

Elliott Laboratories Inc. www.elliottlabs.com

684 West Maude Avenue Sunnwale, CA 94086-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to FCC Part 15, Subpart C (15.247) FHSS Specifications and Industry Canada RSS 210 Issue 5 for an Intentional Radiator on the Alien Technology Model: ALR-9640

FCC ID: UPN:	P65ALR9640 4370A-ALR9640
GRANTEE:	Alien Technology 18410 Butterfield Blvd, Ste 150 Morgan Hill, CA 95037
TEST SITE:	Elliott Laboratories, Inc. 684 W. Maude Avenue Sunnyvale, CA 94086

REPORT DATE: March 29, 2004

FINAL TEST DATE:

February 24, February 26 and March 24, 2004

AUTHORIZED SIGNATORY:

WBare

David W. Bare CTO

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

TABLE OF CONTENTS

COVER PAGE	1
TABLE OF CONTENTS	2
SCOPE	4
OBJECTIVE	4
SUMMARY OF RESULTS	5
MEASUREMENT UNCERTAINTIES	6
EQUIPMENT UNDER TEST (EUT) DETAILS	7
GENERAL	7
OTHER EUT DETAILS	7
ENCLOSURE	7
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION DURING TESTING ANTENNA REQUIREMENTS	
ANTENNA REQUIREMENTS	
GENERAL INFORMATION	9
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	10
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	10
POWER METER	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION	11 11
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	13

TABLE OF CONTENTS (Continued)

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	14
FCC 15.407 (A)AND RSS 210 (O) OUTPUT POWER LIMITS	
RSS 210 (O) AND FCC 15.247 SPURIOUS RADIATED EMISSIONS LIMITS	
FCC AC POWER PORT CONDUCTED EMISSIONS LIMITS	
RSS-210 SECTION 6.6 AC POWER PORT CONDUCTED EMISSIONS LIMITS	16
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	17
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
EXHIBIT 1: Test Equipment Calibration Data	1
EXHIBIT 2: Test Data Log Sheets	

SCOPE

An electromagnetic emissions test has been performed on the Alien Technology model ALR-9640 pursuant to Subpart C of Part 15 of FCC Rules for intentional radiators and RSS-210 Issue 5 for licence-exempt low power devices. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-2001 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Alien Technology model ALR-9640 and therefore apply only to the tested sample. The sample was selected and prepared by Greg Katterhagen of Alien Technology.

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart C of Part 15 of FCC Rules and RSS-210 Issue 5 for license-exempt low power devices for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units that are subsequently manufactured.

SUMMARY OF RESULTS

FCC Part 15 Section	RSS 210 Section	Description	Measured Value	Comments	Result
15.247(a)	6.2.2(o)(a)	20dB Bandwidth	373 kHz	The channel spacing shall be greater than the	Complies
15.247(a)	6.2.2(o)(a)	Channel Separation	400 kHz	20dB bandwidth	Complies
15.247(a)	6.2.2(o)(a)	Receiver bandwidth	Not measured	Refer to Theory of Operations	Complies
15.247(a)	6.2.2(o)(a)	Number of Channels	63	Average time of occupancy <0.4 second	Complies
15.247(a)	6.2.2(o)(a)	Channel Dwell Time	158.7 milliseconds per 10 seconds	within a 10 second period.	Complies
15.247(a)	6.2.2(o)(a)	Channel Utilization	All channels are used equally	Refer to Theory of Operations for detailed description of the hopping algorithm.	Complies
15.247 (b) (2)	6.2.2(o)(a)	Output Power,	29.7 dBm (0.993 Watts)	Maximum permitted is 1Watt, with EIRP limited to 4 Watts for a 50- channel system.	Complies
15.247(c)	6.2.2(o)(e1)	Conducted Spurious Emissions – 30MHz – 9.28GHz	All spurious emissions < -20dBc	All spurious emissions < -20dBc.	Complies
15.247(c) / 15.209		Radiated Spurious Emissions 30MHz – 9.28GHz	45.5 dBuV/m @ 960 MHz (-0.5dB)	Emissions in restricted bands must meet the radiated emissions limits detailed in 15.207. All others must be < -20dBc	Complies
15.207		AC Conducted Emissions	30.4 dBuV @ 3.233 MHz (-29.6dB)		Complies
	6.6	AC Conducted Emissions	30.4 dBuV @ 3.233 MHz (-17.6dB)		Complies
15.247 (b) (5)	RSS-212	RF Exposure Requirements	FCC /IC limits of power density not exceeded provided antenna is located a minimum of 23 cm from persons	Refer to MPE calculation for 23cm derivation. Refer to User's Guide for installation instructions requiring a 23cm separation	Complies
15.203		Integral Antenna	Dual feed, cross polarized linear patch	Integral antenna or specialized connector required	Complies

EIRP calculated using antenna gain of 6 dBi.

MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.6

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Alien Technology model ALR-9640 is a frequency hopping spread spectrum transceiver that is designed to read RFID tags in commercial and industrial locations, primarily in warehouses, for tracking high quantities of goods in and out of storage. It may also be installed in the receiving area of larger retail outlets. Normally, the EUT would be placed on a table top during operation. The EUT was, therefore, treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 120/240 V, 50/60 Hz, 1.5 Amps.

The sample was received on February 24, 2004 and tested on February 24, February 26 and March 24, 2004. The EUT consisted of the following component(s):

Manufacturer/Model/Description	Serial Number	Proposed FCC ID #
Alien Technology ALR-9640 Smart Antenna	-	P65ALR9640

OTHER EUT DETAILS

Under normal operating conditions, the device is used in a continuous mode to monitor for tags passing within the vicinity of the reader. This ensures that all hopping channels are used equally.

The system does not incorporate any intelligence to recognize other users within the spectrum band. It does not employ any means of coordinating frequency hopping to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

There are two receive channels that are parallel channels used to create spatial diversity for the received signal using two mixers, in the down conversion, of back scattered RF to base band. The RF input for both mixers originates at the same location in the system, which in this case is the RF output of an amplifier which is driven by the receive antenna. The LO inputs for each mixer originate from the same frequency hopping LO except that one LO signal path is physically phase shifted by 90 degrees. The base band output of the mixers form two IF chains with one being phase shifted by 90 degrees relative to the other. This allows for a backscattered signal, which could in a null on one channel due to phase cancellation (because of the distance between the reader and tag being conducive for this effect), to have a signal at a relative maximum on the other channel. This I/Q relationship compensates for backscatter phase cancellations due to the physical location of the tag to the reader i.e., when one channel is in a spatial null, the other channel is in a spatial maximum. The DSP circuitry selects the most robust signal to perform further signal processing.

ENCLOSURE

The EUT enclosure is primarily constructed of Plastic. It measures approximately 22 cm wide by 3 cm deep by 28 cm high.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with the emission specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer/Model/Description	Serial Number	FCC ID Number
Dell PP01L Laptop	526	-
PhiHong PSA31U-120 AC Adapter	-	-

No equipment was used as remote support equipment for emissions testing:

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port	Connected To		Cable(s)	
TOIL	Connected 10	Description	Shielded or Unshielded	Length(m)
Serial	Terminated	multiwire	Shielded	2
Ethernet	Laptop	CAT5	Unshielded	1
Serial	Laptop	multiwire	Shielded	1.5
Pwt in	AC adapter	2 wire	Unshielded	1
AC adapter in	AC Mains	2 wire	Unshielded	2

EUT OPERATION DURING TESTING

For transmitter tests, the device was transmitting continuously on the specified channel (spurious emissions measurements and power/bandwidth measurements) or hopping across all available channels (occupancy and channel spacing measurements). The transmissions consisted of pulses, 1.8ms long with a period of 5ms in continuous mode.

ANTENNA REQUIREMENTS

The antenna is an internal, dual feed, cross polarized linear patch, with a maximum of 6dBi gain.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on February 24, February 26 and March 24, 2004at the Elliott Laboratories Open Area Test Sites #1, 2 & 3 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Federal Communications Commission. In accordance with Industry Canada rules detailed in RSS 210 Issue 5 and RSS-212, construction, calibration, and equipment data for the test sites have been filed with the Federal Communications Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4-2001. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000 MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

POWER METER

A power meter and peak power sensor are used for all direct output power measurements from transmitters as they provide a broadband indication of the power output.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth that results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions that have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Measurement bandwidths (video and resolution) are set in accordance with FCC procedures for the type of radio being tested.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions from the AC power port are given in units of microvolts, the limits for radiated electric field emissions are given in units of microvolts per meter at a specified test distance and the output power limits are given in terms of Watts, milliwatts or dBm. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp) the following formula is used to determine the field strength limit in terms of microvolts per meter at a distance of 3m from the equipment under test:

 $E = \frac{1000000 \text{ v } 30 \text{ P}}{3} \text{ microvolts per meter}$

where P is the eirp (Watts)

For reference, converting the voltage and electric field strength specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. Conversion of power specification limits from linear units (in milliwatts) to decibel form (in dBm) is accomplished by taking the base ten logarithm, then multiplying by 10.

FCC 15.407 (a)and RSS 210 (o) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Number Of Channels	Output Power
902 - 928	>=50	1 W (30 dBm)
902 - 928	< 50	0.25 W (24 dBm)
2400 - 2483.5	>= 75	1 W (30 dBm)
2400 - 2483.5	>= 75	0.125 W (21 dBm)
5725 - 5850	>=75	1 W (30 dBm)

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

RSS 210 (o) AND FCC 15.247 SPURIOUS RADIATED EMISSIONS LIMITS

T limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands detailed in Part 15.205 and for all spurious emissions from the receiver are:

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest inband signal level.

FCC AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in FCC Part 15.207.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000 5.000 to 30.000	46.0 50.0	56.0 60.0

RSS-210 SECTION 6.6 AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in Industry Canada RSS-210 section 6.6.

Frequency		
Range	Limit	Limit
(MHz)	(uV)	(dBuV)
0.450 to 30.000	250	48

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

$$C - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

B = Broadband Correction Factor*

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

^{*} Broadband Level - Per ANSI C63.4, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

- $R_r = Receiver Reading in dBuV/m$
- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

EXHIBIT 1: Test Equipment Calibration Data

1 Page

Radiated Emissions, 30 - 2	26,500 MHz, 24-Feb-04			
Engineer: Chris Byleckie Manufacturer	Description	Model #	Asset #	Cal Due
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	487	24-Apr-04
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785	23-Jan-05
Hewlett Packard	EMC Spectrum Analyzer, Opt. 026 9 KHz - 26.5GHz	8593EM	1141	19-Mar-04
Hewlett Packard	High Pass filter, 3.5GHz	84300-80038	1157	11-Sep-04
Hewlett Packard	High Pass filter, 1.5GHz	P/N 84300-80037	1158	17-Apr-04
EMCO	Log Periodic Antenna, 0.2-2 GHz	3148	1321	31-Mar-04
Radiated Emissions, 30 - Engineer: Rod Wong	6,500 MHz, 26-Feb-04			
Manufacturer	Description	Model #	Asset #	Cal Due
Elliott Laboratories	Biconical Antenna, 30-300 MHz	EL30.300	773	18-Mar-04
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	12-Jan-05
Hewlett Packard	High Pass filter, 1.5GHz	P/N 84300-80037	1158	17-Apr-04
Hewlett Packard	EMC Spectrum Analyzer, 9KHz - 22GHz	8593EM	1319	20-Nov-04
EMCO	Log Periodic Antenna, 0.2-2 GHz	3148	1321	31-Mar-04
Rohde & Schwarz	Test Receiver, 0.009-2000 MHz	ESN	1332	24-Jul-04
	· · · · · · · · · · · · · · · · · · ·			
Radiated Emissions, 30 -	6,500 MHz, 26-Feb-04			
Engineer: Rod Wong				
<u>Manufacturer</u>	Description	<u>Model #</u>	<u>Asset #</u>	<u>Cal Due</u>
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	786	28-Feb-04
Conducted Emissions - A	C Power Ports, 26-Feb-04			
Engineer: Rod Wong		 <i>"</i>		
Manufacturer	Description	Model #	Asset #	
Elliott Laboratories	FCC / CISPR LISN	LISN-3, OATS	304	01-Jul-04
Solar Electronics Co	LISN	8028-50-TS-24-BNC support	904	07-Aug-04
Rohde & Schwarz	Test Receiver, 0.009-2000 MHz	ESN	1332	24-Jul-04
Rohde& Schwarz	Pulse Limiter	ESH3 Z2	1398	12-Jan-05
Radiated Emissions, 30 - Engineer: Juan Martinez	12,000 MHz, 24-Mar-04			
Manufacturer	Description	Model #	∆sset #	Cal Due
Narda West	High Pass Filter 1.9 GHz	HPF-161	248	26-Mar-04
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	240 487	20-101a1-04 24-Apr-04
Hewlett Packard	EMC Spectrum Analyzer 9kHz - 6.5GHz	8595EM	780	26-Feb-05
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	780 870	20-Feb-05 12-Jan-05
Rohde & Schwarz	Test Receiver, 9kHz-2750MHz	ESCS 30	870 1337	12-Jan-05 05-Jan-05
EMCO	Log Periodic Antenna, 0.2-2 GHz	2148	1337	05-Jan-05 28-Oct-04
LIVICO	LOY FEHOUR AIREINA, U.Z-Z GHZ	5140	1347	20-001-04

