Issued on Mar. 16, 2004 Report No.: F430602

FCC TEST REPORT

CATEGORY: Mobile Module (BlueTooth Part)

PRODUCT NAME: 802.11b + Bluetooth COMBO SIP

FCC ID.: IXMWM-BB-AG-01

FILING TYPE: Certification

BRAND NAME: USI

MODEL NAME: WM-BB-AG-01

APPLICANT: Universal Scientific Industrial Co., Ltd.

135, Lane 351, Taiping, Sec.1, Tsao Yuen, Nan-Tou,

Taiwan, R.O.C.

MANUFACTURER: The same as Applicant.

ISSUED BY: SPORTON INTERNATIONAL INC.

6F, No. 106, Sec. 1, Hsin Tai Wu Rd., His Chih, Taipei Hsien,

Taiwan, R.O.C.

Statements:

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

Certificate or Test Report could not be used by the applicant to claim the product endorsement by CNLA, NVLAP or any agency of U.S. government.

The test equipment used to perform the test are calibrated and traceable to NML/ROC or NIST/USA.

Dr. Alan Lane

Vice General Manager Sporton International Inc. Lab Code: 200079-0

Issued on Mar. 16, 2004

Table of Contents

History of this test report	I
1. General Description of Equipment under Test	
1.1. Applicant	
1.2. Manufacturer	
1.3. Basic Description of Equipment under Test	
1.4. Technical Features	
1.5 Table for Carrier Frequencies	2
2. Test Configuration of the Equipment under Test	3
2.1. Description of the Test	
2.2. Frequency Range Investigated	
2.3. Details of the Supporting Units	
2.4. Connection Diagram of Test System	4
2.5. Test Software	
3. Test Location and Standards	
3.1. Test Location	
3.2. Test Conditions	
3.3. Test Standards	
3.4. DoC Statement	
4. Test Result and Details	
4.1. Summary of the Test Results	
5. Test Result	7
5.1. Test of Hopping Channel Bandwidth	
5.2. Test of Number of Hopping Frequency	10
5.3. Test of Hopping Channel Separation	
5.4. Test of Dwell Time of Each Frequency within a 31.6 Seconds Period	
5.5. Test of Maximum Peak Output Power	
5.6. Test of Band Edges of the Operation Frequency	
5.7. Power Spectral Density	
5.8. Test of AC Power Line Conducted Emission	
5.9. Test of Spurious Radiated Emission	
5.10.Antenna Requirements	
5.11.RF Exposure	36
6. List of Measuring Equipments Used	38
Annondix A Photographs of FUT	Λ1 ~ Λ 0

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 FCC ID. : HLEMS860

Page No. : i

Issued Date : Mar. 20, 2004

Report No.: F430602

Issued on Mar. 16, 2004 Report No.: F430602

History of this test report

Attachment No.	Issue Date	Description

SPORTON International Inc. FCC ID. : HLEMS860

TEL: 886-2-2696-2468 Page No. : ii
FAX: 886-2-2696-2255 Issued Date : Mar. 20, 2004

Issued on Mar. 16, 2004 Report No.: F430602

1. General Description of Equipment under Test

1.1. Applicant

Universal Scientific Industrial Co., Ltd.

135, Lane 351, Taiping, Sec.1, Tsao Yuen, Nan-Tou, Taiwan, R.O.C.

1.2. Manufacturer

The same as Applicant.

1.3. Basic Description of Equipment under Test

This product is a hybrid module includes wireless LAN of IEEE 802.11b and Bloutooth. The technical data has been listed on section below. And this module is specific to host equipment which is classified as mobile device.

1.4. Technical Features

Type of Modulation: FHSS

Number of Channels: 79

Frequency Band: 2402MHz-2480MHz

Carrier Frequencies : Please reference section 1.5

Bandwidth of Each Channel: 1MHz

Output Power: GFSK: 2.46dBm (peak)

Antenna Type / Class and Gain : Inverted-F Antenna (-0.1dBi)

Function Type: Transceiver

Data Rate: 1 Mbps (Max)

Power Rating (DC/AC , Voltage): 3.3 VDC

Temperature Range (Operating) : $0-55^{\circ}$ C

SPORTON International Inc.

TEL: 886-2-2696-2468 Page No. : 1of 39
FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004

FCC ID.

: IXMWM-BB-AG-01

Issued on Mar. 16, 2004 Report No.: F430602

1.5 Table for Carrier Frequencies

Note: The table below is the summary of the operating frequencies.

Channel	Frequency	Channel	Frequency	Channel	Frequency
00	2402 MHz	27	2429 MHz	54	2456 MHz
01	2403 MHz	28	2430 MHz	55	2457 MHz
02	2404 MHz	29	2431 MHz	56	2458 MHz
03	2405 MHz	30	2432 MHz	57	2459 MHz
04	2406 MHz	31	2433 MHz	58	2460 MHz
05	2407 MHz	32	2434 MHz	59	2461 MHz
06	2408 MHz	33	2435 MHz	60	2462 MHz
07	2409 MHz	34	2436 MHz	61	2463 MHz
08	2410 MHz	35	2437 MHz	62	2464 MHz
09	2411 MHz	36	2438 MHz	63	2465 MHz
10	2412 MHz	37	2439 MHz	64	2466 MHz
11	2413 MHz	38	2440 MHz	65	2467 MHz
12	2414 MHz	39	2441 MHz	66	2468 MHz
13	2415 MHz	40	2442 MHz	67	2469 MHz
14	2416 MHz	41	2443 MHz	68	2470 MHz
15	2417 MHz	42	2444 MHz	69	2471 MHz
16	2418 MHz	43	2445 MHz	70	2472 MHz
17	2419 MHz	44	2446 MHz	71	2473 MHz
18	2420 MHz	45	2447 MHz	72	2474 MHz
19	2421 MHz	46	2448 MHz	73	2475 MHz
20	2422 MHz	47	2449 MHz	74	2476 MHz
21	2423 MHz	48	2450 MHz	75	2477 MHz
22	2424 MHz	49	2451 MHz	76	2478 MHz
23	2425 MHz	50	2452 MHz	77	2479 MHz
24	2426 MHz	51	2453 MHz	78	2480 MHz
25	2427 MHz	52	2454 MHz		
26	2428 MHz	53	2455 MHz		

