

JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R12-2201245

FCC RF Test Report

(Bluetooth)

Applicant: Sky Phone LLC

Address of Applicant: 1348 Washington Av. Suite 350, Miami Beach, FL 33139

Equipment Under Test (EUT)

Product Name: Smart phone

Model No.: Sky PrestigeX2

Trade Mark: SKY DEVICES

FCC ID: 2ABOSSKYPRESTGX2

Applicable Standards: FCC CFR Title 47 Part 15C (§15.247)

Date of Sample Receipt: 20 Jun., 2022

Date of Test: 21 Jun., to 19 Jul., 2022

Date of Report Issued: 20 Jul., 2022

Test Result: PASS

Tested by: / **Date:** 20 Jul., 2022

Reviewed by: Date: 20 Jul., 2022

Approved by: Date: 20 Jul., 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Report No.: JYTSZ-R12-2201245

2 Version

Version No.	Date	Description
00	20 Jul., 2022	Original

3 Contents

		Page
1 C	over Page	1
2 V	/ersion	2
3 C	Contents	3
	Seneral Information	
4.1 4.2 4.3 4.4 4.5 4.6	Client Information General Description of E.U.T. Test Mode and Test Environment Description of Test Auxiliary Equipment Measurement Uncertainty Additions to, Deviations, or Exclusions From the Method	
4.7 4.8 4.9 5 M	Laboratory Facility Laboratory Location Test Instruments List Ieasurement Setup and Procedure	5 6
5.1 5.2 5.3	Test Channel	8 8
6 T	est Results	11
6.1 6.2 6.3 6.4 6.5	Summary	13 14 16

4 General Information

4.1 Client Information

Applicant:	Sky Phone LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139
Manufacturer:	Sky Phone LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139

4.2 General Description of E.U.T.

4.2 General Descrip	uon or E.O.T.
Product Name:	Smart phone
Model No.:	Sky PrestigeX2
Operation Frequency:	2402 MHz - 2480 MHz
Transfer Rate:	1/2/3 Mbits/s
Number of Channel:	79
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK
Modulation Technology:	FHSS
Antenna Type:	Internal Antenna
Antenna Gain:	0.5 dBi (declare by applicant)
Antenna transmit mode:	SISO (1TX, 1RX)
Power Supply:	Rechargeable Li-ion Battery DC3.8V, 2500mAh
AC Adapter:	Input: AC100-240V, 50/60Hz, 0.2A
	Output: DC 5.0V, 1000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Report No.: JYTSZ-R12-2201245

4.3 Test Mode and Test Environment

Test Modes:				
Non-hopping mode:	Keep the EUT in continuous transmitting mode.			
Hopping mode:	Keep the EUT in hopping mode.			
Remark: For AC power line conducted emission and radiated spurious emission, pre-scan GFSK, π/4-DQPSK, 8DPSK modulation mode, found GFSK modulation was worse case mode. The report only reflects the test data of worst mode. Operating Environment:				
Temperature:	15℃ ~ 35℃			
Humidity:	20 % ~ 75 % RH			
Atmospheric Pressure:	1010 mbar			

4.4 Description of Test Auxiliary Equipment

The EUT has been tested as an independent unit.

4.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Conducted Emission for LISN (9kHz ~ 150kHz)	±3.11 dB
Conducted Emission for LISN (150kHz ~ 30MHz)	±2.62 dB
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	±5.34 dB
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	±5.34 dB
Radiated Emission (30MHz ~ 1GHz) (10m SAC)	±4.32 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

4.6 Additions to, Deviations, or Exclusions From the Method

Nο

4.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

4.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-149-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

4.9 Test Instruments List

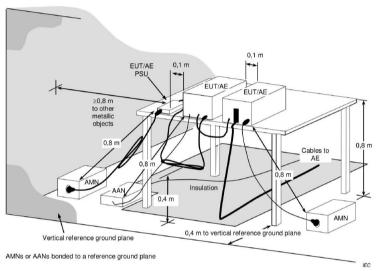
Radiated Emission(3m SAC):					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	ETS	9m*6m*6m	WXJ001-1	04-14-2021	04-13-2024
Loop Antenna	Schwarzbeck	FMZB 1519 B	WXJ002-4	03-07-2022	03-06-2023
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	03-08-2022	03-07-2023
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	03-08-2022	03-07-2023
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-5	04-07-2022	04-06-2023
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXJ001-2	01-20-2022	01-19-2023
Pre-amplifier (1GHz ~ 18GHz)	SKET	LNPA_0118G-50	WXJ001-3	01-20-2022	01-19-2023
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA-180400G45B	WXJ002-7	03-30-2022	03-29-2023
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	03-05-2022	03-04-2023
Spectrum Analyzer	Rohde & Schwarz	FSP 30	WXJ004	01-20-2022	01-19-2023
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ004-2	10-27-2021	10-26-2022
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	01-20-2022	01-19-2023
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN-8M	WXG001-5	01-20-2022	01-19-2023
Coaxial Cable (18GHz ~ 40GHz)	JYTSZ	JYT3M-40G-SS-8M	WXG001-7	01-20-2022	01-19-2023
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N/A	N/A
Test Software	Tonscend	TS+		Version: 3.0.0.1	

