

Choose certainty. Add value.

# Report On

FCC Testing of the Sharp SHL25 Dual-band CDMA (BC0, BC6) & Quad-band GSM (GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (FDD I, FDD V) & Quad-band LTE (B1, B3, B17, B18) & AXGP (TDD 41) multi mode cellular phone with Bluetooth, ANT+, WLAN, SRD (NFC, FeliCa) and GPS In accordance with FCC CFR 47 Part 15C (Bluetooth)

COMMERCIAL-IN-CONFIDENCE FCC ID: APYHRO00206

Document 75925936 Report 11 Issue 1

May 2014



**Product Service** 

TÜV SÜD Product Service, Octagon House, Concorde Way, Segensworth North, Fareham, Hampshire, United Kingdom, PO15 5RL Tel: +44 (0) 1489 558100. Website: www.tuv-sud.co.uk

COMMERCIAL-IN-CONFIDENCE

**REPORT ON** FCC Testing of the Sharp SHL25 Dual-band CDMA (BC0, BC6) & Quad-band GSM (GSM850/GSM900/DCS1800/PCS1900) & Dualband UMTS (FDD I, FDD V) & Quad-band LTE (B1, B3, B17, B18) & AXGP (TDD 41) multi mode cellular phone with Bluetooth, ANT+, WLAN, SRD (NFC, FeliCa) and GPS In accordance with FCC CFR 47 Part 15C (Bluetooth)

Document 75925936 Report 11 Issue 1

May 2014

PREPARED FOR

Sharp Communication Compliance Ltd Azure House **Bagshot Road** Bracknell Berkshire **RG12 7QY** 

PREPARED BY

**Natalie Bennett** Senior Administrator, Technical Solutions

**APPROVED BY** 

Nic Forsvth Authorised Signatory

DATED

12 May 2014

#### ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC CFR 47 Part 15C. The sample tested was found to comply with the requirements defined in the applied rules.

Test Engineer(s):

T Guy

S Milliken





Document 75925936 Report 11 Issue 1

COMMERCIAL-IN-CONFIDENCE

Page 1 of 61



## CONTENTS

#### Section

# Page No

| 1                                             | REPORT SUMMARY                                                                                                                                                                                                                                                                                                          | 3                          |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 1.1<br>1.2<br>1.3<br>1.4<br>1.5<br>1.6<br>1.7 | Introduction                                                                                                                                                                                                                                                                                                            | 4<br>5<br>6<br>1<br>1<br>1 |
| 2                                             | TEST DETAILS                                                                                                                                                                                                                                                                                                            | 2                          |
| 2.1<br>2.2<br>2.3<br>2.4<br>2.5<br>2.6        | AC Line Conducted Emissions    1      Frequency Hopping Systems - 20dB Bandwidth and Channel Separation    1      Frequency Hopping Systems - Channel Dwell Time and Number of Hopping Channels    2      Maximum Peak Conducted Output Power    3      EIRP Peak Power    3      Spurious and Band Edge Emissions    3 | 3<br>6<br>4<br>1<br>3<br>7 |
| 3                                             | TEST EQUIPMENT USED                                                                                                                                                                                                                                                                                                     | 6                          |
| 3.1<br>3.2                                    | Test Equipment Used 5   Measurement Uncertainty 5                                                                                                                                                                                                                                                                       | 7<br>9                     |
| 4                                             | ACCREDITATION, DISCLAIMERS AND COPYRIGHT6                                                                                                                                                                                                                                                                               | 0                          |
| 4.1                                           | Accreditation, Disclaimers and Copyright                                                                                                                                                                                                                                                                                | 1                          |



# **SECTION 1**

## **REPORT SUMMARY**

FCC Testing of the Sharp SHL25 Dual-band CDMA (BC0, BC6) & Quad-band GSM (GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (FDD I, FDD V) & Quad-band LTE (B1, B3, B17, B18) & AXGP (TDD 41) multi mode cellular phone with Bluetooth, ANT+, WLAN, SRD (NFC, FeliCa) and GPS In accordance with FCC CFR 47 Part 15C (Bluetooth)