SPORTON International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 FCC ID. : IXMWM-BB-AG-01

Page No. : 2of 39 Issued Date : Mar. 16, 2004

Issued on Mar. 16, 2004 Report No.: F430602

2. Test Configuration of the Equipment under Test

2.1. Description of the Test

- a) This test report is only for the BlueTooth part of the product. It has been verified that the emission of the BlueTooth module is independent of the status of WLAN module
- b) For 15.247(g), during data transmission, the carrier frequency is repeatly switched on 79 hopping frequencies, any 2 hopping frequencies will not be available on the spectrum simultaneously. So, this device can be taken as true frequency hopping device.
- c) For 15.247(h), the hopping sequence is determined by the address of piconet master. Each piconet master will have its unique address at any moment, so re-use of the hopping sequence is completely not possible. Within the piconet, one master can be communicated with many slaves via the same hopping sequency, but at any moment only one (master or slave) can be "talk". It is determined by the master that who should be "listen" or "talk". Any slave who want to "talk" has to sent "inquery" to master first. So, 2 slaves (or one slave one master) is not possible to be on "talk" mode simultaneously.
- d) The used peripherals as well as the configuration fulfill the requirements of ANSI C63.4:2001. The configuration is operated in a manner which tends to maximize its emission characteristics in a typical application.
- e) The following modes were tested.

Mode 1: CH 00 (2402 MHz) Mode 2: CH 39 (2441 MHz) Mode 3: CH 78 (2480 MHz)

f) 3 meters measurement distance of OATS was used in this test.

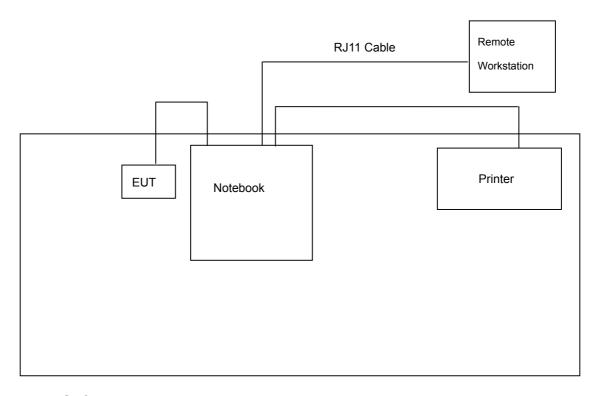
2.2. Frequency Range Investigated

a) Conducted power line test: from 150 kHz to 30 MHz

b) Radiated emission test: from 30 MHz to 25000 MHz

2.3. Details of the Supporting Units

Unit No	Device	Brand	FCC ID /DoC	Model No.	Power Supply	Power Cord	Data Cable
1.	Notebook	IBM	DoC	08N1180	Switching	Non-Shielded	Shielded, 1.8m
2.	Printer	HP	B94C2642X	DJ400	Linear	Non-Shielded	Shielded, 135m
3.	Modem	ACEEX	IFAXDM141	DM141	Linear	Non-Shielded	Shielded, 1.15m


SPORTON International Inc. FCC ID. : IXMWM-BB-AG-01

TEL: 886-2-2696-2468 Page No. : 3of 39
FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004

Issued on Mar. 16, 2004 Report No.: F430602

Connection Diagram of Test System 2.4.

Test Software 2.5.

There are 2 softwares may be used in the testing.

- A) Channel & Power Controlling Software: This was provided by the manufacturer and is able to let the test engineer select the operating channel as well as the RF output power. The parameters for channel selection is trying to offer the test engineer the ability to fix the operating channel for testing, both normal data and continuously transmitting modes are allowed, and that for RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.
- B) "H" Pattern Generator: Except Access Point, the supporting equipment such as monitor or printer is always available. Under testing, these supporting equipment has to also under working condition. "H" Pattern Generator is able to continuously transmitting "H" character to those supporting equipments.

SPORTON International Inc.

FCC ID. : IXMWM-BB-AG-01 TEL: 886-2-2696-2468 Page No. : 4of 39 FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004

Issued on Mar. 16, 2004 Report No.: F430602

3. Test Location and Standards

3.1. Test Location

Test Location: Sporton Hwa Ya Testing Building

Address: No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao

Yuan Hsien, Taiwan, R.O.C.

Tel: +886 3 327 3456 Fax: +886 3 318 0055

Test Site No.: CO01-HY, 03CH03-HY

3.2. Test Conditions

Normal Voltage : 120V/60Hz

Extreme Voltage : 138V and 102V

Normal Temperature : 20 °C

Extreme Temperature : -20 °C and 50 °C

3.3. Test Standards

Here is the list of the standards followed in this test report.

ANSI C63.4-2001

47 CFR Part 15 Subpart C (Section 15.247)

3.4. DoC Statement

This EUT is also classified as a device of computer peripheral Class B which DoC has to be followed. It has been verified according to the rule of 47 CFR part 15 Subpart B, and found that all the requirements has been fulfilled.

SPORTON International Inc. FCC ID. : IXMWM-BB-AG-01

TEL: 886-2-2696-2468 Page No. : 5of 39
FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004

Issued on Mar. 16, 2004 Report No.: F430602

4. Test Result and Details

4.1. Summary of the Test Results

	Applied Standard: 47 CFR Part 15 and Part 2						
Paragraph	FCC Rule	Description of Test	Result				
5.1	15.247(a)(1)	Hopping Channel Bandwidth	Pass				
5.2	15.247(a)(iii)	Number of Hopping Frequency Used	Pass				
5.3	15.247(a)(1)	Hopping Channel Separation	Pass				
5.4	15.247(a)(iii)	Dwell Time of Each Frequency within a 31.6 Second Period	Pass				
5.5	15.247 (b)(1)	Maximum Peak Output Power	Pass				
5.6	15.247(c)	Band Edges of the Operation Frequency	Pass				
5.7	15.247(d)	Power Spectral Density	Pass				
5.8	15.107/15.207	AC Power Line Conducted Emission	Pass				
5.9	15.209/15.247(c)	Spurious Radiated Emission	Pass				
5.10	15.203	Antenna Requirement	Pass				
5.11	2.1091/2.1093	Maximum Permissible Exposure for the EUT	Pass				

SPORTON International Inc.