Radiated Emission(10m SAC):					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
10m SAC	ETS	RFSD-100-F/A	WXJ090	04-28-2021	04-27-2024
BiConiLog Antenna	SCHWARZBECK	VULB 9168	WXJ090-1	04-01-2022	03-31-2023
BiConiLog Antenna	SCHWARZBECK	VULB 9168	WXJ090-2	03-31-2022	03-30-2023
EMI Test Receiver	R&S	ESR 3	WXJ090-3	03-30-2022	03-29-2023
EMI Test Receiver	R&S	ESR 3	WXJ090-4	03-30-2022	03-29-2023
Low Pre-amplifier	Bost	LNA 0920N	WXJ090-6	01-20-2022	01-19-2023
Low Pre-amplifier	Bost	LNA 0920N	WXJ090-7	01-20-2022	01-19-2023
Cable	Bost	JYT10M-1G-NN-10M	WXG002-7	01-20-2022	01-19-2023
Cable	Bost	JYT10M-1G-NN-10M	WXG002-8	01-20-2022	01-19-2023
Test Software	R&S	EMC32	Version: 10.50.40		

Conducted Emission:					
Test Equipment	Manufacturer	acturer Model No.		Cal. Date	Cal. Due date
root =quipmont	manufacturer model No.		Manage No.	(mm-dd-yy)	(mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESR3	WXJ003-2	10-21-2021	10-20-2022
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	02-24-2022	02-23-2023
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	03-30-2022	03-29-2023
LISN Coaxial Cable	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	02-24-2022	02-23-2023
(9kHz ~ 30MHz)					
RF Switch	TOP PRECISION	RSU0301	WXG003	1	N/A
Test Software	AUDIX	E3	Version: 6.110919b		9b

Conducted Method:					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	WXJ004-3	10-27-2021	10-26-2022
DC Power Supply	Keysight	E3642A	WXJ025-2	11-27-2020	11-26-2023
Temperature Humidity Chamber	ZHONG ZHI	CZ-A-80D	WXJ032-3	03-19-2021	03-18-2023
Power Detector Box	MWRFTEST	MW100-PSB	WXJ007-4	11-19-2021	11-18-2022
RF Control Unit	MWRFTEST	MW100-RFCB	WXG006	N	I/A
Test Software	MWRFTEST	MTS 8310	Version: 2.0.0.0		

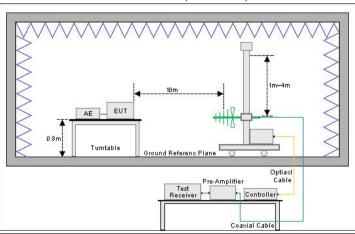
5 Measurement Setup and Procedure


5.1 Test Channel

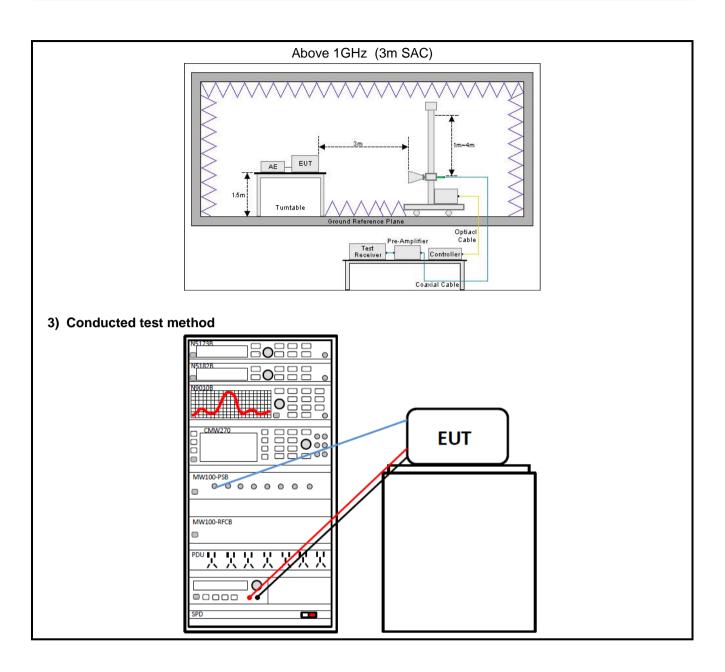
According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowest channel		Middle channel		Highest channel	
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	39	2441	78	2480

5.2 Test Setup


1) Conducted emission measurement:

Note: The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be >0.8 m.