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

Radio T54583 30 Pages Digital T54583 10 Pages

Elliott

EMC Test Data

Job Number:	J54463
T-Log Number:	T54583
Account Manager:	Christine Vu
Class:	А
Environment:	
-	T-Log Number: Account Manager: Class:

EMC Test Data

For The

Alien Technology

Model

ALR-9640

Date of Last Test: 2/26/2004

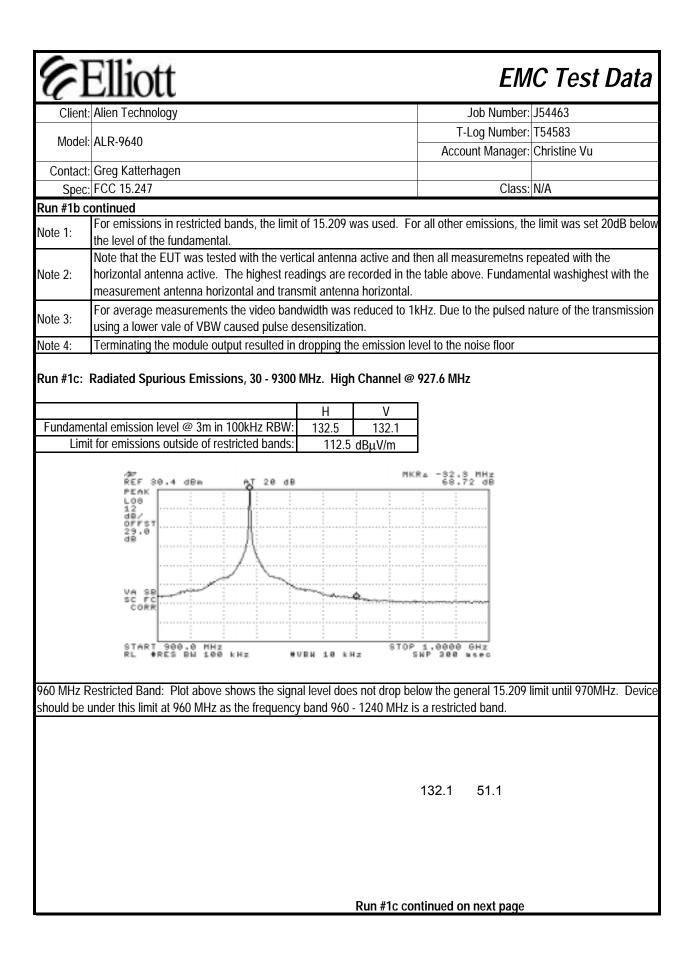
Ellio	t		ЕМ	C Test Data		
Client:	Alien Technology		Job Number:	J54463		
	ALR-9640		T-Log Number:			
	·	j	Account Manager:			
	Greg Katterhagen					
Emissions Spec:			Class:			
Immunity Spec:	Enter immunity spec on	cover	Environment:			
locations, primarily in w receiving area of larger	y hopping spread spectru varehouses, for tracking h retail outlets. Normally, f	UT INFORMATIC General Description im transceiver that is designed high quantities of goods in ar the EUT would be placed or tosting to simulate the ord	l led to read RFID tags in co nd out of storage. It may al n a table top during operat	lso be installed in the ion. The EUT was,		
is 120/240 V, 50/60 Hz,	, 1.5 Amps.	testing to simulate the end- Equipment Under Tes	st			
Manufacturer	Model	Description	Serial Number	FCC ID		
Alien Technology	ALR-9640	Smart Antenna	-	-		
The EUT enclosure is p	rimarily constructed of Pl	EUT Enclosure lastic. It measures approxin Modification History	1	ι deep by 28 cm high.		
Mod. #	Test D	Date	Modification			
1						
Modifications applied a	re assumed to be used or	n subsequent tests unless o	therwise stated as a furthe	er modification.		

Ellio				C Test Dat			
	: Alien Technology		Job Number: J54463				
Model	ALR-9640		T-Log Number: T				
			Account Manager: 0	Christine Vu			
	: Greg Katterhagen						
Emissions Spec			Class:	A			
Immunity Spec	Enter immunity spec on co	over	Environment:				
Manufacturer	Model	Description	Serial Number	FCC ID			
		•					
	Lo	cal Support Equipm	nent				
				FCC ID			
Dell	PP01L	Laptop	526	-			
PhiHong	PSA31U-120	AC adapter	-				
PhiHong Manufacturer None		AC adapter	ment Serial Number	FCC ID			
Manufacturer None	Ren Model Inte	note Support Equip	Serial Number	FCC ID			
Manufacturer	Ren Model	note Support Equip	Serial Number				
Manufacturer None	Ren Model Inte	note Support Equip Description rface Cabling and F	Serial Number Ports Cable(s)				
Manufacturer None Port	Ren Model Inte Connected To	note Support Equip Description rface Cabling and F	Serial Number Cable(s) Shielded or Unshielded	ed Length(n			
Manufacturer None Port Serial	Ren Model Inte Connected To Terminated	note Support Equip Description rface Cabling and F Description multiwire	Serial Number Ports Cable(s) Shielded or Unshielded Shielded	ed Length(m 2			
Manufacturer None Port Serial Ethernet	Ren Model Inte Connected To Terminated Laptop	note Support Equip Description rface Cabling and F Description multiwire CAT5	Serial Number Ports Cable(s) Shielded or Unshielded Unshielded	ed Length(n 2 1			

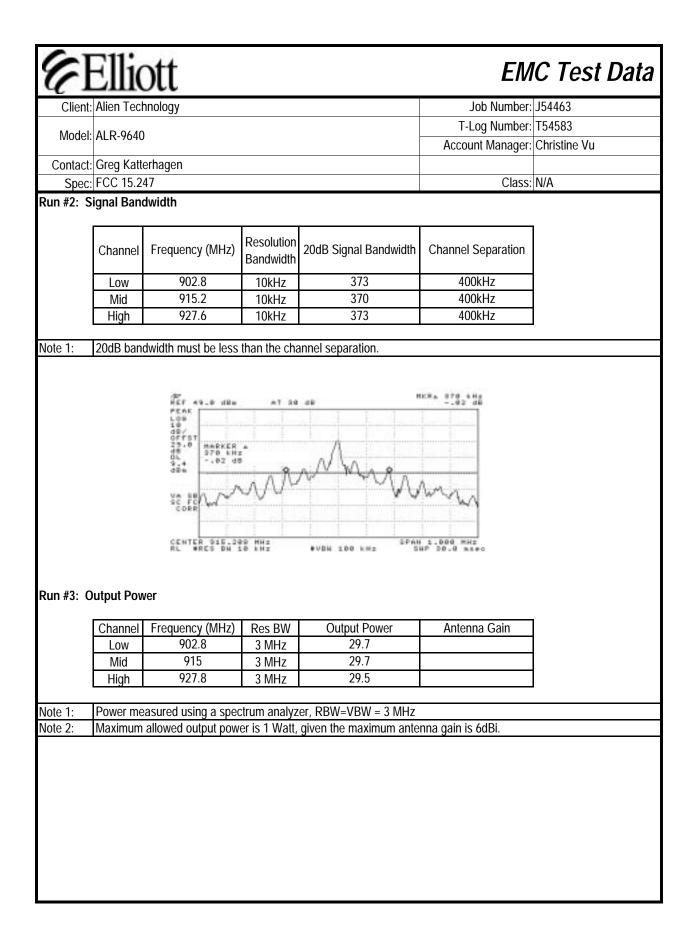
EUT Operation During Emissions

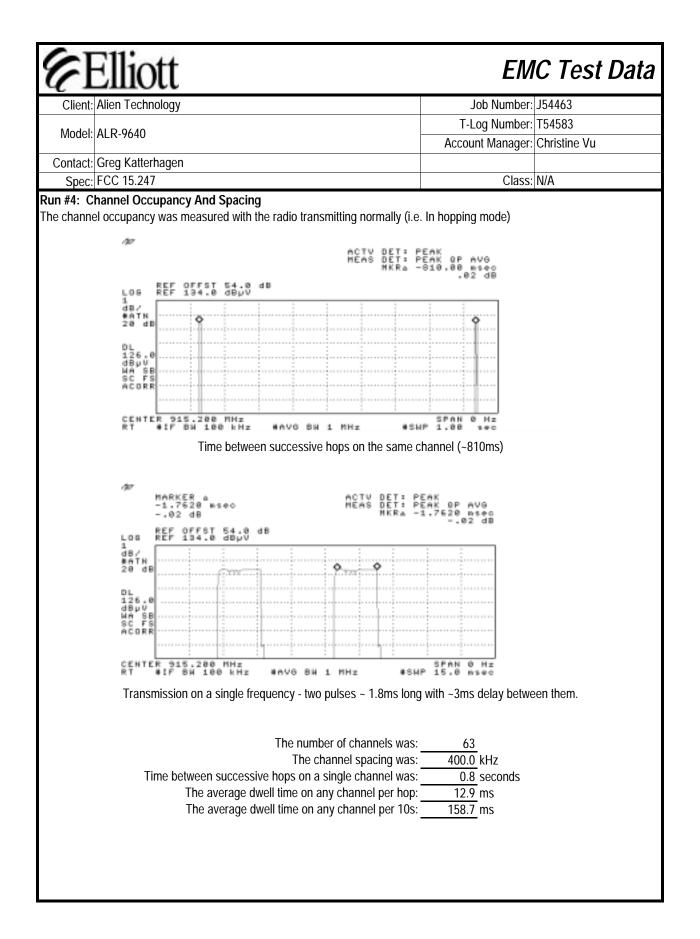
For transmitter tests the device was transmitting continuously on the specified channel (spurious emissions measurements and power/bandwidth measurements) or hopping across all available channels (occupancy and channel spacing measurements). The transmissions consisted of pulses, 1.8ms long with a period of 5ms in continuous mode.

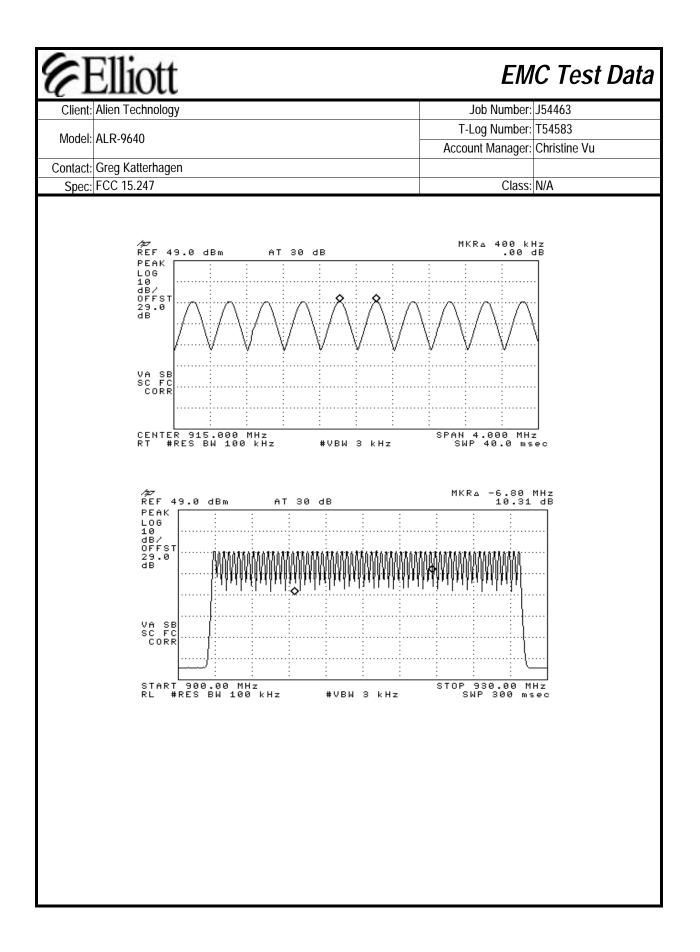
6 Ellio	ott		EMC Test Da				
Client: Alien Tecl	nnology		Job Number: J54463				
Model: ALR-9640			T-Log	Number:	T54583		
WOUEI. ALK-9040	Account Manager: Chris						
Contact: Greg Katt	-						
Spec: FCC 15.2	Class:	N/A					
	Rad	iated Emissio	ns				
Test Specifics							
Objective:	The objective of this test sessic specification listed above.	on is to perform final quali	fication testing	of the EU	IT with respect to	כ th	
Date of Test:	2/24/2004	Config. Used:					
Test Engineer:		Config Change:					
Test Location:	SVOATS #2	EUT Voltage:	120V/60Hz				
General Test Cor							
he EUT and all local	support equipment were locate	d on the turntable for radi	ated spurious	emissions	s testing.		
or radiated emission	s testing the measurement ante	enna was located 3 meters	s from the EUT	Γ.			
spectrum analyzer or	conducted emissions from the E power meter via a suitable atter for the external attenuators use	nuator to prevent overload	•				
	se the EUT was operating such		on either the l	ow, cente	r or high channe	ls.	
Ambient Conditio	DINS: Temperature: Rel. Humidity:						
Summary of Res	ults						
Run #	Test Performed	Limit	Result	Ма	argin		
1	RE, 30 - 10000 MHz - Spurious Emissions	FCC Part 15.209 / 15.247(c)	Pass				
2	20dB Bandwidth	15.247(a)	Pass	373	3kHz		
3	Output Power	15.247(b)	Pass	29.	7dBm		
4	Channel Occupancy / Separation	15.247(a)	Pass	40	0kHz		
5	Number of Channels	15.247(a)	Pass		63		
No modifications were	ide During Testing: e made to the EUT during testin The Standard	g	ıI		1		