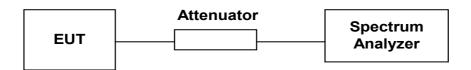
TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 FCC ID. : IXMWM-BB-AG-01

Page No. : 6of 39 Issued Date : Mar. 16, 2004

Issued on Mar. 16, 2004 Report No.: F430602

5. Test Result

5.1. Test of Hopping Channel Bandwidth


5.1.1. Measuring Instruments

Item 9 of the table on section 6.

5.1.2. Test Procedures

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 30KHz and VBW to 300KHz.
- 3. The Hopping Channel bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20 dB.

5.1.3. Test Setup Layout

5.1.4. Test Result: See spectrum analyzer plots below

Operating Mode: continuously transmitting

Temperature: 26°C

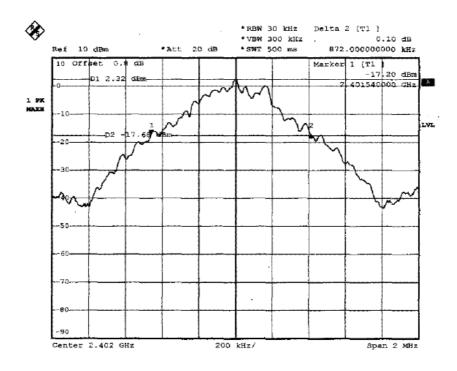
Relative Humidity: 67 %

Duty cycle of the equipment during the test: 100%

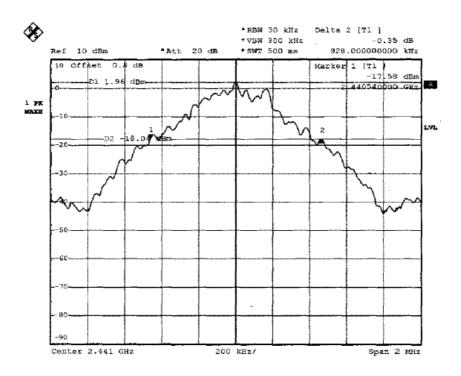
Channel	Frequency	Hopping Channel Bandwidth	Limits
	(MHz)	(KHz)	(KHz)
00	2402	872.000	1.0
39	2441	928.000	1.0
78	2480	872.000	1.0

: IXMWM-BB-AG-01

FCC ID.


SPORTON International Inc.

TEL: 886-2-2696-2468 Page No. : 7of 39
FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004



Issued on Mar. 16, 2004 Report No.: F430602

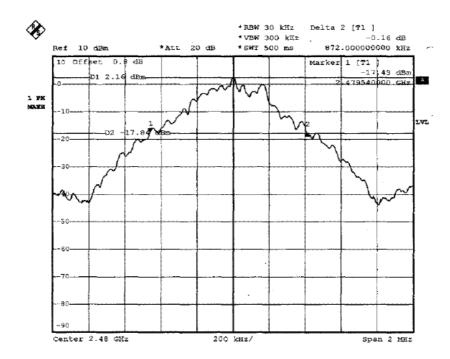
(Channel 00):

(Channel 39):

SPORTON International Inc.

TEL: 886-2-2696-2468 Page No. : 8of 39

FAX: 886-2-2696-2255 Issued Date: Mar. 16, 2004


FCC ID.

: IXMWM-BB-AG-01

Issued on Mar. 16, 2004 Report No.: F430602

(Channel 78):

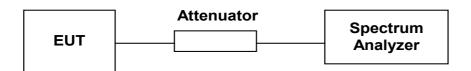
Test Configuration (EUT Operating Condition)

The software provided by client enables the EUT under transmission condition continuously at lowest, middle and highest channel frequencies respectively.

FCC ID. : IXMWM-BB-AG-01 TEL: 886-2-2696-2468 Page No. : 9of 39 FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004

Issued on Mar. 16, 2004 Report No.: F430602

5.2. **Test of Number of Hopping Frequency**


5.2.1. Measuring Instruments

Item 9 of the table on section 6.

5.2.2. Test Procedures

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 100KHz and VBW to 100KHz.
- 3. The number of hopping frequency used is defined total number of the channels available on the spectrum.

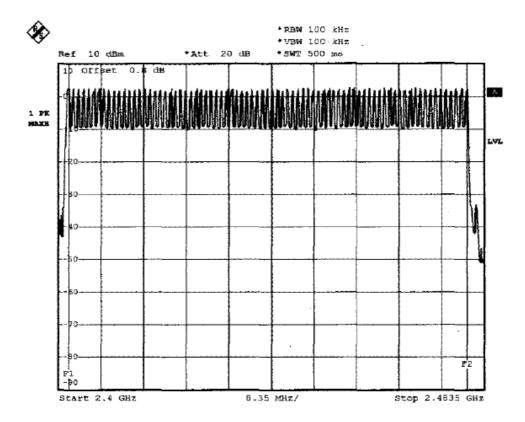
Test Setup Layout 5.2.3.

5.2.4. Test Result: See spectrum analyzer plots below

Operating Mode: normal hopping

Temperature: 26°C

Relative Humidity: 67 %


Duty cycle of the equipment during the test: 100%

Number of Hopping Frequency	Limit
79	75

SPORTON International Inc.

: IXMWM-BB-AG-01 FCC ID. TEL: 886-2-2696-2468 Page No. : 10of 39 FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004

Issued on Mar. 16, 2004 Report No.: F430602

5.2.5. Test Configuration (EUT Operating Condition)

The software provided by client enables the EUT under continuous transmission condition. Hopping function is activated.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 : 11of 39

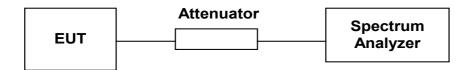
Issued Date : Mar. 16, 2004

FCC ID.

Page No.

Issued on Mar. 16, 2004 Report No.: F430602

5.3. **Test of Hopping Channel Separation**


5.3.1. Measuring Instruments

Item 9 of the table on section 6.

5.3.2. Test Procedures

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 30KHz and VBW to 100KHz.
- 3. The Hopping Channel Separation is defined as the separation between 2 neighboring hopping frequencies.

Test Setup Layout 5.3.3.