2) Radiated emission measurement:

Below 1GHz (10m SAC)

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-149-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

5.3 Test Procedure

5.5 Test Procedure	
Test method	Test step
Conducted emission	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
Radiated emission	For below 1GHz:
	The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 10 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 10 m.
	 EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
	For above 1GHz: 1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m.
	2. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
	3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
Conducted test method	The Bluetooth antenna port of EUT was connected to the test port of the test system through an RF cable.
	The EUT is keeping in continuous transmission mode and tested in all modulation modes.
	3. Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through
	the test software.

6 Test Results

6.1 Summary

6.1.1 Clause and data summary

Test items	Standard clause	Test data	Result
Antenna Requirement	15.203 15.247 (b)(4)	See Section 6.2	Pass
AC Power Line Conducted Emission	15.207	See Section 6.3	Pass
Conducted Output Power	15.247 (b)(1)	Appendix – BT	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Appendix – BT	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Appendix – BT	Pass
Hopping Channel Number	5.247 (a)(1)(iii)	Appendix – BT	Pass
Dwell Time	15.247 (a)(1)(iii)	Appendix – BT	Pass
Band-edge Emission Conduction Spurious Emission	15.247 (d)	Appendix – BT	Pass
Emissions in Restricted Frequency Bands	15.205 15.247 (d)	See Section 6.4	Pass
Emissions in Non-restricted Frequency Bands	15.209 15.247(d)	See Section 6.5	Pass

Remark:

Test Method:

ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

^{1.} Pass: The EUT complies with the essential requirements in the standard.

^{2.} The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

6.1.2 Test Limit

Test items			Lin	nit			
		Frequency		Limit (di	ΒμV)		
		(MHz)	Quas	i-Peak	Average		
AC Power Line Conducted		0.15 - 0.5	66 to	56 Note 1	56 to 46 Note 1		
Emission		0.5 – 5		56	46		
	-	5 – 30		60	50		
		Note 1: The limit level in dBµV on Note 2: The more stringent limit			n of frequency.		
Conducted Output Power	empl	requency hopping syste oying at least 75 non-o lency hopping systems	verlapping h	opping chanr	nels: 1 watt. For all oth	er	
20dB Occupied Bandwidth	Withi	in authorization band					
Carrier Frequencies Separation		.025MHz or the 20dB b .025MHz or two-thirds o	,	_			
Hopping Channel Number		ast 15 channels.		,	<u> </u>		
Dwell Time	Not b	pe greater than 0.4 seco	onds.				
Band-edge Emission Conduction Spurious Emission	frequence of the permethis	trum or digitally modular trum or digitally modular tency power that is proceed with the test level of the desired puted measurement, proceak conducted power level limits based on the unitted under paragraph (paragraph shall be 30 despecified in §15.209(ath fall in the restricted batthe radiated emission li	duced by the z bandwidth cower, base vided the tradimits. If the time of RMS a (b)(3) of this B instead of) is not requands, as defixed by the control of t	e intentional ra within the ba d on either ar nsmitter demo ransmitter con veraging over section, the a 20 dB. Attentified. In additioned in §15.20	adiator shall be at leasind that contains the n RF conducted or a constrates compliance with the conducter a time interval, as attenuation required unuation below the geneon, radiated emissions 05(a), must also complement	with cted nder ral	
		Frequency	Limit (d	BμV/m)	Detector		
		(MHz)	@ 3m	@ 10m	20100101		
 		30 – 88	40.0	30.0	Quasi-peak	1	
Emissions in Restricted	_	88 – 216	43.5	33.5	Quasi-peak	-	
Frequency Bands	\vdash	216 – 960	46.0	36.0	Quasi-peak	-	
	960 – 1000 54.0 44.0 Quasi-peak						
Emissions in Non-restricted Frequency Bands Limit (dBµV/m) @ 3m						1	
Frequency Bands		Frequency	Ave	rage	Peake	1	
		Above 1 GHz		l.0	74.0	1	
	N	ote: The measurement bandwi			1	1	

Report No.: JYTSZ-R12-2201245

6.2 Antenna Requirement

Standard requirement: FCC Part 15 C Section 15.203 & 247(b)

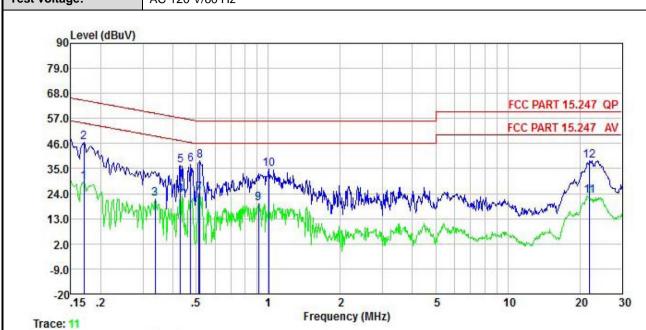
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