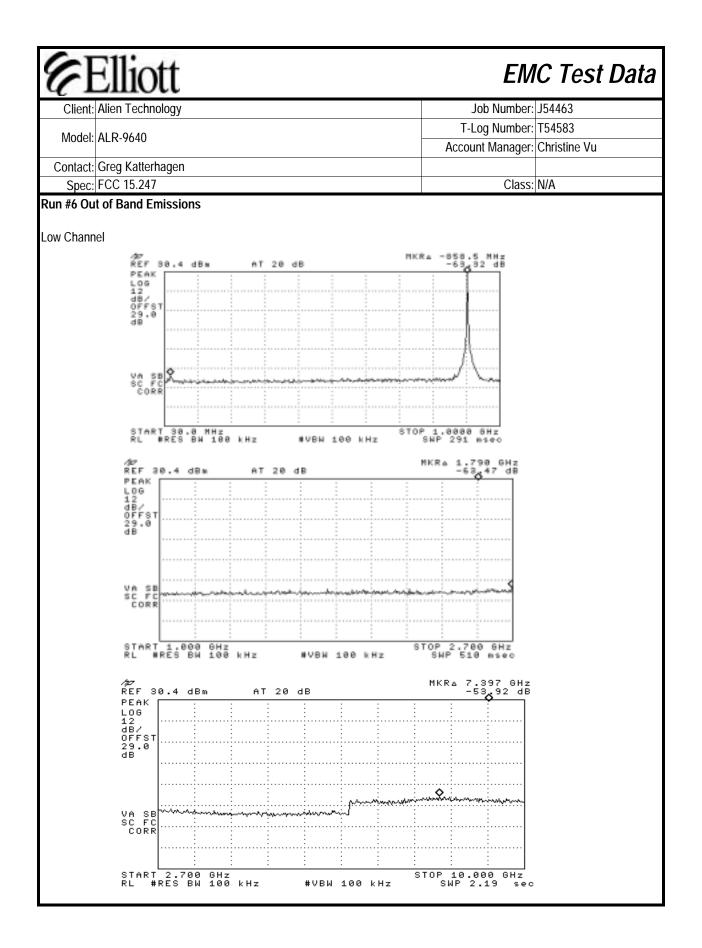

Client:	Alien Tech						J	ob Number: J54463		
							T-Log Number: T54583			
Model:	ALR-9640					nt Manager: Christine Vu				
Contact	Greg Katte	rhagen					710000			
	FCC 15.24	-						Class: N/A		
Spec.	100 13.24							01033. 11/1		
Run #1a:	Radiated S	purious	Emission	s, 30 - 9300	MHz. Low	Channel @ 9	02.8 MHz			
F			⊙)		H	V				
			@ 3m in 100		131.8	132.3				
LITTIL			ide of restric	leu parius:	112.3	dBµV/m				
requency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
UT antenr	na "horizon	tal"								
1805.200	92.0	V	112.3	-20.3	Peak	330	1.2	Not in restricted band, RBW=100kl		
2707.800	40.4	V	54.0	-13.6	Avg	20		Note 3		
2707.800	52.4	V	74.0	-21.6	pk	20	1.1			
4514.000	50.2	V	54.0	-3.8	Avg	345		Note 3		
4514.000	63.4	V	74.0	-10.6	pk	345	1.1			
5415.600	53.5	V	54.0	-0.5	Avg	13		Note 3		
5415.600	66.7	V	74.0	-7.3	pk	13	1.2			
1805.200	91.7	Н	112.3	-20.6	Peak	345		Not in restricted band, RBW=100kl		
2707.800	41.4	Н	54.0	-12.6	Avg	0		Note 3		
2707.800	52.5	Н	74.0	-21.5	pk	0	1.5			
4514.000	50.0	H	54.0	-4.0	Avg	40	1.6 1.6	Note 3		
4514.000	61.7	H H	74.0	-12.3	pk Ava	40 352	-	Noto 2		
5415.600 5415.600	56.9 68.3	H	54.0 74.0	2.9 -5.8	Avg	352	1.9	Note 3		
	na "vertical		74.0	-0.0	pk	30Z	1.9			
1805.200	92.2	V	112.3	-20.1	Peak	341	1.2	Not in restricted band, RBW=100kl		
2707.800	41.2	V	54.0	-12.8	Avg	0	1.0	Note 3		
2707.800	52.7	V	74.0	-21.3	pk	0	1.0			
4514.000	55.7	V	54.0	1.7	Avg	354	1.3	Note 3		
4514.000	64.2	V	74.0	-9.8	pk	354	1.3			
5415.600	48.0	V	54.0	-6.0	Avg	-	-	Note 3, Noise floor		
5415.600	59.9	٧	74.0	-14.1	pk	-	-	Note 3,Noise floor		
1805.200	95.2	Н	112.3	-17.1	Peak	336	2.2	Not in restricted band, RBW=100k		
2707.800	40.7	Н	54.0	-13.3	Avg	15	1.2	Note 3		
2707.800	53.2	Н	74.0	-20.8	pk	15	1.2			
4514.000	51.9	٧	54.0	-2.2	Avg	358	1.9	Note 3		
4514.000	61.0	٧	74.0	-13.0	pk	358	1.9			
5415.600	48.0	Н	54.0	-6.0	Åvg	-	-	Note 3,Noise floor		
5415.600	59.9	Н	74.0	-14.1	pk	-		Note 3,Noise floor		

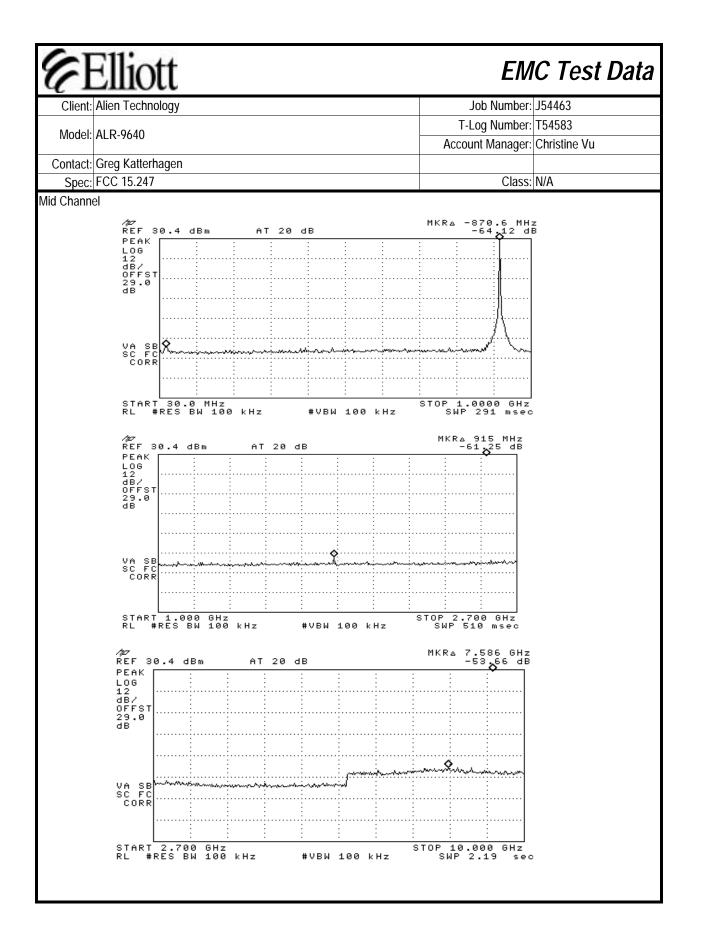
Run #1a continued on next page

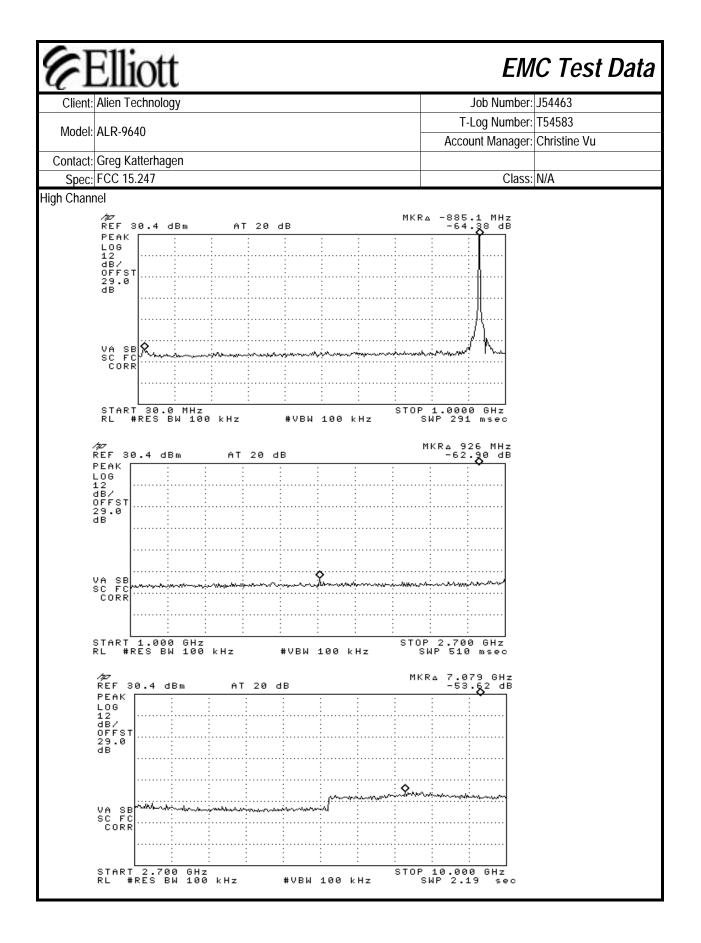

G	Elliott	EM	C Test Data
Client:	Alien Technology	Job Number:	J54463
Madal	ALR-9640	T-Log Number:	T54583
woder:	ALK-9040	Account Manager:	Christine Vu
Contact:	Greg Katterhagen		
Spec:	FCC 15.247	Class:	N/A
Run #1a co			
	For emissions in restricted bands, the limit of 15.209 was used. For	r all other emissions, the	e limit was set 20dB belov
	the level of the fundamental. Note that the EUT was tested with the vertical antenna active and the	non all moasuromotos r	oncated with the
	horizontal antenna active. The highest readings are recorded in the		
Note 2:	measurement antenna horizontal and transmit antenna horizontal.		
	polarized, the field strength dropped by about 3dB.		
Note 3:	For average measurements the video bandwidth was reduced to 1k	Hz. Due to the pulsed r	nature of the transmission
Note 3:	using a lower vale of VBW caused pulse desensitization.		


