LYNwave Technology

Antenna & Thermal solution provider

Antenna Test Report

Project Name:	EW-7822UNX
Model Name:	
Feature:	Wifi Dual Band
Application:	Dongle

Date	Owner	Revision
01/17	Alex	1. Antenna passive measurement with V1 mockup
02/07	Zino	1. Antenna passive measurement with V1 mockup (new thermal sol.)
05/04	Zino	1. Antenna passive measurement with V2 mockup (without heatsink)
06/23	Zino	1. Antenna passive measurement with T2 mockup
07/06	Zino	1. Add USB GND
07/18	Zino	1. Antenna passive measurement with T3 mockup (Grounding USB)

Table of Contents

- A. Antenna RF Characteristics
 - 1. Antenna Placement
 - 2. Equipment List
 - 3. Test architecture
 - 4. Conversion from S21 to antenna gain dBi performed step
 - 5. S-Parameters
 - 6. Gain Table
 - 7. 2D/ 3D Radiation Pattern
 - 8. Summary

Antenna Placement

Antenna	Description	Frequency
Ant.1	2.4/5G	2400 MHz ~ 2500 MHz / 5150 MHz ~ 5825 MHz
Ant.2	2.4/5G	2400 MHz ~ 2500 MHz / 5150 MHz ~ 5825 MHz

S-parameter Measurement Equipment

Equipment	Brand	Model	Calibration Date
Network analyzer	Keysight	M9010A	2022/07/04

Passive Equipment List :

Antenna Chamber	MFC-2531(1.4x1.4x2.8m)
Test software	Passive 2D/3D川升
Network analyzer	Agilent E5071B
Controller	MF7802
Calibration time	2022/07/04

Antenna Chamber

Network analyzer and Controller :

Test architecture :

Test System Calibration

We will use a standard antenna which have bean verified and whose accurate gain table is available to carry out the chamber calibration.

The standard antenna will be re-measured by the chamber. The difference between the measured gain values and its verified gain table will be compensated to the measurement system.

Conversion from S21 to antenna gain dBi performed step

Path Loss 1

Step :

1.Calculate Total Loss: Total Loss= Path Loss 1 + Path Loss 2 + Space Loss + Horn Gain 2.Measurement Value S21 By Chamber

3.Measurement Value S21- Standard Antenna Gain = Total Loss =

Compensation (Path Loss)

4. Measurement Value S21 = Standard Antenna Gain + Total Loss

Confirmation before calibration list and step

Check	List
	Remove the 3dB attenuator from the DUT's cable
	No other metal substances in the measurement environment
	No extension cable taped on Phi axis
	Align the DUT to the laser line center
	Prepare ETS or Bwant Dipole Fixture
	Crossline laser
	VNA, Turn Table, Switch on and confirm in NIMAX
	Passive Software

The measured value of the same test object might be changed before and after calibration, so it is not recommended to calibrate frequently.

- 1. Set-up the dipole start from low frequency (SD650).
- 2. Rotate 90 degree on Theta axis.

Antenna Pattern Measur File Prompt	
Measure Mode Frequency Range Correction Instrument VNA Switch Rotator	Rotator Address ¥ COM34 Rotator Move Test Theta Phi Speed 12 Speed Angle Move Move Home Current Location Theta Phi
	▲ Apply ③ RUN

- Choose "Calibration Vertical Polarization".
- Or choose "Calibration Horizontal Polarization" if you need a horizontal one.

File	Prompt	
Ð	Measure Mode Frequency Range Correction Instrument VNA Switch Rotator	 Two Axis Double Polarization Two Axis Horizontal Polarization Two Axis Vertical Polarization Single Theta Axis Double Polarization Single Theta Axis Horizontal Polarization Single Theta Axis Vertical Polarization Single Phi Axis Double Polarization Single Phi Axis Horizontal Polarization Single Phi Axis Horizontal Polarization
	WARNI CO., LO	Calibration Horizontal Polarization Calibration Vertical Polarization

• Cancel all the selection as follow picture.