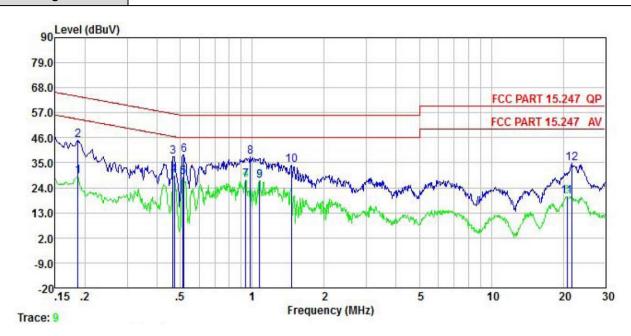
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:


The Bluetooth antenna is an Internal antenna which permanently attached, and the best case gain of the antenna is 0.5 dBi. See product internal photos for details.

6.3 AC Power Line Conducted Emission

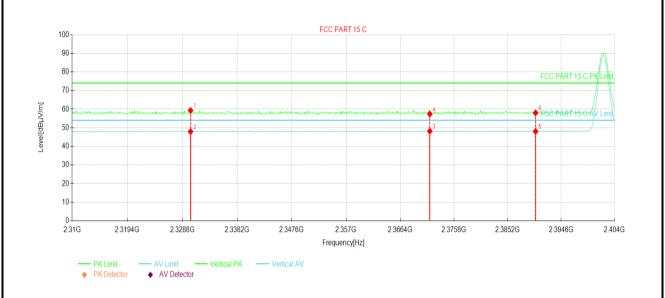
Product name:	Smart phone	Product model:	Sky PrestigeX2	
Test by:	Mike	Test mode:	BT Tx mode	
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line	
Test voltage:	AC 120 V/60 Hz			


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>dB</u>		dBu₹	dBu∜	<u>dB</u>	
1	0.170	29.24	0.04	0.01	29.29	54.94	-25.65	Average
2	0.170	46.62	0.04	0.01	46.67	64.94	-18.27	QP
3	0.337	21.85	0.06	0.02	21.93	49.27	-27.34	Average
1 2 3 4 5 6 7 8 9	0.431	23.30	0.05	0.03	23.38	47.24	-23.86	Average
5	0.431	36.28	0.05	0.03	36.36	57.24	-20.88	QP
6	0.474	36.83	0.05	0.03	36.91	56.45	-19.54	QP
7	0.513	24.11	0.05	0.03	24.19	46.00	-21.81	Average
8	0.518	38.17	0.05	0.03	38.25		-17.75	
9	0.909	19.61	0.07	0.04	19.72	46.00	-26.28	Average
10	1.010	34.57	0.07	0.05	34.69		-21.31	
11	21.946	22.59	0.36	0.16	23.11	50.00	-26.89	Average
12	21.946	37.85	0.36	0.16	38.37		-21.63	

Remark:

1. Level = Read level + LISN Factor + Cable Loss.

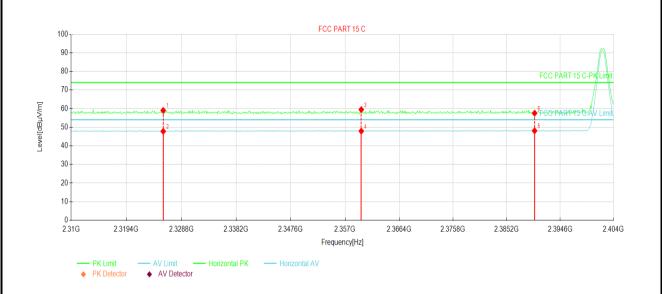
Product name:	duct name: Smart phone		Sky PrestigeX2
Test by:	Mike	Test mode:	BT Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz		


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	₫B	dBu₹	dBu∇	<u>dB</u>	
1	0.186	28.87	0.05	0.02	28.94 44.86			Average
1 2 3 4 5 6 7 8 9	0.186 0.466	44.79 37.71	0.05 0.04	0.02 0.03	37.78		-19.34 -18.80	20 St 177 (20 St 1971)
4	0.471	29.56	0.04	0.03	29.63			Average
5	0.513	28.77	0.04	0.03	28.84			Average
6	0.518	38.54	0.04	0.03	38.61		-17.39	
7	0.938	27.23	0.06	0.04	27.33	46.00	-18.67	Average
8	0.984	37.38	0.06	0.05	37.49	56.00	-18.51	QP
9	1.071	27.09	0.06	0.07	27.22	46.00	-18.78	Average
10	1.456	33.84	0.07	0.14	34.05	56.00	-21.95	QP
11	20.704	19.82	0.34	0.18	20.34	50.00	-29.66	Average
12	21.715	34.26	0.36	0.16	34.78	60.00	-25.22	QP