5.3.4. Test Result: The spectrum analyzer plots are attached as below

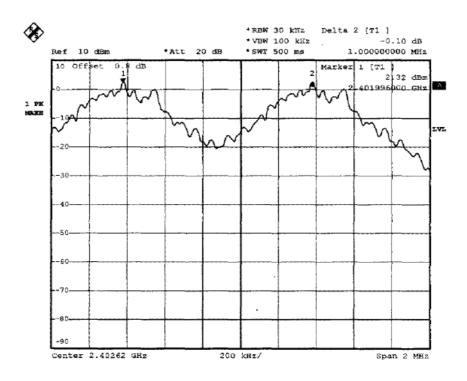
Operating Mode: normal hopping

Relative Humidity: 67 %

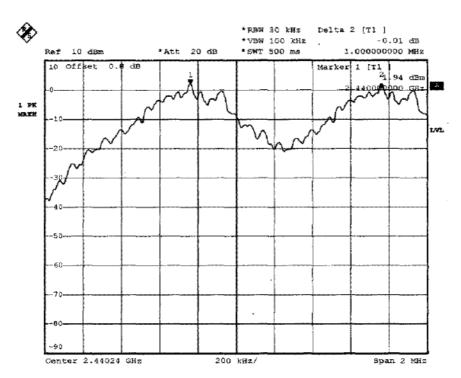
Duty cycle of the equipment during the test: 100%

Channel	Frequency	Hopping Channel Separation	Limits
	(MHz)	(KHz)	(KHz)
00	2402	1000.0000	872.00
39	2441	1000.0000	928.00
78	2480	1000.0000	972.00

5.3.5. Note: The limit is the min of 25KHz or 20dB bandwidth, which is greater.


SPORTON International Inc.

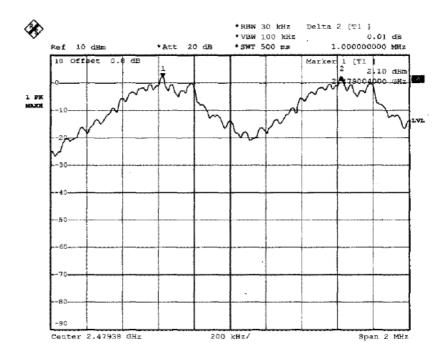
FCC ID. : IXMWM-BB-AG-01 TEL: 886-2-2696-2468 : 12of 39 Page No. FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004



Issued on Mar. 16, 2004 Report No.: F430602

(Channel 00):

(Channel 39):


SPORTON International Inc.

: IXMWM-BB-AG-01 FCC ID. TEL: 886-2-2696-2468 Page No. : 13of 39 FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004

Issued on Mar. 16, 2004 Report No.: F430602

(Channel 78):

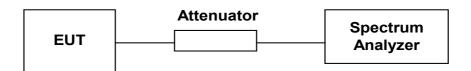
Test Configuration (EUT Operating Condition) 5.3.6.

The software provided by client enable the EUT under continuous transmission condition. Hopping function is activated.

FCC ID. : IXMWM-BB-AG-01 TEL: 886-2-2696-2468 Page No. : 14of 39 FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004

Issued on Mar. 16, 2004 Report No.: F430602

5.4. Test of Dwell Time of Each Frequency within a 31.6 Seconds Period


5.4.1. Measuring Instruments

Item 9 of the table on section 6.

5.4.2. Test Procedures

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 100kHz and VBW to 100kHz.
- 3. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- 4. Set the EUT for DH5 packet transmitting.
- 5. Measure the maximum time duration, t, of one single pulse.
- 6. DH5 Packet permit maximum 320 hops per second in 79 channels. So, the dwell time is the time duration of the pulse times 128 within 31.6 seconds.

5.4.3. Test Setup Layout

5.4.4. Test Result: See spectrum analyzer plots below

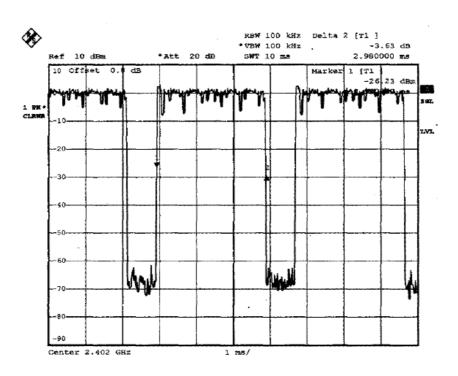
Operating mode: normal hopping

Temperature: 26°C

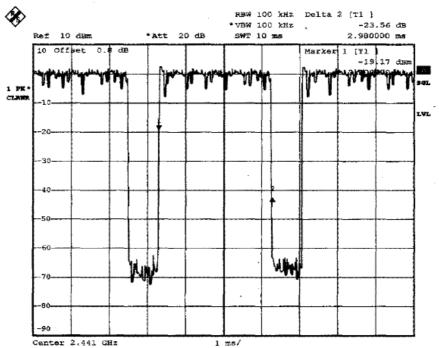
Relative Humidity: 67 %

Duty cycle of the equipment during the test: 100%

Channel Frequency		Pulse Duration	Dwell Time	Limits
	(MHz)	(ms)	(s)	(s)
00	2402	0.298	0.381	0.4
39	2441	0.298	0.381	0.4
78	2480	0.298	0.381	0.4

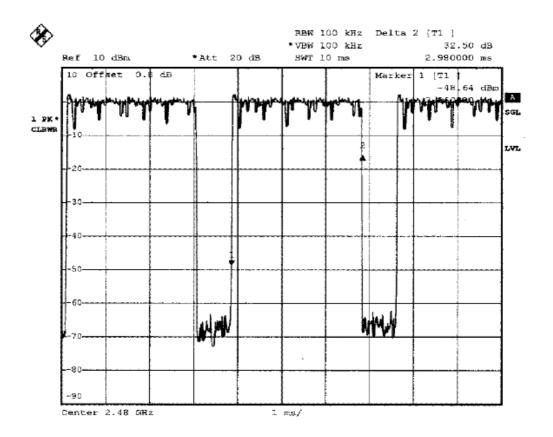

SPORTON International Inc.

FCC ID. : IXMWM-BB-AG-01 TEL: 886-2-2696-2468 Page No. : 15of 39 FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004



Issued on Mar. 16, 2004 Report No.: F430602

(Channel 00):


SPORTON International Inc.

: IXMWM-BB-AG-01 FCC ID. TEL: 886-2-2696-2468 Page No. : 16of 39 FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004

Issued on Mar. 16, 2004 Report No.: F430602

(Channel 78):

Test Configuration (EUT Operating Condition) 5.4.5.