A i	ntenna Pattern Measu	ure	
File	Prompt		
	Measure Mode Frequency Range	-Manual Correction-	Horizontal Polarization Correction File
-	Correction	Horizontal	Range Loss 1
2	VNA	Freq. (MHz) dB	C:\Users\user\Desktop\gain\CALH.calh
	Switch		Range Loss 2
	Rotator		D:\BWant's Passive\Cal\20190119cal\H\Horizontal
		T	Vert cal Polarization Correction File
		Vertical	Range Loss 1
		Freq. (MHz) dB	C:\Users\user\Desktop\gain\CALV.calv
			Range Loss 2
			D:\BWant's Passive\Cal\20190119cal\V\Vertical
		1	
		Total	Total Polarzation Correction File
		Freq. (MHz) dB	Range Loss 1
			Range Loss 2
			C:\Calibration Data\dipole 2-6GHz KKK
			HISHITA
			HX/PJ1/4J
7	BREAT CO., LT	Apply RUN	Result Pattern Demo
			2019/1/24 上午 09:10:2

• Set the IF Bandwidth to 100Hz.

- Select the calibration dipole type from Standard KIT.
 - The frequency band is labeled on the dipole (the start & cutoff frequencies and the test points number would be set automatically after selection).

Antenna Pattern Measur	5			-		×
Measure Mode Frequency Range	Frequency List					
Instrument	4900 MHz User define					
- VNA Switch	4910 MHz Frequency Span to List					
Rotator	4920 MHz Start Frequency Stop Frequency					
	4930 MHz 100 MHz 0 6000 MHz 0					
	4940 MHz Span Freq.					
	4950 MHz 5 MHz 🗢 🍱 🍏 🛅					
	4960 MHz					
	4970 MHz Calibration Function					
	4980 MHz Standard KIT					
	4990 MHz BWant SD5400_#F10 💌					
	5000 MHz Start Frequency Stop Frequency					
	5010 MHz 4900 MHz 🗘 5900 MHz 🕏					
	5020 MHz Points					
	5030 MHz U 1001 😌 🗹 Calibration					
BWant Co., Ltd				Measure	Time: 00	26:3
- Manr	Z Apply 🛃 RUN 🚪 📕 🚺 Result 💐 F	Pattern	emo	2019/5/2	9下午05	39.

- 1. Click on "Apply".
- 2. Click on "Run" and start the testing.

A 👘	ntenna Pattern Measur			-		×
File	Prompt					
F	Measure Mode Frequency Range	- Frequency List Select Frequency List				
8	Instrument	4900 MHz 🔿 User define 💌				
	VNA	4910 MHz Frequency Span to List				
	Rotator	4920 MHz Start Frequency Stop Frequency				
		4930 MHz 100 MHz 0 6000 MHz 0				
		4940 MHz Span Freq.				
		4950 MHz 5 MHz 🗘 🏣 🏅 🛅				
		4960 MHz				
		4970 MHz Calibration Function				
		4980 MHz				
		4990 MHz BWant SD5400_#F10 •				
		5000 MHz Start Frequency Stop Frequency				
		5010 MHz 4900 MHz 🖨 5900 MHz 🖨				
		5020 MHz Points				
		5030 MHz U 1001 Calibration				
		2				
	BWant Co., Ltd			Measure	Time: 00	26:3
-	Manr	Apply RUN F Result	Pattern Demo	2019/5/29	9下午05	5:39:0

- 1. Confirm there is testing value in "Meas Data" field.
- 2. Click on "Offset Calculate".
- 3. Click on "Save CSV".