Client:	Alien Tech	nology					J	ob Number: J54463
Madal							T-L	og Number: T54583
Model:	ALR-9640						Accour	nt Manager: Christine Vu
Contact:	Greg Katte	erhagen						
Spec:	FCC 15.24	17						Class: N/A
Run #1b: F	Radiated S	Spuriou	s Emission	s, 30 - 9300	MHz. Cent	er Channel @	@ 915.2 MH	Z
					<u>г</u> т			
Fundamor	tal omissi	n lovol	@ 3m in 10		H 131.6	V 131.4		
			ide of restri			dBµV/m		
LIIIII					111.0	иσμν/п		
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
UT antenn	a "horizon	tal"						
1830.400	86.6	V	111.6	-25.0	Peak	332	1.0	Not in restricted band, RBW=100kl
2745.600	46.5	V	54.0	-7.5	Avg	36		Note 3
2745.600	54.8	V	74.0	-19.2	pk	36	1.6	
4576.000	54.1	V	54.0	0.1	Avg	356		Note 3
4576.000	66.5	V	74.0	-7.5	pk	356	1.3	
5491.200	56.9	V	54.0	2.9	Avg	335		Note 3
5491.200	70.8	V	74.0	-3.2	pk	335	1.3	
1830.400	91.3	Н	111.6	-20.3	Peak	345		Not in restricted band, RBW=100k
2745.600	42.2	Н	54.0	-11.8	Avg	0		Note 3
2745.600	51.2	Н	74.0	-22.8	pk	0	1.0	
4576.000	53.2	Н	54.0	-0.8	Avg	0		Note 3
4576.000	61.9	Н	74.0	-12.1	pk	0	1.0	
UT antenn					·			
1830.400	88.4	V	111.6	-23.3	Peak	329	1.0	Not in restricted band, RBW=100k
2745.600	43.5	V	54.0	-10.5	Avg	0	1.0	Note 3
2745.600	50.8	<u>V</u>	74.0	-23.2	pk	0	1.0	
4576.000	55.0	<u>V</u>	54.0	1.0	Avg	323	1.2	Note 3
4576.000	62.8	<u>V</u>	74.0	-11.2	pk	323	1.2	N-L-A
5491.200	57.7	V	54.0	3.7	Avg	332		Note 4
5491.200	68.4 07.4	V	74.0	-5.6	pk Dook	332	1.2	Note 3
1830.400 2745.600	87.6	H H	111.6 54.0	-24.1	Peak	347 0	1.0 1.0	Not in restricted band, RBW=100k Note 3
2745.600	42.6 53.7	<u>н</u> Н	54.0 74.0	-11.4 -20.3	Avg pk	0	1.0	
2745.000 4576.000	53.7 53.3	<u>н</u> Н	74.0 54.0	-20.3		342	1.0	Note 3
4576.000	62.8	<u>н</u>	74.0	-0.8	Avg pk	342	1.0	
4378.000 5491.200	02.0 54.0	<u>н</u>	54.0	0.0	рк Avg	342 341	1.0	
5491.200	65.2	H	74.0	-8.8	pk	341	1.0	Note 3
5771.200	00.Z	11	14.0	0.0	μκ	ודע	1.0	


Run #1b continued on next page




Client:	Alien Tech	nology					J	ob Number:	J54463
Model	ALR-9640						T-L	T54583	
MOUEI.	ALK-9040					Accour	nt Manager:	Christine Vu	
Contact:	Greg Katte	erhagen							
Spec:	FCC 15.24	17						Class:	N/A
Run #1c co	ontinued								
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
EUT anteni									
960.000		H	46.0	7.0	QP	350			nighest channel
960.000	62.1	H	46.0	16.1	QP	350			ping across all channels
1855.225	93.3	<u>H</u>	112.5	-19.2	Peak	40			icted band, RBW=100kH
1855.225	93.3	H V	112.5	-19.2	Peak	22			icted band, RBW=100kH
1855.225 1855.225	89.2 89.1	V V	112.5	-23.3	Peak	325			icted band, RBW=100kH icted band, RBW=100kH
2782.800	89.1 46.1	H	112.5 54.0	-23.4	Peak	340		Not in restri	icieu Danu, RBW=100KH
2782.800	40.1	<u>н</u> V	54.0 54.0	-7.9 -6.9	Avg Avg	0 12		Note 3	
2782.800	57.8	H	74.0	-0.9	pk Avg	0	1.4	NULE 3	
2782.825	54.7	H	74.0	-10.2	pk pk	350	1.0		
2782.825	56.5	V	74.0	-17.5	pk pk	12	1.0		
4638.000	49.8	V	54.0	-4.2	Avg	320		Note 3	
4638.000	66.2	V	74.0	-7.8	pk	320	1.2		
4638.000	48.8	H	54.0	-5.2	Avg	0		Note 3	
4638.000	64.7	Н	74.0	-9.3	pk	0	1.0		
EUT anteni	na "vertical	II							
1855.225	93.3	Н	112.5	-19.2	Peak	22	2.0	Not in restri	icted band, RBW=100kH
1855.225	89.1	V	112.5	-23.4	Peak	340			icted band, RBW=100kH
2782.800	44.7	Н	54.0	-9.3	Avg	350		Note 3	
2782.800	47.1	V	54.0	-6.9	Avg	20		Note 3	
2782.825	54.7	Н	74.0	-19.3	pk	350	1.0		
2782.825	57.2	V	74.0	-16.8	pk	20	1.2		
4638.000		V	54.0	-3.8	Avg	352		Note 3	
4638.000		<u>V</u>	74.0	-15.0	pk	352	1.0		
4638.000		<u>H</u>	54.0	-4.6	Avg	344		Note 3	
4638.000	59.8	Н	74.0	-14.2	pk	344	1.1		
	For omissi	ions in ra	stricted har	nds th∩limi	t of 15 200 w	as used For	all othor or	missions th	e limit was set 20dB belo
Note 1:	the level o			103, 1110 11111	UI 1J.207 W	as useu. I Ul		113310113, [[]]	
				with the ver	tical antenna	active and th	en all mea	surements r	epeated with the
Note 2:									ental was highest with the
VUIC 2.				-	ismit antenna				
							Hz Duo to	tha nulsad r	nature of the transmissio
Note 3:					desensitizatio			ine puiseu i	ומנטול טו נוול נומווסווווססוט
	using a ioi	wei vale	UI VDVV LAL	iscu puise (acochollizaliu	11.			



EMC Test Data Job Number: J54463 Client: Alien Technology T-Log Number: T54583 Model: ALR-9640 Account Manager: Christine Vu Contact: Greg Katterhagen Spec: FCC 15.247 Class: N/A **Radiated Emissions Test Specifics** The objective of this test session is to perform final qualification testing of the EUT with respect to the Objective: specification listed above. Date of Test: 2/24 & 3/24/2004 Config. Used: 1 Test Engineer: Mark Briggs & Juan Martinez Config Change: None Test Location: SVOATS #1 & #2 EUT Voltage: 120V/60Hz General Test Configuration The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT. Unless stated otherwise the EUT was operating such that it constantly hopped on either the low, center or high channels. 2/24/2004 3/24/2004 Ambient Conditions: Temperature: 12 11 °C Rel. Humidity: 45 35 % Summary of Results Run # Test Performed Limit Result Margin RE, 30 - 10,000 MHz -FCC Part 15.209 / -6.8dB @ 5415.65 MHz 1a Pass 15.247(c) **Spurious Emissions** RE, 30 - 10,000 MHz -FCC Part 15.209 / 1b -4.7dB @ 5491.25 MHz Pass Spurious Emissions 15.247(c) RE, 30 - 10,000 MHz -FCC Part 15.209 / -0.5dB @ 960 MHz 1c Pass Spurious Emissions 15.247(c) 2 20dB Bandwidth 15.247(a) 373kHz Pass 3 **Output Power** 15.247(b) 29.7dBm Pass Channel Occupancy / 4 15.247(a) 400kHz Pass Separation 5 Number of Channels 15.247(a) Pass 63

6	Elliott	EMC Test Data		
Client:	Alien Technology	Job Number:	J54463	
Madal	ALR-9640	T-Log Number:	T54583	
	AEK-7040	Account Manager:	Christine Vu	
	Greg Katterhagen			
Spec:	FCC 15.247	Class:	N/A	

Modifications Made During Testing:

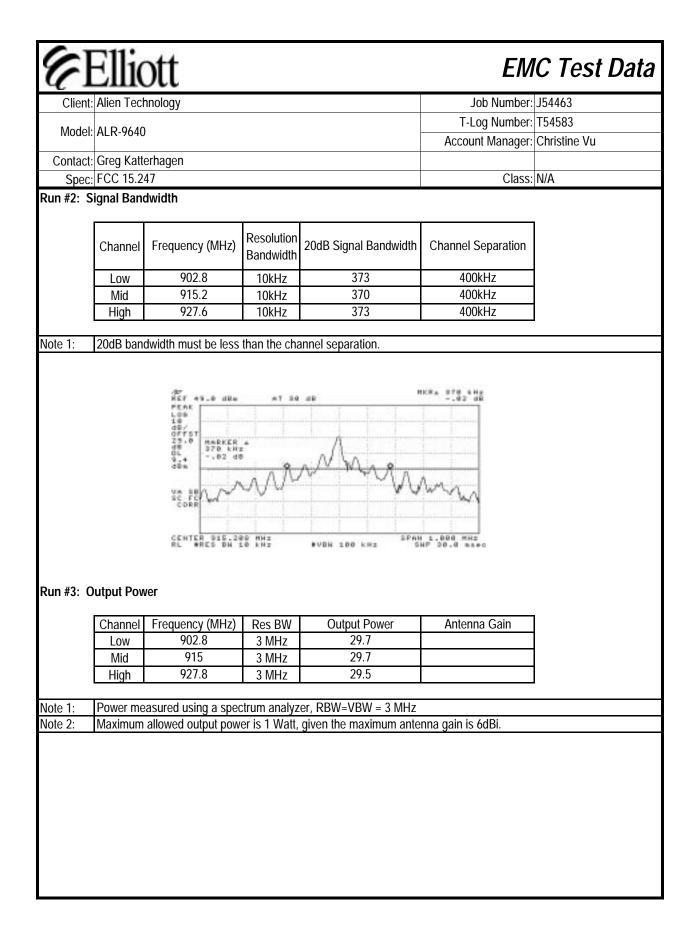
No modifications were made to the EUT during testing. Prior to testing, the transmitter modulation circuit was changed to linear modulation and the radio to antenna cable was changed to hard line.