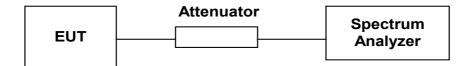
Same as Section 5.3.5.

SPORTON International Inc.

FCC ID. : IXMWM-BB-AG-01 TEL: 886-2-2696-2468 Page No. : 17of 39 FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004

Issued on Mar. 16, 2004 Report No.: F430602

5.5. Test of Maximum Peak Output Power


5.5.1. Measuring Instruments

Item 9 of the table on section 6.

5.5.2. Test Procedures

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. The center frequency of the spectrum analyzer was set to the fundamental frequency
- 3. Adjust RBW to 3MHz and VBW to 3MHz.

5.5.3. Test Setup Layout

SPORTON International Inc.

TEL: 886-2-2696-2468 Page No. : 18of 39
FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004

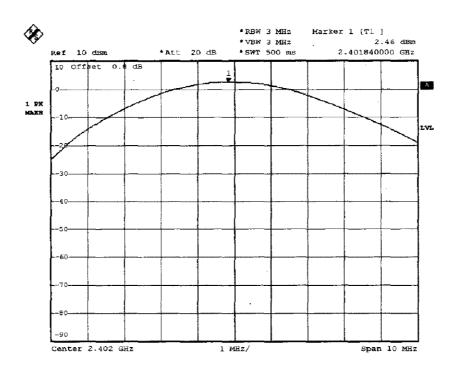
: IXMWM-BB-AG-01

FCC ID.

Issued on Mar. 16, 2004 Report No.: F430602

5.5.4. Test Result: See spectrum analyzer plots below

Operating Mode: single channel continuous transmitting

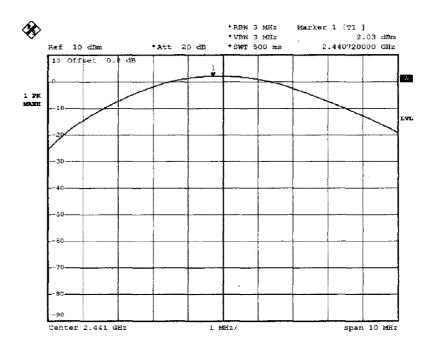

Temperature: 27°C

Relative Humidity: 61 %

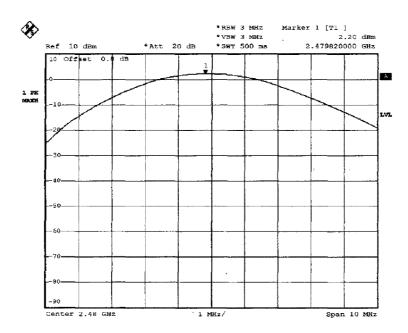
Duty cycle of the equipment during the test: 100%

Channel	Frequency	Measured Output Power	Measured Output Power	Limits
	(MHz)	(dBm)	(mWatt)	(Watt/dBm)
00	2402	2.46	1.76	1W/30 dBm
39	2441	2.03	1.59	1W/30 dBm
78	2480	2.2	1.65	1W/30 dBm

(Channel 00):


SPORTON International Inc.

FCC ID. : IXMWM-BB-AG-01 TEL: 886-2-2696-2468 Page No. : 19of 39 FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004



Issued on Mar. 16, 2004 Report No.: F430602

(Channel 39):

(Channel 78):

 ${\bf 5.5.5.} \quad \textbf{Test Configuration} \,\, (\, \textbf{EUT Operating Condition} \,)$

5.5.6. Same as Section 5.4.5.

SPORTON International Inc.

TEL: 886-2-2696-2468 Page No. : 20of 39
FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004

FCC ID.

: IXMWM-BB-AG-01

Issued on Mar. 16, 2004 Report No.: F430602

Test of Band Edges of the Operation Frequency 5.6.

5.6.1. Measuring Instruments

Item 9 of the table on section 6.

Test Procedures 5.6.2.

- The transmitter output was connected to the spectrum analyzer via a low lose cable.
- 2. Set both RBW and VBW of spectrum analyzer to 100KHz with convenient frequency span including 100 KHz bandwidth from band edge.
- The band edges emission was measured and recorded.

Test Result 5.6.3.

PASS Test Result in lower band (Channel 00): **PASS** Test Result in higher band(Channel 78):

5.6.4. Note on Band edge Emission

(A) Left Edge

The band edge emission plot shows 55.97dB delta between carrier maximum power and local maximum emission in the restricted band.

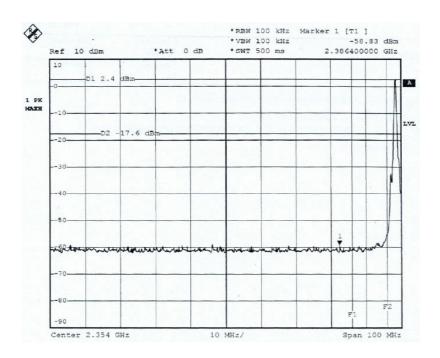
CH 00 Carrier power strength	Delta	The maximum field strength in restrict band	Limit	Margin
(dB μ V/m)	(dB)	(dB μ V/m)	(dB μ V/m)	(dB)
95.08	61.23	33.85	54.00	20.15

(B) Right Edge

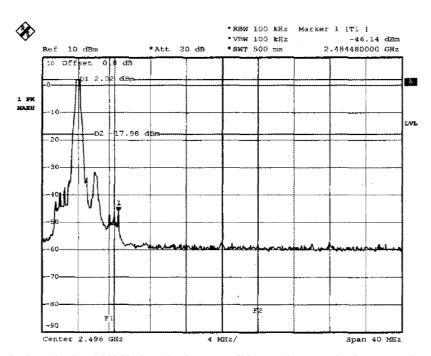
The band edge emission plot shows 60.33dB delta between carrier maximum power and local maximum emission in the restricted band.

CH 78 Carrier power strength	Delta	The maximum field strength in restrict band	Limit	Margin
(dB μ V/m)	(dB)	(dB μ V/m)	(dB μ V/m)	(dB)
99.11	48.16	50.95	54.00	3.05

^{*}The maximum field strength in restricted band is the emission of carrier power strength subtract to the delta between carrier maximum power and local maximum emission in the restricted band.


SPORTON International Inc.