Freq. (MHz)	Calls I dp							
	Gain [dB	Efficienc		Horizonta			^	
600.000	1.610	-0.570		Freq.(MH:	Gain	phas		
601.000	1.580	-0.600		600.000	-27.507	-27.507	8	
602.000	1.570	-0.630	21	601.000	-27.483	-27.483		
603.000	1.550	-0.655		602.000	-27.514	-27.514		
604.000	1.540	-0.685		603.000	-27.643	-27.643		
605.000	1.520	-0.716		604.000	-27.426	-27.426		
606.000	1.500	-0.742		605.000	-27.644	-27.644		
607.000	1.480	-0.768		606.000	-27.400	-27.400		
608.000	1.470	-0.794		607.000	-27.528	-27.528		
609.000	1.440	-0.825		608.000	-27.626	-27.626		
610.000	1.420	-0.867		609.000	-27.627	-27.627		
611.000	1.400	-0.894		610.000	-27.701	-27.701		
612.000	1.370	-0.926		611.000	-27.688	-27.688		
613.000	1.350	-0.953		612.000	-27.449	-27.449		
614.000	1.310	-0.996		613.000	-27.709	-27.709		
615.000	1.280	-1.024		614.000	-27.608	-27.608		
s16.000	1 240	-1.062	*	615.000 <	-27.647	-27.647		4

- Save the testing file according by each dipole test band and polarization.
 - Ex Vertical Polarization SD650
 - Place the Cal->V Folder and named it as "SD650_V"

· → • ↑	📙 > 本機 > Data	(D:) > BWant's Passive > Ca	al .	5 v	搜尋 Cal			۶
				1 🗳 - 🔏	n ť	X	~	
马稱	^	修改日期	類型	大小				
н		2019/5/29下午 0	檔案資料夾					
V		2019/5/29下午 0	檔案資料夾		1			

- Repeat all the 11pcs antenna as right table to complete the full band frequency according the steps from Page 5~12.
- Click on "Files Combine", select the "Folder V" and all frequency band file would be generated.
 - Ex. Vertical Polarization 600-5900 MHzPath Loss.csv

	Vertical Confirmatio n	Dipole Name
		SD650
		SD740
		SD900
Source Table Meas Data Result Data		SD1150
Freq. (MHz) Gain [dB] Efficient A Honzonta A 600.000 1.610 -0.570 Freq. (MH: Gain phas Freq. (MH: Gain phas <td< td=""><td></td><td>SD1575</td></td<>		SD1575
602.000 1.570 -0.630 601.000 -27.463 -27.463 601.000 -29.083 -27.483 603.000 1.550 -0.655 602.000 -27.514 602.000 -29.084 -27.514 604.000 1.540 -0.685 603.000 -27.643 603.000 -29.193 -27.643 604.000 -29.064 -27.214 -27.264 -27.242 603.000 -29.193 -27.643		SD1800
605.000 1.520 -0.716 604.000 -27.420 604.000 -28.900 -27.420 606.000 1.500 -0.742 605.000 -27.644 605.000 -29.164 -27.644 607.000 1.480 -0.768 606.000 -27.400 606.000 -28.900 -27.400 607.000 -0.768 607.000 -27.328 -27.528 607.000 -28.900 -27.400		SD2140
608.000 1.470 -0./94 607.000 -27.526 27.526 607.000 -29.096 -27.626 609.000 1.440 -0.825 608.000 -27.626 608.000 -29.096 -27.626 610.000 1.420 -0.867 609.000 -27.627 609.000 -29.067 -27.627 610.000 1.420 -0.867 609.000 -27.627 610.000 -29.067 -27.627 610.000 -29.027 -27.701 -27.701 -27.21 -27.701		SD2450
611.000 1.400 -0.894 610.000 -27.701 610.000 -29.101 27.701 612.000 1.370 -0.926 611.000 -27.688 611.000 -29.088 -27.688 613.000 1.350 -0.953 612.000 -27.449 612.000 -28.819 -27.449		SD3200
614.000 1.310 -0.996 613.000 -27.709 613.000 -29.099 -27.709 615.000 1.280 -1.024 614.000 -27.608 -27.608 614.000 -28.918 -27.608 616.000 1.240 -1.062 T 615.000 -27.647 * 615.000 -28.927 -27.647 *		SD3600
BWant Dead Toffset By Coffset By Coffset I Save Clear Make		SD5400
SD0650.csv Meas Gain Gain Cabulate Cabulate Cal File Cal File		

