions93.4. Statement of the measurement uncertainty93.5. Test Description103.6. Equipments Used during the Test114. TEST CONDITIONS AND RESULTS124.1. AC Power Conducted Emission124.2. Radiated Emission124.4. Power Spectral Density204.5. 99% and 6dB Bandwidth214.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission224.7. Antenna Requirement245. TEST SETUP PHOTOS OF THE EUT25	2.5. EUT operation mode	7
2.8. Special Accessories82.9. External I/O Cable82.10. Related Submittal(s) / Grant (s)82.11. Modifications83.1. Address of the test laboratory93.1. Address of the test laboratory93.2. Test Facility93.3. Environmental conditions93.4. Statement of the measurement uncertainty93.5. Test Description103.6. Equipments Used during the Test114. TEST CONDITIONS AND RESULTS124.1. AC Power Conducted Emission124.2. Radiated Emission144.3. Maximum Peak Output Power194.4. Power Spectral Density204.5. 99% and 6dB Bandwidth214.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission224.7. Antenna Requirement245. TEST SETUP PHOTOS OF THE EUT25	2.6. Block Diagram of Test Setup	8
2.9. External I/O Cable82.10. Related Submittal(s) / Grant (s)82.11. Modifications83. TEST ENVIRONMENT93.1. Address of the test laboratory93.2. Test Facility93.3. Environmental conditions93.4. Statement of the measurement uncertainty93.5. Test Description103.6. Equipments Used during the Test114. TEST CONDITIONS AND RESULTS124.1. AC Power Conducted Emission124.2. Radiated Emission144.3. Maximum Peak Output Power194.4. Power Spectral Density204.5. 99% and 6dB Bandwidth214.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission224.7. Antenna Requirement245. TEST SETUP PHOTOS OF THE EUT25	2.7. EUT Exercise Software	8
2.10. Related Submittal(s) / Grant (s)82.11. Modifications83. TEST ENVIRONMENT93.1. Address of the test laboratory93.2. Test Facility93.3. Environmental conditions93.4. Statement of the measurement uncertainty93.5. Test Description103.6. Equipments Used during the Test114. TEST CONDITIONS AND RESULTS124.1. AC Power Conducted Emission124.2. Radiated Emission144.3. Maximum Peak Output Power194.4. Power Spectral Density204.5. 99% and 6dB Bandwidth214.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission224.7. Antenna Requirement245. TEST SETUP PHOTOS OF THE EUT25	2.8. Special Accessories	8
2.11. Modifications83. TEST ENVIRONMENT93.1. Address of the test laboratory93.2. Test Facility93.3. Environmental conditions93.4. Statement of the measurement uncertainty93.5. Test Description103.6. Equipments Used during the Test114. TEST CONDITIONS AND RESULTS124.1. AC Power Conducted Emission124.2. Radiated Emission144.3. Maximum Peak Output Power194.4. Power Spectral Density204.5. 99% and 6dB Bandwidth214.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission224.7. Antenna Requirement245. TEST SETUP PHOTOS OF THE EUT25		
3. TEST ENVIRONMENT 9 3.1. Address of the test laboratory 9 3.2. Test Facility 9 3.3. Environmental conditions 9 3.4. Statement of the measurement uncertainty 9 3.5. Test Description 10 3.6. Equipments Used during the Test 11 4. TEST CONDITIONS AND RESULTS 12 4.1. AC Power Conducted Emission 12 4.2. Radiated Emission 12 4.3. Maximum Peak Output Power 19 4.4. Power Spectral Density 20 4.5. 99% and 6dB Bandwidth 21 4.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission 22 4.7. Antenna Requirement 24 5. TEST SETUP PHOTOS OF THE EUT 25	2.10. Related Submittal(s) / Grant (s)	8
3.1. Address of the test laboratory 9 3.2. Test Facility 9 3.3. Environmental conditions 9 3.4. Statement of the measurement uncertainty 9 3.5. Test Description 10 3.6. Equipments Used during the Test 11 4. TEST CONDITIONS AND RESULTS 12 4.1. AC Power Conducted Emission 12 4.2. Radiated Emission 14 4.3. Maximum Peak Output Power 19 4.4. Power Spectral Density 20 4.5. 99% and 6dB Bandwidth 21 4.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission 22 4.7. Antenna Requirement 24 5. TEST SETUP PHOTOS OF THE EUT 25	2.11. Modifications	8
3.2. Test Facility 9 3.3. Environmental conditions 9 3.4. Statement of the measurement uncertainty 9 3.5. Test Description 10 3.6. Equipments Used during the Test 11 4. TEST CONDITIONS AND RESULTS 12 4.1. AC Power Conducted Emission 12 4.2. Radiated Emission 14 4.3. Maximum Peak Output Power 19 4.4. Power Spectral Density 20 4.5. 99% and 6dB Bandwidth 21 4.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission 22 4.7. Antenna Requirement 24 5. TEST SETUP PHOTOS OF THE EUT 25	3. TEST ENVIRONMENT	9
3.3. Environmental conditions 9 3.4. Statement of the measurement uncertainty 9 3.5. Test Description 10 3.6. Equipments Used during the Test 11 4. TEST CONDITIONS AND RESULTS 12 4.1. AC Power Conducted Emission 12 4.2. Radiated Emission 14 4.3. Maximum Peak Output Power 19 4.4. Power Spectral Density 20 4.5. 99% and 6dB Bandwidth 21 4.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission 22 4.7. Antenna Requirement 24 5. TEST SETUP PHOTOS OF THE EUT 25	3.1. Address of the test laboratory	9
3.4. Statement of the measurement uncertainty93.5. Test Description103.6. Equipments Used during the Test114. TEST CONDITIONS AND RESULTS124.1. AC Power Conducted Emission124.2. Radiated Emission144.3. Maximum Peak Output Power194.4. Power Spectral Density204.5. 99% and 6dB Bandwidth214.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission224.7. Antenna Requirement245. TEST SETUP PHOTOS OF THE EUT25	3.2. Test Facility	9
3.5. Test Description103.6. Equipments Used during the Test114. TEST CONDITIONS AND RESULTS124.1. AC Power Conducted Emission124.2. Radiated Emission144.3. Maximum Peak Output Power194.4. Power Spectral Density204.5. 99% and 6dB Bandwidth214.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission224.7. Antenna Requirement245. TEST SETUP PHOTOS OF THE EUT25	3.3. Environmental conditions	9
3.6. Equipments Used during the Test114. TEST CONDITIONS AND RESULTS124.1. AC Power Conducted Emission124.2. Radiated Emission144.3. Maximum Peak Output Power194.4. Power Spectral Density204.5. 99% and 6dB Bandwidth214.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission224.7. Antenna Requirement245. TEST SETUP PHOTOS OF THE EUT25	3.4. Statement of the measurement uncertainty	9
4. TEST CONDITIONS AND RESULTS 12 4.1. AC Power Conducted Emission 12 4.2. Radiated Emission 14 4.3. Maximum Peak Output Power 19 4.4. Power Spectral Density 20 4.5. 99% and 6dB Bandwidth 21 4.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission 22 4.7. Antenna Requirement 24 5. TEST SETUP PHOTOS OF THE EUT 25	3.5. Test Description	10
4.1. AC Power Conducted Emission 12 4.2. Radiated Emission 14 4.3. Maximum Peak Output Power 19 4.4. Power Spectral Density 20 4.5. 99% and 6dB Bandwidth 21 4.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission 22 4.7. Antenna Requirement 24 5. TEST SETUP PHOTOS OF THE EUT 25	3.6. Equipments Used during the Test	11
4.2. Radiated Emission 14 4.3. Maximum Peak Output Power 19 4.4. Power Spectral Density 20 4.5. 99% and 6dB Bandwidth 21 4.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission 22 4.7. Antenna Requirement 24 5. TEST SETUP PHOTOS OF THE EUT 25	4. TEST CONDITIONS AND RESULTS	12
4.3. Maximum Peak Output Power 19 4.4. Power Spectral Density 20 4.5. 99% and 6dB Bandwidth 21 4.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission 22 4.7. Antenna Requirement 24 5. TEST SETUP PHOTOS OF THE EUT 25	4.1. AC Power Conducted Emission	12
4.4. Power Spectral Density 20 4.5. 99% and 6dB Bandwidth 21 4.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission 22 4.7. Antenna Requirement 24 5. TEST SETUP PHOTOS OF THE EUT 25	4.2. Radiated Emission	14
4.5. 99% and 6dB Bandwidth 21 4.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission 22 4.7. Antenna Requirement 24 5. TEST SETUP PHOTOS OF THE EUT 25	4.3. Maximum Peak Output Power	19
4.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission	4.4. Power Spectral Density	20
4.7. Antenna Requirement 24 5. TEST SETUP PHOTOS OF THE EUT 25	4.5. 99% and 6dB Bandwidth	21
5. TEST SETUP PHOTOS OF THE EUT	4.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission	22
	4.7. Antenna Requirement	24
6. EXTERNAL AND INTERNAL PHOTOS OF THE EUT	5. TEST SETUP PHOTOS OF THE EUT	25
	6. EXTERNAL AND INTERNAL PHOTOS OF THE EUT	25

1. TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2020</u>: American National Standard for Testing Unlicensed Wireless Devices <u>KDB 558074 D01 DTS Meas Guidance v05r02</u>: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247.

2. <u>SUMMARY</u>

2.1. General Remarks

Date of receipt of test sample	:	Feb.26, 2025
Testing commenced on	•••	Feb.26, 2025
Testing concluded on	:	Mar.17, 2025

2.2. Product Description

Product Name:	LPA3588 Embedded Intelligent Computer			
Trade Mark:	neardi			
Model/Type reference:	LP160			
List Model:	N/A			
Model Declaration	N/A			
Power supply:	DC 9.0 - 36.0V			
Hardware Version	LP160 03			
Software Version	N/A			
Sample ID	GTS20241129021-2-S0001-5# & GTS20241129021-2-S0001-6#			
Bluetooth				
Frequency Range	2402MHz ~ 2480MHz			
Channel Number	79 channels for Bluetooth (DSS)			
Channel Number	40 channels for Bluetooth (DTS)			
Channel Specing	1MHz for Bluetooth (DSS)			
Channel Spacing	2MHz for Bluetooth (DTS)			
Madulation Type	GFSK, π/4-DQPSK, 8DPSK for Bluetooth (DSS)			
Modulation Type	GFSK for Bluetooth (DTS)			
2.4GWLAN				
	IEEE 802.11b:2412-2462MHz			
	IEEE 802.11g:2412-2462MHz			
WI AN Operation frequency	IEEE 802.11n HT20:2412-2462MHz			
WLAN Operation frequency	IEEE 802.11n HT40:2422-2452MHz			
	IEEE 802.11ax HE20:2412-2462MHz			
	IEEE 802.11ax HE40:2422-2452MHz			
	IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK)			
	IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK)			
	IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK, BPSK)			
WLAN Modulation Type	IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK, BPSK)			
	IEEE 802.11ax HE20: OFDMA (1024QAM, 256QAM, 64QAM, 16QAM, QPSK, BPSK)			
	IEEE 802.11ax HE40: OFDMA (1024QAM, 256QAM, 64QAM, 16QAM, QPSK, BPSK)			
	11 Channel for IEEE 802.11b/g/n/ax (HT20)			
Channel number:	7 Channel for IEEE 802.11n/ax (HT40)			
Channel separation:	5MHz			
WIFI(5.2G/5.3G/5.7G/5.8G Band)				
WLAN Operation frequency	5180-5240MHz/ 5260MHz to 5320MHz/ 5500MHz to 5700MHz/ 5745MHz to 5825MHz			
WLAN Modulation Type	IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK)			
	IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK)			

	IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)
	IEEE 802.11ac VHT20: OFDM (256QAM, 64QAM, 16QAM, QPSK, BPSK)
	IEEE 802.11ac VHT40: OFDM (256QAM, 64QAM, 16QAM, QPSK, BPSK)
	IEEE 802.11ac VHT80: OFDM (256QAM, 64QAM, 16QAM, QPSK, BPSK)
	IEEE 802.11ax HE20: OFDMA (1024QAM, 256QAM, 64QAM, 16QAM, QPSK, BPSK)
	IEEE 802.11ax HE40: OFDMA (1024QAM, 256QAM, 64QAM, 16QAM, QPSK, BPSK)
	IEEE 802.11ax HE80: OFDMA (1024QAM, 256QAM, 64QAM, 16QAM, QPSK, BPSK)
	4 Channels for 20MHz bandwidth(5180-5240MHz)
	4 Channels for 20MHz bandwidth(5260-5320MHz)
	11 Channels for 20MHz bandwidth(5500-5700MHz)
	5 channels for 20MHz bandwidth(5745-5825MHz)
	2 channels for 40MHz bandwidth(5190~5230MHz)
Channel number:	2 channels for 40MHz bandwidth(5270~5310MHz)
	5 Channels for 40MHz bandwidth(5510-5670MHz)
	2 channels for 40MHz bandwidth(5755~5795MHz)
	1 channels for 80MHz bandwidth(5210MHz)
	1 channels for 80MHz bandwidth(5290MHz)
	2 Channels for 80MHz bandwidth(5530-5610MHz)
	1 channels for 80MHz bandwidth(5775MHz)
	Two external antenna respectively. WLAN support 2*2MIMO technology.
Antenna Description	ANT0 used for WIFI TX/RX, 2.0 dBi(Max.) for 2.4G Band and 2.0 dBi (Max.) for 5G Band.
	ANT1 used for Bluetooth and WIFI TX/RX, 2.0 dBi(Max.) for 2.4G Band and 2.0 dBi (Max.) for 5G Band.

2.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC		24 V DC
		0	Other (specified in blank below)		

DC 24.0V

2.4. Short description of the Equipment under Test (EUT)

This is a LPA3588 Embedded Intelligent Computer. For more details, refer to the user's manual of the EUT.

2.5. EUT operation mode

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 40 channels provided to the EUT. Channel 00/19/39 was selected to test.

Mode of Operations	Frequency Range (MHz)	Data Rate (Mbps)			
	2402	1			
(BLE)	2440	1			
	2480	1			
For Conducted Emission					
Test Mode		TX Mode			
For Radiated Emission					
Test Mode		TX Mode			

Channel	Frequency(MHz)	Channel	Frequency(MHz)	
0	2402	20	2442	
1	2404	21	2444	
2	2406	22	2446	
18	2438	38	2478	
19	2440	39	2480	

The EUT has been tested under operating condition.

This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in X position. AC conducted emission pre-test at both at AC 120V/60Hz and AC 240V/50Hz modes, recorded worst case(AC 120V/60Hz).

Worst-case mode and channel used for 150 KHz-30 MHz power line conducted emissions was the mode and channel with the highest output power, which was determined to be BT LE mode (MCH).

Worst-case mode and channel used for 9 KHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be BT LE mode(MCH).

2.6. Block Diagram of Test Setup

2.7. EUT Exercise Software

The system was configured for testing in a continuous transmits condition and change test channels by software (adb model) provided by application.

2.8. Special Accessories

Manufacturer	Description	Model	Serial Number	Certificate
Jiangsu Chenyang Electron Co.,Ltd.	Adapter	CYSE65-240250		SDOC
LENOVO	Keyboard	T460S		SDOC
LENOVO	Mouse	Howard		SDOC
THTF	Display	LE23CW-D		SDOC
LENOVO	PC	DESKYOP-EUIVCNR		SDOC
SONY	Earphone	MDR-XB550AP		SDOC

Note: The Adapter, PC, Earphone, Display, Keyboard and Mouse is only used for auxiliary testing.

2.9. External I/O Cable

I/O Port Description	Quantity	Cable
DC-IN Port	1	Non-Shielded, 1.0m
USB Port	3	N/A
HDMI Port	4	Non-Shielded, 1.0m
AV Port	2	N/A
COM Port	4	N/A
DP Port	1	N/A
RJ45 Port	2	Non-Shielded, 1.0m
USB-C Port	1	N/A
AHD Port	8	N/A

2.10. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2BFAK-LP160 filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.11. Modifications

No modifications were implemented to meet testing criteria.