1. Level = Read level + LISN Factor + Cable Loss.

6.4 Emissions in Restricted Frequency Bands

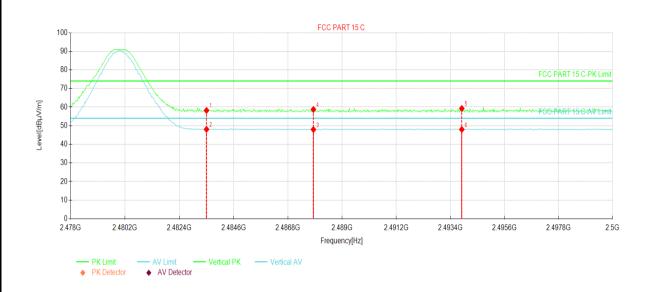
Product Name:	Smart phone	Product Model:	Sky PrestigeX2
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 3.8V		


Suspe	Suspected Data List											
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trans	Polarity				
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Folarity				
1	2330.21	24.14	59.29	35.15	74.00	14.71	PK	Vertical				
2	2330.21	12.75	47.90	35.15	54.00	6.10	AV	Vertical				
3	2371.57	12.69	48.15	35.46	54.00	5.85	AV	Vertical				
4	2371.57	21.93	57.39	35.46	74.00	16.61	PK	Vertical				
5	2390.08	12.42	48.02	35.60	54.00	5.98	AV	Vertical				
6	2390.08	22.37	57.97	35.60	74.00	16.03	PK	Vertical				

Remark:

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

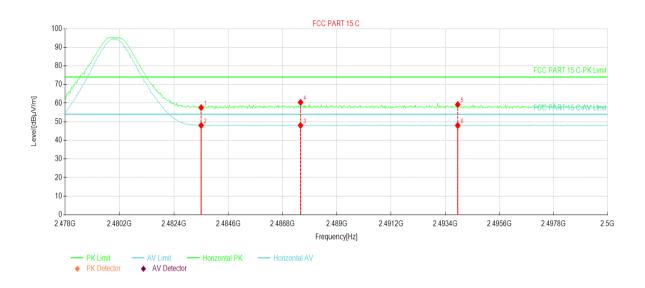
Product Name:	Smart phone	Product Model:	Sky PrestigeX2
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3.8V		



Suspe	Suspected Data List										
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trans	Polarity			
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Folanty			
1	2325.69	23.91	59.02	35.11	74.00	14.98	PK	Horizontal			
2	2325.69	12.70	47.81	35.11	54.00	6.19	AV	Horizontal			
3	2359.82	24.10	59.47	35.37	74.00	14.53	PK	Horizontal			
4	2359.82	12.54	47.91	35.37	54.00	6.09	AV	Horizontal			
5	2390.08	12.48	48.08	35.60	54.00	5.92	AV	Horizontal			
6	2390.08	21.93	57.53	35.60	74.00	16.47	PK	Horizontal			

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

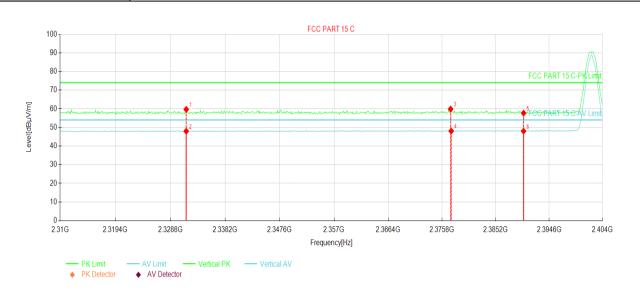
Product Name:	Smart phone	Product Model:	Sky PrestigeX2
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 3.8V		



Suspe	Suspected Data List											
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Troop	Dolority				
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB] Trace	Polarity					
1	2483.50	22.70	58.21	35.51	74.00	15.79	PK	Vertical				
2	2483.50	12.53	48.04	35.51	54.00	5.96	AV	Vertical				
3	2487.83	12.46	47.96	35.50	54.00	6.04	AV	Vertical				
4	2487.83	23.24	58.74	35.50	74.00	15.26	PK	Vertical				
5	2493.86	23.76	59.25	35.49	74.00	14.75	PK	Vertical				
6	2493.86	12.50	47.99	35.49	54.00	6.01	AV	Vertical				

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

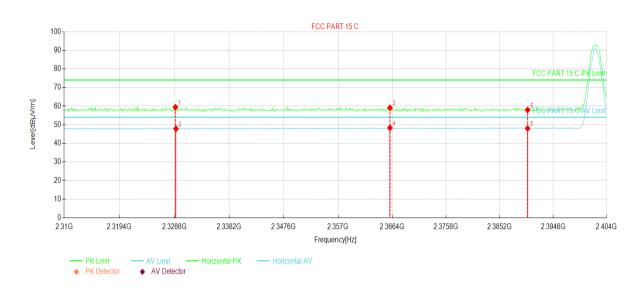
Product Name:	Smart phone	Product Model:	Sky PrestigeX2
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 3 8V		