#### 1.1 INTRODUCTION

The information contained in this report is intended to show the verification of FCC Testing of the Sharp SHL25 Dual-band CDMA (BC0, BC6) & Quad-band GSM (GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (FDD I, FDD V) & Quad-band LTE (B1, B3, B17, B18) & AXGP (TDD 41) multi mode cellular phone with Bluetooth, ANT+, WLAN, SRD (NFC, FeliCa) and GPS to the requirements of FCC CFR 47 Part 15C.

| Objective                            | To perform FCC Testing to determine the Equipment Under Test's (EUT's) compliance with the Test Specification, for the series of tests carried out. |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Manufacturer                         | Sharp Corporation                                                                                                                                   |
| Model Number(s)                      | SHL25                                                                                                                                               |
| Serial Number(s)                     | IMEI 004401115170256<br>IMEI 004401115170694                                                                                                        |
| Number of Samples Tested             | 2                                                                                                                                                   |
| Test Specification/Issue/Date        | FCC CFR 47 Part 15C (2013)                                                                                                                          |
| Incoming Release<br>Date             | Application Form<br>24 March 2014                                                                                                                   |
| Disposal<br>Reference Number<br>Date | Held Pending Disposal<br>Not Applicable<br>Not Applicable                                                                                           |
| Order Number<br>Date                 | 10070<br>10 March 2014                                                                                                                              |
| Start of Test                        | 31 March 2014                                                                                                                                       |
| Finish of Test                       | 19 April 2014                                                                                                                                       |
| Name of Engineer(s)                  | T Guy<br>S Milliken<br>A Galpin<br>G Lawler                                                                                                         |
| Related Document(s)                  | ANSI C63.10: 2009                                                                                                                                   |



## 1.2 BRIEF SUMMARY OF RESULTS

A brief summary of the tests carried out in accordance with FCC CFR 47 Part 15C is shown below.

| Section   | Spec Clause        | Test Description                                                              | Result | Comments/Base Standard |  |  |  |
|-----------|--------------------|-------------------------------------------------------------------------------|--------|------------------------|--|--|--|
| Bluetooth | Bluetooth          |                                                                               |        |                        |  |  |  |
| 2.1       | 15.207             | AC Line Conducted Emissions                                                   | Pass   |                        |  |  |  |
| 2.2       | 15.247 (a)(1)      | Frequency Hopping Systems - 20dB Bandwidth and Channel Separation             | Pass   |                        |  |  |  |
| 2.3       | 15.247 (a)(1)(iii) | Frequency Hopping Systems - Channel Dwell Time and Number of Hopping Channels | Pass   |                        |  |  |  |
| 2.4       | 15.247 (b)(3)      | Maximum Peak Conducted Output Power                                           | Pass   |                        |  |  |  |
| 2.5       | 15.247 (b)(4)      | EIRP Peak Power                                                               | Pass   |                        |  |  |  |
| 2.6       | 15.247 (d)         | Spurious and Band Edge Emissions                                              | Pass   |                        |  |  |  |



## 1.3 APPLICATION FORM

| EQUIPMENT DESCRIPTION                                                               |                                    |                                                                                                                                                                                               |  |  |  |
|-------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Model Name/Number SHL25                                                             |                                    |                                                                                                                                                                                               |  |  |  |
| Part Number                                                                         | CA268                              |                                                                                                                                                                                               |  |  |  |
| FCC ID (if applicable)                                                              | FCC ID (if applicable) APYHRO00206 |                                                                                                                                                                                               |  |  |  |
| Industry Canada ID (if applicable) N/A                                              |                                    |                                                                                                                                                                                               |  |  |  |
| Technical Description (Please provide<br>description of the intended use of the equ | e a brief<br>ipment)               | Quad-band LTE(B1/B3/B17/B18), Dual-band WCDMA(FDD-I/V), Quad-band GSM(850/900/1800/1900), Dual-band CDMA2000(800MHz_BC0, 1900MHz _BC6), Multimode Smartphone with BT, ANT+, WLAN, SRD and GPS |  |  |  |
|                                                                                     |                                    |                                                                                                                                                                                               |  |  |  |
| EXTREME TEMPERATURE RANGE over which the equipment is to be type tested             |                                    |                                                                                                                                                                                               |  |  |  |
| □ -20°C to +55°C                                                                    |                                    |                                                                                                                                                                                               |  |  |  |