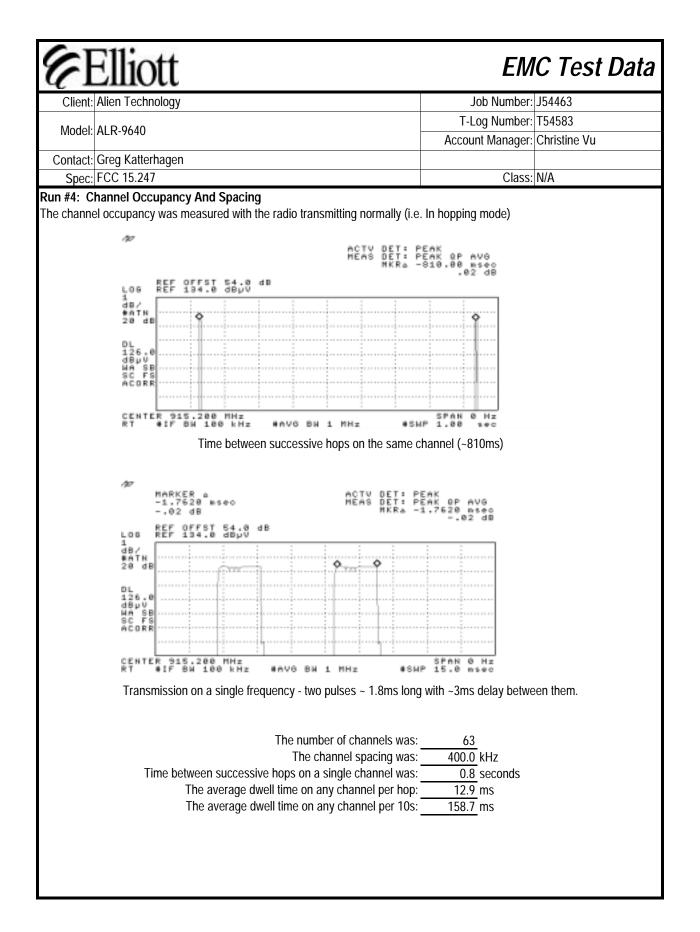
Deviations From The Standard

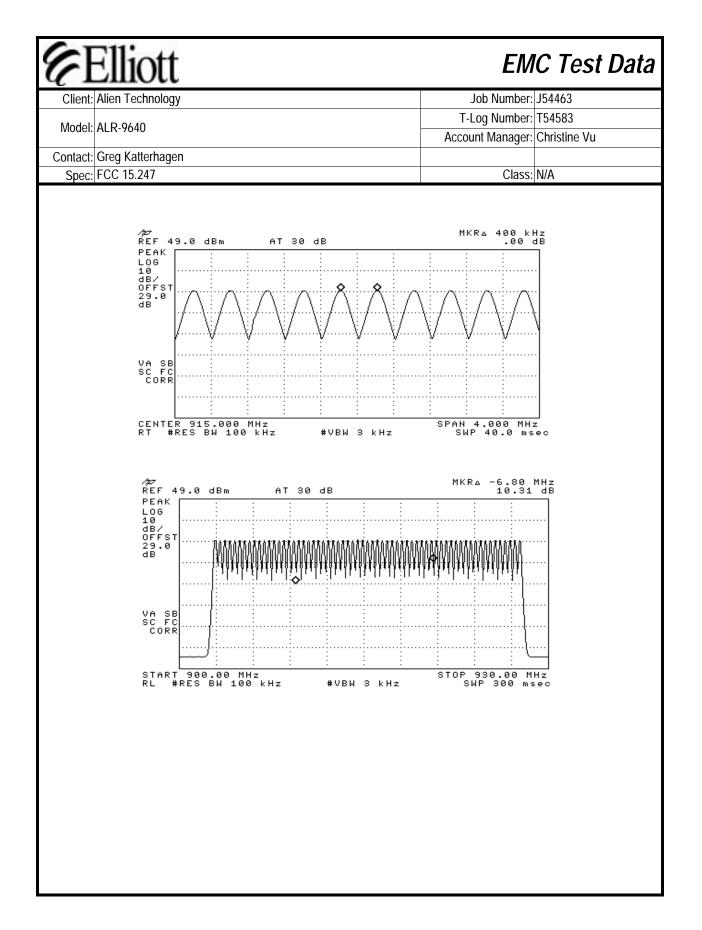
CEll: 4

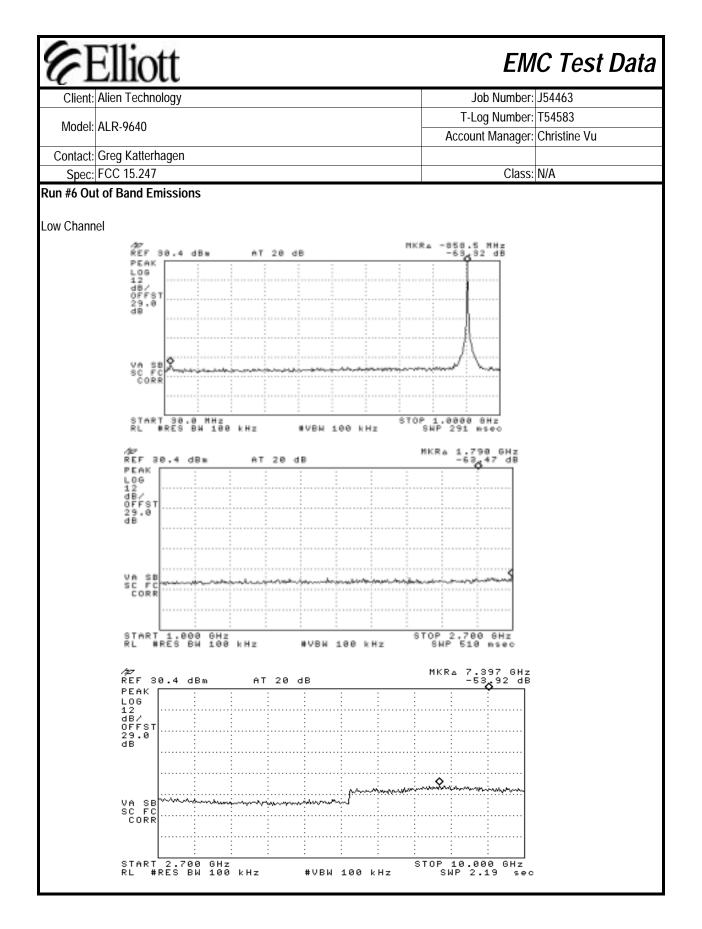
No deviations were made from the requirements of the standard.

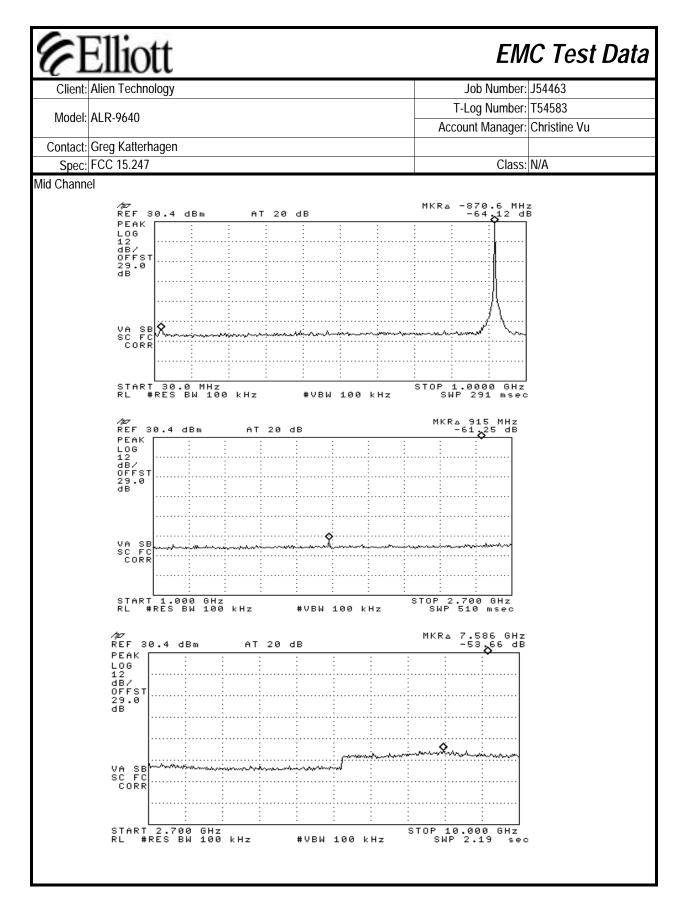
Run #1a: Radiated Spurious Emissions, 30 - 10,000 MHz. Low Channel @ 902.8 MHz

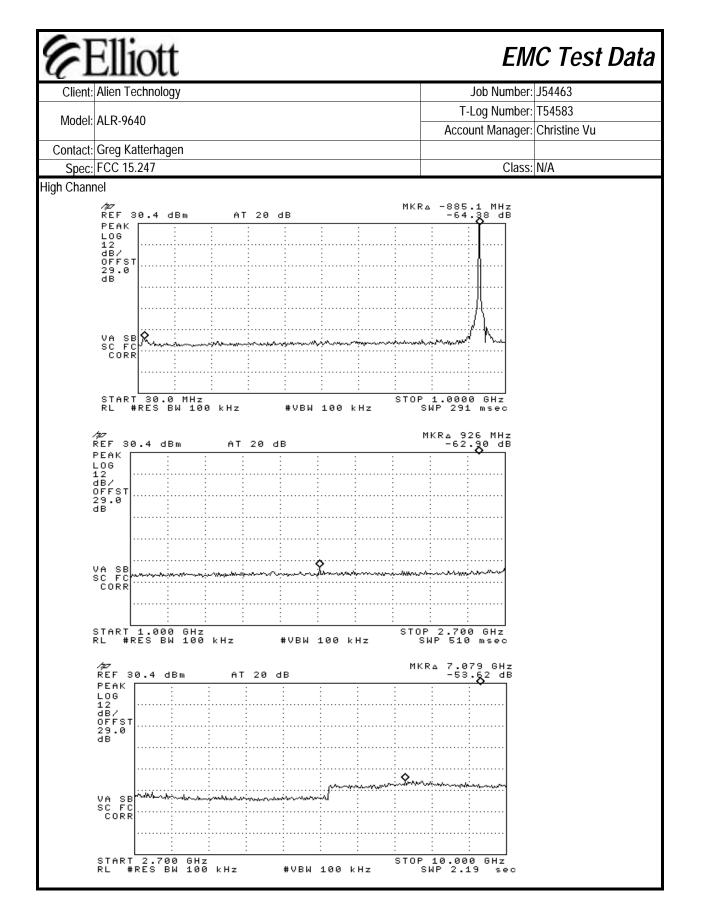

	Н	V
Fundamental emission level @ 3m in 100kHz RBW:	131.8	132.3
Limit for emissions outside of restricted bands:	112.3	dBµV/m


Frequency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
EUT anten				margin	i it ci nitig	uogioco	motors	
5415.600	47.2	V	54.0	-6.8	Avg	0	1.0	
5415.600	46.8	h	54.0	-7.2	Avg	360	1.0	
4514.000	44.0	V	54.0	-10.0	Avg	360	1.0	
4514.000	43.8	h	54.0	-10.2	Avg	0	1.0	
2707.800	41.2	V	54.0	-12.8	Avg	0	1.0	Note 3
2707.800	40.7	h	54.0	-13.3	Avg	15	1.2	Note 3
5415.600	60.4	٧	74.0	-13.6	Pk	0	1.0	
5415.600	59.6	h	74.0	-14.4	Pk	360	1.0	
1805.200	95.2	h	112.3	-17.1	Peak	336	2.2	Not in restricted band, RBW=100kHz
4514.000	56.8	V	74.0	-17.2	Pk	360	1.0	
4514.000	56.2	h	74.0	-17.8	Pk	0	1.0	
1805.200	92.2	V	112.3	-20.1	Peak	341	1.2	Not in restricted band, RBW=100kHz
2707.800	53.2	h	74.0	-20.8	pk	15	1.2	
2707.800	52.7	V	74.0	-21.3	pk	0	1.0	
EUT anten	na in Horiz	zontal N	lode					
5415.600	47.1	V	54.0	-6.9	Avg	360	1.0	
5415.600	47.0	h	54.0	-7.0	Avg	0	1.0	
4514.000	44.1	V	54.0	-9.9	Avg	0	1.0	
4514.000	44.0	h	54.0	-10.0	Avg	360	1.0	
2707.800	41.4	h	54.0	-12.6	Avg	0	1.5	Note 3
2707.800	40.4	V	54.0	-13.6	Avg	20	1.1	Note 3
5415.600	59.9	V	74.0	-14.1	Pk	360	1.0	
5415.600	59.9	h	74.0	-14.1	Pk	0	1.0	
						Run #1a coi	ntinued on	next page


