

TEST REPORT

Applicant Name: Inrico Technologies Co.,Ltd

Address: A1703, Shenzhen National Engineering Laboratory Building,

No. 20 Gaoxin South 7th Road, Shenzhen, China

Report Number: 2401Z104941E-RF-00C

FCC ID: 2AIV6-T330

Test Standard (s)

FCC PART 15.247

Sample Description

Product Type: Rugged PoC Radio

Model No.: T330 Multiple Model(s) No.: N/A Trade Mark: Inrico

Date Received: 2024-11-14 Issue Date: 2025-03-19

Test Result: Pass▲

▲ In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Jim Cheng

Approved By:

Nancy Wang

Jim Cheng

RF Engineer

RF Supervisor

Note: The information marked # is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the U.S. Government.

This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "▼"

Bay Area Compliance Laboratories Corp. (Shenzhen)

5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

TR-EM-RF004 Page 1 of 94 Version 4.0

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	3
GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
OBJECTIVE	
TEST METHODOLOGY	
Measurement Uncertainty Test Facility	
SYSTEM TEST CONFIGURATION	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	
REQUIREMENTS AND TEST PROCEDURES	12
AC LINE CONDUCTED EMISSIONS	
Spurious Emissions	
6 DB EMISSION BANDWIDTH	
MAXIMUM CONDUCTED OUTPUT POWER	
POWER SPECTRAL DENSITY	
DUTY CYCLE	
ANTENNA REQUIREMENT	22
TEST DATA AND RESULTS	23
AC LINE CONDUCTED EMISSIONS	
Spurious Emissions	
6DB EMISSION BANDWIDTH	
MAXIMUM CONDUCTED OUTPUT POWER	
100 kHz Bandwidth of Frequency Band Edge	
DUTY CYCLE	
RF EXPOSURE EVALUATION	92
EUT PHOTOGRAPHS	93
TECT CETITO DILOTOCO A DIIC	0.4

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	2401Z104941E-RF-00C	Original Report	2025-03-19

Report No.: 2401Z104941E-RF-00C

TR-EM-RF004 Page 3 of 94 Version 4.0

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Frequency Range	2412~2462MHz
Maximum Conducted Output Peak Power	15.28dBm
Modulation Technique	DSSS, OFDM
Antenna Specification#	0.74dBi (provided by the applicant)
Voltage Range	DC 3.85V from Battery or DC 5V from Adapter Port or DC 5V from Charger
Sample serial number	2UIA-6 for Conducted and Radiated Emissions Test 2UIA-7 for RF Conducted Test (Assigned by BACL, Shenzhen)
Sample/EUT Status	Good condition
Adapter Information	Model: HJ-0502000W2-US Input: AC100-240V, 50/60Hz, 0.3A Output: DC5.0V, 2000mA

Report No.: 2401Z104941E-RF-00C

Note: The EUT charged by Adapter or Charger, the worst case power supply Adapter was selected to test for AC line conducted and radiated emission below 1GHz according to the BT report test result.

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

TR-EM-RF004 Page 4 of 94 Version 4.0

Measurement Uncertainty

Parameter		•	Uncertainty	
Occupied Channel Bandwidth		andwidth	109.2kHz(k=2, 95% level of confidence)	
RF output	power, co	onducted	0.86dB(k=2, 95% level of confidence)	
AC Power Lines Cond	ucted	9kHz~150 kHz	3.63dB(k=2, 95% level of confidence)	
Emissions		150 kHz ~30MHz	3.66dB(k=2, 95% level of confidence)	
	0.	009MHz~30MHz	3.60dB(k=2, 95% level of confidence)	
	30MHz	z~200MHz (Horizontal)	5.32dB(k=2, 95% level of confidence)	
	30MHz~200MHz (Vertical)		5.43dB(k=2, 95% level of confidence)	
Radiated Emissions	200MHz~1000MHz (Horizontal)		5.77dB(k=2, 95% level of confidence)	
Radiated Emissions	200MHz~1000MHz (Vertical)		5.73dB(k=2, 95% level of confidence)	
	1GHz - 6GHz		5.34dB(k=2, 95% level of confidence)	
		6GHz - 18GHz	5.40dB(k=2, 95% level of confidence)	
	18GHz - 40GHz		5.64dB(k=2, 95% level of confidence)	
Temperature		e	±1°C	
Humidity			±1%	
Supply voltages		ges	±0.4%	

Report No.: 2401Z104941E-RF-00C

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 715558, the FCC Designation No.: CN5045.

TR-EM-RF004 Page 5 of 94 Version 4.0

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For 2.4GHz Wi-Fi mode, total 11 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	/	/

Report No.: 2401Z104941E-RF-00C

802.11b, 802.11g and 802.11n-HT20 mode was tested with Channel 1, 6 and 11.

EUT Exercise Software

Exercise Software [#]		Engineer Mode				
Power Level*						
Mode	Data rate	Low Channel Middle Channel High Chann				
802.11b	1Mbps	16	16	16		
802.11g	6Mbps	12	12	12		
802.11n20	MCS0	12	12	12		

Note: The worst-case data rates are determined to be as follows for each mode based upon investigation by measuring the power and PSD across all data rates bandwidths, and modulations.

Special Accessories

No special accessory.

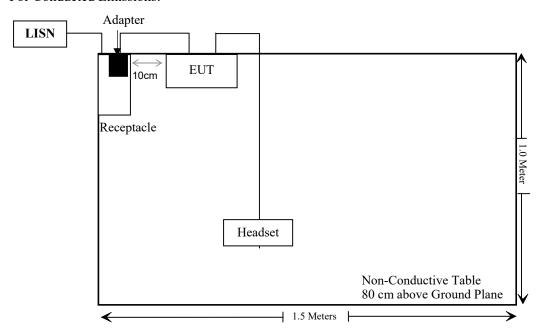
Equipment Modifications

No modification was made to the EUT tested.

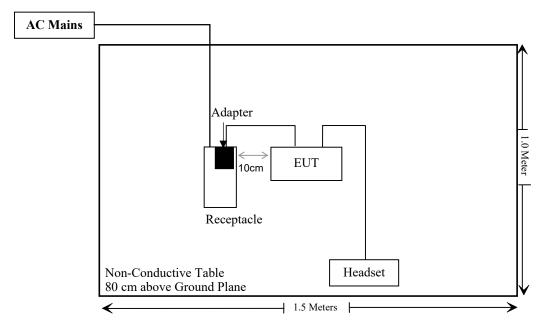
Support Equipment List and Details

Manufacturer Description		Model	Serial Number	
Unknown	Receptacle	Unknown	Unknown	
Inrico	Headset	Unknown	Unknown	

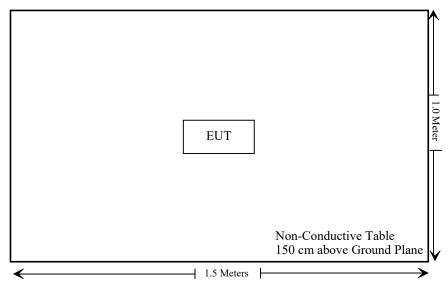
External I/O Cable


Cable Description	Length (m)	From Port	То
Un-shielding Detachable USB Cable	0.8	EUT	Adapter
Un-shielding Detachable Audio Cable	1.2	EUT	Headset
Shielded Un-detachable AC Cable	1.5	Receptacle	LISN/AC Mains

TR-EM-RF004 Page 6 of 94 Version 4.0


Report No.: 2401Z104941E-RF-00C

Block Diagram of Test Setup


For Conducted Emissions:

For Radiated Emissions below 1GHz:

For Radiated Emissions above 1GHz:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.203	Antenna Requirement	Compliant
FCC §15.207(a)	AC Line Conducted Emissions	Compliant
FCC §15.205,§15.209,§15.247(d)	Radiated Spurious Emission	Compliant
FCC §15.207(a)(2)	6dB Emission Bandwidth	Compliant
FCC §15.247(b)(1)	Maximum Conducted Output Power	Compliant
FCC §15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
FCC §15.247(e)	Power Spectral Density	Compliant
C63.10 §11.6	Duty Cycle	/
FCC §1.1307 & §2.1093	RF Exposure	Compliant

Report No.: 2401Z104941E-RF-00C

TR-EM-RF004 Page 9 of 94 Version 4.0

TEST EQUIPMENT LIST

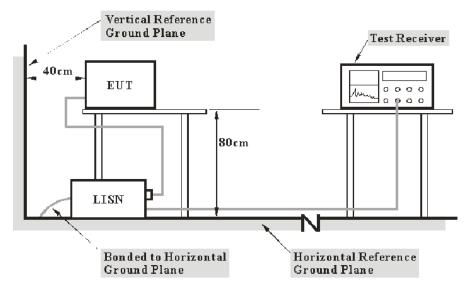
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Conducted Emission Test						
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2024/12/04	2025/12/03	
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2024/05/21	2025/05/20	
Rohde & Schwarz	LISN	ENV216	101613	2024/12/04	2025/12/03	
Unknown	CE Cable	Unknown	UF A210B-1- 0720-504504	2024/05/21	2025/05/20	
Audix	EMI Test software	Е3	191218(V9)	NCR	NCR	
		Radiated E	mission Test			
Rohde & Schwarz	EMI Test Receiver	ESR3	102455	2024/12/04	2025/12/03	
Sonoma instrument	Pre-amplifier	310N	186238	2024/05/21	2025/05/20	
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2023/07/20	2026/07/19	
Unknown	Cable	Chamber Cable	F-03-EM236	2024/06/18	2025/06/17	
Unknown	Cable	XH500C	J-10M-A	2024/06/18	2025/06/17	
BACL	Active Loop Antenna	1313-1A	4031911	2024/05/14	2027/05/13	
Unknown	Cable	2Y194	0735	2024/12/04	2025/12/03	
Unknown	Cable	PNG214	1354	2024/12/04	2025/12/03	
Audix	EMI Test software	E3	19821b(V9)	NCR	NCR	
Rohde&Schwarz	Spectrum Analyzer	FSV40	101605	2024/03/27	2025/03/26	
COM-POWER	Pre-amplifier	PA-122	181919	2024/06/18	2025/06/17	
Schwarzbeck	Horn Antenna	BBHA9120D(12 01)	1143	2023/07/26	2026/07/25	
Unknown	RF Cable	KMSE	0735	2024/06/18	2025/06/17	
Unknown	RF Cable	UFA147	219661	2024/06/18	2025/06/17	
Unknown	RF Cable	XH750A-N	J-10M	2024/06/18	2025/06/17	
JD	Filter Switch Unit	DT7220FSU	DS79906	2024/09/09	2025/09/08	
JD	Multiplex Switch Test Control Set	DT7220SCU	DS79903	2024/09/09	2025/09/08	
A.H.System	Pre-amplifier	PAM-1840VH	190	2024/06/18	2025/06/17	
Electro- Mechanics Co	Horn Antenna	3116	9510-2270	2023/09/18	2026/09/17	
UTIFLEX	RF Cable	NO. 13	232308-001	2024/06/18	2025/06/17	
Audix	EMI Test software	E3	191218(V9)	NCR	NCR	

Report No.: 2401Z104941E-RF-00C

Report No.: 2401Z104	941E-RF-00C

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
		RF Conduct	ed Test		
ANRITSU	Microwave peak power sensor	MA24418A	12622	2024/05/21	2025/05/20
Rohde&Schwarz	Spectrum Analyzer	FSV40-N	102259	2024/01/16	2025/01/15
Rohde&Schwarz	Spectrum Analyzer	FSV40-N	102259	2024/12/04	2025/12/03
WEINSCHEL	3dB Attenuator	Unknown	F-03-EM220	2024/06/27	2025/06/26

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).