3. <u>TEST ENVIRONMENT</u>

3.1. Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong, China.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L8169)

Shenzhen Global Test Service Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2019 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA (Certificate No. 4758.01)

Shenzhen Global Test Service Co., Ltd. has been assessed by the American Association for Laboratory Accreditation (A2LA). Certificate No. 4758.01.

Industry Canada Registration Number. is 24189.

FCC Designation Number is CN1234.

FCC Registered Test Site Number is165725.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Global Test Service Co.,Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GTS laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

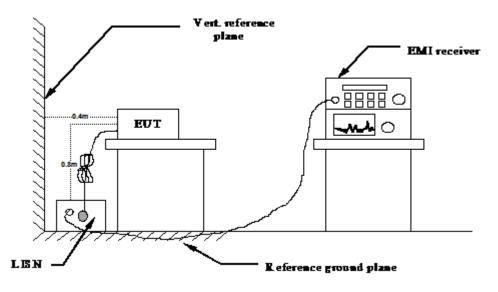
3.5. Test Description

Applied Standard: FCC Part 15 Subpart C						
FCC Rules	Description of Test	Test Sample	Result	Remark		
/	On Time and Duty Cycle	GTS20241129021-2- S0001-5#	/	/		
§15.247(b)	Maximum Conducted Output Power	GTS20241129021-2- S0001-5#	Compliant	Appendix B		
§15.247(e)	Power Spectral Density	GTS20241129021-2- S0001-5#	Compliant	Appendix B		
§15.247(a)(2)	6dB Bandwidth	GTS20241129021-2- S0001-5#	Compliant	Appendix B		
§2.1047	99% Occupied Bandwidth	GTS20241129021-2- S0001-5#	Compliant	Appendix B		
§15.209, §15.247(d)	Conducted Spurious Emissions and Band Edges Test	GTS20241129021-2- S0001-5#	Compliant	Appendix B		
§15.209, §15.247(d)	Radiated Spurious Emissions	GTS20241129021-2- S0001-5# GTS20241129021-2- S0001-6#	Compliant	Note 1		
§15.205	Emissions at Restricted Band	GTS20241129021-2- S0001-5#	Compliant	Note 1		
§15.207(a)	AC Conducted Emissions	GTS20241129021-2- S0001-6#	Compliant	Note 1		
§15.203 §15.247(c)	Antenna Requirements	GTS20241129021-2- S0001-5#	Compliant	Note 1		
§15.247(i)§2.1 091	RF Exposure	/	Compliant	Note 2		

Remark:

- 1. The measurement uncertainty is not included in the test result.
- 2.
- 3.
- NA = Not Applicable; NP = Not Performed
 Note 1 Test results inside test report;
 Note 2 Test results in other test report (MPE Report). 4.
- We tested all test mode and recorded worst case in report 5.

3.6. Equipments Used during the Test


Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	CYBERTEK	EM5040A	E1850400105	2024/07/15	2025/07/14
LISN	R&S	ESH2-Z5	893606/008	2024/07/15	2025/07/14
EMI Test Receiver	R&S	ESPI3	101841-cd	2024/07/15	2025/07/14
EMI Test Receiver	R&S	ESCI7	101102	2024/07/15	2025/07/14
Spectrum Analyzer	Agilent	N9020A	MY48010425	2024/07/15	2025/07/14
Spectrum Analyzer	R&S	FSV40-N	101800	2024/07/15	2025/07/14
Vector Signal generator	Agilent	N5181A	MY49060502	2024/07/15	2025/07/14
Signal generator	Agilent	N5182A	3610AO1069	2024/07/15	2025/07/14
Climate Chamber	ESPEC	EL-10KA	A20120523	2024/07/15	2025/07/14
Controller	EM Electronics	Controller EM 1000	N/A	N/A	N/A
Horn Antenna	Schwarzbeck	BBHA 9120D	01622	2024/12/16	2025/12/15
Active Loop Antenna	Beijing Da Ze Technology Co.,Ltd.	ZN30900C	15006	2024/07/15	2025/07/14
Bilog Antenna	Schwarzbeck	VULB9163	000976	2024/07/15	2025/07/14
Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2024/07/15	2025/07/14
Amplifier	SKET	LAPA_30M01G-32	SK2024010400 1	2025/01/21	2026/01/20
Amplifier	EMCI	EMC012645SE	980340	2025/01/21	2026/01/20
Amplifier	Schwarzbeck	BBV9179	9719-025	2025/01/21	2026/01/20
Temperature/Humidity Meter	Gangxing	CTH-608	02	2024/07/15	2025/07/14
High-Pass Filter	HUBER+SUHNER	RG214	RE01	2024/07/15	2025/07/14
High-Pass Filter	HUBER+SUHNER	RG214	RE02	2024/07/15	2025/07/14
RF Cable(below 1GHz)	HUBER+SUHNER	RG214	RE01	2024/07/15	2025/07/14
RF Cable(above 1GHz)	HUBER+SUHNER	RG214	RE02	2024/07/15	2025/07/14
Data acquisition card	Agilent	U2531A	TW53323507	2024/07/15	2025/07/14
Power Sensor	Agilent	U2021XA	MY5365004	2024/07/15	2025/07/14
Test Control Unit	Tonscend	JS0806-1	178060067	2024/07/15	2025/07/14
Automated filter bank	Tonscend	JS0806-F	19F8060177	2024/07/15	2025/07/14
Wireless Commnunication Tester	Rohde&Schwarz	CMW500	125408	2024/07/15	2025/07/14
EMI Test Software	Tonscend	JS1120-1	Ver 2.6.8.0518	/	/
EMI Test Software	Tonscend	JS1120-3	Ver 2.5.77.0418	/	/
EMI Test Software	Tonscend	JS32-CE	Ver 2.5	/	/
EMI Test Software	Tonscend	JS32-RE	Ver 2.5.1.8	/	/

Note: 1. The Cal.Interval was one year.

