

SAR Evaluation Report

IN ACCORDANCE WITH THE REQUIREMENTS OF FCC OET BULLETIN 65 SUPPLEMENT C

FOR

NOTEBOOK PC

MODEL: NP-Q1-C or NP-Q1b

FCC ID: A3L-NP-Q1-C

REPORT NUMBER: 06I10286-2C

ISSUE DATE: JULY 11, 2006

Prepared for

SAMSUNG ELECTRONICS CO., LTD. 416 MAETAN 3-DONG, YEONGTONG-GU, SUWON-CITY, GYEONGGI-DO 443-742, KOREA

Prepared by

COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA TEL: (408) 463-0885

Revision History

Rev.	Issued date	Revisions	Revised By
	June 19, 2006	Initial issue	HS
В	June 30, 2006	Correction of model and manufacture of the WLAN	ND
С	July 11, 2006	Correction on page 20	ND

CERTIFICATE OF COMPLIANCE (SAR EVALUATION)

DATES OF TEST: June 17, 2006					
APPLICANT:	SAMSUNG ELECTRONICS CO., LTD.				
ADDRESS:	16 Maetan 3-Dong, Yeongtong-Gu, Suwon-City,Gyeonggi-Do 443-742 Korea				
FCC ID:	A3L-NP-Q1-C				
MODEL:	NP-Q1-C or NP-Q1b (Note: NP-Q1-C is identical to NP-Q1b except model designation for marking purpose)				
DEVICE CATEGORY: EXPOSURE CATEGORY:	Portable Device General Population/Uncontrolled Exposure				

Notebook PC has a WLAN, WLL3093 manufactured by Askey, along with a Broadcom Bluetooth FCC ID: QDS-BRCM1018.

Test Sample is a:	Production unit					
Modulation type:	Direct Sequence Spread S	pectrum (DSSS) for 802.11b				
	Orthogonal Frequency Divi	Orthogonal Frequency Division Multiplexing (OFDM) for 802.11g				
FCC rule part	Frequency Range [MHz]	The Highest SAR Values [1g_mW/g]	Collocation SAR Values [1g_mW/g]			
15.247	2412 - 2462	KAE Ant: 1.52 Foxconn Ant: 1.49	KAE Ant: 1.52 Foxconn Ant: 1.49			

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in FCC OET 65 Supplement C (Edition 01-01).

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Hsin-Fr Shih

Hsin Fu Shih Senior Engineer Compliance Certification Services Tested By:

Winey Dorouch

Ninous Davoudi EMC Engineer Compliance Certification Services

Table Of Contents

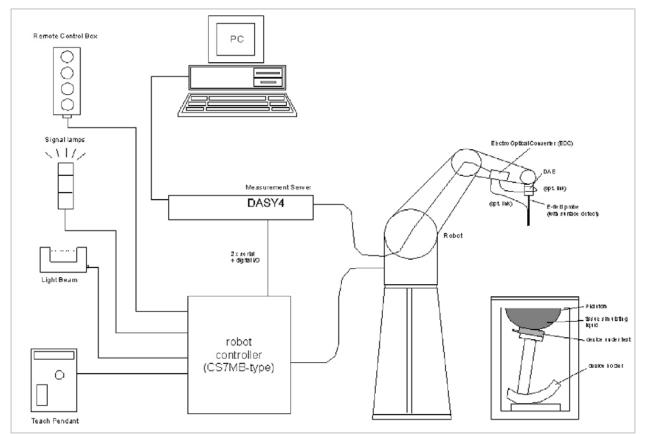
1	EQUIPMENT UNDER TEST (EUT) DESCRIPTION	
2	FACILITIES AND ACCREDITATION	5
3	SYSTEM DESCRIPTION	.6
	3.1 COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATIG LIQUIDS	
4	SIMULATING LIQUID PARAMETERS CHECK	8
	4.1 SIMULATING LIQUID PARAMETER CHECK RESULT	.9
5	SYSTEM PERFORMANCE CHECK	10
	5.1 SYSTEM PERFORMANCE CHECK RESULTS	
6	SAR MEASURMENT PROCEDURE	12
	6.1 DASY4 SAR MEASURMENT PROCEDURE	13
7	PROCEDURE USED TO ESTABLISH TEST SIGNAL	
8	SAR MEASURMENT RESULTS	15
	8.1 KAE ANTENNA	
	8.1.1 EDGE POSITION	-
	8.1.2 LAP HELD POSITION	
	8.2 FOXCONN ANTENNA	
	8.2.1 EDGE POSITION	
9	MEASURMENT UNCERTAINTY	
	9.1 MEASURMENT UNCERTAINTY FOR 300 MHZ – 3000 MHZ	19
10	EQUIPMENT LIST AND CALIBRATION	
11	PHOTOS	21
12	ATTACHMENTS	25