Suspe	Suspected Data List								
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Dolority	
	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity	
1	2483.50	22.06	57.57	35.51	74.00	16.43	PK	Horizontal	
2	2483.50	12.49	48.00	35.51	54.00	6.00	AV	Horizontal	
3	2487.52	12.50	48.00	35.50	54.00	6.00	AV	Horizontal	
4	2487.52	24.91	60.41	35.50	74.00	13.59	PK	Horizontal	
5	2493.90	23.72	59.21	35.49	74.00	14.79	PK	Horizontal	
6	2493.90	12.48	47.97	35.49	54.00	6.03	AV	Horizontal	

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

π/4-DQPSK mode

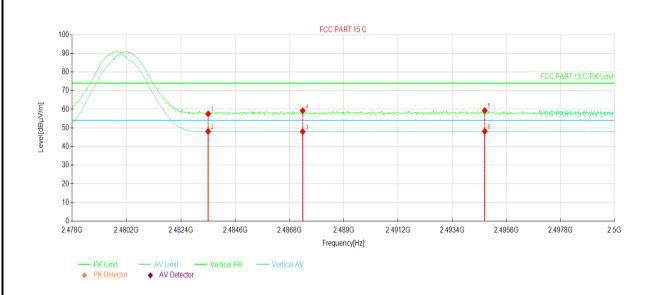
Product Name:	Smart phone	Product Model:	Sky PrestigeX2
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 3.8V		


Suspe	Suspected Data List								
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Polarity	
NO.	[MHz]	[dBµV/m]	[dBuV/m]	[dB]	[dBuV/m]	[dB]	Trace	lolanty	
1	2331.52	24.53	59.69	35.16	74.00	14.31	PK	Vertical	
2	2331.52	12.81	47.97	35.16	54.00	6.03	AV	Vertical	
3	2377.30	24.34	59.84	35.50	74.00	14.16	PK	Vertical	
4	2377.39	12.57	48.07	35.50	54.00	5.93	AV	Vertical	
5	2390.08	22.08	57.68	35.60	74.00	16.32	PK	Vertical	
6	2390.08	12.40	48.00	35.60	54.00	6.00	AV	Vertical	

Remark:

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

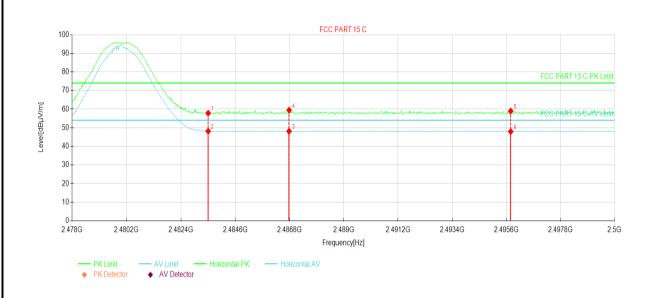
Product Name:	Smart phone	Product Model:	Sky PrestigeX2
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3.8V	_	



Suspe	Suspected Data List								
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Polarity	
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity	
1	2328.98	24.24	59.38	35.14	74.00	14.62	PK	Horizontal	
2	2329.08	12.71	47.85	35.14	54.00	6.15	AV	Horizontal	
3	2366.02	23.65	59.07	35.42	74.00	14.93	PK	Horizontal	
4	2366.02	12.90	48.32	35.42	54.00	5.68	AV	Horizontal	
5	2390.08	12.44	48.04	35.60	54.00	5.96	AV	Horizontal	
6	2390.08	22.33	57.93	35.60	74.00	16.07	PK	Horizontal	

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

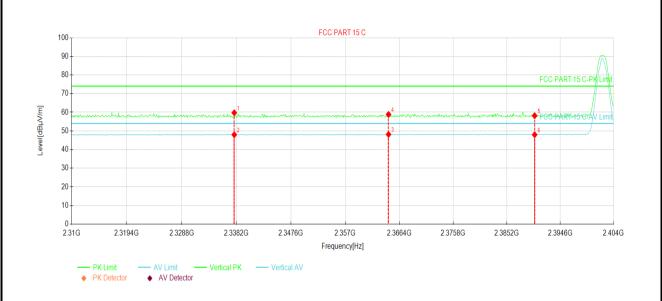
Product Name:	Smart phone	Product Model:	Sky PrestigeX2	
Test By:	y: Mike Tes		2DH1 Tx mode	
Test Channel:	Highest channel	Polarization:	Vertical	
Test Voltage:	DC 3.8V			