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2020.

2 Support equipment, if needed, was placed as per ANSI C63.10-2020

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2020

4 The EUT received DC 24V power, the adapter received AC120V/60Hz or AC 240V/50Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Frequency range (MHz)	Limit (d	dBuV)
Frequency range (MHZ)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
* Decreases with the logarithm of the freque	ncv	·

Decreases with the logarithm of the frequency.

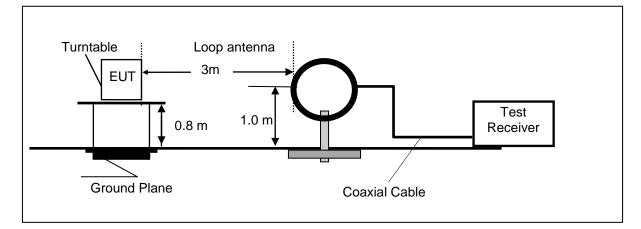
DISTURBANCE Calculation

The AC mains conducted disturbance is calculated by adding the 10dB Pulse Limiter and Cable Factor and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

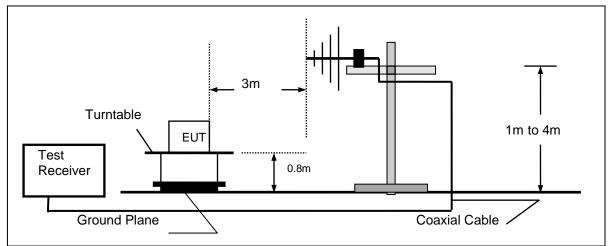
CD (dBuV) = RA (dBuV) + PL (dB) + CL (dB)

Where CD = Conducted Disturbance	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	PL = 10 dB Pulse Limiter Factor

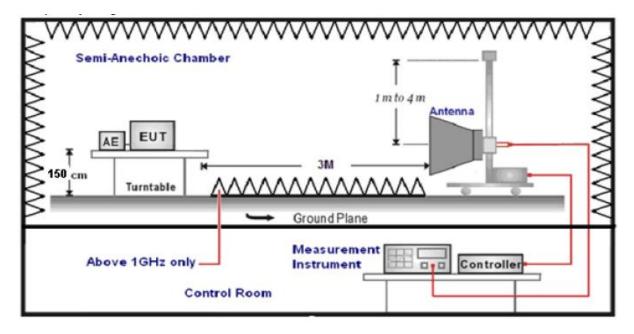
TEST RESULTS


Remark: We measured Conducted Emission at GFSK mode from 150 KHz to 30MHz in AC120V and the worst case was recorded.