: IXMWM-BB-AG-01 FCC ID. TEL: 886-2-2696-2468 Page No. : 21of 39 FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004



Issued on Mar. 16, 2004 Report No.: F430602

(Channel 00):

(Channel 78):

Observation: All emissions in the 100kHz band edge are all lower than carrier by more than 20dB.

SPORTON International Inc.

FCC ID. : IXMWM-BB-AG-01 TEL: 886-2-2696-2468 Page No. : 22of 39 FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004

Issued on Mar. 16, 2004 Report No.: F430602

5.6.5. Test Configuration (EUT Operating Condition)

The software provided by client enables the EUT to stay in continuous transmission condition. The hopping function is activated.

SPORTON International Inc. FCC ID. : IXMWM-BB-AG-01

TEL: 886-2-2696-2468 Page No. : 23of 39
FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004

FCC ID: IXMWM-BB-AG-01 Issued on Mar. 16, 2004

Report No.: F430602

Power Spectral Density 5.7.

The peak output power of this device is far lower than the limit of the peak power density, so there is no need to test this item.

SPORTON International Inc.

FCC ID. : IXMWM-BB-AG-01 TEL: 886-2-2696-2468 Page No. : 24of 39 FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004

Issued on Mar. 16, 2004 Report No.: F430602

5.8. Test of AC Power Line Conducted Emission

5.8.1. Measuring Instruments

Please reference item 1~7 in chapter 6 for the instruments used for testing.

5.8.2. Test Procedures

- Configure the EUT according to ANSI C63.4.
- 2. The EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 4. All the support units are connected to the other LISNs. The LISN should provides 50uH/50ohms coupling impedance.
- 5. The frequency range from 150 KHz to 30 MHz was searched.
- 6. Use the Channel & Power Controlling software to make the EUT working on selected channel and expected output power, then use the "H" Patter Generator software to make the supporting equipments stay on working condition.
- 7. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 8. The measurement has to be done between each power line and ground at the power terminal for each RF channel. Only one RF channel has to be investigated since this test is independent with the RF channel selection.

SPORTON International Inc.

TEL: 886-2-2696-2468 Page No. : 25of 39
FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004

FCC ID.

: IXMWM-BB-AG-01

Issued on Mar. 16, 2004 Report No.: F430602

5.8.3. Test Result of Conducted Emission

Testing Frequency Range: from 150KHz to 30 MHz

6dB Bandwidth: 9KHz Test Mode: Mode 1 Temperature: 26°C Relative Humidity: 61 %

Line

	Freq	Level	Over Limit	Limit Line	Read Level	Probe Factor	Cable Loss	Remark
(D)	MHz	dBuV	dB	dBuV	dBuV	dB	dB	V-
1	0.159	46.32	-19.20	65.52	46.18	0.10	0.04	QP
2	0.159	30.59	-24.93	55.52	30.45	0.10	0.04	Average
3	0.170	27.54	-27.42	54.96	27.41	0.10	0.03	Average
4	0.170	42.08	-22.88	64.96	41.95	0.10	0.03	QP
5	0.235	33.09	-19.18	52.27	32.98	0.10	0.01	Average
6	0.235	42.59	-19.68	62.27	42.48	0.10	0.01	QP
7	0.357	38.22	-20.58	58.80	38.12	0.10	0.00	QP
8	0.357	32.29	-16.51	48.80	32.19	0.10	0.00	Average
9	1.180	27.68	-18.32	46.00	27.56	0.10	0.02	Average
10	1.180	35.30	-20.70	56.00	35.18	0.10	0.02	QP
11	1.540	27.70	-18.30	46.00	27.57	0.10	0.03	Average
12	1.540	34.97	-21.03	56.00	34.84	0.10	0.03	QP

Neutral

	Freq	Level	Over Limit	Limit Line	Read Level	Probe Factor	Cable Loss	Remark
633	MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1	0.161	29.75	-25.65	55.40	29.61	0.10	0.04	Average
2	0.161	46.04	-19.36	65.40	45.90	0.10	0.04	QP
3	0.168	45.17	-19.89	65.06	45.04	0.10	0.03	QP
4	0.168	28.11	-26.95	55.06	27.98	0.10	0.03	Average
- 5	0.209	37.40	-25.84	63.24	37.29	0.10	0.01	QP
6	0.209	25.26	-27.98	53.24	25.15	0.10	0.01	Average
7	0.236	32.42	-19.82	52.24	32.31	0.10	0.01	Average
8	0.236	42.41	-19.83	62.24	42.30	0.10	0.01	QP
9	0.360	37.21	-21.53	58.74	37.11	0.10	0.00	QP
10	0.360	29.61	-19.13	48.74	29.51	0.10	0.00	Average
11	1.170	35.15	-20.85	56.00	35.03	0.10	0.02	QP
12	1.170	27.91	-18.09	46.00	27.79	0.10	0.02	Average

Test Engineer:

Wayne Hsu

5.8.4. Test Configuration (EUT Operating Condition)

The software provided by client enables the EUT to stay in continuous transmission condition. Hopping function is activated.

SPORTON International Inc.

: IXMWM-BB-AG-01 FCC ID. TEL: 886-2-2696-2468 Page No. : 26of 39 FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004

Issued on Mar. 16, 2004 Report No.: F430602

5.8.5. Photographs of Conducted Emission Test Configuration

The photographs show the configuration that generates the maximum emission.

FRONT VIEW

REAR VIEW

SPORTON International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 FCC ID. : IXMWM-BB-AG-01

Page No. : 27of 39 Issued Date : Mar. 16, 2004

Issued on Mar. 16, 2004

Report No.: F430602

Test of Spurious Radiated Emission

5.9.1. Measuring Instruments

Please reference item 8~19 in chapter 6 for the instruments used for testing.

5.9.2. Test Procedures

- 1. Configure the EUT according to ANSI C63.4.
- 2. The EUT was placed on the top of the turn table 0.8 meter above ground.
- 3. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turn table.
- 4. Power on the EUT and all the supporting units.
- 5. The turn table was rotated by 360 degrees to determine the position of the highest radiation.
- 6. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 7. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 8. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 9. For emission above 1GHz, use 1MHz VBW & RBW for peak reading and 1MHz RBW & 300Hz VBW for average reading in spectrum analyzer.
- 10. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method and reported.
- 11. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB higher than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported. (For peak measurement, RB=VB=1MHz, for average measurement, RB=1MHz, VB=10Hz)


SPORTON International Inc.