<u>e</u>								La la Nicora la com	1544/2
Client:	Alien Tech	nology						lob Number:	
Model:	ALR-9640							.og Number: nt Managor:	Christine Vu
Contact	Greg Katte	rhagen					Accou	ni manayer.	
	FCC 15.24							Class:	N/A
Run #1a co								010001	
4514.000		h	74.0	-16.5	Pk	360	1.0		
4514.000		V	74.0	-17.2	Pk	0	1.0		
1805.200		٧	112.3	-20.3	Peak	330	1.2	Not in restri	cted band, RBW=100kH
1805.200	91.7	h	112.3	-20.6	Peak	345	1.0	Not in restri	cted band, RBW=100kH
2707.800	52.5	h	74.0	-21.5	pk	0	1.5		
2707.800	52.4	V	74.0	-21.6	pk	20	1.1		
Note 1:	the level o Note that t horizontal measurem	<u>f the fun</u> he EUT antenna ent ante	damental. was tested active. The enna horizor	with the ver e highest rea ntal and tran	tical antenna adings are re smit antenna	a active and t ecorded in the	hen all mea e table abov	suremetns rove. Fundame	e limit was set 20dB belo epeated with the ental was highest with the transmit antennas cross
	polarized, For averag			· · · ·		reduced to 1	Hz. Due to	the pulsed r	nature of the transmissior
Note 3:	For average using a low	je measi ver vale	urements th of VBW cau	ie video ban used pulse d	dwidth was esensitizatio				nature of the transmissior
Note 3:	For average using a low	je measi ver vale	urements th of VBW cau	ie video ban used pulse d	dwidth was esensitizatio 00 MHz. Ce	on. nter Channe			nature of the transmissior
Note 3: Run #1b: F	For averages a low	je measi ver vale Spurious	urements th of VBW cau s Emission	e video ban used pulse d s, 30 - 10,00	dwidth was lesensitizatio 00 MHz. Ce H	on. nter Channe V			nature of the transmissior
Note 3: Run #1b: F	For averaç using a lov Radiated S	je measi ver vale Spurious	urements th of VBW cau s Emission @ 3m in 10	e video ban used pulse d s, 30 - 10,00 0kHz RBW:	dwidth was esensitizatio 00 MHz. Ce H 131.6	on. nter Channe V 131.4			nature of the transmissior
Note 3: Run #1b: F	For averaç using a lov Radiated S	je measi ver vale Spurious	urements th of VBW cau s Emission @ 3m in 10	e video ban used pulse d s, 30 - 10,00	dwidth was esensitizatio 00 MHz. Ce H 131.6	on. nter Channe V			nature of the transmissior
Note 3: Run #1b: F Fundamen Limit	For averag using a lov Radiated S ntal emission for emission	je measi ver vale Spurious	urements th of VBW cau s Emission @ 3m in 10 ide of restri	e video ban used pulse d s, 30 - 10,00 0kHz RBW:	dwidth was esensitizatio 00 MHz. Ce H 131.6	on. nter Channe V 131.4			nature of the transmission
Note 3: Run #1b: F Fundamen Limit	For averag using a lov Radiated S ntal emission for emission	je measi ver vale Spurious on level ons outs	urements th of VBW cau s Emission @ 3m in 10 ide of restri	e video ban used pulse d s, 30 - 10,00 0kHz RBW: cted bands: / 15.247	dwidth was esensitizatio 00 MHz. Ce H 131.6 111.6	nter Channe V 131.4 dBµV/m	l @ 915.2 M	ИНz	nature of the transmission
Note 3: Run #1b: F Fundamen Limit Frequency MHz	For averag using a lov Radiated S ntal emission for emission Level dBµV/m	e measiver vale	erements the of VBW cau of VBW ca	e video ban used pulse d s, 30 - 10,00 0kHz RBW: cted bands: / 15.247	dwidth was esensitizatio 00 MHz. Ce H 131.6 111.6 Detector	nter Channe V 131.4 dBµV/m Azimuth	I @ 915.2 M	ИНz	nature of the transmission
Note 3: Run #1b: F Fundamen Limit Frequency MHz EUT antenr 5491.200	For averaç using a lov Radiated S ntal emissio for emissio Level dBµV/m na in Verti 49.3	e measiver vale	e Emission	e video ban ised pulse d s, 30 - 10,00 0kHz RBW: cted bands: / 15.247 Margin -4.7	dwidth was esensitizatio 00 MHz. Ce H 131.6 111.6 Detector Pk/QP/Avg Avg	nter Channe V 131.4 dBµV/m Azimuth degrees 360	Height Height 1.0	ИНz	nature of the transmission
Note 3: Run #1b: F Fundamen Limit Frequency MHz EUT antenr 5491.200 5491.200	For averag using a lov Radiated S ntal emissio for emissio Level dBµV/m na in Verti 49.3 47.9	pe measiver vale spurious on level ons outs Pol v/h cal Mod	e 54.0	e video ban ised pulse d s, 30 - 10,00 0kHz RBW: cted bands: / 15.247 Margin -4.7 -6.1	dwidth was esensitizatio 00 MHz. Ce H 131.6 111.6 Detector Pk/QP/Avg	nter Channe V 131.4 dBµV/m Azimuth degrees 360 0	Height Height Meters 1.0 1.0	ИНz	nature of the transmission
Note 3: Run #1b: F Fundamen Limit Frequency MHz EUT antenr 5491.200 5491.200 4576.000	For averag using a lov Radiated S ntal emissio for emissio Level dBμV/m na in Verti 49.3 47.9 44.5	e measiver vale	e Emission @ 3m in 10 ide of restri 15.209 Limit Limi	e video ban used pulse d s, 30 - 10,00 0kHz RBW: cted bands: / 15.247 Margin -4.7 -6.1 -9.5	dwidth was esensitizatio 00 MHz. Ce H 131.6 111.6 Detector Pk/QP/Avg Avg Avg Avg	nter Channe V 131.4 dBµV/m Azimuth degrees 360 0 0	Height Height meters 1.0 1.0 1.0	ИНz	nature of the transmission
Note 3: Run #1b: R Fundamen Limit Frequency MHz EUT antenr 5491.200 4576.000 4576.000	For averag using a lov Radiated S ntal emission for emission Level dBμV/m na in Verti 49.3 47.9 44.5 44.5	e measiver vale	e Emission @ 3m in 10 ide of restri 15.209 Limit e 54.0 54.0 54.0 54.0 54.0	e video ban ised pulse d s, 30 - 10,00 0kHz RBW: cted bands: / 15.247 Margin -4.7 -6.1 -9.5 -9.5	dwidth was esensitizatio 00 MHz. Ce H 131.6 111.6 Detector Pk/QP/Avg Avg Avg Avg Avg Avg	nter Channe V 131.4 dBµV/m Azimuth degrees 360 0 0 360	Height Height meters 1.0 1.0 1.0 1.0	ИНz	nature of the transmission
Note 3: Run #1b: F Fundamen Limit Frequency MHz EUT antenr 5491.200 5491.200 4576.000 5491.200	For averaç using a lov Radiated S ntal emissio for emissio Level dBµV/m na in Verti 49.3 47.9 44.5 44.5 62.4	pe measiver vale spurious on level ons outs Pol v/h cal Mod v h v h v	e 54.0 54.	e video ban ised pulse d s, 30 - 10,00 0kHz RBW: cted bands: / 15.247 Margin -4.7 -6.1 -9.5 -9.5 -11.6	dwidth was esensitizatio 00 MHz. Ce H 131.6 111.6 Detector Pk/QP/Avg Avg Avg Avg Avg Avg Pk	nter Channe V 131.4 dBµV/m Azimuth degrees 360 0 0 360 360	Height Height meters 1.0 1.0 1.0 1.0 1.0 1.0	MHz Comments	nature of the transmission
Note 3: Run #1b: F Fundamen Limit Frequency MHz EUT antenr 5491.200 4576.000 4576.000 5491.200 2707.800	For averaç using a lov Radiated S ntal emissio for emissio dBµV/m na in Verti 49.3 47.9 44.5 44.5 62.4 41.2	e measiver vale	e 54.0 54.	e video ban ised pulse d s, 30 - 10,00 0kHz RBW: cted bands: / 15.247 Margin -4.7 -6.1 -9.5 -9.5 -11.6 -12.8	dwidth was esensitizatio 00 MHz. Ce H 131.6 111.6 Detector Pk/QP/Avg Avg Avg Avg Avg Avg Avg Avg Avg Avg	nter Channe V 131.4 dBµV/m Azimuth degrees 360 0 0 360 360 0	Height Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0	VHz Comments	nature of the transmission
Note 3: Run #1b: F Fundamen Limit Frequency MHz EUT antenr 5491.200 4576.000 4576.000 25491.200 2707.800 2707.800	For averaç using a lov Radiated S ntal emissio for emissio Level dBµV/m na in Verti 49.3 47.9 44.5 44.5 62.4 41.2 40.7	pe measiver vale	urements th of VBW cau s Emission @ 3m in 10 ide of restri 15.209 Limit e 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	e video ban ised pulse d s, 30 - 10,00 0kHz RBW: cted bands: / 15.247 Margin -4.7 -6.1 -9.5 -9.5 -11.6 -12.8 -13.3	dwidth was esensitizatio 00 MHz. Ce H 131.6 111.6 Detector Pk/QP/Avg Avg Avg Avg Avg Avg Avg Avg Avg Avg	nter Channe V 131.4 dBµV/m Azimuth degrees 360 0 0 360 360 360 0 15	Height Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.2	MHz Comments	nature of the transmission
Note 3: Run #1b: F Fundamen Limit Frequency MHz EUT antenr 5491.200 4576.000 4576.000 4576.000 2707.800 2707.800 5491.200	For average using a lov Radiated S ntal emission for emission dBμV/m na in Verti 49.3 47.9 44.5 44.5 62.4 41.2 40.7 60.6	e measiver vale	e 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	e video ban used pulse d s, 30 - 10,00 0kHz RBW: cted bands: / 15.247 Margin -4.7 -6.1 -9.5 -9.5 -11.6 -12.8 -13.3 -13.4	dwidth was esensitizatio 00 MHz. Ce H 131.6 111.6 Detector Pk/QP/Avg Avg Avg Avg Avg Avg Avg Avg Avg Avg	nter Channe V 131.4 dBµV/m Azimuth degrees 360 0 0 360 360 360 15 0	Height Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	VHz Comments	nature of the transmission
Note 3: Run #1b: F Fundamen Limit Frequency MHz EUT antenr 5491.200 4576.000 4576.000 2707.800 2707.800 5491.200 4576.000	For averag using a lov Radiated S ntal emission for emission Level dBμV/m na in Verti 49.3 47.9 44.5 62.4 41.2 40.7 60.6 58.0	e measiver vale	e 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 74.0 54.0 74.	e video ban used pulse d s, 30 - 10,00 0kHz RBW: cted bands: / 15.247 Margin -4.7 -6.1 -9.5 -9.5 -11.6 -12.8 -13.3 -13.4 -16.0	dwidth was esensitization 00 MHz. Ce H 131.6 111.6 Detector Pk/QP/Avg Avg Avg Avg Avg Avg Avg Avg Avg Avg	nter Channe V 131.4 dBµV/m Azimuth degrees 360 0 0 360 360 0 15 0 360 0 360	Height Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	MHz Comments	
Note 3: Run #1b: R Fundamen Limit Frequency MHz EUT antenr 5491.200 4576.000 4576.000 2707.800 2707.800 2707.800 3491.200 1805.200	For averag using a lov Radiated S ntal emission for emission dBμV/m na in Verti 49.3 47.9 44.5 44.5 62.4 41.2 40.7 60.6 58.0 95.2	pe measiver vale	e Emission @ 3m in 10 ide of restri 15.209 Limit e 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 74.0 54.0 74.0 54.0 74.0 112.3	e video ban ised pulse d s, 30 - 10,00 0kHz RBW: cted bands: / 15.247 Margin -4.7 -6.1 -9.5 -9.5 -9.5 -11.6 -12.8 -13.3 -13.4 -16.0 -17.1	dwidth was esensitizatio 00 MHz. Ce H 131.6 111.6 Detector Pk/QP/Avg Avg Avg Avg Avg Avg Avg Avg Avg Avg	nter Channe V 131.4 dBµV/m Azimuth degrees 360 0 0 360 360 0 15 0 360 360 360 360 360 336	Height Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	MHz Comments	nature of the transmission
Note 3: Run #1b: F Fundamen Limit Frequency MHz EUT antenr 5491.200 4576.000 4576.000 2707.800 2707.800 2707.800 4576.000	For averag using a lov Radiated S ntal emission for emission Level dBμV/m na in Verti 49.3 47.9 44.5 62.4 41.2 40.7 60.6 58.0	e measiver vale	e 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 74.0 54.0 74.	e video ban used pulse d s, 30 - 10,00 0kHz RBW: cted bands: / 15.247 Margin -4.7 -6.1 -9.5 -9.5 -11.6 -12.8 -13.3 -13.4 -16.0	dwidth was esensitization 00 MHz. Ce H 131.6 111.6 Detector Pk/QP/Avg Avg Avg Avg Avg Avg Avg Avg Avg Avg	nter Channe V 131.4 dBµV/m Azimuth degrees 360 0 0 360 360 0 15 0 360 0 360	Height Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	MHz Comments Note 3 Note 3 Note 3	


6F	Ellic	ott						EM	IC Test Data
Client:	Alien Tech	nology					J	ob Number:	J54463
		0,5					T-I	og Number:	T54583
Model:	ALR-9640							•	Christine Vu
Contact:	Greg Katte	erhagen							
	FCC 15.24	-						Class:	N/A
Run #1b co	ontinued								
2707.800	53.2	h	74.0	-20.8	pk	15	1.2		
2707.800	52.7	V	74.0	-21.3	pk	0	1.0		
EUT anteni	na in Horiz	zontal N	lode						
1830.400	86.6	V	111.6	-25.0	Peak	332	1.0	Not in restr	icted band, RBW=100kHz
2745.600	46.5	V	54.0	-7.5	Avg	36	1.6	Note 3	
2745.600	54.8	V	74.0	-19.2	pk	36	1.6		
5491.200	56.7	V	74.0	-17.3	Pk	0	1.0		
5491.200	43.9	V	54.0	-10.1	Avg	0	1.0		
5491.200	60.5	h	74.0	-13.5	Pk	360	1.0		
5491.200	47.8	h	54.0	-6.2	Avg	360	1.0		
4576.000	59.4	V	74.0	-14.6	Pk	0	1.0		
4576.000	47.5	V	54.0	-6.5	Avg	0	1.0		
4576.000	58.2	h	74.0	-15.8	Pk	360	1.0		
4576.000	44.4	h	54.0	-9.6	Avg	360	1.0		
Note 2:	horizontal measurem polarized,	antenna ient ante the field	active. The enna horizor strength dro	e highest rea Ital and tran opped by ab	adings are re smit antenna oout 3dB.	ecorded in the a horizontal.	e table abov With measu	ve. Fundame urement and	repeated with the ental was highest with the I transmit antennas cross-
					dwidth was i lesensitizatio		Hz. Due to	the pulsed	nature of the transmission
Fundamer	ntal emissio	on level	@ 3m in 10	OkHz RBW:	H 132.5	Channel @ V 132.1	927.6 MHz		
			ide of restric			dBµV/m		La	
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
EUT anten			A/ 0	<u>م </u>		000	4.0		
960.000	45.5	V	46.0	-0.5	QP	339	1.2		
960.000	43.0	h	46.0	-3.0	QP Dook	0	1.0		icted hand DDW 1001-1-
1855.225	93.3	h	112.5	-19.2	Peak	40			icted band, RBW=100kHz
1855.225	93.3	h	112.5	-19.2	Peak	22			icted band, RBW=100kHz
1855.225	89.2	V	112.5	-23.3	Peak	325			icted band, RBW=100kHz
1855.225	89.1	V	112.5	-23.4	Peak	340	1.3	ivot in restr	icted band, RBW=100kHz
						Run #1b cor	ntinued on	next page	