Temperature	2	5 ℃		Hu	umidity			6	0%	
Test Engineer		Ouyang			guration	s			ЗT	
Power supply:	AC 120V	/60Hz		Polariz	zation				L	
Test Graph										
	0		(6.1)							
7	0									
		× ·								
o Magazina Pana Magazina Maga	o www.www.wh	Thomas Mi								
Leve	0	Ward Haut day	ervise down when the	-		-	all a			
2			all dispetiture	A Marine Marine			alle is			
	0									
1	50k	1M	Frequency(Hz)		10M		30M			
	OP Detector AVI		PR AV							
Eisel Date I	int									
Final Data L	.IST QP AVG.	Factor QI	AVG.	QP	AVG. C	P AVG.	Line	Remark		
The requirey								rioniani -		
1 0.1815	Reading Readin	24		Limit	-	rgin Margin	L1	PASS		
1 0.1815 2 0.348	41.32 35.62 39.03 28.30	10.20 51.3 10.13 49.1	22.0	64.42 59.01		.90 8.60 85 10.58	L1 L1	PASS		
<u>3 0.4335</u> 4 0.4605	40.59 32.80 42.20 28.28	10.20 50. 10.23 52.4	231 232229	57.19 56.68		40 4.19 25 8.17	L1 L1	PASS PASS		
5 0.51	42.96 32.94	10.25 53.3	21 43.19	56.00	46.00 2	79 2.81	L1	PASS		
6 1.0095 Note:1. Result (dE	33.65 21.78 3µV) = Reading (dBµ	10.20 43.4 IV) + Factor (dB)		56.00	46.00 12	.15 14.02	L1	PASS		
Note:1. Result (dE	the second statement of the se	IV) + Factor (dB)		56.00	46.00 12	.15 14.02	<u> L1</u>	PASS		
Note:1. Result (dE	βμV) = Reading (dBμ	IV) + Factor (dB) + LISN Factor (d		Polariz		.15 14.02	L1		N	
Note:1. Result (dE 2. Factor (df	8μV) = Reading (dBμ 3) = Cable loss (dB)	IV) + Factor (dB) + LISN Factor (d				.15 14.02			N	
Note:1. Result (dE 2. Factor (dE Power supply:	μV) = Reading (dBμ 3) = Cable loss (dB) AC 120V	IV) + Factor (dB) + LISN Factor (d				.15 14.02			N	
Note:1. Result (dE 2. Factor (df Power supply: Test Graph	3µV) = Reading (dBµ 3) = Cable loss (dB) AC 120V,	IV) + Factor (dB) + LISN Factor (d	B).			.15 14.02			N	
Note:1. Result (dE 2. Factor (dE Power supply: Test Graph	3µV) = Reading (dBµ 3) = Cable loss (dB) AC 120V,	iV) + Factor (dB) + LISN Factor (d /60Hz	B).			.15 14.02			N	
Note:1. Result (dE 2. Factor (dB Power supply: Test Graph	3) = Cable loss (dB) AC 120V	iV) + Factor (dB) + LISN Factor (d /60Hz	B).			.15 14.02			N	
Note:1. Result (dE 2. Factor (dE Power supply: Test Graph	3) = Cable loss (dB) AC 120V	iV) + Factor (dB) + LISN Factor (d /60Hz	B).			.15 14.02			N	
Note:1. Result (dE 2. Factor (dB Power supply: Test Graph	3) = Cable loss (dB) AC 120V	iV) + Factor (dB) + LISN Factor (d /60Hz	B).			.15 14.02			N	
Note:1. Result (dE 2. Factor (dB Power supply: Test Graph	3µV) = Reading (dBµ 3) = Cable loss (dB) AC 120V	iV) + Factor (dB) + LISN Factor (d /60Hz	B).			.15 14.02			N	
Note:1. Result (dE 2. Factor (dB Power supply: Test Graph	3µV) = Reading (dBµ 3) = Cable loss (dB) AC 120V	iV) + Factor (dB) + LISN Factor (d /60Hz	B).			.15 14.02	3014		N	
Note:1. Result (dE 2. Factor (dB Power supply: Test Graph	3µV) = Reading (dB) 3) = Cable loss (dB) AC 120V	V) + Factor (dB) + LISN Factor (d /60Hz	B). (%)		zation				N	
Note:1. Result (dE 2. Factor (dB Power supply: Test Graph	ByV) = Reading (dB) B) = Cable loss (dB) AC 120V, AC 120V, GR	V) + Factor (dB) + LISN Factor (d /60Hz	(%)		zation				N	
Note:1. Result (dE 2. Factor (dB Power supply: Test Graph	PPUV) = Reading (dB) B) = Cable loss (dB) AC 120V/ AC 120V/ OF Linet PK Linet OP Linet OP Linet OP Linet OP Linet OP Linet	IV) + Factor (dB) + LISN Factor (d /60Hz	(%) (%) Frequency(Hz)	Polariz	Zation		3064		N	
Note:1. Result (dE 2. Factor (dB Power supply: Test Graph	Solution Contraction of the second se	IV) + Factor (dB) + LISN Factor (d /60Hz	B). (N) Prequency(Hz) PK Prequency(Hz) AVG.	Polariz	Zation	P AVG.	зом		N	
Note:1. Result (dE 2. Factor (dB Power supply: Test Graph	PPUV) = Reading (dB) B) = Cable loss (dB) AC 120V/ AC 120V/ OF Linet PK Linet OP Linet OP Linet OP Linet OP Linet OP Linet	IV) + Factor (dB) + LISN Factor (d /60Hz	B). (N) Prequency(Hz) PK Prequency(Hz) AVG.	Polariz	Zation	P AVG.	зом		N	
Note:1. Result (dE 2. Factor (dB Power supply: Test Graph	AC 120V/ AC 120V/ AC 120V/ AC 120V/ PKLint OP Lint OP AVG. Reading Reading 46.76 36.43	V) + Factor (dB) + LISN Factor (d /60Hz	B). (*) Frequency[Hz] Frequency[Hz] AVG. Itt Result 9 46.76	Polariz	Zation	P AVG. rgin Margin 56 8.99	30M	Remark	N	
Note:1. Result (dE 2. Factor (dB Power supply: Test Graph	AC 120V/ AC 120V/ AC 120V/ AC 120V/ PKLint — OPLint OPCeteder — OPLint St OP AVG. Reading Reading	IV) + Factor (dB) + LISN Factor (c /60Hz	B). (%) Firequency[Hz] Firequency[Hz] AVG. att Result 9 46.76 1 41.51	Polariz	Zation	P AVG. rgin Margin 36 8.99 50 7.50	зом	Remark	N	
Note:1. Result (de 2. Factor (de Power supply: Test Graph 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.1545 2 1 0.1545 2 1 0.4065 4	PKLimit OP Limit • OP Detector • OP Limit • OP AVG. Reading Reading Reading 46.76 36.43 42.38 31.38 44.76 31.35 43.84 32.55	IV) + Factor (dB) + LISN Factor (d /60Hz /60Hz ////////////////////////////////////	B). (%) Frequency(Hc) FRK Frequency(Hc) RK AVG. Result 9 46.76 1 41.51 3 41.52 6 42.77	Polariz	Zation	P AVG. rgin Margin 36 8.99 50 7.50 79 6.20 71 4.00	30M	Remark PASS PASS PASS	N	
Note:1. Result (de 2. Factor (de Power supply: Test Graph 0 70 80 70 80 70 80 70 80 71 1 0.1545 2 0.348 3 0.4065	SpirV) = Reading (dB) B) = Cable loss (dB) AC 120V/ AC 120V/ PK Limit PK Limit OP Extent OP Extent AC 36.43 42.38 44.76 31.35	IV) + Factor (dB) + LISN Factor (d /60Hz /60Hz	B). (%) Frequency(Hz) K AVG. Itt Result 9 46.76 1 41.51 3 41.52 6 42.77 8 43.48	Polariz	Zation	P AVG. rgin Margin 36 8.99 50 7.50 79 6.20 71 4.00 32 2.52	30M	Remark PASS PASS PASS	N	
Note:1. Result (de 2. Factor (de Power supply: Test Graph 6 70 70 70 70 71 72 73 74 75 76 77 78 79 70 70 71 72 73 74 75 76 77 76 76 77 76 76 76 76 76	SpirV) = Reading (dB) B) = Cable loss (dB) AC 120V/ Baseling AC 120V/ AC 120V/ <td>V) + Factor (dB) + LISN Factor (d /60Hz //60Hz ////////////////////////////////////</td> <td>(ii) (ii) (ii) (ii) (ii) (iii) Frequency(¹⁴) (iii) AVG. (iii) 44.76 1 41.51 3 41.52 6 42.77 8 43.48 0 36.44</td> <td>Polariz</td> <td>zation</td> <td>P AVG. rgin Margin 36 8.99 50 7.50 79 6.20 71 4.00 32 2.52</td> <td>30M</td> <td>Remark PASS PASS PASS PASS</td> <td>N</td> <td></td>	V) + Factor (dB) + LISN Factor (d /60Hz //60Hz ////////////////////////////////////	(ii) (ii) (ii) (ii) (ii) (iii) Frequency(¹⁴) (iii) AVG. (iii) 44.76 1 41.51 3 41.52 6 42.77 8 43.48 0 36.44	Polariz	zation	P AVG. rgin Margin 36 8.99 50 7.50 79 6.20 71 4.00 32 2.52	30M	Remark PASS PASS PASS PASS	N	