1 EQUIPMENT UNDER TEST (EUT) DESCRIPTION

Notebook PC has a WLAN, WLL3093 manufactured by Askey, along with a Broadcom Bluetooth FCC ID: QDS-BRCM1018.					
Normal operation:	Lap-held position, and underarm position				
Duty cycle:	99%				
Antenna(s)	KAE antenna -Amphenol KAE Co., Ltd/ SS-03-03-076 , peak gain with cable loss: 1.71dBi (2400-2500mHz);				
	Foxconn antenna -HON HAI PRECISION IND. CO.,LTD/ WDAN-S1SAT001- DF, peak gain with cable loss: 1.67dBi (2400-2500mHz);				
Power supply:	AC power and battery operated, Samsung Li-Ion 11.1V, 2600mAh				

2 FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."


CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed

at http://www.ccsemc.com.

No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

3 SYSTEM DESCRIPTION

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

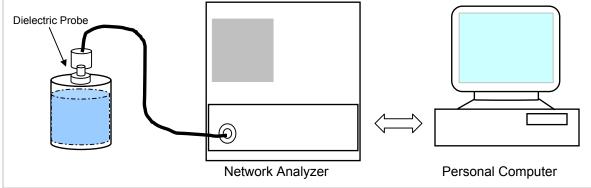
3.1 COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATIG LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients		Frequency (MHz)								
(% by weight)	4	50	83		· 9′			00	24	50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose


Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

4 SIMULATING LIQUID PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below.

Set-up for liquid parameters check

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 150 – 3000 MHz and 5800 MHz)

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE Standard 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	Head		dy
rarger requercy (mriz)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	<mark>52.7</mark>	<mark>1.95</mark>
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

4.1 SIMULATING LIQUID PARAMETER CHECK RESULT

Simulating Liquid Dielectric Parameter Check Result @ Muscle 2450 MHz

Room Ambient Temperature = 23°C; Relative humidity = 50%

Measured by: Ninous Davoudi

f (MHz)	imulating Lio Temp. (°C)	quid Depth (cm)			Parameters	Measured	Target	Deviation (%)	Limit (%)
2450	22	15	e'	52.8351	Relative Permittivity (ε_r):	52.8351	52.7	0.26	± 5
2400	22	10	e"	14.9582	Conductivity (σ):	2.03875	1.95	4.55	± 5
Liquid Ch		00.0							
June 17,	•		leg	. C; Liqu	id temperature: 22.0 d	deg C			
Frequenc		e' e'			e"				
2400000	000.	53	.00)58	14.7541				
24100000	000.	52	.96	696	14.7875				
2420000	000.	52	.94	57	14.8291				
2430000	000.	52	.90)60	14.8723				
24400000	000.	52	.87	/32	14.9075				
<mark>2450000</mark>	000.	52	.83	351	14.9582				
2460000	000.	52	.79	901	14.9875				
24700000	000.	52	.76	625	15.0377				
2480000	000.	52	.72	224	15.0623				
2490000	000.	52	.68	312	15.1204				
2500000	000.	52	.65	519	15.1596				
The conductivity (σ) can be given as:									
$\sigma = \omega \varepsilon_0 \mathbf{e}'' = 2 \pi f \varepsilon_0 \mathbf{e}''$									
where f									
$\mathcal{E}_{ heta}$	= 8.854 *	\$ 10 ¹²							

5 SYSTEM PERFORMANCE CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3-SN: 3531 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 5 x 5 x 7 fine cube was chosen for cube integration(dx=dy=7.5mm; dz=5mm). For 5 GHz band - Special 8x8x8 fine cube was chosen for cube integration(dx=dy=4.3mm; dz=3mm)
- Distance between probe sensors and phantom surface was set to 4 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.0mm
- The dipole input power (forward power) was 250 mW±3%.
- The results are normalized to 1 W input power.