41	Ellic	ott					EM	IC Test Data
	Alien Tech						Job Number:	J54463
							T-Log Number:	T54583
Model:	ALR-9640						Account Manager:	
Contact:	Greg Katte	rhagen						
Spec:	FCC 15.24	7					Class	N/A
Run #1b co	ontinued							
2782.800	46.1	h	54.0	-7.9	Avg	0	1.0 Note 3	
2782.800	47.1	V	54.0	-6.9	Avg	12	1.4 Note 3	
2782.825	57.8	h	74.0	-16.2	pk	0	1.0	
2782.825	54.7	h	74.0	-19.3	pk	350	1.0	
2782.825	56.5	V	74.0	-17.5	pk	12	1.4	
4638.000	49.8	V	54.0	-4.2	Avg	320	1.2 Note 3	
4638.000	66.2	V	74.0	-7.8	pk	320	1.2	
4638.000		h	54.0	-5.2	Avg	0	1.0 Note 3	
4638.000		h	74.0	-9.3	pk	0	1.0	
EUT anten	na "vertica	ıl"						
960.000	45.0	V	46.0	-1.0	QP	332	1.0	
960.000		h	46.0	-3.2	QP	0	1.6	
1855.225		h	112.5	-19.2	Peak	22	2.0 Not in restr	icted band, RBW=100kH
1855.225		V	112.5	-23.4	Peak	340		icted band, RBW=100kH
2782.800		h	54.0	-9.3	Avg	350	1.0 Note 3	
2782.800		V	54.0	-6.9	Avg	20	1.2 Note 3	
2782.825		h	74.0	-19.3	pk	350	1.0	
2782.825		V	74.0	-16.8	pk	20	1.2	
4638.000		V	54.0	-3.8	Avg	352	1.0 Note 3	
4638.000		V	74.0	-15.0	pk	352	1.0	
4638.000		h	54.0	-4.6	Avg	344	1.1 Note 3	
4638.000	59.8	h	74.0	-14.2	pk	344	1.1	
	the level of Note that th	f the fur he EUT	idamental. was tested	with the ver	tical antenna a	ictive and the	n all measurements i	
Note 2:	measurem	ent ante	enna horizor	ntal and tran	smit antenna h	norizontal.		ental was highest with the
Note 3:	0				dwidth was red lesensitization.		z. Due to the puised	nature of the transmissio



61	Elliott				EM	IC Test
Client:	Alien Technolog	y		J	lob Number:	J54463
Madal	ALR-9640			T-L	og Number:	T54583
wodel:	ALR-9040			Accou	nt Manager:	Christine Vu
	Greg Katterhage	n				
Spec:	FCC 15.247				Class:	N/A
		Radi	ated Emissio	ns		
Fest Spe	Objective: The of	ojective of this test sessior cation listed above.	n is to perform final qualif	ication testi	ng of the EL	JT with respect
Da	te of Test: 3/24/2	004	Config. Used:	1		
Test	Engineer: Juan M	<i>Martinez</i>	Config Change:	None		
		1001// 011-	,			
Test	Location: SVOA	15 #1	EUT Voltage:	120V/60H2	<u>_</u>	
General	Test Configur		Ĵ			s testing.
General The EUT a	Test Configur nd all local suppo	ation	I on the turntable for radi	ated spurio	us emissions	s testing.
General The EUT a For radiate	Test Configur nd all local suppo d emissions testir	ration rt equipment were located	I on the turntable for radi	ated spurio	us emissions :UT.	
General The EUT a For radiate Juless stat	Test Configur nd all local suppo d emissions testir	ration rt equipment were located ng the measurement anter	I on the turntable for radi	ated spurio	us emissions :UT.	
General The EUT a For radiate Juless stat	Test Configur nd all local suppo d emissions testir red otherwise the	ration rt equipment were located ng the measurement anter EUT was operating such t	I on the turntable for radi nna was located 3 meters that it constantly hopped	ated spurio	us emissions :UT.	
General The EUT a For radiate Jnless stat Ambient	Test Configur nd all local suppo d emissions testir red otherwise the	ration rt equipment were located ng the measurement anter EUT was operating such t Temperature:	I on the turntable for radi nna was located 3 meters that it constantly hopped 11 °C	ated spurio	us emissions :UT.	
General The EUT a For radiate Jnless stat Ambient	Test Configur nd all local suppo d emissions testir red otherwise the Conditions: y of Results	ration rt equipment were located ng the measurement anter EUT was operating such t Temperature: Rel. Humidity: Test Performed	I on the turntable for radi ana was located 3 meters that it constantly hopped 11 °C 35 % Limit	ated spurio	us emissions :UT. e low, cente	
General The EUT a For radiate Unless stat Ambient Summar	Test Configur nd all local suppo d emissions testir ed otherwise the Conditions: y of Results n # a	ration rt equipment were located ng the measurement anter EUT was operating such to Temperature: Rel. Humidity: <u>Test Performed</u> E, 30 - 10,000 MHz - Spurious Emissions	i on the turntable for radi ana was located 3 meters that it constantly hopped 11 °C 35 % <u>Limit</u> FCC Part 15.209 / 15.247(c)	ated spurio from the E on either th	us emissions UT. e low, cente	r or high chann
General The EUT a For radiate Unless stat Ambient Summar	Test Configur nd all local suppo d emissions testir red otherwise the Conditions: y of Results n # a Ri b Ri	ration rt equipment were located ng the measurement anter EUT was operating such to Temperature: Rel. Humidity: <u>Test Performed</u> E, 30 - 10,000 MHz -	I on the turntable for radi ana was located 3 meters that it constantly hopped 11 °C 35 % Limit FCC Part 15.209 /	ated spurio from the E on either th Result	us emissions UT. e low, cente Ma -6.8dB @ !	er or high chann

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Run #1a: Radiated Spurious Emissions, 30 - 10,000 MHz. Low Channel @ 902.8 MHz

Model: ALR-964 Contact: Greg Ka Spec: FCC 15. Frequency Level MHz dBµV/m EUT antenna in Ver 5415.600 60. 5415.600 47.	atterhagen 247 Pol n v/h rtical Mod	15.209 Limit	/ 15.247				og Number:	T54583			
Contact: Greg Ka Spec: FCC 15. Frequency Level MHz dBµV/m CUT antenna in Ver 5415.600 60.	atterhagen 247 Pol n v/h rtical Mod		/ 15.247			Δετουι		101000			
Spec: FCC 15. requency Level MHz dBµV/m CUT antenna in Ver 5415.600 60.	.247 Pol n v/h rtical Mod		/ 15.247			Account Manager: Christine Vu		Christine Vu			
Spec: FCC 15. requency Level MHz dBµV/m UT antenna in Ver 5415.600 60.	.247 Pol n v/h rtical Mod		/ 15.247								
MHz dBμV/m UT antenna in Ve 5415.600 60.4	n v/h rtical Mod		/ 15.247	Spec. 1 00 10.247							
MHz dBμV/m UT antenna in Ve 5415.600 60.4	n v/h rtical Mod		/ 15.247								
UT antenna in Ve 5415.600 60.4	rtical Mod	Limit		Detector	Azimuth	Height	Comments				
5415.600 60.4			Margin	Pk/QP/Avg	degrees	meters					
		74.0	-13.6	Pk	0	1.0					
		54.0	-6.8	Avg	0	1.0					
5415.600 59.		74.0	-14.4	Pk	360	1.0					
5415.600 46.		54.0	-7.2	Avg	360	1.0					
4514.000 56.	_	74.0	-17.2	Pk	360	1.0					
4514.00044.04514.00056.2		54.0 74.0	-10.0 -17.8	Avg Pk	360 0	1.0 1.0					
4514.000 56. 4514.000 43.8		74.0 54.0	-17.8	PK Avg	0	1.0					
UT antenna in Ho			-10.2	Avy	U	1.0					
5415.600 59.9		74.0	-14.1	Pk	360	1.0					
5415.600 47. ⁻		54.0	-6.9	Avg	360	1.0					
415.600 59.		74.0	-14.1	Pk	000	1.0					
5415.600 47.0		54.0	-7.0	Avg	0	1.0					
4514.000 56.8		74.0	-17.2	Pk	0	1.0					
4514.000 44.		54.0	-9.9	Avg	0	1.0					
4514.000 57.	5 h	74.0	-16.5	Pk	360	1.0					
4514.000 44.0	0 h	54.0	-10.0	Avg	360	1.0					
	ssions in re I of the fun		nds, the limi	it of 15.209 w	as used. For	all other er	missions, th	e limit was set 20dB be			

Client:	Ellic Alien Tech						J	ob Number:	J54463
Madal							T-Lo	og Number:	T54583
Wodel:	ALR-9640					-	Accour	nt Manager:	Christine Vu
Contact:	Greg Katte	erhagen							
	FCC 15.24	-						Class:	N/A
Run #1b:	Radiated S	spurious	s Emission	s, 30 - 10,00	00 MHz. Ce	nter Channel	@ 915.2 N	IHz	
					Н	V			
			@ 3m in 10						
Limi	t for emission	ons outs	side of restri	cted bands:	-20	dBµV/m			
Froguesses		Dal	15 200	/ 15.247	Dotostar	Azimuth	Hojakt	Commonte	
Frequency MHz		Pol v/h	Limit	1	Detector Pk/QP/Avg	Azimuth	Ŭ	Comments	
	dBµV/m na in Verti			Margin	FNUPIAVY	degrees	meters		
5491.200			74.0	-11.6	Pk	360	1.0		
5491.200		V	54.0	-4.7	Avg	360	1.0		
5491.200		h	74.0	-13.4	Pk	000	1.0		
5491.200		h	54.0	-6.1	Avg	0	1.0		
4576.000		V	74.0	-17.2	Pk	0	1.0		
4576.000	44.5	V	54.0	-9.5	Avg	0	1.0		
4576.000	58.0	h	74.0	-16.0	Pk	360	1.0		
4576.000		h	54.0	-9.5	Avg	360	1.0		
	na in Horiz	zontal N	1						
5491.200		V	74.0	-17.3	Pk	0	1.0		
5491.200		V	54.0	-10.1	Avg	0	1.0		
5491.200		h	74.0	-13.5	Pk	360	1.0	-	
5491.200		h	54.0	-6.2	Avg	360	1.0		
4576.000		V	74.0	-14.6	Pk	0	1.0		
4576.000		V	54.0 74.0	-6.5 -15.8	Avg Pk	0 360	1.0	-	
4576.000		<u>h</u> h	54.0	-15.8	Avg	360	1.0 1.0		
15/6 000	44.4		54.0	-7.0	Avy	500	1.0		
4576.000			octricted has	nds the limit	t of 1E 200 m	no upod For	all other or	nicciona th	n limit was sot 20
	For emissi	ons in re	esincieu bai		L 01 15.209 W	as used. For		1115510115, 1116	
4576.000 Note 1: Note 2:	For emission the level of				UI 15.209 W	as used. For		1115510115, 1116	

E	Ellic	ott						EM	IC Test Data
	Alien Tech						J	lob Number:	J54463
							T-L	og Number:	T54583
Model:	ALR-9640								Christine Vu
	Greg Katte								
Spec:	FCC 15.24	7						Class:	N/A
Run #1c: F	Radiated S	purious	s Emission	s, 30 - 9300) MHz. High	Channel @	927.6 MHz		
					Н	V	1		
			@ 3m in 10		132.5	132.1			
Limit	for emission	ons outs	ide of restri	cted bands:	112.5	dBµV/m			
									limit until 970MHz. Device
should be u	nder this li	mit at 96	0 MHz as tl	he frequenc	y band 960 -	1240 MHz is	s a restricte	d band.	
					*				
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
EUT antenn		tal"							
960.000	45.5	V	46.0	-0.5	QP	339			highest channel
960.000	43.0	Н	46.0	-3.0	QP	0	1.0	Device on	highest channel

Elliott

EMC Test Data

Alien Technology	Job Number:	J54463
ALR-9640	T-Log Number:	T54583
	Account Manager:	Christine Vu
Greg Katterhagen		
FCC 15.247	Class:	А
	Environment:	
	ALR-9640 Greg Katterhagen FCC 15.247	ALR-9640 T-Log Number: Account Manager: Greg Katterhagen FCC 15.247 Class:

EMC Test Data

For The

Alien Technology

Model

ALR-9640

Date of Last Test: 2/26/2004

Ellio	tt		ЕМ	C Test Data
Client:	Alien Technology		Job Number:	J54463
	ALR-9640		T-Log Number:	
	·	<u> </u>	Account Manager:	
	Greg Katterhagen			
Emissions Spec:			Class:	
Immunity Spec:	Enter immunity spec on	cover	Environment:	
locations, primarily in w receiving area of larger	y hopping spread spectru varehouses, for tracking h retail outlets. Normally, t	UT INFORMATIC General Description Im transceiver that is designed high quantities of goods in an the EUT would be placed on the sting to simulate the ond the	l led to read RFID tags in co nd out of storage. It may al n a table top during operati	Iso be installed in the tion. The EUT was,
is 120/240 V, 50/60 Hz,	, 1.5 Amps.	testing to simulate the end-t	st	
Manufacturer	Model	Description	Serial Number	FCC ID
Alien Technology	ALR-9640	Smart Antenna	<u>ı </u>	-
The EUT enclosure is p	primarily constructed of Pl	EUT Enclosure lastic. It measures approxim Modification History	1	ı deep by 28 cm high.
Mod. #	Test D	Date	Modification	
1				
Modifications applied a	re assumed to be used o	n subsequent tests unless o	therwise stated as a furthe	er modification.