Other (2)

Not applicable (no extreme temperature testing required)

Extreme temperature range for the host(s): -10C to 55C

(2) The equipment shall be tested over the following temperature ranges :

a) 0°C to +35°C for equipment for indoor use only, or intended for used in areas where the temperature is controlled within this range.

b) Over the extremes of the temperature range(s) of the declared host equipment(s) in case of plug-in radio devices.

|                                              | TYPE OF ANTENNA                           |                            |                |  |  |  |    |  |
|----------------------------------------------|-------------------------------------------|----------------------------|----------------|--|--|--|----|--|
| $\boxtimes$                                  | Integral                                  |                            |                |  |  |  |    |  |
| Tem                                          | Temporary RF connector provided:          |                            |                |  |  |  | No |  |
| Antenna connector                            |                                           |                            |                |  |  |  |    |  |
|                                              | Number of antenna assembly(ies) submitted |                            |                |  |  |  |    |  |
| Gain of the antenna intended for normal use: |                                           |                            |                |  |  |  |    |  |
| 0                                            | dBi                                       | for assembly identified as | Bluetooth/WLAN |  |  |  |    |  |
|                                              | dBi                                       | for assembly identified as |                |  |  |  |    |  |
|                                              | dBi for assembly identified as            |                            |                |  |  |  |    |  |
|                                              | dBi                                       | for assembly identified as |                |  |  |  |    |  |
|                                              | dBi                                       | for assembly identified as |                |  |  |  |    |  |

| TRANSMITTER TECHNICAL CHARACTERISTICS             |                               |                  |  |  |  |
|---------------------------------------------------|-------------------------------|------------------|--|--|--|
| TRANSMITTER OPERATING FREQUENCY RANGE(S)          |                               |                  |  |  |  |
|                                                   | FCC and/or Industry Canada EU |                  |  |  |  |
| Bluetooth                                         | 2402 to 2480 MHz              | 2402 to 2480 MHz |  |  |  |
| WLAN                                              | 2412 to 2462 MHz              | 2412 to 2472 MHz |  |  |  |
| FCC and/or Industry Canada (only)                 |                               |                  |  |  |  |
| Highest Internally Generated Frequency 2150.4 MHz |                               |                  |  |  |  |