REQUIREMENTS AND TEST PROCEDURES

AC Line Conducted Emissions

Applicable Standard

FCC§15.207

EUT Setup

Report No.: 2401Z104941E-RF-00C

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Over Limit Calculation

The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

Report No.: 2401Z104941E-RF-00C

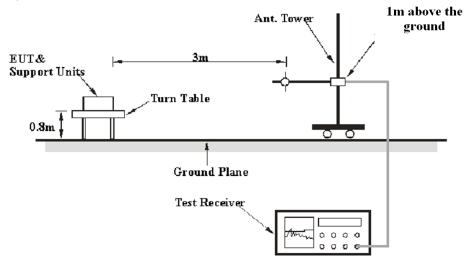
```
Factor = LISN VDF + Cable Loss
```

The "Over Limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an over limit of -7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

```
Over Limit = level – Limit
Level= reading level+ Factor
```

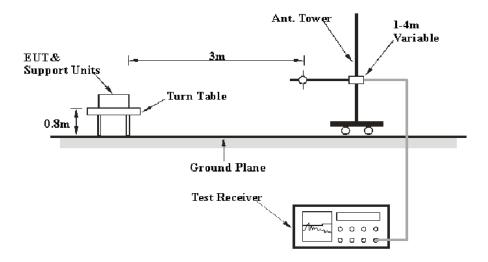
Note: The term "cable loss" refers to the combination of a cable and a 10dB transient limiter (attenuator).

TR-EM-RF004 Page 13 of 94 Version 4.0

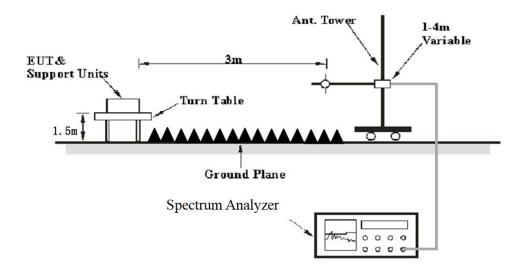

Spurious Emissions

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;


EUT Setup

9 kHz-30MHz:



Report No.: 2401Z104941E-RF-00C

30MHz-1GHz:

Above 1GHz:

Report No.: 2401Z104941E-RF-00C

The radiated emission performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 9 kHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

9 kHz-1GHz:

Frequency Range	RBW	Video B/W	IF B/W	Measurement	Detector
9 kHz – 150 kHz	/	/	200 Hz	QP	QP
9 KHZ – 130 KHZ	300 Hz	1 kHz	/	PK	Peak
150 kHz – 30 MHz	/	/	9 kHz	QP	QP
130 KHZ – 30 MHZ	10 kHz	30 kHz	/	PK	Peak
30 MHz – 1000 MHz	/	/	120 kHz	QP	QP
30 MHZ - 1000 MHZ	100 kHz	300 kHz	/	PK	Peak

1-25GHz: Pre-scan

Measurement	Duty cycle	RBW	Video B/W	Detector
PK	Any	1MHz	3 MHz	Peak
AN	>98%	1MHz	1 kHz	Peak
AV	<98%	1MHz	≥1/Ton	Peak

Final measurement for emission identified during pre-scan

Measurement	Duty cycle	RBW	Video B/W	Detector
PK	Any	1MHz	3 MHz	Peak
AV	>98%	1MHz	10 Hz	Peak
AV	<98%	1MHz	≥1/Ton	Peak

Report No.: 2401Z104941E-RF-00C

Note: Ton is minimum transmission duration

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz, average detection modes for frequency bands 9–90 kHz and 110–490 kHz, peak and average detection modes for frequencies above 1 GHz.

For 9 kHz-30MHz, the report shall list the six emissions with the smallest margin relative to the limit, for each of the three antenna orientations (parallel, perpendicular, and ground-parallel) unless the margin is greater than 20 dB.

All emissions under the average limit and under the noise floor have not recorded in the report.

Factor & Over Limit/Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "Over Limit/Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level/Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

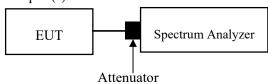
6 dB Emission Bandwidth

Applicable Standard

According to FCC §15.247(a) (2)

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No.: 2401Z104941E-RF-00C


Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.8.1

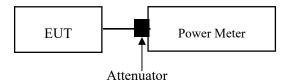
- a) Set RBW = 100 kHz.
- b) Set the VBW \geq [3 \times RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. Procedure as below

- a. The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b. The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW (for RSS rules, VBW shall not be smaller than three times the RBW, unless otherwise specified by the applicable requirement).
- c. Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level.
- d. Step a) through step c) might require iteration to adjust within the specified range.
- e. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f. Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g. If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h. The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data maybe reported in addition to the plot(s).

Maximum Conducted Output Power

Applicable Standard


According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Report No.: 2401Z104941E-RF-00C

Test Procedure

Test method: ANSI C63.10-2013 clause 11.9.1.3 for peak power method or clause 11.9.2.3.2 for average power method.

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

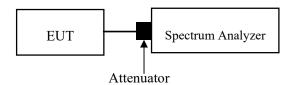
Note: A short RF cable with low cable loss connected to the EUT antenna port, which was provided by client or lab, the cable loss was add with offset into test equipment, the total offset consists of attenuator and/or RF cable and/or power splitter loss

100 kHz Bandwidth of Frequency Band Edge

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Report No.: 2401Z104941E-RF-00C


Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.11

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 3 × RBW.
- 3. Detector = peak
- 4. Sweep time = auto couple.
- 5. Trace mode=max hold
- 6. All trace to fully stabilize
- 7. Use the peak marker function to determine the maximum amplitude level.

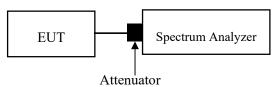
 Ensure that amplitude of all unwanted emissions outside of the authorized frequency band(excluding restricted frequency bands) is attenuated by at least the minimum requirement specified in 11.11.

 Report the three highest emissions relative to the limit.

Power Spectral Density

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.


Report No.: 2401Z104941E-RF-00C

Test Procedure

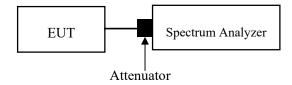
Test Method: ANSI C63.10-2013 Clause 11.10.2

Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.

- 1. Set the RBW to: 3kHz≤ RBW≤100 kHz.
- 2. Set the VBW $\geq 3 \times RBW$.
- 3. Set the span to 1.5 times the DTS bandwidth.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = \max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 9. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Note: A short RF cable with low cable loss connected to the EUT antenna port, which was provided by client or lab, the cable loss was add with offset into test equipment, the total offset consists of attenuator and/or RF cable and/or power splitter loss

Duty Cycle


Test Procedure

According to ANSI C63.10-2013 Section 11.6

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

Report No.: 2401Z104941E-RF-00C

- 1) Set the center frequency of the instrument to the center frequency of the transmission.
- 2) Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value.
- 3) Set VBW \geq RBW. Set detector = peak or average.
- 4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if T $\le 16.7 \,\mu s$.)

ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Report No.: 2401Z104941E-RF-00C

Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Antenna Connector Construction

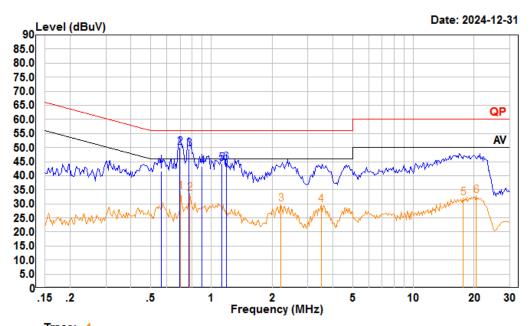
The EUT has an internal antenna arrangement, which was permanently attached, the antenna gain[#] is 0.74dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant

TR-EM-RF004 Page 22 of 94 Version 4.0

TEST DATA AND RESULTS

AC Line Conducted Emissions


Environmental Conditions

Temperature (°C)	23.7	Relative Humidity (%)	41				
ATM Pressure (kPa)	101.4	Test engineer	Macy Shi				
Test date	2024/12/31	2024/12/31					
EUT operation mode	Transmitting (Maximum	Transmitting (Maximum output power mode, 802.11n-HT20 Middle Channel)					

Report No.: 2401Z104941E-RF-00C

AC 120V 60 Hz, Line Adapter

Report No.: 2401Z104941E-RF-00C

Trace: 1
Condition: Line

Project : 2401Z104941E-RF

tester : Macy.shi Note:Transmitting

Setting : RBW:9kHz

		Read		LISN	Cable	Limit	0ver	
	Freq	Level	Level	Factor	Loss	Line	Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	——dB	
1	0.564	21.10	41.73	10.50	10.13	56.00	-14.27	QP
2	0.697	29.50	50.15	10.50	10.15	56.00	-5.85	QP
3	0.775	28.80	49.40	10.47	10.13	56.00	-6.60	QP
4	0.899	22.80	43.33	10.43	10.10	56.00	-12.67	QP
5	1.123	23.80	44.36	10.43	10.13	56.00	-11.64	QP
6	1.184	24.00	44.59	10.45	10.14	56.00	-11.41	QP
		Read		LISN	Cable	Limit	0ver	
	Enoa							B 1
	Freq	Level	Level	Factor	Loss	Line	Limit	Remark
	MHz	dBuV	dBuV		Loss	Line ————————————————————————————————————	Limit ———————————————————————————————————	Kemark
1						dBuV	——dB	Average
1 2	MHz	dBuV	dBuV	——dB	dB	dBuV 46.00	dB -11.71	
	MHz 0.705	dBuV 13.64	dBuV 34.29	dB 10.50	dB 10.15	dBuV 46.00 46.00	dB -11.71 -12.35	Average
2	MHz 0.705 0.783	dBuV 13.64 13.06	dBuV 34.29 33.65	dB 10.50 10.47	dB 10.15 10.12	dBuV 46.00 46.00 46.00	dB -11.71 -12.35 -16.21	Average Average
2	MHz 0.705 0.783 2.213	dBuV 13.64 13.06 9.05	dBuV 34.29 33.65 29.79	dB 10.50 10.47 10.56	dB 10.15 10.12 10.18	dBuV 46.00 46.00 46.00	dB -11.71 -12.35 -16.21 -16.47	Average Average Average