FCC ID. : IXMWM-BB-AG-01 TEL: 886-2-2696-2468 Page No. : 28of 39 FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004

Issued on Mar. 16, 2004 Report No.: F430602

5.9.3. Test Setup Layout

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 FCC ID. : IXMWM-BB-AG-01

Page No. : 29of 39 Issued Date : Mar. 16, 2004

Issued on Mar. 16, 2004 Report No.: F430602

5.9.4. Test Results and Limit

For spurious emission below 1GHz

RF LINK

 Test Distance : 3 M Temperature : 27 °C Relative Humidity: 62 %

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

Horizontal

	Freq	Level	Over Limit			Probe Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB		CIV.	deg
1	127.750	35.38	-8.12	43.50	49.97	11.19	2.06	27.84	QP		
2	132.510	37.03	-6.47	43.50	51.35	11.46	2.05	27.83	QP	100	215
3	144.750	34.10	-9.40	43.50	47.73	12.04	2.14	27.81	QP		
1	400.000	37.66	-8.34	46.00	46.20	15.79	3.47	27.80	QP	1222	5224
2	480.000	30.90	-15.10	46.00	38.52	17.08	3.82	28.52	QP		
3	665.600	31.92	-14.08	46.00	36.90	19.10	4.65	28.73	QP		

Vertical

	Freq	Level	Over Limit	Limit Line	Read Level	Probe Factor		Preamp Factor	Remark	Ant Pos	Table Pos
3	MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB	·	cm	deg
1	48.870	25.97	-14.03	40.00	42.59	10.21	1.17	28.00	QP	222	3224
2	133.190	34.34	-9.16	43.50	48.65	11.49	2.03	27.83	QP		
3	197.620	28.57	-14.93	43.50	38.98	14.74	2.55	27.70	QP		
1	311.200	35.97	-10.03	46.00	46.33	13.86	3.14	27.36	QP	1222	3222
2	400.000	35.56	-10.44	46.00	44.10	15.79	3.47	27.80	QP		
3	665.600	32.90	-13.10	46.00	37.88	19.10	4.65	28.73	QP		

SPORTON International Inc.

: IXMWM-BB-AG-01 FCC ID. TEL: 886-2-2696-2468 Page No. : 30of 39 FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004

FCC ID: IXMWM-BB-AG-01 Issued on Mar. 16, 2004

Report No.: F430602

For spurious emission above 1GHz

Test Mode: Mode 1 (2402MHz)

Test Distance: 3 MTemperature: 27 °CRelative Humidity: 62 %

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

Horizontal

	Freq	Level		Limit Line					Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB	%	cm cm	deg
1	4806.000	53.83	-20.17	74.00	60.73	33.03	2.41	42.34	Peak		3224
2	4806.000	42.85	-11.15	54.00	49.75	33.03	2.41	42.34	Average		

Vertical

	Freq	Level	Over Limit	Limit Line		Probe Factor			Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB	· · · · · · · · · · · · · · · · · · ·	cm	deg
1	4806.000	53.97	-20.03	74.00	60.87	33.03	2.41	42.34	Peak		
2	4806.000	45.01	-8.99	54.00	51.91	33.03	2.41	42.34	Average	100	210

SPORTON International Inc. FCC ID. : IXMWM-BB-AG-01

TEL: 886-2-2696-2468 Page No. : 31of 39
FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004

Issued on Mar. 16, 2004 Report No.: F430602

Test Mode: Mode 2 (carrier 2441MHz)

Test Distance: 3 MTemperature: 27 °CRelative Humidity: 62 %

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

Horizontal

	Freq	Level		Limit Line						Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	- dB	% %-	cm_	deg
1	4884.000	53.36	-20.64	74.00	60.11	33.19	2.51	42.45	Peak		
2	4884.000	42.87	-11.13	54.00	49.62	33.19	2.51	42.45	Average		

Vertical

	Freq	Level		Limit Line						Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB	%	cm	deg
1	4884.000	57.09	-16.91	74.00	63.84	33.19	2.51	42.45	Peak		
2	4884.000	45.30	-8.70	54.00	52.05	33.19	2.51	42.45	Average	100	217

SPORTON International Inc. FCC ID. : IXMWM-BB-AG-01

TEL: 886-2-2696-2468 Page No. : 32of 39
FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004

Issued on Mar. 16, 2004 Report No.: F430602

Test Mode: Mode 3 (carrier 2480MHz)

Test Distance: 3 M
Temperature: 27 °C
Relative Humidity: 62 %

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

Horizontal

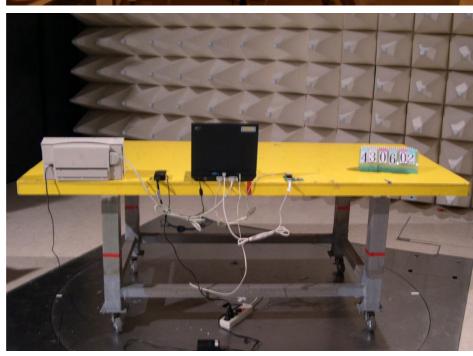
	Freq	Level	Over Limit	Limit Line		Probe Factor				Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB	%	cm	deg
1	4964.000	53.46	-20.54	74.00	60.21	33.35	2.46	42.56	Peak		
2	4964.000	37.72	-16.28	54.00	44.47	33.35	2.46	42.56	Average		

Vertical

	Freq	Level		Limit Line						Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB	<u> </u>	GW	deg
1	4964.000	54.65	-19.35	74.00	61.40	33.35	2.46	42.56	Peak	100	198
2	4964.000	38.74	-15.26	54.00	45.49	33.35	2.46	42.56	Average		

SPORTON International Inc. FCC ID. : IXMWM-BB-AG-01

TEL: 886-2-2696-2468 Page No. : 33of 39
FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004


Issued on Mar. 16, 2004 Report No.: F430602

5.9.5. Photographs of Radiated Emission Test Configuration

The photographs show the configuration that generates the maximum emission.