| SPREAD SPECTRUM PARAMETERS                         |                                               |                           |                        |                              |          |  |  |
|----------------------------------------------------|-----------------------------------------------|---------------------------|------------------------|------------------------------|----------|--|--|
| Bluetooth                                          |                                               |                           | Version: 4.0           |                              |          |  |  |
| FHSS: Channel                                      | 🛛 79 O                                        | ther                      | EDR 🛛 Yes [            | ] No                         |          |  |  |
|                                                    | Ме                                            | dium Access Protoco       | l (Customer Declarati  | on)                          |          |  |  |
| "We have impleme                                   | ented Bluetooth                               | protocol which satisfies  | the medium access pro  | otocol requirement of EN 30  | 0 328".  |  |  |
| $\boxtimes$                                        |                                               | WLAI                      | N                      |                              |          |  |  |
| IEEE 802.11(b) - DSSS                              | $\boxtimes$                                   |                           |                        |                              |          |  |  |
| IEEE 802.11(g) – OFDM                              | $\boxtimes$                                   |                           |                        |                              |          |  |  |
| IEEE 802.11(n) - OFDM                              | $\boxtimes$                                   |                           |                        |                              |          |  |  |
| Supported Spatial Streams                          |                                               |                           | 2.4 GHz                | 5GHz                         |          |  |  |
|                                                    |                                               | Transmitter (Tx)          | 1                      | 1                            |          |  |  |
|                                                    |                                               | Receiver (Rx)             | 1                      | 1                            |          |  |  |
|                                                    |                                               |                           |                        |                              | •        |  |  |
| GI (Guard Interval)                                | 🛛 800 ns                                      | ☐ 400 ns                  |                        |                              |          |  |  |
| Band Width                                         | 🖾 20 MHz                                      | 🗌 40 MHz                  |                        |                              |          |  |  |
|                                                    | Ме                                            | dium Access Protoco       | I (Customer Declarati  | on)                          |          |  |  |
| "We have implemented IEE                           | E 802.11 (b/g/n                               | ) protocol which satisfie | es the medium access p | protocol requirement of EN 3 | 00 328". |  |  |
|                                                    |                                               | Other Tech                | nology                 |                              |          |  |  |
| Direct Sequence                                    | Frequer                                       | ncy Hopping               |                        | Other                        |          |  |  |
| DSSS                                               |                                               | Chip Sequence Leng        | ıth                    | bit                          |          |  |  |
|                                                    |                                               | Spectrum Width            |                        | MHz                          |          |  |  |
| FHSS                                               |                                               | Total Number of Hop       | )S                     |                              |          |  |  |
|                                                    |                                               | Dwell Time                |                        | ms                           |          |  |  |
|                                                    |                                               | Bandwidth Per Hop         |                        | MHz                          |          |  |  |
| Maximum Separation of Hops MHz for ETSI EN 300 328 |                                               |                           |                        |                              | 00 328   |  |  |
| Other                                              | Other                                         |                           |                        |                              |          |  |  |
|                                                    | Medium Access Protocol (Customer Declaration) |                           |                        |                              |          |  |  |
| "We have impl                                      | emented a proto                               | ocol which satisfies the  | medium access protoc   | ol requirement of EN 300 32  | .8".     |  |  |



| TRANSMITTER POWER CHARACTERSITICS                              |          |             |      |             |        |   |    |
|----------------------------------------------------------------|----------|-------------|------|-------------|--------|---|----|
| В                                                              | luetooth |             |      |             |        |   |    |
| Maximum Rated Transmitter Output                               |          |             |      |             |        |   |    |
| Effective radiated power (for equipment with antenna connecto  | r)       |             |      | W           |        |   |    |
| Effective radiated power (for equipment with integral antenna) |          |             | 5.0m | W           |        |   |    |
| Minimum Rated Transmitter Output                               |          |             |      |             |        |   |    |
| Effective radiated power (for equipment with antenna connecto  | r)       |             |      | W           |        |   |    |
| Effective radiated power (for equipment with integral antenna) |          |             | 1.0m | W           |        |   |    |
| Is transmitter intended for :                                  |          |             |      |             |        |   |    |
| Continuous duty                                                |          |             |      | $\boxtimes$ | Yes    |   | No |
| Intermittent duty                                              |          |             |      |             | Yes    |   | No |
| If intermittent state DUTY CYCLE                               |          |             |      |             |        |   |    |
| Transmitter ON seconds                                         | Trar     | smitter OFF |      | minutes     | S      |   |    |
| Is continuous operation possible for testing purposes?         |          |             |      | $\boxtimes$ | Yes    |   | No |
|                                                                |          |             |      |             |        |   |    |
| Is transmitter output power variable:                          |          |             |      | $\boxtimes$ | Yes    |   | No |
| State during the test:                                         |          |             |      |             |        |   |    |
| Transmitter duty cycle Tx on                                   | Seconds  | Tx O        | ff   |             | Second | 5 |    |
| Duty cycle (Tx on /(Tx on +Tx off))                            | %        |             |      |             |        |   |    |
| Continuously variable                                          |          | Stepped     |      |             |        |   |    |
| dB per step                                                    |          |             |      |             |        |   |    |
|                                                                | WLAN     |             |      |             |        |   |    |
| Maximum Rated Transmitter Output                               |          |             |      |             |        |   |    |
| Effective radiated power (for equipment with antenna connecto  | r)       |             |      | W           |        |   |    |
| Effective radiated power (for equipment with integral antenna) |          |             | 0.1  | W           |        |   |    |
| Minimum Rated Transmitter Output                               |          |             |      |             |        |   |    |
| Effective radiated power (for equipment with antenna connecto  | r)       |             |      | W           |        |   |    |
| Effective radiated power (for equipment with integral antenna) |          |             |      | W           |        |   |    |
| Is transmitter intended for :                                  |          |             |      |             |        |   |    |
| Continuous duty                                                |          |             |      | $\boxtimes$ | Yes    |   | No |
| Intermittent duty                                              |          |             |      |             | Yes    |   | No |
| If intermittent state DUTY CYCLE                               |          |             |      |             |        |   |    |
| Transmitter ON seconds                                         | Trar     | smitter OFF |      | minutes     | s      |   |    |
| Is continuous operation possible for testing purposes?         |          |             |      | $\boxtimes$ | Yes    |   | No |
|                                                                |          |             |      |             |        |   |    |
| Is transmitter output power variable:                          |          |             |      | $\boxtimes$ | Yes    |   | No |
| State during the test:                                         |          |             |      |             |        |   |    |
| Transmitter duty cycle Tx on                                   | Seconds  | Tx O        | ff   |             | Second | 5 |    |
| Duty cycle (Tx on /(Tx on +Tx off))                            | %        |             |      |             |        |   |    |
| Continuously variable                                          |          | Stepped     |      |             |        |   |    |
| dB per step                                                    |          |             |      |             |        |   |    |