AC 120V 60 Hz, Neutral Adapter

Report No.: 2401Z104941E-RF-00C

irace: 1

Condition: Neutral

Project : 2401Z104941E-RF

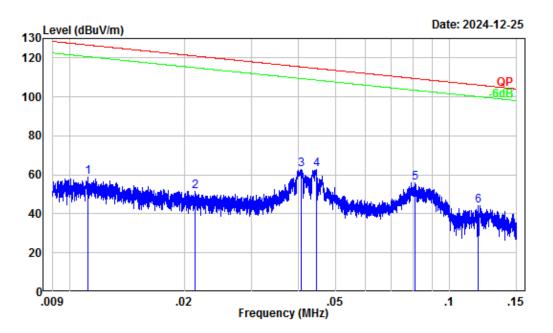
tester : Macy.shi Note:Transmitting

Setting : RBW:9kHz

		Read		LISN	Cable	Limit	0ver	
	Freq	Level	Level	Factor	Loss	Line	Limit	Remark
	MHz	dBuV	dBuV	——dB	dB	dBuV	——dB	
1	0.668	22.90	43.74	10.70	10.14		-12.26	OP
2	0.690	23.30	44.15	10.70	10.15		-11.85	-
3	0.743	25.20	46.07	10.73	10.14	56.00	-9.93	QP
4	19.635	25.80	46.68	10.71	10.17	60.00	-13.32	QP
5	20.486	27.30	48.16	10.69	10.17	60.00	-11.84	QP
6	21.600	28.10	48.94	10.66	10.18	60.00	-11.06	QP
		Read		LISN	Cable	Limit	0ver	
	Freq	Level	Level	Factor	Loss	Line	Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	——dB	
1	0.853	7.88	28.80	10.81	10.11	46.00	-17.20	Average
2	1.172	7.37	28.30	10.79	10.14	46.00	-17.70	Average
3	2.384	6.01	26.58	10.40	10.17	46.00	-19.42	Average
4	13.841	8.63	29.65	10.80	10.22	50.00	-20.35	Average
5	16.226	10.38	31.36	10.77	10.21	50.00	-18.64	Average
6	20.056	11.31	32.18	10.70	10.17	50.00	-17.82	Average

Spurious Emissions

Environmental Conditions


Temperature (°C)	24.5-25.4	Relative Humidity (%)	35-51			
ATM Pressure (kPa):	101.2-101.6	Test engineer:	Anson Su & Zenos Qiao			
Test date:	Below 1GHz: 2024/12/2 Above 1GHz: 2024/12/0					
EUT operation mode:	Below 1GHz: Transmitting (Maximum output power mode, 802.11n-HT20 2437MHz) Above 1GHz: Transmitting					
Note:	1. For the radiated spurious emission below 30MHz, only the worst case (parallel) was recorded. 2. For the radiated spurious emission below 30MHz, When the test result of peak was less than the limit of QP/Average more than 6dB, just peak value were recorded. 3. After pre-scan in the X, Y and Z axes of orientation, the worst case y-axis of orientation were recorded.					

Report No.: 2401Z104941E-RF-00C

Below 1GHz:

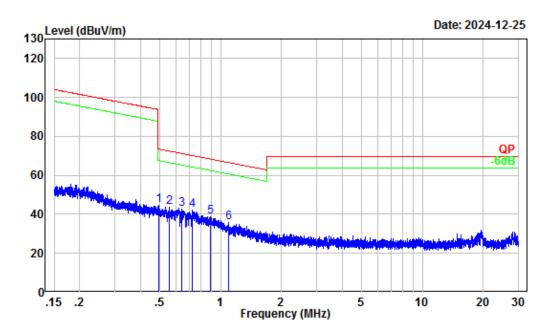
9kHz-150kHz

Report No.: 2401Z104941E-RF-00C

Site : Chamber A

Condition : 3m

Project Number : 2401Z104941E-RF


Test Mode : 2.4G WIFI Transmitting

Detector: Peak RBW/VBW: 0.3/1kHz Tester : Anson Su

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	0.01	32.08	26.61	58.69	126.66	-67.97	Peak
2	0.02	30.13	21.24	51.37	121.00	-69.63	Peak
3	0.04	27.38	35.33	62.71	115.42	-52.71	Peak
4	0.04	26.97	35.67	62.64	114.62	-51.98	Peak
5	0.08	23.31	32.67	55.98	109.41	-53.43	Peak
6	0.12	20.88	23.33	44.21	106.10	-61.89	Peak

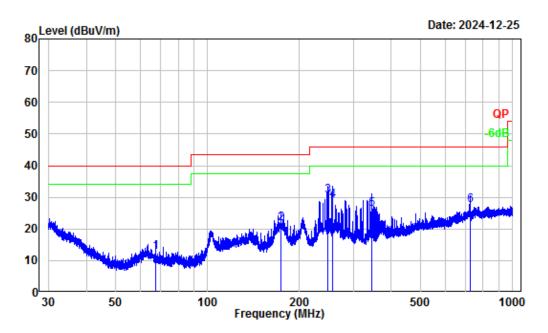
150kHz-30MHz

Report No.: 2401Z104941E-RF-00C

Site : Chamber A

Condition : 3m

Project Number : 2401Z104941E-RF


Test Mode : 2.4G WIFI Transmitting

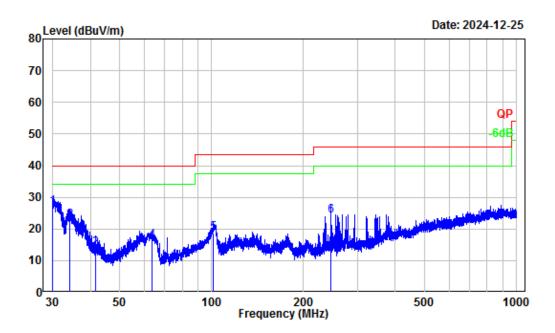
Detector: Peak RBW/VBW: 10/30kHz Tester : Anson Su

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	0.49	6.55	37.97	44.52	73.76	-29.24	Peak
2	0.56	5.69	37.89	43.58	72.66	-29.08	Peak
3	0.64	4.62	38.16	42.78	71.38	-28.60	Peak
4	0.72	3.64	38.76	42.40	70.34	-27.94	Peak
5	0.89	2.01	36.50	38.51	68.49	-29.98	Peak
6	1.10	0.92	35.06	35.98	66.63	-30.65	Peak

30MHz-1GHz_Horizontal

Report No.: 2401Z104941E-RF-00C

Site : Chamber A
Condition : 3m Horizontal
Project Number : 2401Z104941E-RF


Test Mode : 2.4G WIFI Transmitting

Detector: Peak RBW/VBW: 100/300kHz Tester : Anson Su

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	67.59	-17.88	30.69	12.81	40.00	-27.19	QP
2	174.04	-13.38	35.23	21.85	43.50	-21.65	QP
3	246.92	-13.16	43.64	30.48	46.00	-15.52	QP
4	255.96	-13.01	41.99	28.98	46.00	-17.02	QP
5	344.84	-10.29	36.60	26.31	46.00	-19.69	QP
6	723.94	-3.20	30.70	27.50	46.00	-18.50	QP

30MHz-1GHz_Vertical

Report No.: 2401Z104941E-RF-00C

Site : Chamber A
Condition : 3m Vertical
Project Number : 2401Z104941E-RF

Test Mode : 2.4G WIFI Transmitting

Detector: Peak RBW/VBW: 100/300kHz Tester : Anson Su

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	30.16	-6.04	33.00	26.96	40.00	-13.04	QP
2	34.13	-8.36	31.10	22.74	40.00	-17.26	QP
3	41.57	-13.52	27.30	13.78	40.00	-26.22	QP
4	63.73	-18.04	34.41	16.37	40.00	-23.63	QP
5	101.20	-15.61	34.48	18.87	43.50	-24.63	QP
6	245.74	-13.20	37.49	24.29	46.00	-21.71	QP

Above 1GHz:

Above IGHZ:									
Frequency (MHz)	Reading (dBμV)	PK/Ave	Polar (H/V)	Factor (dB/m)	Corrected Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)		
802.11b									
Low Channel									
4824.00	47.45	PK	Н	2.45	49.90	74	-24.10		
4824.00	33.96	AV	Н	2.45	36.41	54	-17.59		
4824.00	48.30	PK	V	2.45	50.75	74	-23.25		
4824.00	34.47	AV	V	2.45	36.92	54	-17.08		
			Middle	Channel		<u> </u>			
4874.00	48.21	PK	Н	2.56	50.77	74	-23.23		
4874.00	37.49	AV	Н	2.56	40.05	54	-13.95		
4874.00	49.14	PK	V	2.56	51.70	74	-22.30		
4874.00	38.02	AV	V	2.56	40.58	54	-13.42		
			High C	hannel					
4924.00	47.84	PK	Н	2.63	50.47	74	-23.53		
4924.00	37.13	AV	Н	2.63	39.76	54	-14.24		
4924.00	48.76	PK	V	2.63	51.39	74	-22.61		
4924.00	37.69	AV	V	2.63	40.32	54	-13.68		
			802	.11g					
			Low C	hannel					
4824.00	46.57	PK	Н	2.45	49.02	74	-24.98		
4824.00	32.61	AV	Н	2.45	35.06	54	-18.94		
4824.00	46.89	PK	V	2.45	49.34	74	-24.66		
4824.00	32.78	AV	V	2.45	35.23	54	-18.77		
			Middle	Channel					
4874.00	47.01	PK	Н	2.56	49.57	74	-24.43		
4874.00	33.06	AV	Н	2.56	35.62	54	-18.38		
4874.00	47.35	PK	V	2.56	49.91	74	-24.09		
4874.00	33.24	AV	V	2.56	35.80	54	-18.20		
High Channel									
4924.00	46.82	PK	Н	2.63	49.45	74	-24.55		
4924.00	32.95	AV	Н	2.63	35.58	54	-18.42		
4924.00	47.14	PK	V	2.63	49.77	74	-24.23		
4924.00	33.08	AV	V	2.63	35.71	54	-18.29		

Report No.: 2401Z104941E-RF-00C

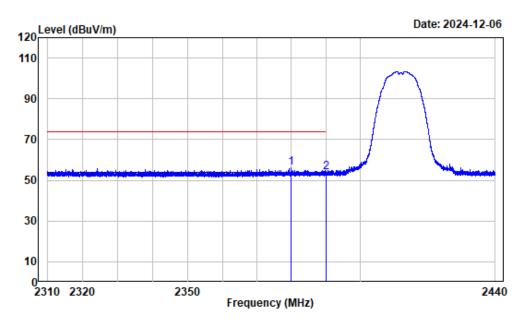
Frequency (MHz)	Reading (dBµV)	PK/Ave	Polar (H/V)	Factor (dB/m)	Corrected Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)			
	802.11n20									
Low Channel										
4824.00	46.46	PK	Н	2.45	48.91	74	-25.09			
4824.00	32.54	AV	Н	2.45	34.99	54	-19.01			
4824.00	46.75	PK	V	2.45	49.20	74	-24.80			
4824.00	32.69	AV	V	2.45	35.14	54	-18.86			
			Middle	Channel						
4874.00	46.95	PK	Н	2.56	49.51	74	-24.49			
4874.00	33.01	AV	Н	2.56	35.57	54	-18.43			
4874.00	47.22	PK	V	2.56	49.78	74	-24.22			
4874.00	33.17	AV	V	2.56	35.73	54	-18.27			
High Channel										
4924.00	46.79	PK	Н	2.63	49.42	74	-24.58			
4924.00	32.82	AV	Н	2.63	35.45	54	-18.55			
4924.00	47.07	PK	V	2.63	49.70	74	-24.30			
4924.00	32.96	AV	V	2.63	35.59	54	-18.41			

Report No.: 2401Z104941E-RF-00C

Note:

 $Corrected\ Factor = Antenna\ factor\ (RX) + Cable\ Loss - Amplifier\ Factor$

Corrected Amplitude = Corrected Factor + Reading


Margin = Corrected. Amplitude - Limit

The other spurious emission which is in the noise floor level was not recorded.