Reference SAR Values for body-tissue

In the table below, the numerical reference SAR values of a SPEAG validation dipoles placed below the flat phantom filled with body-tissue simulating liquid are given. The reference SAR values were calculated using the finite-difference time-domain method and the geometry parameters.

Dipole Type	Distance (mm)	Frequency (MHz)	SAR (1g) [W/kg]	SAR (10g) [W/kg]	SAR (peak) [W/kg]
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	<mark>51.2</mark>	<mark>23.7</mark>	97.6

Note: All SAR values normalized to 1 W forward power.

5.1 SYSTEM PERFORMANCE CHECK RESULTS

System Validation Dipole: D2450V2 SN: 706

Date: June 17, 2006

Room Ambient Temperature = 23°C; Relative humidity = 50%

Measured by: Ninous Davoudi

Bod	y Simulating	g Liquid	SAR (mW/q)		SAR (mW/a) d		Deviation	Lim it
f(MHz)	Temp.(°C)	Depth (cm)	JAN	(111 VV / g)	to 1 W	Target	(%)	(%)
2450	22	15	1 g	13.10	52.4	51.2	2.34	± 10
2450	22	15	10g	5.95	23.8	23.7	0.42	± 10

6 SAR MEASURMENT PROCEDURE

A summary of the procedure follows:

- a) A measurement of the SAR value at a fixed location is used as a reference value for assessing the power drop of the EUT. The SAR at this point is measured at the start of the test, and then again at the end of the test.
- b) The SAR distribution at the exposed flat section of the flat phantom is measured at a distance of 4 mm from the inner surface of the shell. The area covers the entire dimension of the EUT and the horizontal grid spacing is 15 mm x 15 mm. Based on this data, the area of the maximum absorption is determined by Spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.

For 5 GHz band - The SAR distribution at the exposed flat section of the flat phantom is measured at a distance of 2.0 mm from the inner surface of the shell. The area covers the entire dimension of the EUT and the horizontal grid spacing is 10 mm x 10 mm. Based on this data, the area of the maximum absorption is determined by Spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.

c) Around this point, a volume of X=Y= 30 and Z=21 mm is assessed by measuring 5 x 5 x 7 mm points. On the basis of this data set, the spatial peak SAR value is evaluated with the following procedure:

For 5 GHz band - Around this point, a volume of X=Y=Z=30 mm is assessed by measuring 8 x 8 x 8 mm points. On the basis of this data set, the spatial peak SAR value is evaluated with the following procedure:

- (i) The data at the surface are extrapolated, since the centre of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation is based on a least square algorithm. A polynomial of the fourth order is calculated through the points in z-axes. This polynomial is then used to evaluate the points between the surface and the probe tip.
- (ii) The maximum interpolated value is searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g and 10 g) are computed using the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"- condition (in x, y and z-direction). The volume is integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) are interpolated to calculate the averages.
- (iii) All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found.
- (iv) The SAR value at the same location as in Step (a) is again measured to evaluate the actual power drift.

6.1 DASY4 SAR MEASURMENT PROCEDURE

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 1.2 mm for an EX3DV3 probe type).

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures $5 \times 5 \times 7$ points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

For 5 GHz band – Same as above except the Zoom Scan measures 8 x 8 x 8 points.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

7 PROCEDURE USED TO ESTABLISH TEST SIGNAL

The following procedures had been used to prepare the EUT for the SAR test.

The client provided a special driver and program, Art Revision 5.5 build 11, which enable a user to control the frequency and output power of the module.