Suspe	Suspected Data List								
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Polarity	
	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	lolanty	
1	2483.50	22.08	57.59	35.51	74.00	16.41	PK	Vertical	
2	2483.50	12.60	48.11	35.51	54.00	5.89	AV	Vertical	
3	2487.32	12.48	47.98	35.50	54.00	6.02	AV	Vertical	
4	2487.32	23.74	59.24	35.50	74.00	14.76	PK	Vertical	
5	2494.72	23.80	59.29	35.49	74.00	14.71	PK	Vertical	
6	2494.72	12.69	48.18	35.49	54.00	5.82	AV	Vertical	

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

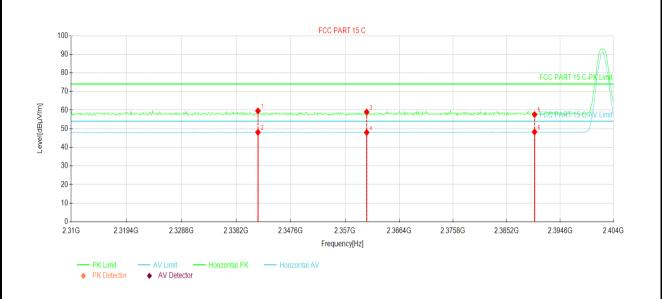
Product Name:	Smart phone	Product Model:	Sky PrestigeX2
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 3.8V		


Suspe	Suspected Data List								
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Dolority	
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity	
1	2483.50	22.31	57.82	35.51	74.00	16.18	PK	Horizontal	
2	2483.50	12.63	48.14	35.51	54.00	5.86	AV	Horizontal	
3	2486.77	12.60	48.11	35.51	54.00	5.89	AV	Horizontal	
4	2486.77	23.92	59.43	35.51	74.00	14.57	PK	Horizontal	
5	2495.77	23.48	58.97	35.49	74.00	15.03	PK	Horizontal	
6	2495.77	12.47	47.96	35.49	54.00	6.04	AV	Horizontal	

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

8DPSK mode

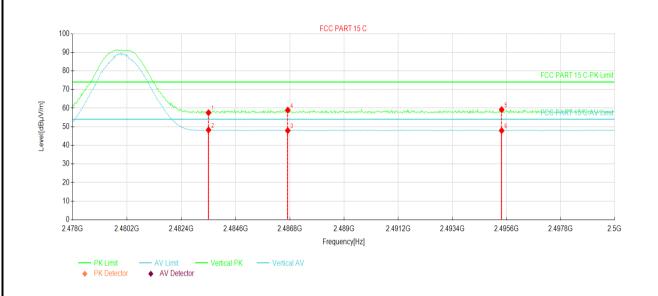
Product Name:	Smart phone	Product Model:	Sky PrestigeX2
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 3.8V		


Suspe	Suspected Data List								
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Polarity	
	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Hace	1 Glaffity	
1	2337.82	24.55	59.75	35.20	74.00	14.25	PK	Vertical	
2	2337.82	12.76	47.96	35.20	54.00	6.04	AV	Vertical	
3	2364.52	12.72	48.12	35.40	54.00	5.88	AV	Vertical	
4	2364.52	23.43	58.83	35.40	74.00	15.17	PK	Vertical	
5	2390.08	22.55	58.15	35.60	74.00	15.85	PK	Vertical	
6	2390.08	12.37	47.97	35.60	54.00	6.03	AV	Vertical	

Remark:

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

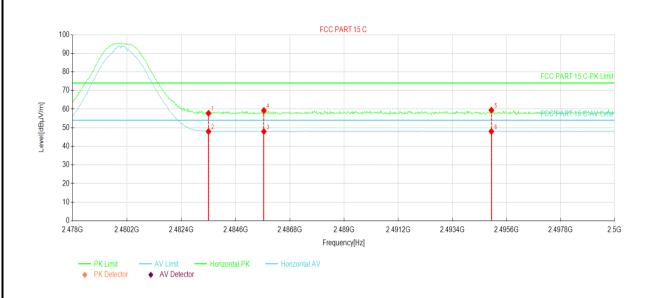
Product Name:	Smart phone	Product Model:	Sky PrestigeX2
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3.8V		



Suspected Data List									
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trans	Dolority	
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity	
1	2341.96	24.36	59.59	35.23	74.00	14.41	PK	Horizontal	
2	2341.96	12.87	48.10	35.23	54.00	5.90	AV	Horizontal	
3	2360.76	23.59	58.97	35.38	74.00	15.03	PK	Horizontal	
4	2360.76	12.60	47.98	35.38	54.00	6.02	AV	Horizontal	
5	2390.08	22.01	57.61	35.60	74.00	16.39	PK	Horizontal	
6	2390.08	12.66	48.26	35.60	54.00	5.74	AV	Horizontal	