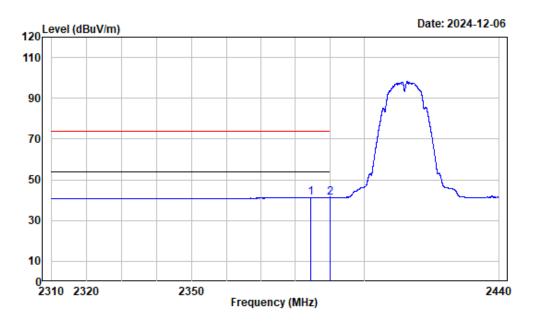
Test plots

Left Band edge_Horizontal_Peak_802.11b

Report No.: 2401Z104941E-RF-00C

Condition : Horizontal
Project No. : 2401Z104941E-RF

Tester : Zenos Qiao


Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

Note : 2.4GWiFi-b-2412

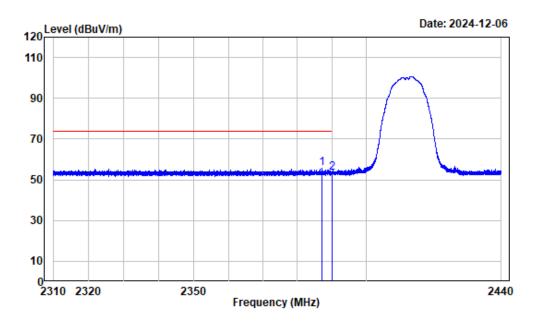
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2379.802	-3.19	59.22	56.03	74.00	-17.97	Peak
2	2390.000	-3.20	57.01	53.81	74.00	-20.19	Peak

Left Band edge_Horizontal_Average_802.11b

Report No.: 2401Z104941E-RF-00C

Condition : Horizontal
Project No. : 2401Z104941E-RF

Tester : Zenos Qiao


Spectrum setting: Average reading:RBW:1MHz VBW:10Hz Detector:Peak

Note : 2.4GWiFi-b-2412

Read Limit Over Line Limit Remark

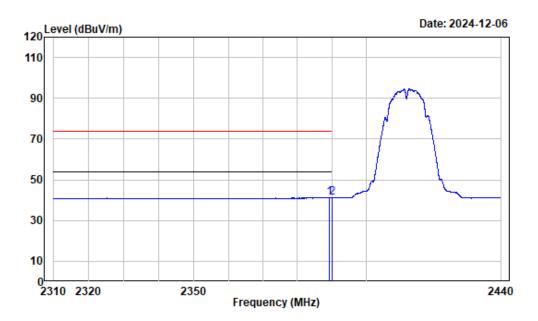
MHz dB/m dBuV dBuV/m dBuV/m dB dBuV/m dBuV/m

Left Band edge_Vertical_Peak_802.11b

Condition : Vertical

Project No. : 2401Z104941E-RF

Tester : Zenos Qiao


Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

Note : 2.4GWiFi-b-2412

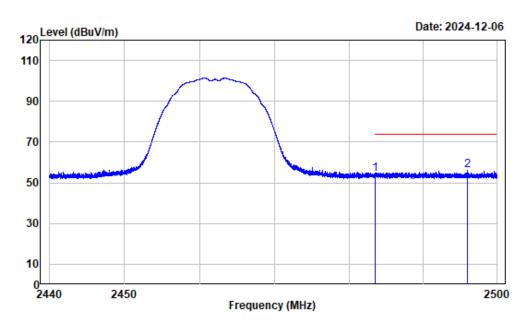
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2387.116	-3.19	58.69	55.50	74.00	-18.50	Peak
2	2390.000	-3.20	56.42	53.22	74.00	-20.78	Peak

Left Band edge_Vertical_Average_802.11b

Report No.: 2401Z104941E-RF-00C

Condition : Vertical

Project No. : 2401Z104941E-RF

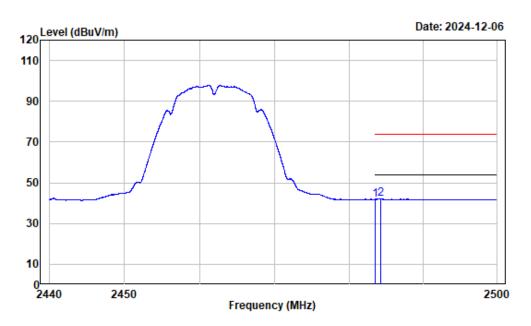

Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:10Hz Detector:Peak

Note : 2.4GWiFi-b-2412

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2389.212	-3.20	44.41	41.21	54.00	-12.79	Average
2	2390.000	-3.20	44.30	41.10	54.00	-12.90	Average

Right Band edge_Horizontal_Peak_802.11b


Condition : Horizontal
Project No. : 2401Z104941E-RF

Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

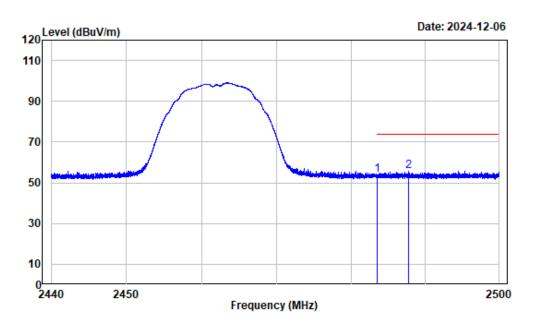
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	57.49	54.32	74.00	-19.68	Peak
2	2495.919	-3.19	59.32	56.13	74.00	-17.87	Peak

Right Band edge_Horizontal_Average_802.11b

Condition : Horizontal
Project No. : 2401Z104941E-RF

Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:10Hz Detector:Peak


Note : 2.4GWiFi-b-2462

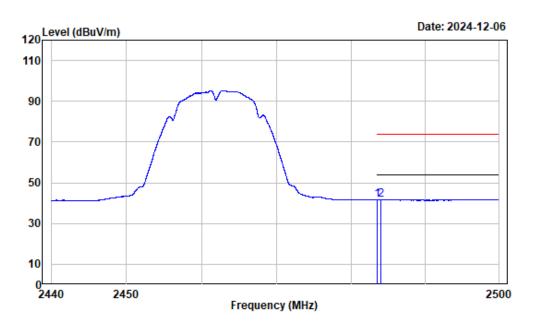
Read Limit Over Level Level Line Limit Remark

MHz dB/m dBuV/m dBuV/m dBuV/m dB

1 2483.500 -3.17 45.05 41.88 54.00 -12.12 Average
2 2484.248 -3.17 45.22 42.05 54.00 -11.95 Average

Right Band edge_Vertical_Peak_802.11b

Condition : Vertical


Project No. : 2401Z104941E-RF

Tester : Zenos Qiao

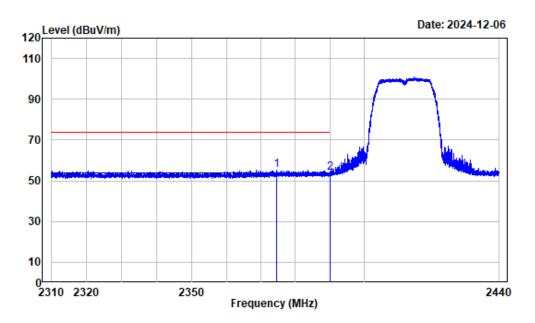
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	57.08	53.91	74.00	-20.09	Peak
2	2487.706	-3.18	58.94	55.76	74.00	-18.24	Peak

Right Band edge_Vertical_Average_802.11b

Condition : Vertical

Project No. : 2401Z104941E-RF


Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:10Hz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	44.73	41.56	54.00	-12.44	Average
2	2484.038	-3.17	44.86	41.69	54.00	-12.31	Average

Left Band edge_Horizontal_Peak_802.11g

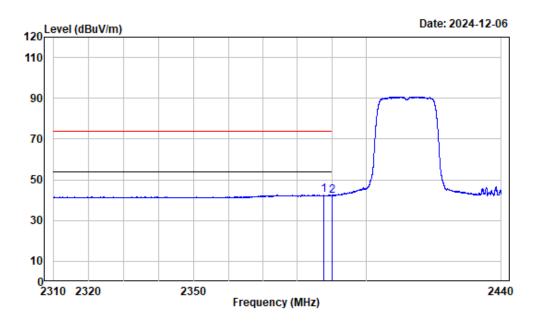
Report No.: 2401Z104941E-RF-00C

Condition : Horizontal Project No. : 2401Z104941E-RF

Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

Note : 2.4GWiFi-g-2412


Read Limit Over
Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

1 2374.586 -3.18 58.63 55.45 74.00 -18.55 Peak
2 2390.000 -3.20 57.24 54.04 74.00 -19.96 Peak

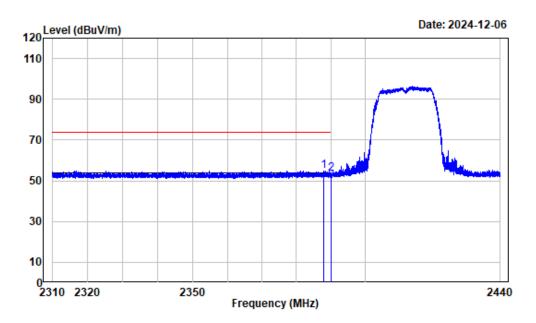
Left Band edge_Horizontal_Average_802.11g

Report No.: 2401Z104941E-RF-00C

Condition : Horizontal
Project No. : 2401Z104941E-RF

Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak


Note : 2.4GWiFi-g-2412

Read Limit Over Level Level Line Limit Remark

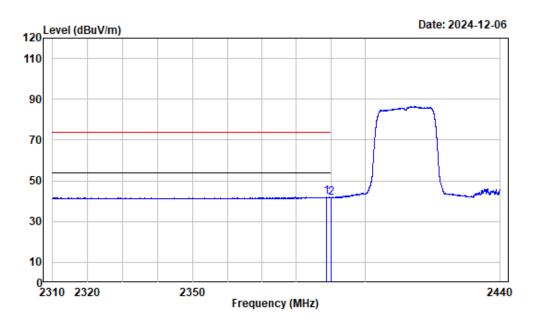
MHz dB/m dBuV dBuV/m dBuV/m dB dBuV/m dBuV/m Limit Remark

1 2387.668 -3.20 45.70 42.50 54.00 -11.50 Average 2 2390.000 -3.20 45.41 42.21 54.00 -11.79 Average

Left Band edge_Vertical_Peak_802.11g

Condition : Vertical

Project No. : 2401Z104941E-RF


Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2387.831	-3.20	58.21	55.01	74.00	-18.99	Peak
2	2390.000	-3.20	56.85	53.65	74.00	-20.35	Peak