4.2. Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 30MHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

 Test Frequency range
 Test Antenna Type

 9KHz-30MHz
 Active Loop Antenna
 3

9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

- united and a second s	ing test receiver/spectrum as following table states.				
	Test	Frequency	Test Receiver/Spectrum Setting	Detector	
	range				
	9KHz-15	50KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP	
	150KHz	-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP	
	30MHz-	1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP	
	1GHz-4	0GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

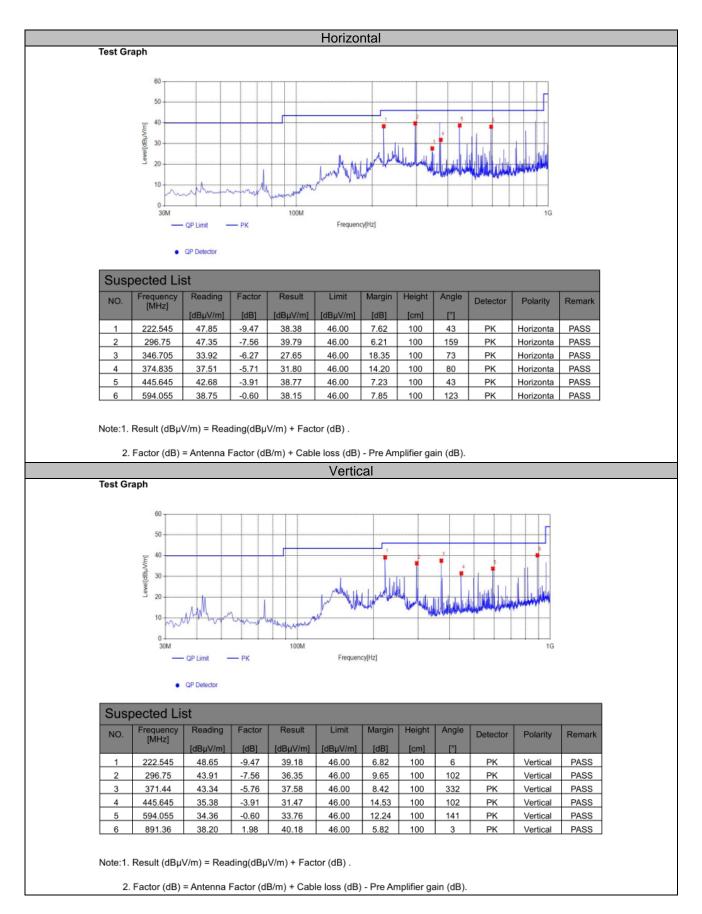
TEST RESULTS

Remark: We measured Radiated Emission at GFSK mode from 9kHz to 25GHz in AC120V and the worst case was recorded.

Temperature	24 ℃	Humidity	58%
Test Engineer	Evan Ouyang	Configurations	BT

For 9 KHz~30MHz

Freq.	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note


Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

For 30MHz to 1000MHz

For 1GHz to 25GHz

BT LE

Channel 0 / 2402 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4804.00	51.10	32.44	30.25	7.95	61.24	74.00	-12.76	Peak	Horizontal
4804.00	35.63	32.44	30.25	7.95	45.77	54.00	-8.23	Average	Horizontal
4804.00	49.42	31.60	36.50	7.00	51.52	74.00	-22.48	Peak	Vertical
4804.00	35.72	31.60	36.50	7.00	37.82	54.00	-16.18	Average	Vertical

Channel 19 / 2440 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4880.00	49.65	32.52	30.31	8.12	59.98	74.00	-14.02	Peak	Horizontal
4880.00	37.31	32.52	30.31	8.12	47.64	54.00	-6.36	Average	Horizontal
4880.00	49.65	31.02	36.50	7.60	51.77	74.00	-22.23	Peak	Vertical
4880.00	35.26	31.02	36.50	7.60	37.38	54.00	-16.62	Average	Vertical

Channel 39 / 2480 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4960.00	51.85	32.68	30.27	7.88	62.14	74.00	-11.86	Peak	Horizontal
4960.00	36.00	32.68	30.27	7.88	46.29	54.00	-7.71	Average	Horizontal
4960.00	52.66	31.58	36.20	7.82	55.86	74.00	-18.14	Peak	Vertical
4960.00	37.44	31.58	36.20	7.82	40.64	54.00	-13.36	Average	Vertical

Notes:

1). Measuring frequencies from 9 KHz~10th harmonic or 26.5GHz (which is less), No emission found between lowest internal used/generated frequency to 30MHz.