|             |                                  | TRANSI                | MITTER PC   | WER SOURCE      | E (3)               |                     |               |
|-------------|----------------------------------|-----------------------|-------------|-----------------|---------------------|---------------------|---------------|
| $\boxtimes$ | Common power source for tra      | insmitter and receive | er          |                 |                     |                     |               |
|             | AC mains                         |                       | State volta | age             |                     |                     |               |
| AC s        | supply frequency                 | (Hz)                  | VAC         |                 | Max Current         |                     | Hz            |
|             | Single phase                     |                       |             | Three ph        | nase                |                     |               |
| And         | / Or                             |                       |             |                 |                     |                     |               |
|             | External DC supply               |                       |             |                 |                     |                     |               |
| Nom         | inal voltage                     |                       |             | Max Current     |                     | А                   |               |
| Extre       | eme upper voltage                |                       |             | Extreme lower   | voltage             |                     |               |
| Batte       | ery                              |                       |             |                 |                     |                     |               |
|             | Nickel Cadmium                   |                       |             |                 |                     |                     |               |
|             | Lead acid (Vehicle regulated)    |                       |             |                 |                     |                     |               |
|             | Alkaline                         |                       |             |                 |                     |                     |               |
| $\boxtimes$ | Lithium                          |                       |             |                 |                     |                     |               |
|             | Other Details :                  |                       |             |                 |                     |                     |               |
| 4.0         | Volts nominal.                   |                       |             |                 |                     |                     |               |
| End         | point voltage as quoted by equ   | pment manufacture     | r           | 3.7             | V                   |                     |               |
| (3)         | If a transmitter and receiver us | e the same power s    | ource, this | should be decla | ared. In such cases | only the box for th | e transmitter |

|                 | AUTOMATIC EQUIPMENT SWITCH OFF                                                                                                                                                                                   |      |                   |  |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------|--|--|
| lf the<br>batte | If the equipment is designed to automatically switch off at a predetermined voltage level which is higher or lower in value than the battery minimum and minimum calculated values this shall be clearly stated. |      |                   |  |  |
| $\boxtimes$     | Applies                                                                                                                                                                                                          | 3.35 | V cut-off voltage |  |  |
|                 | Does not apply                                                                                                                                                                                                   |      |                   |  |  |