Left Band edge_Vertical_Average_802.11g

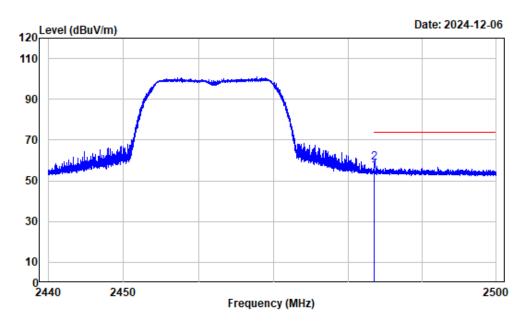
Report No.: 2401Z104941E-RF-00C

Condition : Vertical

Project No. : 2401Z104941E-RF

Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

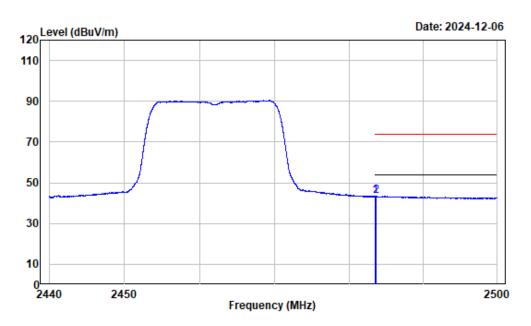

Note : 2.4GWiFi-g-2412

Read Limit Over
Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dBuV/m dB

1 2388.627 -3.20 45.23 42.03 54.00 -11.97 Average
2 2390.000 -3.20 44.89 41.69 54.00 -12.31 Average

TR-EM-RF004 Page 44 of 94 Version 4.0

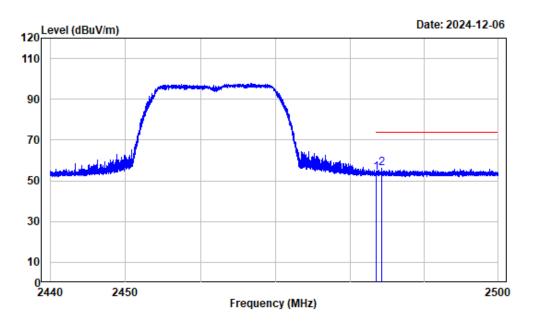

Condition : Horizontal
Project No. : 2401Z104941E-RF

Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	2483.500	-3.17	57.78	54.61	74.00	-19.39	Peak	
2	2483.558	-3.17	61.96	58.79	74.00	-15.21	Peak	

Right Band edge_Horizontal_Average_802.11g


Condition : Horizontal
Project No. : 2401Z104941E-RF

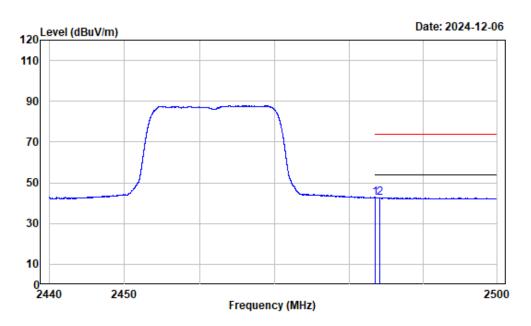
Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

Note : 2.4GWiFi-g-2462

Right Band edge_Vertical_Peak_802.11g

Condition : Vertical


Project No. : 2401Z104941E-RF

Tester : Zenos Qiao

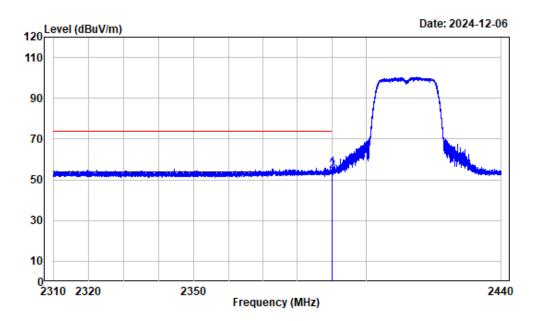
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	2483.500	-3.17	57.09	53.92	74.00	-20.08	Peak	
2	2484.256	-3.17	59.38	56.21	74.00	-17.79	Peak	

Right Band edge_Vertical_Average_802.11g

Condition : Vertical

Project No. : 2401Z104941E-RF


Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

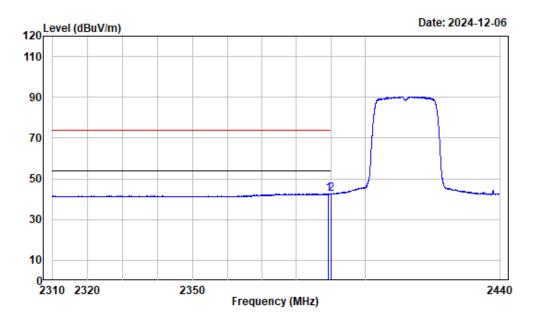
Note : 2.4GWiFi-g-2462

Left Band edge_Horizontal_Peak_802.11n-HT20

Report No.: 2401Z104941E-RF-00C

Condition : Horizontal
Project No. : 2401Z104941E-RF

Tester : Zenos Qiao


Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

Note : 2.4GWiFi-n20-2412

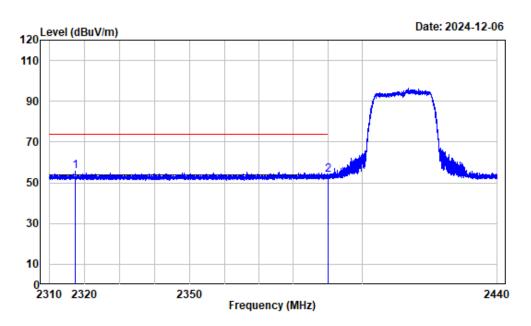
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2389.976	-3.20	59.09	55.89	74.00	-18.11	Peak
2	2390.000	-3.20	57.43	54.23	74.00	-19.77	Peak

TR-EM-RF004 Page 49 of 94 Version 4.0

Left Band edge_Horizontal_Average_802.11n-HT20

Condition : Horizontal
Project No. : 2401Z104941E-RF

Tester : Zenos Qiao


Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

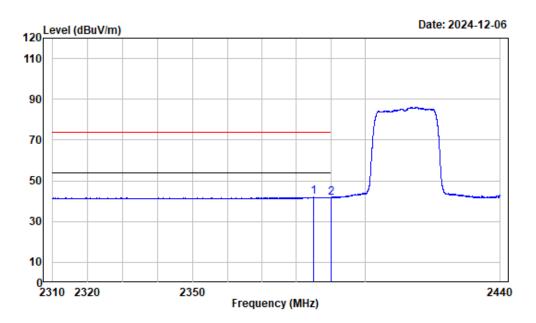
Note : 2.4GWiFi-n20-2412

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	2389.375	-3.20	45.93	42.73	54.00	-11.27	Average	
2	2390.000	-3.20	45.75	42.55	54.00	-11.45	Average	

TR-EM-RF004 Page 50 of 94 Version 4.0

Left Band edge_Vertical_Peak_802.11n-HT20

Condition : Vertical


Project No. : 2401Z104941E-RF

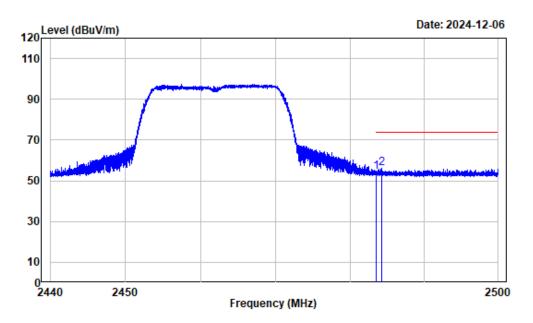
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2317.297	-3.10	58.68	55.58	74.00	-18.42	Peak
2	2390.000	-3.20	57.19	53.99	74.00	-20.01	Peak

Left Band edge_Vertical_Average_802.11n-HT20

Condition : Vertical

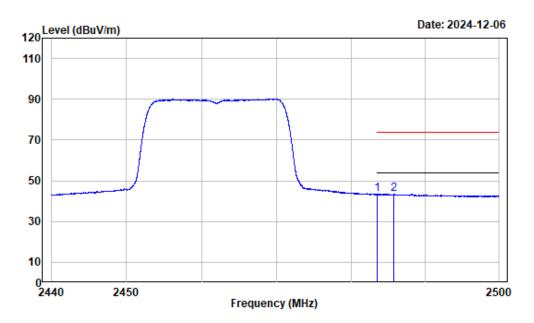

Project No. : 2401Z104941E-RF

Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2384.954	-3.20	45.20	42.00	54.00	-12.00	Average
2	2390.000	-3.20	44.90	41.70	54.00	-12.30	Average

Right Band edge_Horizontal_Peak_802.11n-HT20

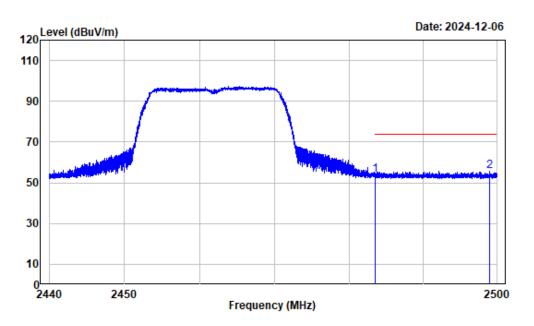

Condition : Horizontal
Project No. : 2401Z104941E-RF

Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	57.59	54.42	74.00	-19.58	Peak
2	2484.233	-3.17	59.43	56.26	74.00	-17.74	Peak

Right Band edge_Horizontal_Average_802.11n-HT20


Condition : Horizontal
Project No. : 2401Z104941E-RF

Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

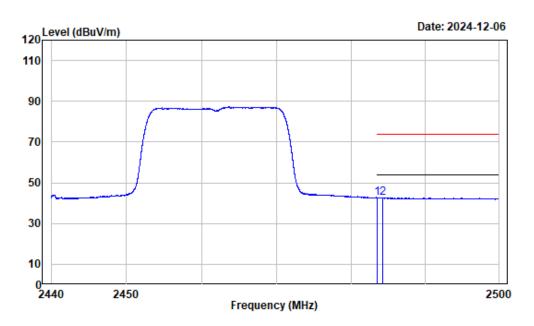
	Freq	Factor			Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	46.47	43.30	54.00	-10.70	Average
2	2485.786	-3.17	46.54	43.37	54.00	-10.63	Average

Right Band edge_Vertical_Peak_802.11n-HT20

Condition : Vertical

Project No. : 2401Z104941E-RF

Tester : Zenos Qiao


Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

Note : 2.4GWiFi-n20-2462

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	57.26	54.09	74.00	-19.91	Peak
2	2499.010	-3.20	58.89	55.69	74.00	-18.31	Peak

TR-EM-RF004 Page 55 of 94 Version 4.0

Right Band edge_Vertical_Average_802.11n-HT20

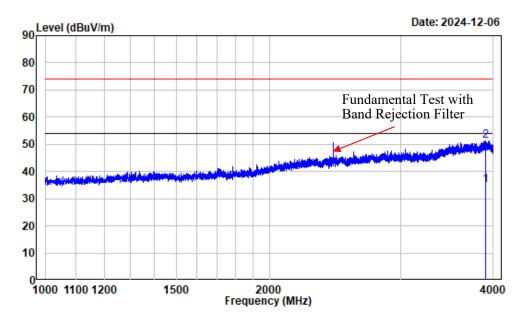
Condition : Vertical

Project No. : 2401Z104941E-RF

Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

Note : 2.4GWiFi-n20-2462


	Freq	Factor			Limit		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1 24	83.500	-3.17	45.85	42.68	54.00	-11.32	Average	
2 24	84.210	-3.17	45.94	42.77	54.00	-11.23	Average	