1. Align the dipole feeding point to laser line.

- Repeat all the 11pcs antenna as right table to complete the full band frequency according the steps from Page 5~12.
- Click on "Files Combine", select the "Folder H" and all frequency band file would be generated.
 - Ex. Horizontal Polarization 600-5900 MHzPath Loss.csv

			Hor Conf	izontal Dipole irmatio Name n
				SD650
				SD740
a Create Calibration File			×	SD900
Source Table	as Data	Result Data		
Freq. (MHz) Gain [dB Efficient 600.000 1.610 -0.570 Free	rizonta q.(MH: Gain phas	Horizonta Freq.(MH: Gain Phas		SD1150
601.000 1.580 -0.600 600	.000 -27.507 -27.507 =	600.000 -29.117 -27.507	e	
602.000 1.570 -0.630 - 601	.000 -27.483 -27.483	601.000 -29.063 -27.483		SD1575
603.000 1.550 -0.655 602	.000 -27.514 -27.514	602.000 -29.084 -27.514		515
604.000 1.540 -0.685 603	.000 -27.643 -27.643	603.000 -29.193 -27.643		
605.000 1.520 -0.716 604	.000 -27.426 -27.426	604.000 -28.966 -27.426		SD1800
606.000 1.500 -0.742 605	.000 -27.644 -27.644	605.000 -29.164 -27.644		
607.000 1.480 -0.768 606	000 -27.400 -27.400	606.000 -28.900 -27.400		SD2140
608.000 1.470 -0.794 607	.000 -27.528 -27.528	602.000 -29.008 -27.528		3D2140
609.000 1.440 -0.825 606	000 -27.627 -27.620	609.000 -29.090 -27.020		
610.000 1.420 -0.867 610	000 -27.701 -27.701	610,000 -29,121 -27,701		SD2450
611,000 1.400 -0.894 611	000 -27 688 -27 688	611 000 -29 088 -27 688		5524750
612,000 1.370 -0.926 612	000 -27.449 -27.449	612,000 -28,819 -27,449		
614,000 1,210 0,006 613	000 -27.709 -27.709	613.000 -29.059 -27.709		SD3200
615,000 1,280 -1,024 614	.000 -27.608 -27.608	614.000 -28.918 -27.608		2
	.000 -27.647 -27.647 +	615.000 -28.927 -27.647 <		SD3600
BWant SD0650.csv Control Meas Gain	y Offset Save Save	Clear Make Files able Cal File Combine	-1	SD5400

• Change the "IF Bandwidth" value back to 500Hz.

1. Set-up the dipole start from low frequency (SD650) as Page 14.

- Select "Two Axis Double Polarization " on Measure Mode Page.
- Set the angle of Theta and Phi to 30 degree.

- Delete "Frequency List".
- Insert the current dipole "start & cutoff frequencies".
- Insert Span Freq.
 - SD650

 SD740: 1MHz
 - SD900 \land SD1575 \land SD5400: 5MHz
 - Other Dipole : 10MHz
- Add "Frequency List".
- Apply.
- Run.

- Select and check the calibration files that generated on Page 13 & Page 15.
- 2. Click on "ReCorrect".
- Apply .calh file in "Range Loss1"
- Apply .csv file in "Range Loss2"

- If any efficiency value >100%, please refer to the next page to correct.
- Efficiency value <100%, then calibration is done.