Elliot	Alien Technology		Job Number:	C Test Da	
	Allen Technology ALR-9640				
Model:	ALK-9040		T-Log Number:		
Contact	Croa Kattarhagan		Account Manager:		
	Greg Katterhagen		Class	۸	
Emissions Spec:			Class:	A	
immunity spec:	Enter immunity spec on co	Dver	Environment:		
Manufacturer	LO Model	Description			
	Lo	cal Support Equipn	nent		
				FCC ID	
Dell	PP01L	Laptop	526	-	
	PSA31U-120	AC adapter	-	-	
PhiHong	10/10/120				
Manufacturer		note Support Equip	ment Serial Number	FCC ID	
	Ren	note Support Equip		FCC ID	
Manufacturer	Ren	note Support Equip		FCC ID	
Manufacturer	Ren Model	note Support Equip	Serial Number Ports	FCC ID	
Manufacturer None	Ren Model Inte	note Support Equip Description rface Cabling and F	Serial Number Ports Cable(s)		
Manufacturer None Port	Ren Model	note Support Equip Description	Serial Number Ports Cable(s) Shielded or Unshield		
Manufacturer None	Ren Model Inte	note Support Equip Description rface Cabling and F Description multiwire	Serial Number Ports Cable(s)		
Manufacturer None Port	Ren Model Inte Connected To	note Support Equip Description rface Cabling and F Description	Serial Number Ports Cable(s) Shielded or Unshield	ded Length(2 1	
Manufacturer None Port Serial	Ren Model Inte Connected To Terminated	note Support Equip Description rface Cabling and F Description multiwire	Serial Number Ports Cable(s) Shielded or Unshield	ded Length(1	
Manufacturer None Port Serial Ethernet	Ren Model Inte Connected To Terminated Laptop	note Support Equip Description rface Cabling and F Description multiwire CAT5	Serial Number Ports Cable(s) Shielded or Unshielded Unshielded	ded Length(1 2 1	

EUT Operation During Emissions

For transmitter tests the device was transmitting continuously on the specified channel (spurious emissions measurements and power/bandwidth measurements) or hopping across all available channels (occupancy and channel spacing measurements). The transmissions consisted of pulses, 1.8ms long with a period of 5ms in continuous mode.

Job Number T-Log Number count Manager Class r Ports testing of the EL	T54583 Christine Vu A JT with respect to the and 80cm from the LISN.
T-Log Number count Manager Class POrts testing of the EL o individual run	T54583 Christine Vu A JT with respect to the and 80cm from the LISN.
Class Class Ports testing of the EU o individual run	Christine Vu
Class	IT with respect to the
r Ports testing of the EU o individual run	JT with respect to the
testing of the EU o individual run I coupling plane	e and 80cm from the LISN.
o individual run I coupling plane	e and 80cm from the LISN.
o individual run I coupling plane	e and 80cm from the LISN.
l coupling plane	
l coupling plane	
l coupling plane	
	he groundplane.
ult M	argin
s -29.6dB @	@ 3.233MHz

6I	Elli	ott					EM	IC Test Dat
Client:	Alien Teo	hnology					Job Number:	J54463
Madal		0					T-Log Number:	T54583
wodel:	ALR-964	U				-	Account Manager:	Christine Vu
Contact:	Greg Kat	terhagen						
Spec:	FCC 15.2	247					Class:	A
Frequency		AC		022 A	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
3.233	30.4	Line	60.0	-29.6	Average			
0.538	29.8	Neutral	60.0	-30.2	Average			
0.471	34.1	Line	66.0	-31.9	Average			
0.471	32.7	Neutral	66.0	-33.3	Average			
3.640	25.5	Neutral	60.0	-34.5	Average			
3.233	35.8	Line	73.0	-37.2	QP			
0.538	34.1	Neutral	73.0	-38.9	QP			
13.040	20.5	Line	60.0	-39.5	Average			
10.010								

3.640

0.471

0.471

13.040

32.4

37.8

36.7

27.6

Neutral

Line

Neutral

Line

73.0

79.0

79.0

73.0

-40.6

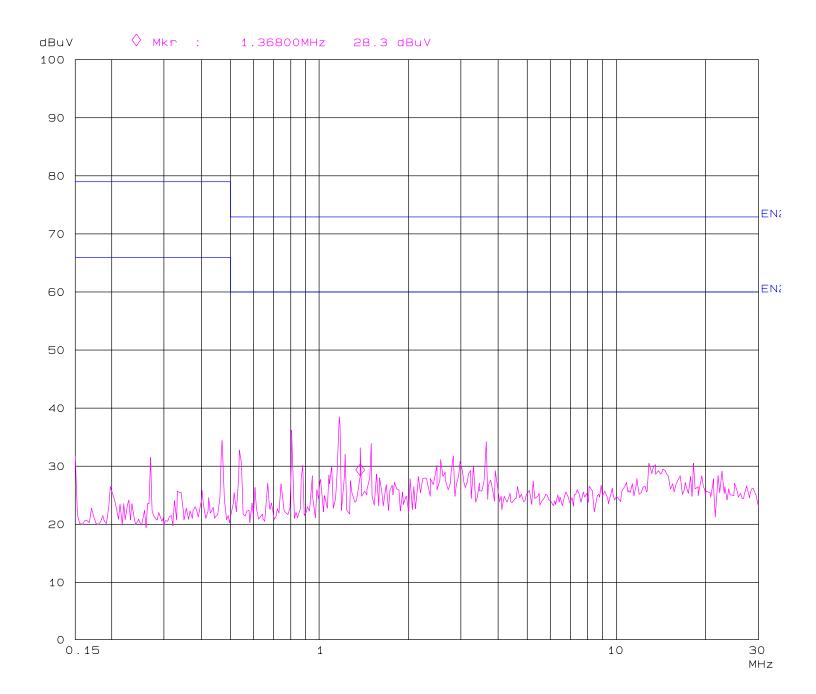
-41.2

-42.3

-45.4

QP

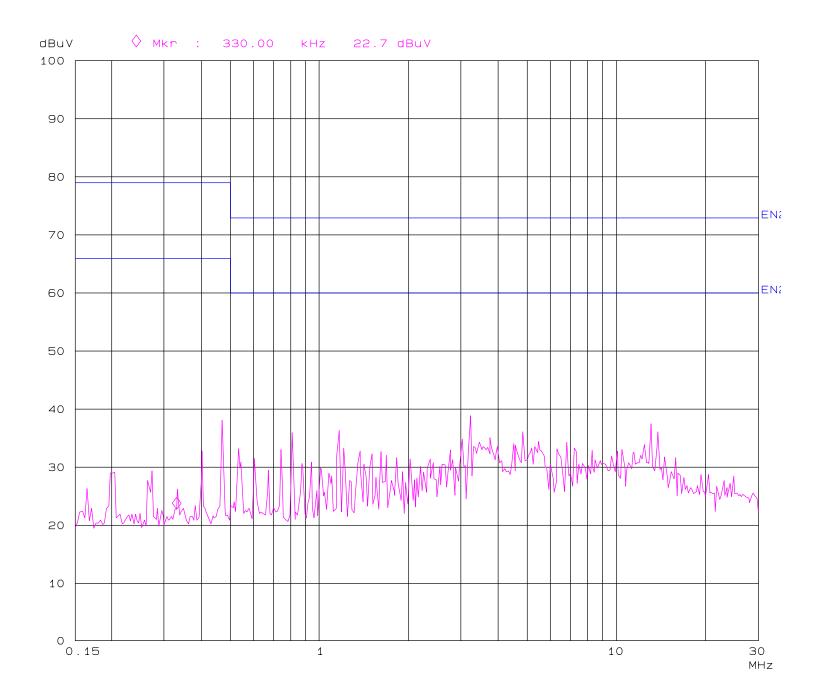
QP


QP

QP

Elliott Laboratories AC Conducted Emissions

Operator:	Rod Wong
Comment:	Alien Technology
	J54463 / T54583
	CISPR A


120V / 60Hz run 1 Neutral

Elliott Laboratories AC Conducted Emissions

Operator:	Rod Wong
Comment:	Alien Technology
	J54463 / T54583
	CISPR A

120V / 60Hz Run 1 Line

Elli	ott			EM	C Test	t Data
Client: Alien Tec	hnology		J	lob Number:	J54463	
Model: ALR-9640)		T-L	og Number:	T54583	
MOUEL ALK-9040	J	Accou	nt Manager:	Christine Vu		
Contact: Greg Kat						
Spec: FCC 15.2	47			Class:	А	
	Radi	ated Emissio	ns			
Test Specifics						
Objective:	The objective of this test session specification listed above.	i is to perform final quali	fication testi	ng of the EU	T with respec	t to the
Date of Test:	2/26/2004	Config. Used:				
Test Engineer:		Config Change:				
Test Location:	SVOATS #3	EUT Voltage:	120V/60Hz	2		
General Test Co The EUT and all lo	nfiguration cal support equipment were locat	ed on the turntable for ra	adiated emis	ssions testing	g .	
	pecified, the measurement anten from the EUT for the frequency ra		rs from the I	EUT for the r	neasurement	range 30
measurement ante	testing indicates that the emission nna. Maximized testing indicate nt antenna, <u>and</u> manipulation of th	d that the emissions wer	e maximize			
•	ove 1 GHz, the FCC specifies the year of the second s	5			the FCC state	es that the
Ambient Conditi	ons: Temperature:	12.2 °C				
	Rel. Humidity:	74 %				
Summary of Res	,					
Run #	Test Performed	Limit	Result	Ма	argin	
1	RE, 30 -1000 MHz, Preliminary Scan	FCC Class A	Eval	Refer to inc	dividual runs	
2	RE, 30 - 1000MHz, Maximized Emissions	FCC Class A	Pass	-10.1dB @	167.235MHz	
3	RE, 1000 - 6500 MHz,	FCC Class A	Pass	12.040	5647.0MHz	

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Æ	Ellic	ott						EM	IC Test Dat	
Client:	Alien Tech	nology					~	lob Number:	J54463	
Madal							T-Log Number: T54583			
wodel:	ALR-9640				Accou	nt Manager:	Christine Vu			
Contact	Greg Katte	erhagen						5		
	Spec: FCC 15.247							Class:	A	
			ed Emissio	ns, 30-1000) MHz					
requency	Level	Pol	FCC (Class A	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	oomments		
167.235	33.0	h	43.5	-10.5	QP	0	3.9	Broadband		
272.000	29.7	h	46.4	-16.7	QP	0	2.8			
600.000	29.6	h	46.4	-16.8	QP	326	3.4			
32.900	22.0	V	39.1	-17.1	QP	192	1.0			
316.255	29.0	h	46.4	-17.4	QP	0	3.1	Broadband		
280.000	28.0	h	46.4	-18.4	QP	18	2.9			
320.000	26.0	h	46.4	-20.4	QP	0	3.5			
480.000	25.6	h	46.4	-20.8	QP	29	3.0			
320.000	25.4	V	46.4	-21.0	QP	330	1.0			
39.000	18.1	V	39.1	-21.0	QP	0	1.0			
240.000	25.3	h	46.4	-21.1	QP	20	2.7			
302.400	23.7	h	46.4	-22.7	QP	0	4.0	Broadband		
326.250	23.2	V	46.4	-23.2	QP	315	1.0			
308.750	21.9	V	46.4	-24.5	QP	191	1.0			
300.416	21.2	V	46.4	-25.2	QP	0	1.0			
456.738	19.9	V	46.4	-26.5	QP	0	1.0			
400.000	19.2	V	46.4	-27.2	QP	0	1.0			
416.810	15.4	V	46.4	-31.0	QP	321	1.1			
240.000	27.0	V	46.4	-19.4	QP	0	1.0			
	aximized Level	Reading Pol	IS From Ru	n #1 Class A	Detector	Azimuth	Hoight	Comments		
							Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Droadhard		
167.235	33.4	h h	43.5	-10.1	QP	0	3.9	Broadband		
777 000	30.4	h	46.4	-16.0 -16.6	QP QP	326	2.8 3.4			
272.000		L .				1/6	.5.4	1		
600.000	29.8	h	46.4							
		h v h	46.4 39.1 46.4	-16.9 -17.2	QP QP	192 18	1.0 2.9			

Æ	Ellic	ott						EM	C Test Data	
	Alien Tech				Job Number:	J54463				
Model:	ALR-9640							og Number:		
								Account Manager: Christine Vu		
	Contact: Greg Katterhagen Spec: FCC 15.247							Class:	Δ	
			s, 1000 - 65	00 MHz				01033.	~	
					plated to 10m	using -10.5 (correction f	actor.		
Frequency	ency Level Pol FCC Class A Detector Azimuth						Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5647.000		V	49.5	-13.8	Avg	0	1.0		measurement	
5647.000	49.2	V	69.5	-20.3	Pk	0	1.0	Noise floor	measurement	
Note 1:	No signific	ant signa	als found fro	om 1000MF	Iz-6500MHz					