TR-EM-RF004 Page 56 of 94 Version 4.0

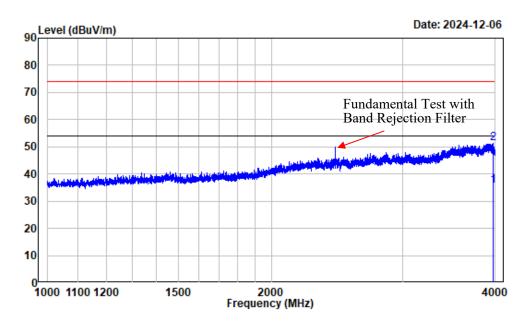
1-18GHz (Listed with the worst harmonic margin test plot)

1-4GHz_Horizontal_802.11b

Report No.: 2401Z104941E-RF-00C

Condition : Horizontal
Project No. : 2401Z104941E-RF

Tester : Zenos Qiao


Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	3911.489	-0.45	35.46	35.01	54.00	-18.99	Average
2	3911.489	-0.45	51.71	51.26	74.00	-22.74	Peak

1-4GHz_Vertical_802.11b

Report No.: 2401Z104941E-RF-00C

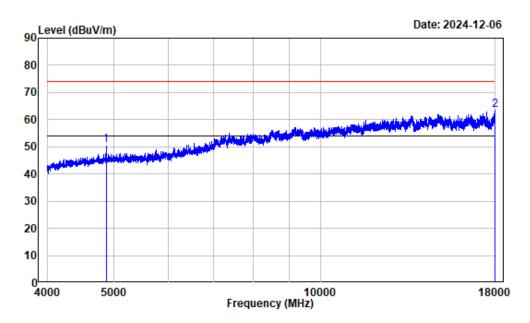
Condition : Vertical

Project No. : 2401Z104941E-RF

Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

: Average reading:RBW:1MHz VBW:1kHz Detector:Peak


Note : 2.4GWiFi-b-2437

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	3975.622	-0.19	35.78	35.59	54.00	-18.41	Average
2	3975.622	-0.19	51.64	51.45	74.00	-22.55	Peak

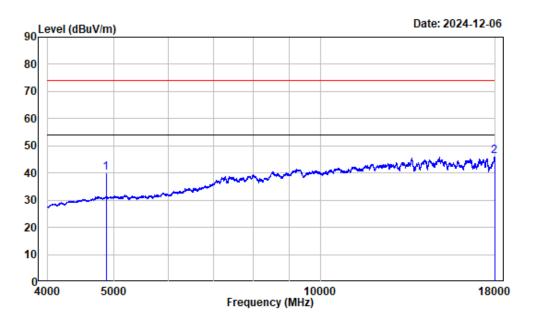
TR-EM-RF004 Page 58 of 94 Version 4.0

4-18GHz_Horizontal_Peak_802.11b

Report No.: 2401Z104941E-RF-00C

Condition : Horizontal
Project No. : 2401Z104941E-RF

Tester : Zenos Qiao

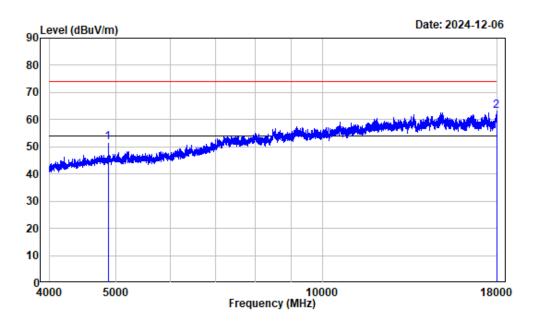

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

Note : 2.4GWiFi-b-2437

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4874.000	2.56	48.21	50.77	74.00	-23.23	Peak
2	17959.740	24.34	39.15	63.49	74.00	-10.51	Peak

TR-EM-RF004 Page 59 of 94 Version 4.0

4-18GHz_Horizontal_Average_802.11b


Condition : Horizontal
Project No. : 2401Z104941E-RF

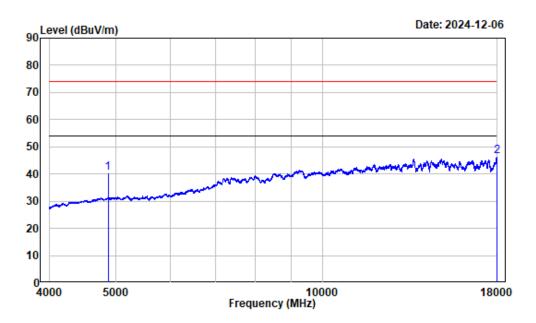
Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4874.000	2.56	37.49	40.05	54.00	-13.95	Average
2	17956.240	24.31	22.00	46.31	54.00	-7.69	Average

4-18GHz_Vertical_Peak_802.11b

Condition : Vertical


Project No. : 2401Z104941E-RF

Tester : Zenos Qiao

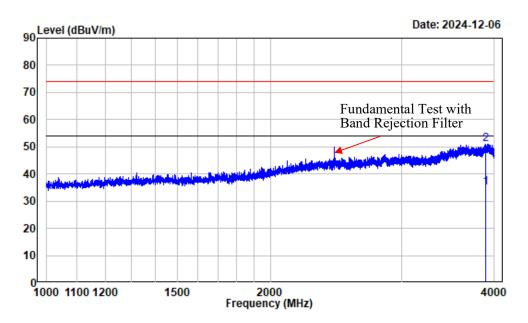
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4874.000	2.56	49.14	51.70	74.00	-22.30	Peak
2	17957.990	24.33	38.85	63.18	74.00	-10.82	Peak

4-18GHz_Vertical_Average_802.11b

Condition : Vertical

Project No. : 2401Z104941E-RF


Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

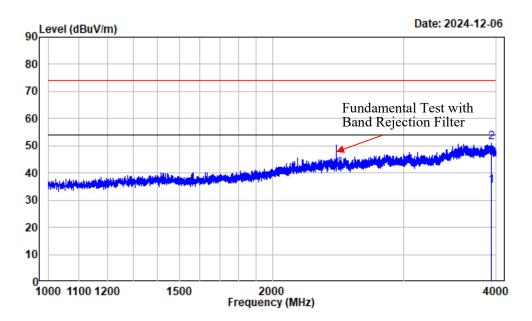
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4874.000	2.56	38.02	40.58	54.00	-13.42	Average
2	17959.740	24.34	22.18	46.52	54.00	-7.48	Average

1-4GHz_Horizontal_802.11g

Report No.: 2401Z104941E-RF-00C

Condition : Horizontal
Project No. : 2401Z104941E-RF

Tester : Zenos Qiao


Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	3899.488	-0.53	35.57	35.04	54.00	-18.96	Average
2	3899.488	-0.53	51.58	51.05	74.00	-22.95	Peak

1-4GHz_Vertical_802.11g

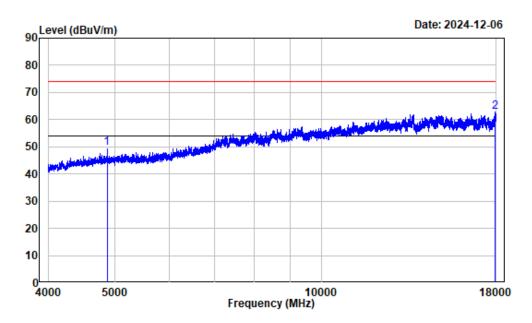
Report No.: 2401Z104941E-RF-00C

Condition : Vertical

Project No. : 2401Z104941E-RF

Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak


: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

Note : 2.4GWiFi-g-2437

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	3939.992	-0.24	35.69	35.45	54.00	-18.55	Average
2	3939.992	-0.24	51.57	51.33	74.00	-22.67	Peak

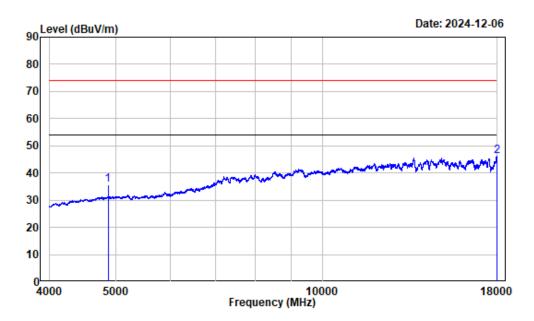
TR-EM-RF004 Page 64 of 94 Version 4.0

4-18GHz_Horizontal_Peak_802.11g

Condition : Horizontal
Project No. : 2401Z104941E-RF

Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

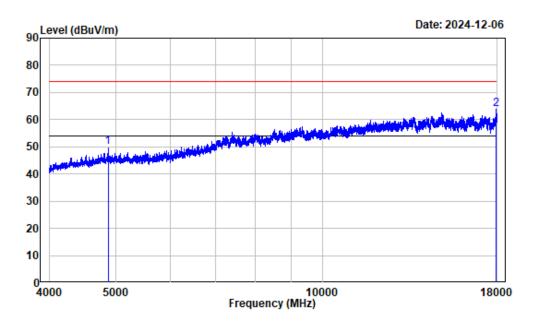

Note : 2.4GWiFi-g-2437

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4874.000	2.56	47.01	49.57	74.00	-24.43	Peak
2	17943.990	24.22	38.54	62.76	74.00	-11.24	Peak

TR-EM-RF004 Page 65 of 94 Version 4.0

4-18GHz_Horizontal_Average_802.11g

Report No.: 2401Z104941E-RF-00C


Condition : Horizontal
Project No. : 2401Z104941E-RF

Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

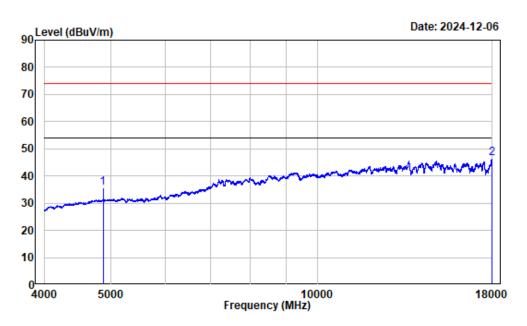
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4874.000	2.56	33.06	35.62	54.00	-18.38	Average
2	17959.740	24.34	21.77	46.11	54.00	-7.89	Average

4-18GHz_Vertical_Peak_802.11g

Condition : Vertical

Project No. : 2401Z104941E-RF

Tester : Zenos Qiao


Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

Note : 2.4GWiFi-g-2437

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4874.000	2.56	47.35	49.91	74.00	-24.09	Peak
2	17952.740	24.29	39.52	63.81	74.00	-10.19	Peak

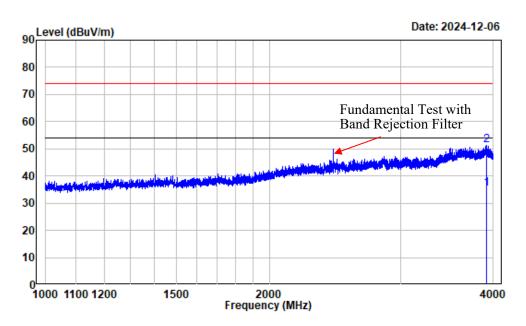
TR-EM-RF004 Page 67 of 94 Version 4.0

4-18GHz_Vertical_Average_802.11g

Condition : Vertical

Project No. : 2401Z104941E-RF

Tester : Zenos Qiao


Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

Note : 2.4GWiFi-g-2437

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	4874.000	2.56	33.24	35.80	54.00	-18.20	Average	
2	17959.740	24.34	22.09	46.43	54.00	-7.57	Average	