FRONT VIEW

REAR VIEW

SPORTON International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 FCC ID. : IXMWM-BB-AG-01

Page No. : 34of 39 Issued Date : Mar. 16, 2004

Issued on Mar. 16, 2004 Report No.: F430602

5.10. Antenna Requirements

5.10.1. Standard Applicable

47 CFR Part15 Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

47 CFR Part15 Section 15.247 (b):

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

If the intentional radiator is used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

5.10.2. Antenna Connector Used in this Product

The maximum Gain antenna used in this product is external antenna with UFL antenna connector.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 FCC ID. : IXMWM-BB-AG-01

Page No. : 35of 39 Issued Date : Mar. 16, 2004

Issued on Mar. 16, 2004 Report No.: F430602

5.11. RF Exposure

5.11.1. Limit For Maximum Permissible Exposure (MPE)

This product can be classified as mobile device, so the 20cm separation distance warning is required.

In this section, the power density at 20cm location is calculated to examine if it is lower than the limit.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm²)	Averaging Time E ², H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

F = frequency in MHz

SPORTON International Inc. FCC ID. : IXMWM-BB-AG-01

TEL: 886-2-2696-2468 Page No. : 36of 39
FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004

^{*}Plane-wave equivalent power density

Issued on Mar. 16, 2004 Report No.: F430602

5.11.2. MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: $Pd \text{ (mW/cm}^2) = \frac{E^2}{377}$

E = Electric field (V/m)

P = Peak RF output power (mW)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=20cm, as well as the gain of the used antenna, the RF power density can be obtained.

5.11.3. Calculated Result and Limit

Channel No.	Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)
Channel 00	-0.1	0.98	2.4600	1.7620	0.0003	1
Channel 39	-0.1	0.98	2.0300	1.5959	0.0003	1
Channel 78	-0.1	0.98	2.2000	1.6596	0.0003	1

From the calculated result shown in above table, the power density is lower than limit at location 20cm far away.

FCC ID. : IXMWM-BB-AG-01 TEL: 886-2-2696-2468 Page No. : 37of 39 FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004

FCC ID: IXMWM-BB-AG-01 Issued on Mar. 16, 2004

Report No.: F430602

6. List of Measuring Equipments Used

Items	Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
1	EMC Receiver	R&S	ESCS 30	100132	9 KHz – 2.75 GHz	Jun. 12, 2003	Conduction (CO01-HY)
2	LISN	MessTec	NNB-2/16Z	2001-008	9 KHz – 30 MHz	Apr. 30, 2003	Conduction (CO01-HY)
3	LISN	MessTec	NNB-2/16Z	2001-009	9 KHz – 30 MHz	Apr. 30, 2003	Conduction (CO01-HY)
4	EMI Filter	LINDGREN	LRE-2060	1004	< 450 Hz	N/A	Conduction (CO01-HY)
5	EMI Filter	LINDGREN	N6006	201052	0 ~ 60 Hz	N/A	Conduction (CO01-HY)
6	RF Cable-CON	Suhner	RG223/U	CB029	9KHz~30MHz	Dec. 24, 2003	Conduction (CO01-HY)
7	50 ohm BNC type	NOBLE	50ohm	TM013	50 ohm	Apr. 24, 2003	Conduction (CO01-HY)
8	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz~1GHz 3m	Jun. 21, 2003	Radiation (03CH03-HY)
9	Spectrum analyzer	R&S	FSP40	100004	9KHZ~40GHz	Aug. 23, 2003	Radiation (03CH03-HY)
10	Amplifier	HP	8447D	2944A09072	100KHz – 1.3GHz	Nov. 05, 2003	Radiation (03CH03-HY)
11	Biconical Antenna	SCHWARZBECK	VHBB 9124	301	30MHz –200MHz	Jul. 24, 2003	Radiation (03CH03-HY)
12	Log Antenna	SCHWARZBECK	VUSLP 9111	221	200MHz -1GHz	Jul. 24, 2003	Radiation (03CH03-HY)
13	RF Cable-R03m	Jye Bao	RG142	CB021	30MHz~1GHz	Dec. 03, 2003	Radiation (03CH03-HY)
14	Amplifier	MITEQ	AFS44	879981	100MHz~26.5GHz	Jul. 23, 2003	Radiation (03CH03-HY)
15	Horn Antenna	COM-POWER	3115	6741	1GHz – 18GHz	Apr. 08, 2003	Radiation (03CH03-HY)
16	Turn Table	HD	DS 420	420/650/00	0 ~ 360 degree	N/A	Radiation (03CH03-HY)
17	Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (03CH03-HY)
18	Horn Antenna	Schwarzbeck	BBHA9170	154	15GHz~40GHz	Jun. 02, 2003	Radiation (03CH03-HY)
19	RF Cable-HIGH	Jye Bao	RG142	CB030-HIGH	1GHz~29.5GHz	Dec. 05, 2003	Radiation (03CH03-HY)

 $[\]begin{tabular}{ll} $\raisebox{4pt}{$\not$}$ & Calibration Interval of instruments listed above is one year. \end{tabular}$

SPORTON International Inc.

FCC ID. : IXMWM-BB-AG-01 TEL: 886-2-2696-2468 Page No. : 38of 39 FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004

FCC ID: IXMWM-BB-AG-01 Issued on Mar. 16, 2004

Report No.: F430602

Items	Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
19	Power meter	R&S	NRVS	100444	DC~40GHz	May 28, 2003	Conducted
20	Power sensor	R&S	NRV-Z55	100049	DC~40GHz	May 28, 2003	Conducted
21	Power Sensor	R&S	NRV-Z32	100057	30MHz-6GHz	May 28, 2003	Conducted
22	AC power source	HPC	HPA-500W	HPA-9100024	AC 0~300V	May 27, 2003	Conducted
23	Temp. and Humidity Chamber	KSON	THS-C3L	612	N/A	Oct. 01, 2003	Conducted
24	Oscilloscope	Tektronix	TDS1012	C038520	100MHz 2Ch.	Jan. 01, 2004	Conducted
25	DC Detector	Narda	FSCM99899	4503A	0.1MHZ~18GHz	Jan. 01, 2004	Conducted
26	Signal Generator	R&S	SMR40	837900/23	1GHz~40GHz	Nov. 06, 2003	Conducted

 $[\]mbox{\%}$ Calibration Interval of instruments listed above is one year.

SPORTON International Inc.

FCC ID. : IXMWM-BB-AG-01 TEL: 886-2-2696-2468 Page No. : 39of 39 FAX: 886-2-2696-2255 Issued Date : Mar. 16, 2004