The cable assembly insertion loss of 21.75 dB (including 20.55 dB attenuator and 0.2 dB connectors) was entered as an offset in the power meter to allow for direct reading of power.

b	mode
---	------

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	13.47
Middle	2437	13.85
High	2462	13.89

g mode

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	13.80
Middle	2437	13.70
High	2462	13.74

8 SAR MEASURMENT RESULTS

8.1 **KAE ANTENNA**

EDGE POSITION 8.1.1

a series of the				and the second se
1.00		and the second		1000
	\subset			
				assault
		1885		ntenna
	a la			and the second second
-		1		
			Page Page	
		Contraction of the local division of the	8 2 3 5 4	
			A LEASE LEAS	
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		- 69	-[+=] Bip None -[] -[] -[] -[] -[] -[] -[] -[] -[] -[] -[] -[] -[] -[] -[] -[] -[] -[] -[] -[] -[] -[] -[] -[] -[] -[] -[] -[] -[] -[] -[]	
		ÂR A P	$\begin{array}{c c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $. 6
802.11b (1M	Ibps)	60 57 283 58 383	= 0, 0 = - (* = 160 100 100 1 = - (* = 160 100 100 1 = - (* = 160 100 100 1 = - (* = 160 100 100 100 1 = - (* = 160 100 100 100 100 100 100 100 100 100	
		Measured SAR	Power Drift	Extrapolated ¹⁾ SAR
Channel	f (MHz)	Measured SAR 1g (mW/g)	(dB)	1g (mW/g)
Channel 1	f (MHz) 2412	Measured SAR 1g (mW/g) 1.35	(dB) 0.00	1g (mW/g) 1.35
Channel 1 6	f (MHz) 2412 2437	Measured SAR 1g (mW/g) 1.35 1.46	(dB) 0.00 0.00	1g (mW/g) 1.35 1.46
Channel 1 6 11	f (MHz) 2412 2437 2462	Measured SAR 1g (mW/g) 1.35	(dB) 0.00	1g (mW/g) 1.35
Channel 1 6	f (MHz) 2412 2437 2462	Measured SAR 1g (mW/g) 1.35 1.46 1.42	(dB) 0.00 0.00 -0.03	1g (mW/g) 1.35 1.46 1.43
Channel 1 6 11	f (MHz) 2412 2437 2462	Measured SAR 1g (mW/g) 1.35 1.46 1.42 Measured SAR	(dB) 0.00 0.00 -0.03 Power Drift	1g (mW/g) 1.35 1.46 1.43 Extrapolated ¹⁾ SAR
Channel 1 6 11 802.11g (6 M	f (MHz) 2412 2437 2462 Mbps)	Measured SAR 1g (mW/g) 1.35 1.46 1.42	(dB) 0.00 0.00 -0.03	1g (mW/g) 1.35 1.46 1.43
Channel 1 6 11 802.11g (6 I Channel	f (MHz) 2412 2437 2462 <i>Mbps)</i> f (MHz)	Measured SAR 1g (mW/g) 1.35 1.46 1.42 Measured SAR 1g (mW/g)	(dB) 0.00 0.00 -0.03 Power Drift (dB)	1g (mW/g) 1.35 1.46 1.43 Extrapolated ¹⁾ SAR 1g (mW/g)
Channel 1 6 11 802.11g (6 M Channel 1	f (MHz) 2412 2437 2462 //bps) f (MHz) 2412	Measured SAR 1g (mW/g) 1.35 1.46 1.42 Measured SAR 1g (mW/g) 1.52	(dB) 0.00 -0.03 Power Drift (dB) 0.00	1g (mW/g) 1.35 1.46 1.43 Extrapolated ¹⁾ SAR 1g (mW/g) 1.52

υy ۱ŀ measurement process.

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

3) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

Collocation with Broadcom Bluetooth FCC ID: QDS-BRCM1018. 4)

8.1.2 LAP HELD POSITION

	Sec. 1					
		and The second second	-		-	
			WLAN An	tenna		
	1.6					
	802.11b (1Mb	ps)]
	Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)	
	1 6	2412 2437	0.352	0.00	0.35	
	11 802.11g (6 M b	2462 (ps)				
	Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)	
	1 6 11	2412 2437 2462	0.349	0.00	0.35	
Notes: 1)	process by the DASY	4 system can b			R reported at the end of the n ne the SAR at the beginning	
2)	measurement proces The SAR measured a mW/g), thus testing a	at the middle ch	-	ation is at least 3 dl	B lower (0.8 mW/g) than SAR	limit (1.6
3)				a and plots showing	g the maximum SAR location	of the EUT.