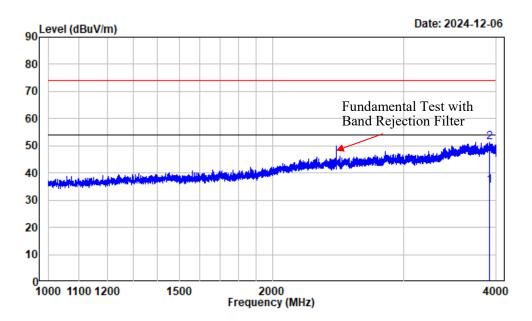
TR-EM-RF004 Page 68 of 94 Version 4.0

1-4GHz_Horizontal_802.11n-HT20

Condition : Horizontal
Project No. : 2401Z104941E-RF

Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak


: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

Note : 2.4GWiFi-n20-2437

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	3913.364	-0.43	35.63	35.20	54.00	-18.80	Average
2	3913.364	-0.43	51.56	51.13	74.00	-22.87	Peak

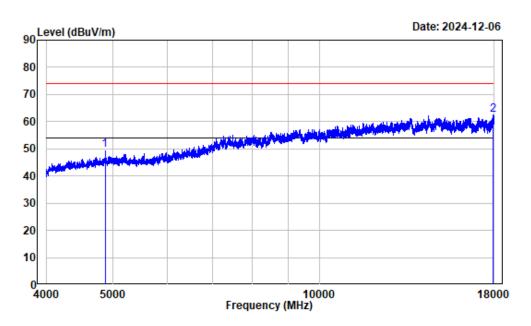
TR-EM-RF004 Page 69 of 94 Version 4.0

1-4GHz_Vertical_802.11n-HT20

Condition : Vertical

Project No. : 2401Z104941E-RF

Tester : Zenos Qiao


Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	3922.365	-0.37	35.81	35.44	54.00	-18.56	Average
2	3922.365	-0.37	51.71	51.34	74.00	-22.66	Peak

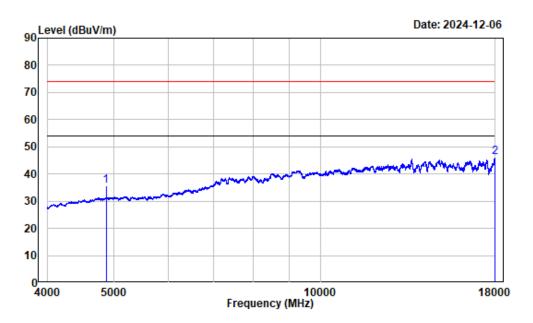
4-18GHz_Horizontal_Peak_802.11n-HT20

Report No.: 2401Z104941E-RF-00C

Condition : Horizontal
Project No. : 2401Z104941E-RF

Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

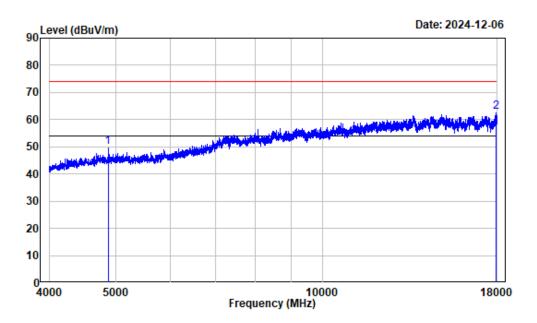

Note : 2.4GWiFi-n20-2437

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4874.000	2.56	46.95	49.51	74.00	-24.49	Peak
2	17942.240	24.21	38.40	62.61	74.00	-11.39	Peak

TR-EM-RF004 Page 71 of 94 Version 4.0

4-18GHz_Horizontal_Average_802.11n-HT20

Report No.: 2401Z104941E-RF-00C


Condition : Horizontal
Project No. : 2401Z104941E-RF

Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

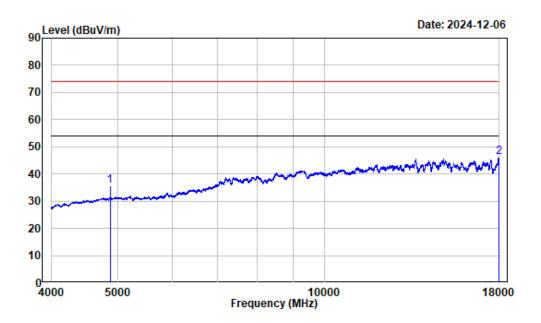
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4874.000	2.56	33.01	35.57	54.00	-18.43	Average
2	17959.740	24.34	21.81	46.15	54.00	-7.85	Average

4-18GHz_Vertical_Peak_802.11n-HT20

Condition : Vertical

Project No. : 2401Z104941E-RF

Tester : Zenos Qiao


Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

Note : 2.4GWiFi-n20-2437

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4874.000	2.56	47.22	49.78	74.00	-24.22	Peak
2	17929.990	24.12	38.65	62.77	74.00	-11.23	Peak

4-18GHz_Vertical_Average_802.11n-HT20

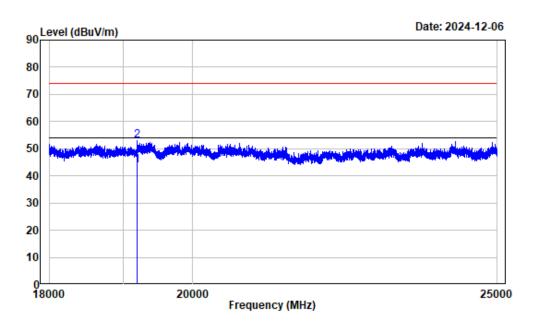
Report No.: 2401Z104941E-RF-00C

Condition : Vertical

Project No. : 2401Z104941E-RF

Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak


Note : 2.4GWiFi-n20-2437

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4874.000	2.56	33.17	35.73	54.00	-18.27	Average
2	17959.740	24.34	21.95	46.29	54.00	-7.71	Average

Report No.: 2401Z104941E-RF-00C

18-25GHz (Only with worst case margin mode plot):

18-25GHz_Horizontal_802.11b

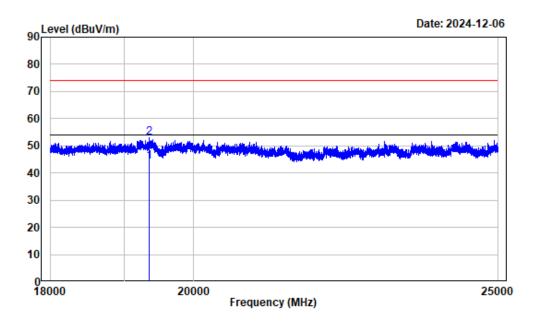
Condition : Horizontal
Project No. : 2401Z104941E-RF

Tester : Zenos Qiao

Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

Note : 2.4GWiFi-b-2437


Read Limit Over
Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dBuV/m dB

1 19202.400 15.32 28.54 43.86 54.00 -10.14 Average
2 19202.400 15.32 37.50 52.82 74.00 -21.18 Peak

18-25GHz_Vertical_802.11b

Report No.: 2401Z104941E-RF-00C

Condition : Vertical

Project No. : 2401Z104941E-RF

Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

Note : 2.4GWiFi-b-2437

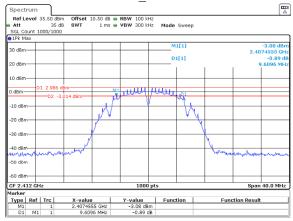
	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	19360.790	15.13	28.89	44.02	54.00	-9.98	Average	
2	19360.790	15.13	37.92	53.05	74.00	-20.95	Peak	

6dB Emission Bandwidth

Test Information:

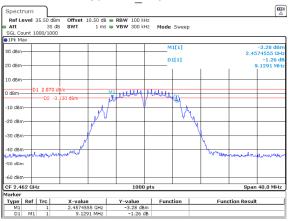
Sample No.:	2UIA-7	Test Date:	2024/11/30~2025/02/07
Test Site:	RF	Test Mode:	Transmitting
Tester:	Rainbow Zhu	Test Result:	Pass

Report No.: 2401Z104941E-RF-00C

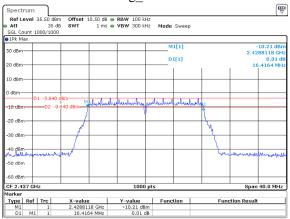

Temperature: (°C):	Relative Humidity: (%)	22.3~24	ATM Pressure: (kPa)	101.0~101.4
--------------------	------------------------------	---------	---------------------	-------------

Mode	Test Frequency (MHz)	Result (MHz)	Limit (MHz)	Verdict
	2412	9.610	≥0.5	Pass
802.11b	2437	9.650	≥0.5	Pass
	2462	9.129	≥0.5	Pass
	2412	16.416	≥0.5	Pass
802.11g	2437	16.416	≥0.5	Pass
	2462	16.416	≥0.5	Pass
	2412	17.658	≥0.5	Pass
802.11n20	2437	17.698	≥0.5	Pass
	2462	17.658	≥0.5	Pass

Report No.: 2401Z104941E-RF-00C

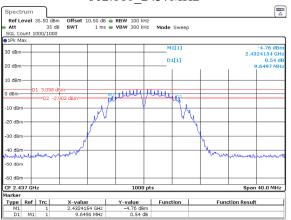

2412~2462

802.11b 2412MHz

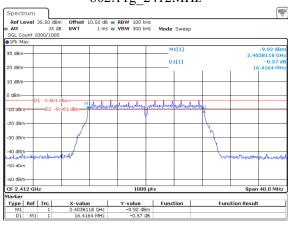

Date: 30.NOV.2024 14:16:08

802.11b 2462MHz

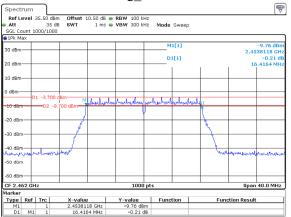
Date: 30.NOV.2024 14:20:11


802.11g 2437MHz

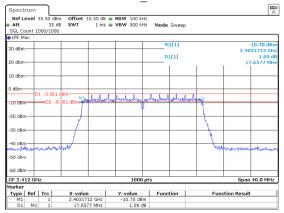
ProjectNo.:2401Z104941E-RF Tester:Rainbow Zhu Date: 7.FEB.2025 09:11:37


802.11b_2437MHz

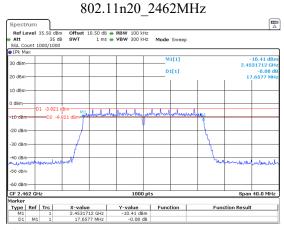
Report No.: 2401Z104941E-RF-00C


Date: 30.NOV.2024 14:18:19

802.11g_2412MHz

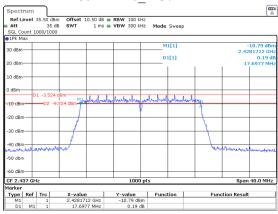

ProjectNo.:2401Z104941E-RF Tester:Rainbow Zhu Date: 7.FEB.2025 09:09:46

802.11g 2462MHz


ProjectNo.:2401Z104941E-RF Tester:Rainbow Zhu Date: 7.FEB.2025 09:13:37

802.11n20_2412MHz

ProjectNo.:2401Z104941E-RF Tester:Rainbow Zhu


000 11 00 0160 5

ProjectNo.:2401Z104941E-RF Tester:Rainbow Zhu Date: 30.NOV.2024 14:55:48

802.11n20_2437MHz

Report No.: 2401Z104941E-RF-00C

ProjectNo.:2401Z104941E-RF Tester:Rainbow Zhu

Date: 30 NOV 2024 14:53:3

Report No.: 2401Z104941E-RF-00C

Maximum Conducted Output Power

Test Information:

Sample No.:	2UIA-7	Test Date:	2024/11/30
Test Site:	RF	Test Mode:	Transmitting
Tester:	Rainbow Zhu	Test Result:	Pass

Temperature: (°C):	47	Relative Humidity: (%)	24	ATM Pressure: (kPa)	101
--------------------	----	------------------------------	----	---------------------	-----

Mode	Test Frequency (MHz)	Peak Output Power(dBm)	Average Output Power(dBm)	Limit (dBm)	Verdict
	2412	14.42	11.48	30	Pass
802.11b	2437	14.70	11.46	30	Pass
	2462	14.47	11.54	30	Pass
	2412	15.03	7.73	30	Pass
802.11g	2437	15.27	7.75	30	Pass
	2462	15.04	7.47	30	Pass
	2412	15.03	7.75	30	Pass
802.11n20	2437	15.28	8.00	30	Pass
	2462	15.01	7.66	30	Pass

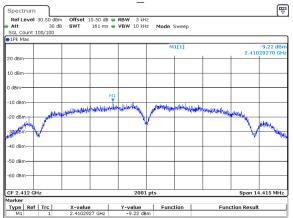
Report No.: 2401Z104941E-RF-00C

Power Spectral Density

Test Information:

Sample No.:	2UIA-7	Test Date:	2024/11/30~2025/02/07
Test Site:	RF	Test Mode: Transmitting	
Tester:	Rainbow Zhu	Test Result:	Pass

Report No.: 2401Z104941E-RF-00C

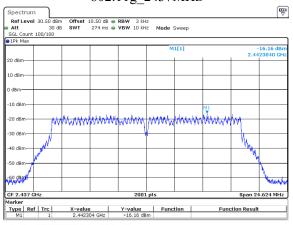

Temperature: 45~47 Relative Humidity	22.3~24 ATM Pressure (kPa	101.0~101.4
--------------------------------------	---------------------------	-------------

Mode	Test Frequency (MHz)	Result (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
	2412	-9.22	8	Pass
802.11b	2437	-9.95	8	Pass
	2462	-9.78	8	Pass
	2412	-16.10	8	Pass
802.11g	2437	-16.16	8	Pass
	2462	-16.65	8	Pass
	2412	-17.10	8	Pass
802.11n20	2437	-16.53	8	Pass
	2462	-16.72	8	Pass

Report No.: 2401Z104941E-RF-00C

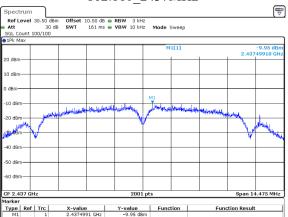
2412~2462

802.11b 2412MHz

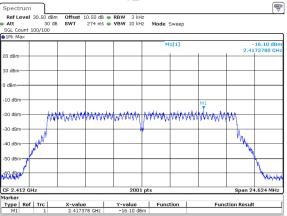

ProjectNo.:2401Z104941E-RF Tester:Rainbow Zhu Date: 6.FEB.2025 18:13:14

802.11b_2462MHz

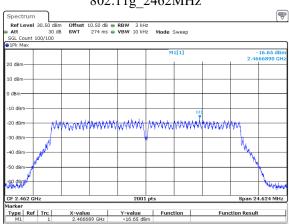
ProjectNo.:2401Z104941E-RF Tester:Rainbow Zhu Date: 6.FEB.2025 18:10:47


802.11g 2437MHz

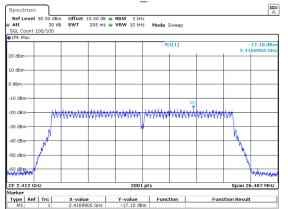
ProjectNo.:2401Z104941E-RF Tester:Rainbow Zhu Date: 7.FEB.2025 09:12:24


802.11b_2437MHz

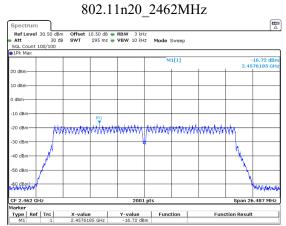
Report No.: 2401Z104941E-RF-00C


ProjectNo.:2401Z104941E-RF Tester:Rainbow Zhu Date: 6.FEB.2025 18:09:52

802.11g_2412MHz

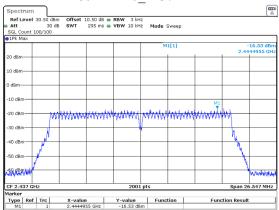

ProjectNo.:2401Z104941E-RF Tester:Rainbow Zhu Date: 7.FEB.2025 09:10:34

802.11g 2462MHz



ProjectNo.:2401Z104941E-RF Tester:Rainbow Zhu Date: 7.FEB.2025 09:14:26

802.11n20_2412MHz


ProjectNo.:2401Z104941E-RF Tester:Rainbow Zhu

ProjectNo.:2401Z104941E-RF Tester:Rainbow Zhu Date: 30.NOV.2024 14:57:01

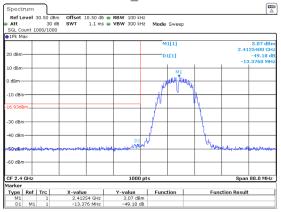
802.11n20_2437MHz

Report No.: 2401Z104941E-RF-00C

ProjectNo.:2401Z104941E-RF Tester:Rainbow Zhu

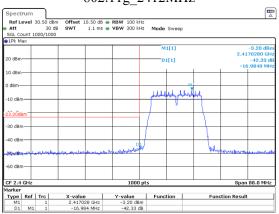
100 kHz Bandwidth of Frequency Band Edge

Test Information:

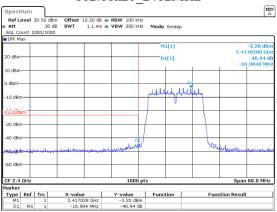

Sample No.:	2UIA-7	Test Date:	2024/11/30
Test Site:	RF	Test Mode:	Transmitting
Tester:	Rainbow Zhu	Test Result:	Pass

Report No.: 2401Z104941E-RF-00C

Temperature: (°C):	47	Relative Humidity: (%)	24	ATM Pressure: (kPa)	101
--------------------	----	------------------------------	----	---------------------	-----

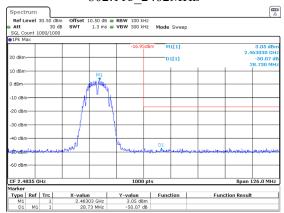

2412~2462

802.11b_2412MHz

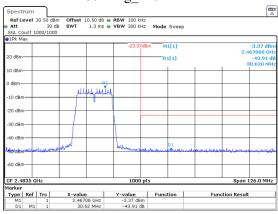

ProjectNo.:2401Z104941E-RF Tester:Rainbow Zhu

802.11g_2412MHz

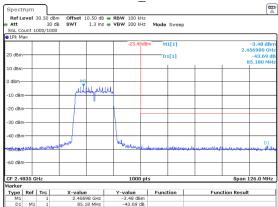
ProjectNo.:2401Z104941E-RF Tester:Rainbow Zhu Date: 30.NOV.2024 14:22:50


802.11n20 2412MHz

ProjectNo.:2401Z104941E-RF Tester:Rainbow Zhu Date: 30.NOV.2024 14:51:28


802.11b_2462MHz

Report No.: 2401Z104941E-RF-00C


ProjectNo.:2401Z104941E-RF Tester:Rainbow Zhu

802.11g_2462MHz

ProjectNo.:2401Z104941E-RF Tester:Rainbow Zhu Date: 30.NOV.2024 14:48:53

802.11n20 2462MHz

ProjectNo.:2401Z104941E-RF Tester:Rainbow Zhu

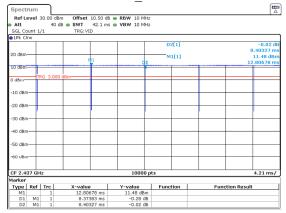
Report No.: 2401Z104941E-RF-00C

Duty Cycle

Test Information:

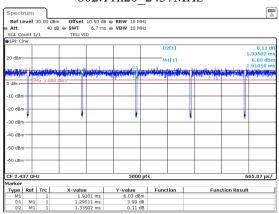
Sample No.:	2UIA-7	Test Date:	2024/11/30
Test Site:	RF	Test Mode:	Transmitting
Tester:	Rainbow Zhu	Test Result:	N/A

Temperature: (°C):	47	Relative Humidity: (%)	24	ATM Pressure: (kPa)	101
--------------------	----	------------------------------	----	---------------------	-----

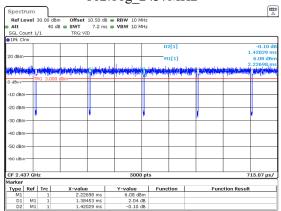

Mode	Test Frequency (MHz)	Ton (ms)	Ton+Toff (ms)	Duty Cycle (%)	Duty Cycle Factor(dB)	1/Ton (Hz)	VBW Setting (kHz)
802.11b	2437	8.374	8.403	99.65	/	/	0.010
802.11g	2437	1.385	1.420	97.54	0.11	722	1
802.11n20	2437	1.295	1.335	97.00	0.13	772	1

Report No.: 2401Z104941E-RF-00C

Duty Cycle = Ton/(Ton+Toff)*100%


2412~2462

802.11b_2437MHz


ProjectNo.:2401Z104941E-RF Tester:Rainbow Zhu

 $802.11n20_2437MHz$

ProjectNo.:2401Z104941E-RF Tester:Rainbow Zhu Date: 30.NOV.2024 14:13:26 802.11g_2437MHz

Report No.: 2401Z104941E-RF-00C

ProjectNo.:24012104941E-RF Tester:Rainbow Zhu

TR-EM-RF004 Page 91 of 94 Version 4.0

RF EXPOSURE EVALUATION

Applicable Standard

FCC§1.1310 and §2.1093.

Test Result

Compliance, please refer to the SAR report: $2403Z104949E-20^{\#}$, issued on 2025-02-20 by China Certification ICT Co., Ltd (Dongguan).

Report No.: 2401Z104941E-RF-00C

TR-EM-RF004 Page 92 of 94 Version 4.0

EUT PHOTOGRAPHS Please refer to the attachment 2401Z104941E-RF External photo and 2401Z104941E-RF Internal photo and 240	a Compliance Laboratories Corp. (Shenzhen)	Report No.: 2401Z104941E-RF-00C
	PHOTOGRAPHS	
		F External photo and 2401Z104941E-RF Internal photo.
	teres to the attachment 2 (012101) 112 It	External photo and 210121019112 Rt. Internal photo.

TR-EM-RF004 Page 93 of 94 Version 4.0

TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2401Z104941E-RF-00C Test Setup photo.

***** END OF REPORT *****

Report No.: 2401Z104941E-RF-00C

TR-EM-RF004 Page 94 of 94 Version 4.0