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Product Name:	Smart phone	Product Model:	Sky PrestigeX2
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 3.8V		

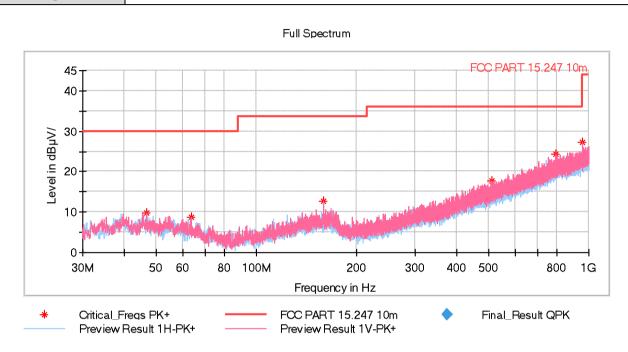


Suspected Data List									
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trans	Delerity	
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity	
1	2483.50	22.02	57.53	35.51	74.00	16.47	PK	Vertical	
2	2483.50	12.73	48.24	35.51	54.00	5.76	AV	Vertical	
3	2486.71	12.41	47.92	35.51	54.00	6.08	AV	Vertical	
4	2486.71	23.39	58.90	35.51	74.00	15.10	PK	Vertical	
5	2495.40	23.70	59.19	35.49	74.00	14.81	PK	Vertical	
6	2495.40	12.44	47.93	35.49	54.00	6.07	AV	Vertical	

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Product Name:	Name: Smart phone		Sky PrestigeX2	
Test By:	Mike	Test mode:	3DH1 Tx mode	
Test Channel:	Highest channel	Polarization:	Horizontal	
Test Voltage:	DC 3.8V			

Suspected Data List									
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Dolority	
	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity	
1	2483.50	22.24	57.75	35.51	74.00	16.25	PK	Horizontal	
2	2483.50	12.47	47.98	35.51	54.00	6.02	AV	Horizontal	
3	2485.74	12.45	47.96	35.51	54.00	6.04	AV	Horizontal	
4	2485.74	23.74	59.25	35.51	74.00	14.75	PK	Horizontal	
5	2494.98	23.95	59.44	35.49	74.00	14.56	PK	Horizontal	
6	2494.98	12.51	48.00	35.49	54.00	6.00	AV	Horizontal	


1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

6.5 Emissions in Non-restricted Frequency Bands

Below 1GHz:

Product Name:	ne: Smart phone Produc		Sky PrestigeX2	
Test By:	Mike Test mode:		BT Tx mode	
Test Frequency:	quency: 30 MHz ~ 1 GHz Polarization:		Vertical & Horizontal	
Test Voltage:	DC 3.8V			

Frequency (MHz)	MaxPeak (dB μ V/m)	Limit (dB \mu V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
46.732500	9.85	30.00	20.15	100.0	٧	138.0	-16.1
63.513500	8.79	30.00	21.21	100.0	V	199.0	-17.3
159.446500	12.67	33.50	20.83	100.0	V	348.0	-15.2
511.847500	17.63	36.00	18.37	100.0	V	99.0	-9.0
795.087500	24.41	36.00	11.59	100.0	V	157.0	-2.7
955.768000	27.34	36.00	8.66	100.0	٧	104.0	-0.5

Remark:

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Above 1GHz:

Test channel: Lowest channel						
		D	etector: Peak Val	ue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization
4804.00	54.61	-9.60	45.01	74.00	28.99	Vertical
4804.00	53.99	-9.60	44.39	74.00	29.61	Horizontal
		Det	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization
4804.00	46.56	-9.60	36.96	54.00	17.04	Vertical
4804.00	46.84	-9.60	37.24	54.00	16.76	Horizontal
			etector: Peak Val			
			channel: Middle ch etector: Peak Val			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization
4882.00	54.17	-9.05	45.12	74.00	28.88	Vertical
4882.00	54.48	-9.05	45.43	74.00	28.57	Horizontal
		Det	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization
4882.00	46.83	-9.05	37.78	54.00	16.22	Vertical
4882.00	46.52	-9.05	37.47	54.00	16.53	Horizontal
		Test c	hannel: Highest c	hannel		
		D	etector: Peak Val	IIE		

Test channel: Highest channel									
	Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization			
4960.00	54.40	-8.45	45.95	74.00	28.05	Vertical			
4960.00	54.53	-8.45	46.08	74.00	27.92	Horizontal			
		Det	tector: Average Va	alue					
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization			
4960.00	47.22	-8.45	38.77	54.00	15.23	Vertical			
4960.00	46.11	-8.45	37.66	54.00	16.34	Horizontal			

Remark:

- 1. Level = Read level + Factor.
- 2. Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.

-----End of report-----