	Prompt											
	Measure Mode Frequency Range	Power	Phase 0	Coordinate	1							
3	Correction Instrument	5900.000	-26.599	-18.255	8.344	-26.599	0.219	-18.255	-55.637	225.000	165.000	3.4
	VNA	Total Pole										
	Rotator	Frequenc	Tot. Rad.	Peak EIRF	Directivity	Efficiency	Efficiency	Gain (dE	Min EIR	Peak Phi	Peak Th	4
		4900.000	-0.220	1.443	1.663	-0.220	95.054	1.443	-22.750	15,000	60.000	C
		4905.000	-0.109	1.543	1.652	-0.109	97.512	1.543	-22.559	15.000	60.000	C
		4910.000	-0.023	1.659	1.682	-0.023	99.482	1.659	-23.848	15.000	60.000	C
		4915.000	-0.115	1.630	1.745	-0.115	97.386	1.630	-23,359	15.000	60.000	С
	4920.000	-0.062	1.701	1.763	-0.062	98.580	1.701	-23.550	45.000	60.000	C	
	4925.000	-0.301	1.459	1.761	-0.301	93.297	1.459	-23.590	15.000	60.000	C	
	4930.000	-0.335	1.397	1.732	-0.335	92.571	1.397	-22.497	15.000	60.000	C	
		4935.000	-0.133	1.577	1.710	-0.133	96.989	1.577	-21.297	15.000	60.000	C
		4940.000	-0.165	1.603	1.768	-0.165	96.272	1.603	-21.298	15.000	60.000	C
		4945.000	-0.218	1.591	1.809	-0.218	95.104	1.591	-20.277	330.000	60.000	C
		4950.000	-0.205	1.663	1.868	-0.205	95.384	1.663	-19.716	15.000	60.000	C
		4955.000	-0.132	1.805	1.937	-0.132	97.009	1.805	-18.919	15.000	60.000	C
		4960.000	-0.131	1.815	1.946	-0.131	97.033	1.815	-18.275	15.000	60.000	C
		4965.000	-0.119	1.888	2.007	-0.119	97.299	1.888	-19.220	15.000	60.000	c
		4970.000	0.016	2.045	2.029	0.016	100.369	2.045	-18.712	45.000	60.000	C
		4975.000	0.023	2.065	2.042	0.023	100.531	2.065	-19.120	15.000	60.000	C
		4980.000	0.105	2.113	2.008	0.105	102.453	2.113	-18.912	15.000	60.000	Cv
		<			-							>

- If any efficiency value >100%, please refer to the following steps to correct:
 - 1. Backup the Horizontal & Vertical combined files
 - 2. Find the maximum efficiency value, Ex. 0.105

Measure Mode	. 1										
Frequency Range	Power	Phase C	oordinate								
Correction	5900.000	-26.599	-18.255	8.344	-26.599	0.219	-18.255	-55.637	225.000	165.000	3 .
VNA											
Switch	Total Poli										
Rotator	Frequenc	Tot. Rad.	Peak EIRF	Directivity	Efficiency	Efficiency	Gain (dł	Min EIR	Peak Phi	Peak Th	4
	4900.000	-0.220	1.443	1.663	-0.220	95.054	1.443	-22.750	15.000	60.000	C
	4905.000	-0.109	1.543	1.652	-0.109	97.512	1.543	-22.559	15.000	60.000	C
	4910.000	-0.023	1.659	1.682	-0.023	99,482	1.659	-23.848	15.000	60.000	C
	4915.000	-0.115	1.630	1.745	-0.115	97.386	1.630	-23.359	15.000	60.000	C
	4920.000	-0.062	1,701	1.763	-0.062	98.580	1.701	-23.550	45.000	60.000	C
	4925.000	-0.301	1.459	1.761	-0.301	93.297	1.459	-23.590	15.000	60.000	C
	4930.000	-0.335	1,397	1.732	-0.335	92.571	1.397	-22.497	15.000	60.000	C
	4935.000	-0.133	1.577	1.710	-0.133	96.989	1.577	-21.297	15.000	60.000	C
	4940.000	-0.165	1,603	1.768	-0.165	96.272	1.603	-21.298	15.000	60.000	c
	4945.000	-0.218	1.591	1.809	-0.218	95.104	1.591	-20.277	330.000	60.000	c
	4950.000	-0.205	1.663	1.868	-0.205	95.384	1.663	-19.716	15.000	60,000	c L
	4955,000	-0.132	1.805	1.937	-0.132	97.009	1.805	-18.919	15.000	60.000	c P
	4960.000	-0.131	1.815	1.946	-0.131	97.033	1.815	-18.275	15.000	60.000	c
	4965.000	-0.119	1.888	2.007	0.110	97.299	1.888	-19.220	15.000	60.000	c
	4970.000	0.016	2.045	2.029	0.016	100.369	2.045	-18.712	45,000	60.000	C
	4975,000	0.023	2.065	2.042	0.023	100.531	2.065	-19,120	15,000	60.000	c
	4980.000	0.105	2.113	2.008	0.105	102.453	2.113	-18.912	15.000	60.000	Cv
	<										>
	1.51										

