RF Exposure Report (FCC) Report No.: WIR117437 -FCC-RF Exposure Test Model: Lat-Lon X15500 **Received Date:** 05 /03 /2022 Test Date: 05 /04/ 2022 - 05 /28 /2022 Issued Date: 06/23//2022 Applicant: Lat-Lon, LLC Address: 2300 S. Jason St, Denver, CO 90223 Issued By: Eurofins Electrical and Electronic Testing NA, Inc. Lab Address: 3162 Belick St. Santa Clara CA, 95054 Report: WIR117437 -FCC-RF Exposure © 2022, Eurofins Electrical and Electronic Testing NA, Inc. Page i of 5 # 1. Certificate of Conformity Product: Lat-Lon X15500 Brand: Lat-Lon, LLC Test Model: X15500 **Series Model**: 22319-5—J117437 Sample Status: Engineering Sample Applicant: Lat-Lon, LLC **Test Date:** 05 /02/ 2022 – 05 /28 /2022 **Standard:** 47 CFR FCC Part 2.1093 Alberto Silvider Alberto Saldiver Test Engineer, Wireless Laboratory **Engineering Statement:** The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made. Gary Chou Wireless Engineering Manager, Wireless Laboratory | Revision | Report Date | Reason for Revision | | |----------|---------------|---------------------|--| | Ø | June 23, 2022 | Initial Issue. | | Report: WIR117437 -FCC-RF Exposure © 2022, Eurofins Electrical and Electronic Testing NA, Inc. Page 2 of 5 ## 2. RF Exposure | Frequency Range
(MHz) | Electric Field
Strength (V/m) | Magnetic Field
Strength (A/m) | Power Density (mW/cm ²) | Average Time
(minutes) | | |---|----------------------------------|----------------------------------|-------------------------------------|---------------------------|--| | Limits For General Population / Uncontrolled Exposure | | | | | | | 0.3-1.34 | 614 | 1.63 | (100)* | 30 | | | 1.34-30 | 824/f | 2.19/f | (180/f ²)* | 30 | | | 30-300 | 27.5 | 0.073 | 0.2 | 30 | | | 300-1500 | | | f/1500 | 30 | | | 1500-100,000 | | | 1.0 | 30 | | f = Frequency in MHz; *Plane-wave equivalent power density #### 2.1 MPE Calculation Formula $Pd = (Pout*G) / (4*pi*r^2)$ Where Pd = power density in mW/cm² Pout = output power to antenna in mW G = gain of antenna in linear scale Pi = 3.1416 R = distance between observation point and center of the radiator in cm #### 2.2 Antenna Gain Cellular: Antenna Type: Flexible PCB Antenna E&E 698 MHz - 798 MHz : 3.5 dBi 824 MHz - 960 MHz : 3.5 dBi 1710 MHz - 2170 MHz : 3.8dBi 2300 MHz - 2400 MHz : 4.5 dBi 2500 MHz - 2690 MHz : 4.5 dBi BLE: Antenna Type: Embedded chip antenna Antenna Gain: 1.86 dBi ZigBee: Antenna Type: Embedded chip antenna Antenna Gain: 1.7 dBi ## 2.3 Calculation Result of Maximum Conducted Power | Type/ Band | Frequency Band
(MHz) | Max Power
(tune up)
(dBm) | Max Power
(tune up)
(mW) | Antenna Gain
(dBi) | Distance
(cm) | Power Density
(mW/cm²) | Limit
(mW/cm²) | |----------------------|-------------------------|---------------------------------|--------------------------------|-----------------------|------------------|---------------------------|-------------------| | LTE CAT-M
Band 2 | 1850.7 | 24 | 251.1886 | 3.8 | 20 | 0.119936 | 1 | | LTE CAT-M
Band 12 | 699.0 | 24 | 251.1886 | 3.5 | 20 | 0.111931 | 0.466 | | BLE | 2404 | 9.8 | 9.5499 | 1.86 | 20 | 0.002917 | 1 | | ZigBee | 2745 | 9.26 | 8.4333 | 1.7 | 20 | 0.002483 | 1 | #### Note: 1. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty. #### 2. This device contains | TYPE | Model No. | FCC ID | Note | |----------|------------|--------------|------| | Cellular | ME910C1-NA | RI7ME910C1NA | - | | BLE | BGM220P | QOQ-GM220P | - | | ZigBee | ETERNA2 | SJC-ETERNA2 | - | Report: WIR117437 -FCC-RF Exposure © 2022, Eurofins Electrical and Electronic Testing NA, Inc. Page 4 of 5 #### 3. Conclusion ## **Conclusion:** The formula of calculated the MPE is: CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1 CPD = Calculation power density LPD = Limit of power density # Worse case (LTE+BLE+ZigBee) Total MPE Percentage for t = 0.262773391 < 1 Therefore, the maximum calculations of above situations are less than the "1" limit. The SAR evaluation is not required. Report: WIR117437 -FCC-RF Exposure © 2022, Eurofins Electrical and Electronic Testing NA, Inc.