8.2 **FOXCONN ANTENNA**

8.2.1 **EDGE POSITION**

300				
				Contraction of the second
	-	2005	WLAN A	otenna
	1115		the second second	internite and internet and
_			0.0	
			All and a set of the s	
		Contraction of the	\$ 2 3 ¥ 5	
				and the second second second second
		er) 9 28)		
802 11b (1Mb		n) rier) by 20		0
802.11b (1Mb	ps)	20 Vita	Power Drift	Extrapolated ¹⁾ SAR
802.11b (1Mb) Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
Channel 1	f (MHz) 2412	Measured SAR 1g (mW/g) 1.32	(dB) -0.16	1g (mW/g) 1.37
Channel 1 6	f (MHz) 2412 2437	Measured SAR 1g (mW/g) 1.32 1.37	(dB) -0.16 0.00	1g (mW/g) 1.37 1.37
Channel 1	f (MHz) 2412 2437 2462	Measured SAR 1g (mW/g) 1.32	(dB) -0.16	1g (mW/g) 1.37
Channel 1 6 11	f (MHz) 2412 2437 2462	Measured SAR 1g (mW/g) 1.32 1.37	(dB) -0.16 0.00	1g (mW/g) 1.37 1.37
Channel 1 6 11 802.11g (6 Mk Channel	f (MHz) 2412 2437 2462 5 ps) f (MHz)	Measured SAR 1g (mW/g) 1.32 1.37 1.29 Measured SAR 1g (mW/g)	(dB) -0.16 0.00 -0.05 Power Drift (dB)	1g (mW/g) 1.37 1.37 1.31 Extrapolated ¹⁾ SAR 1g (mW/g)
Channel 1 6 11 802.11g (6 Mk Channel 1	f (MHz) 2412 2437 2462 bps) f (MHz) 2412	Measured SAR 1g (mW/g) 1.32 1.37 1.29 Measured SAR 1g (mW/g) 1.44	(dB) -0.16 0.00 -0.05 Power Drift (dB) -0.15	1g (mW/g) 1.37 1.37 1.31 Extrapolated ¹⁾ SAR 1g (mW/g) 1.49
Channel 1 6 11 802.11g (6 Mk Channel 1 6	f (MHz) 2412 2437 2462 bps) f (MHz) 2412 2437	Measured SAR 1g (mW/g) 1.32 1.37 1.29 Measured SAR 1g (mW/g) 1.44 1.34	(dB) -0.16 0.00 -0.05 Power Drift (dB) -0.15 -0.07	1g (mW/g) 1.37 1.37 1.31 Extrapolated ¹⁾ SAR 1g (mW/g) 1.49 1.36
Channel 1 6 11 802.11g (6 Mk Channel 1	f (MHz) 2412 2437 2462 bps) f (MHz) 2412	Measured SAR 1g (mW/g) 1.32 1.37 1.29 Measured SAR 1g (mW/g) 1.44	(dB) -0.16 0.00 -0.05 Power Drift (dB) -0.15	1g (mW/g) 1.37 1.37 1.31 Extrapolated ¹⁾ SAR 1g (mW/g) 1.49

measurement process.

The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 2) mW/g), thus testing at low & high channel is optional.

3) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT. 4) Collocation with Broadcom Bluetooth FCC ID: QDS-BRCM1018.

8.2.2 LAP HELD POSITION

		1				
		$ \ge $				
			WLAN Ant	tenna		
	802.11b (1Mb)	ns)]
	Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)	
	1 6 11	2412 2437 2462	0.375	-0.17	0.39	
	802.11g (6 Mb					
	Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)	
	1 6 11	2412 2437 2462	0.365	0.00	0.37	
	process by the DASY	4 system can b			R reported at the end of the n ne the SAR at the beginning	
2)		at the middle ch	annel for this configura annel is optional.	ation is at least 3 dl	3 lower (0.8 mW/g) than SAR	R limit (1.6