2). Radiated emissions measured in frequency range from 9 KHz~10th harmonic or 26.5GHz (which is less) were made with an instrument using Peak detector mode.

3). Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

4). Measured= Reading- Pre. Fac.+ Ant. Fac.+ Cab. Loss

5). Margin = Measured- Limit

NOTE: All the modes have been tested and recorded worst mode in the report.

4.3. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to KDB 558074 D01 15.247 Measurement Guidance v05r02 Section 8.3.1 Maximum peak conducted output power, 8.3.1.3 The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

<u>LIMIT</u>

The Maximum Peak Output Power Measurement is 30dBm.

TEST RESULTS

For reporting purpose only.

Please refer to Appendix B.3.

4.4. Power Spectral Density

TEST CONFIGURATION

TEST PROCEDURE

1.Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.

2.Set the RBW =3 kHz.

3.Set the VBW =10 KHz.

4.Set the span to 1.5 times the DTS channel bandwidth.

5.Detector = peak.

6.Sweep time = auto couple.

7.Trace mode = max hold.

8. Allow trace to fully stabilize.

9.Use the peak marker function to determine the maximum power level.

10.If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

11. The resulting peak PSD level must be 8 dBm.

<u>LIMIT</u>

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST RESULTS

For reporting purpose only.

Please refer to Appendix B.4.

4.5. 99% and 6dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=100 KHz and VBW=300KHz. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB. According to KDB 558074 D01 DTS Meas Guidance v05r02 for one of the following procedures may be used to determine the modulated DTS device signal bandwidth.

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

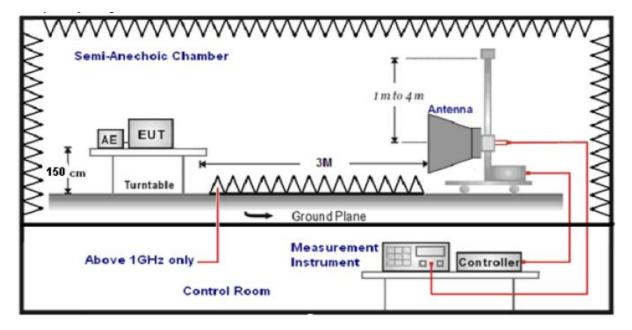
<u>LIMIT</u>

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

TEST RESULTS

For reporting purpose only.

Please refer to Appendix B.1.


Please refer to Appendix B.2.

4.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission

TEST REQUIREMENT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

1. The EUT was placed on a turn table which is 1.5m above ground plane.

- 2.Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3.And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The distance between test antenna and EUT was 3 meter:
- 6.Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

LIMIT

Below -20dB of the highest emission level in operating band.

Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

TEST RESULTS

4.6.1 For Radiated Bandedge Measurement

Temperature	23.8 ℃	Humidity	53.7%
Test Engineer	Evan Ouyang	Configurations	BT

Frequency(MHz):			2402			Polarity:		H	HORIZO	NTAL	
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)
2390.00	46.29	PK	74.00	-27.71	1.50	101	51.60	27.49	3.32	36.12	-5.31
2390.00	33.86	AV	54.00	-20.14	1.50	101	39.17	27.49	3.32	36.12	-5.31
Frequenc	y(MHz):			2402			Polarity:			VERTI	CAL
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)
2390.00	50.00	PK	74.00	-24.00	1.50	261	55.31	27.49	3.32	36.12	-5.31
2390.00	29.93	AV	54.00	-24.07	1.50	261	35.24	27.49	3.32	36.12	-5.31
Frequenc	y(MHz):			2480		Polarity: HORIZO			ONTAL		
Frequency (MHz)	Emiss Leve (dBuV)	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)
2483.50	45.87	PK	74.00	-28.13	1.50	189	51.59	27.45	3.38	36.55	-5.72
2483.50	34.52	AV	54.00	-19.48	1.50	189	40.24	27.45	3.38	36.55	-5.72
Frequenc	Frequency(MHz):			2480			Polarity:			VERT	CAL
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)
2483.50	49.12	ΡK	74.00	-24.88	1.50	138	54.84	27.45	3.38	36.55	-5.72
2483.50	29.27	AV	54.00	-24.73	1.50	138	34.99	27.45	3.38	36.55	-5.72

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

NOTE: All the modes have been tested and recorded worst mode in the report.

4.6.2 For Conducted Bandedge Measurement

For reporting purpose only.

Please refer to Appendix B.5.

4.6.3 For Conducted Spurious Emissions Measurement

For reporting purpose only.

Please refer to Appendix B.6.

4.7. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The antenna used for this product is external Antenna and that no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is only 2.00dBi.

Reference to the Test Report: GTS20241129021-2-02.

5. TEST SETUP PHOTOS OF THE EUT

Reference to the Test Report: GTS20241129021-2-02.

6. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Reference to the Test Report: GTS20241129021-2-02.

.....End of Report.....