- 3. Correct the H & V calibration data.
 - Ex. Max: 0.105
 - New Gain=Red Frame + Max + 0.1

□ 5 · ⊂		5 · c	
檔案 常用	插入 頁面配置	檔案 常用	插入頁面配置
[™] ×	新細明體 - 12	* *	新細明體
貼上		贴上 **	в I Ц - 🖽 -

	5.0				+2 - c*			Fx. Of	rigina	I Fre	a 600	G	ain= -	53.38	2
横梁	*用	插入 新細明體	頁面配置 公式 第	2 1813	6 常用 ×	插入	夏南配置 公式 資料			:0 000		05		- 52	177
	10 -	BIU	- A A =		0 -	新細明體	- 12 -	new G	amo	03.302	2 T U. I	00	τ U. I	55	. 177
* *	*	🖽 • 🔑	- <u>A</u> - #2 - 📧	- PO.	*	BIU	- E - Q - A -	2	Freq.(MH:	Gain	Phas	2	Freq.(MH:	Gain	Phas
剪贴现	1 15	5	P型 6	1 mi	RETAIL IS		字型	3	600	-53.177	81.172	3	600	-53,842	82,573
B ³		• 1 ×	 ✓ fx -53. 	A t	7	1.8	🗸 🎜 Vertic	4	б01	-53.227	39.542	4	601	-53.92	40 992
Н	A	В	C D	1	A	B	C D	5	602	-53.282	-2.081	5	602	-53 998	-0.537
1 Ho	rizontal	Polarization	n	1	Vertical P	larization		6	603	-53.339	-43.572	6	603	-54 070	42.083
2 Fre	q.(MH	Gain 1	Phas	2 1	Freq.(MH:	Gain	Phas	7	604	-53,399	-84,996	7	604	54.075	-42.000
3	600	-53.382	81.172	3	600	-54.047	82.573	8	605	-53 47	-126 298	,	004	-54,105	-05,303
4	601	-53,432	2.081	4 5	602	-54.125	40.992	9	606	-53 533	-167 518	8	605	-54.200	-125.11
6	603	-53.544	-43,572	6	603	-54.284	-42.083	10	607	52 507	151 211	9	606	-54.357	-166.611
7	6(4	-53,604	-84.996	7	604	-54.368	-83.585	-Q	607	-33.397	151.511	10	607	-54.461	151.965
8	605	-53,675	-126.298	8	605	-54.471	-125.11		608	-53.649	110.324	11	608	-54.563	110.56
9	606	-53,738	-167.518	9	606	-54,562	-166.611		609	-53.691	69.311	12	609	-54.663	69.218
10	607	-53.802	151.311	10	607	-54.666	151.965		610	-53.724	28.323	13	610	-54 772	27 897
11	000	-53.654	110.324	11	608	-54,768	110,56		611	-53.735	-12.64	14	611	54 882	13 //0
12	60	-53,690	28 323	12	610	-34.000	27.807	15	612	-53,742	-53,618	15	612	-04.00Z	-13.449
14	61	-53.94	-12.64	14	611	-55.087	-13.449	16	613	-53 743	-94 539	15	012	-54.967	-54.710
15	62	-53,947	-53.618	15	612	-55.192	-54.716	17	614	53 733	135 581	16	613	-55.098	-95.987
16	6.3	-53,948	-94.539	16	613	-55.303	-95.987	17	615	-55.755	-135.501	17	614	-55.212	-137.092
17	6.4	-53,938	-135.581	17	614	-55.417	-137.092	18	615	-53.719	-1/6.539	18	615	-55.316	-178.256
18	6.5	-53,924	-176.539	18	615	-55.521	-178.256	19	616	-53.706	142.475	19	616	-55,443	140.706
19	6.6	-53.911	142.475	19	616	-55.648	140.705	20	617	-53.667	101.449	20	617	-55 538	99 694
20	0./	-53.872	101.449	20	619	-35,743	59.004	21	618	-53.631	60,392	21	619	55 625	59 774
22	60	-33,030	10.392	22	610	-55 025	17.852	22	619	-53,58	19.342	21	010	-55.055	30.774
23	60	-53,728	-21 844	23	630	-55,998	-23.117	23	620	53 523	-21 844	22	619	-55.72	17.852
24	61	-53,658	-63.059	24	621	-56.062	-64.064	20	621	52 452	63.050	23	620	-55.793	-23.117
25	622	53.602	-104.368	25	622	-56.129	-105.069	24	621	-50.455	-03.039	24	621	-55.857	-64.064
	-	SD650_H	÷		5	D650_V	۲	25	622	-55.597	-104.368	25	622	-55.924	-105.069 23