9 MEASURMENT UNCERTAINTY

9.1 MEASURMENT UNCERTAINTY FOR 300 MHz - 3000 MHz

Uncertainty component	Tol. (±%)	Probe	Div.	$C:(4\pi)$	C: (10m)	Std. Unc.(±%)	
Uncertainty component	101. (±%)	Dist.	Div.	Ci (1g)	Ci (10g)	Ui (1g)	Ui(10g)
Measurement System							
Probe Calibration	4.80	Ν	1	1	1	4.80	4.80
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58
Linearity	4.70	R	1.732	1	1	2.71	2.71
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58
Readout Electronics	1.00	Ν	1	1	1	1.00	1.00
Response Time	0.80	R	1.732	1	1	0.46	0.46
Integration Time	2.60	R	1.732	1	1	1.50	1.50
RF Ambient Conditions - Noise	1.59	R	1.732	1	1	0.92	0.92
RF Ambient Conditions - Reflections	0.00	R	1.732	1	1	0.00	0.00
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67
Extrapolation, interpolation, and integration algorithms for							
max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25
Test sample Related							
Test Sample Positioning	1.10	Ν	1	1	1	1.10	1.10
Device Holder Uncertainty	3.60	Ν	1	1	1	3.60	3.60
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89
Phantom and Tissue Parameters							
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24
Liquid Conductivity - Meas.	8.60	Ν	1	0.64	0.43	5.50	3.70
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41
Liquid Permittivity - Meas.	3.30	N	1	0.6	0.49	1.98	1.62
Combined Standard Uncertainty			RSS		-	11.44	10.49
Expanded Uncertainty (95% Confidence Interval)			K=2			22.87	20.98
Notesfor table 1. Tol tolerance in influence quaitity 2. N - Nomal							
3. R - Rectangular 4. Div Divisor used to obtain standard uncertainty							

4. Div. - Divisor used to obtain standard uncertainty

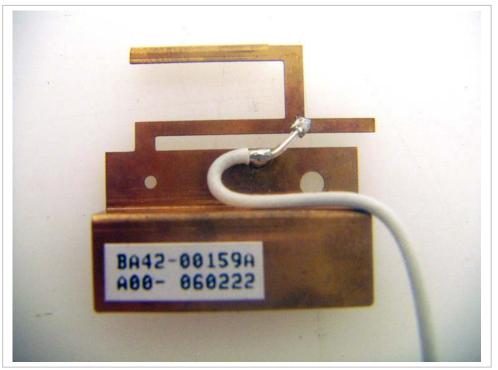
5. Ci - is te sensitivity coefficient

10 EQUIPMENT LIST AND CALIBRATION

Name of Equipment	Manufacturer	Type/Model	Serial Number	Cal. Due date
Robot - Six Axes	Stäubli	RX90BL	N/A	N/A
Robot Remote Control	Stäubli	CS7MB	3403-91535	N/A
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041	N/A
Probe Alignment Unit	SPEAG	LB (V2)	261	N/A
S-Parameter Network Analyzer	Agilent	8753ES-6	US39173569	2/9/07
Electronic Probe kit	Hewlett Packard	85070C	N/A	N/A
E-Field Probe	SPEAG	EX3DV4	3552	5/30/07
Thermometer	ERTCO	639-1S	1718	1/11/07
SAM Phantom (SAM1)	SPEAG	TP-1185	QD000P40CA	N/A
SAM Phantom (SAM2)	SPEAG	TP-1015	N/A	N/A
Data Acquisition Electronics	SPEAG	DAE4	558	1/20/07
System Validation Dipole	SPEAG	D2450V2	706	4/27/08
Power Meter	Giga-tronics	8651A	8651404	12/27/06
Power Sensor	Giga-tronics	80701A	1834588	12/27/07
Amplifier	Mini-Circuits	ZVE-8G	0360	N/A
Amplifier	Mini-Circuits	ZHL-42W	D072701-5	N/A
Radio Communication Tester	Rohde & Schwarz	CMU 200	838114/032	3/21/07
Simulating Liquid	CCS	M2450	N/A	Within 24 hrs of first test

11 PHOTOS

WLAN




Notebook PC NP-Q1-C

KAE Antenna

WLAN and KAE Antenna Location

Foxconn Antenna

WLAN and Foxconn Antenna Location

12 ATTACHMENTS

No.	Contents	No. Of Pages
1	System Performance Check Plots	2
2-1	SAR Test Plots-KAE Antenna	10
2-2	SAR Test Plots-Foxconn Antenna	10
3	Certificate of E-Field Probe - EX3DV3SN3531	10
4	Certificate of System Validation Dipole - D2450V2 SN:706	9

END OF REPORT