 According to the Page 17~24, keep confirm all the antennas' efficiency value.

Efficiency Value Confirmation	Dipole Name
	SD650
	SD740
	SD900
	SD1150
	SD1575
	SD1800
	SD2140
	SD2450
	SD3200
	SD3600
	SD5400

24

S-Parameters

Equipment : ETS Chamber

Gain Table

Ant.1										
Frequency (MHz)	2400	2450	2500	5150	5550	5825				
Efficiency(%)	31	32	33	42	43	42				
Peak Gain(dBi)	-1.4	-0.9	-0.6	0.4	1.8	2.6				
	Ant.2									
Frequency (MHz)	2400	2450	2500	5150	5550	5825				
Efficiency(%)	33	33	34	41	43	43				
Peak Gain(dBi)	-1.7	-1.1	-0.9	0.5	2.8	3.0				

The antenna characteristics

- Return loss < -8dB in operating band
- Isolation
 - All Band > 10 dB
- Efficiency
 - WIFI 2.4GHz Band \geq 30%
 - WIFI 5GHz Band \geq 40%
- Gain
 - WIFI 2.4GHz Band -1.7 ~ -0.6dBi
 - WIFI 5GHz Band 0.4 ~ 3.0dBi

Ant.1_ 2D.3D Radiation Pattern Frequency(MHz) : 2D. 2400~2500 3D. 2450

Radiation Pattern :

Setup :

Ant.1_ 2D.3D Radiation Pattern Frequency(MHz) : 2D. 5150~5825 3D. 5550

Radiation Pattern :

Setup :

Ant.2_ 2D.3D Radiation Pattern Frequency(MHz) : 2D. 2400~2500 3D. 2450

Radiation Pattern :

Setup :

Ant.2_ 2D.3D Radiation Pattern Frequency(MHz) : 2D. 5150~5825 3D. 5550

Radiation Pattern :

Azimuth Plane	Elevation Plane phi = 0	Elevation Plane phi = 90

Setup :

www.lynwave.com

https://www.facebook.com/LYNwaveTechnology/

https://www.linkedin.com/company/lynwave-technology-ltd./

https://lynwave.en.alibaba.com/