|       |                            | RECE                   | IVER POWER SO | URCE (4)         |   |    |
|-------|----------------------------|------------------------|---------------|------------------|---|----|
|       | AC mains                   |                        | State voltage |                  |   |    |
| AC s  | supply frequency           | (Hz)                   | VAC           | Max Current      |   | Hz |
|       | Single phase               |                        |               | Three phase      |   |    |
| And   | / Or                       |                        |               |                  |   |    |
|       | External DC supply         |                        |               |                  |   |    |
| Nom   | inal voltage               |                        | Max C         | urrent           | А |    |
| Extre | eme upper voltage          |                        | Extren        | ne lower voltage |   |    |
| Batte | ery                        |                        |               |                  |   |    |
|       | Nickel Cadmium             |                        |               |                  |   |    |
|       | Lead acid (Vehicle regulat | ted)                   |               |                  |   |    |
|       | Alkaline                   |                        |               |                  |   |    |
|       | Lithium                    |                        |               |                  |   |    |
|       | Other Details :            |                        |               |                  |   |    |
|       | Volts nominal.             |                        |               |                  |   |    |
| End   | point voltage as quoted by | equipment manufacturer | r             | V                |   |    |
|       |                            |                        |               |                  |   |    |

(4) If a transmitter and receiver use the same power source, this should be declared. In such cases only the box for the transmitter power source should be filled in.

#### AUTOMATIC EQUIPMENT SWITCH OFF

If the equipment is designed to automatically switch off at a predetermined voltage level which is higher or lower in value than the battery minimum and minimum calculated values this shall be clearly stated.

Applies

V cut-off voltage

Does not apply

I hereby declare that I am entitled to sign on behalf of the applicant and that the information supplied is correct and complete.

Name:

Date:

Signature: Position held:

14 Murakami Supervisor

Hiroyuki Murakami 24<sup>th</sup> March, 2014



#### 1.4 **PRODUCT INFORMATION**

#### 1.4.1 Technical Description

The Equipment Under Test (EUT) was a Sharp SHL25 Dual-band CDMA (BC0, BC6) & Quadband GSM (GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (FDD I, FDD V) & Quad-band LTE (B1, B3, B17, B18) & AXGP (TDD 41) multi mode cellular phone with Bluetooth, ANT+, WLAN, SRD (NFC, FeliCa) and GPS. A full technical description can be found in the manufacturer's documentation.

#### 1.5 TEST CONDITIONS

For all tests the EUT was set up in accordance with the relevant test standard and to represent typical operating conditions. Tests were applied with the EUT situated in a shielded enclosure.

The EUT was powered from a 4.0 V DC supply.

FCC Measurement Facility Registration Number 90987 Octagon House, Fareham Test Laboratory

#### 1.6 DEVIATIONS FROM THE STANDARD

No deviations from the applicable test standard or test plan were made during testing.

#### 1.7 MODIFICATION RECORD

Modification 0 - No modifications were made to the test sample during testing.



**SECTION 2** 

**TEST DETAILS** 

FCC Testing of the Sharp SHL25 Dual-band CDMA (BC0, BC6) & Quad-band GSM (GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (FDD I, FDD V) & Quad-band LTE (B1, B3, B17, B18) & AXGP (TDD 41) multi mode cellular phone with Bluetooth, ANT+, WLAN, SRD (NFC, FeliCa) and GPS In accordance with FCC CFR 47 Part 15C (Bluetooth)



#### 2.1 AC LINE CONDUCTED EMISSIONS

2.1.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.207

#### 2.1.2 Equipment Under Test and Modification State

SHL25 S/N: IMEI 004401115170256 - Modification State 0

#### 2.1.3 Date of Test

19 April 2014

#### 2.1.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.1.5 Test Procedure

A test environment and testing arrangement meeting the specification of ANSI C63.4 was used during all testing. The Equipment Under Test (EUT) was set upon a non-conducting platform at an elevation of 80 cm above a horizontal reference ground plane. A vertical reference ground plane was situated 40 cm from the EUT and bonded to the horizontal reference ground plane.

The EUT was powered by a Line Impedance Stabilization Network (LISN), whereby emissions measurements of the current-carrying conductors were made through this LISN. The LISN was bonded to the horizontal reference ground plane with a separation distance greater than 80 cm from the EUT. A mains supply cable of 1 m length was used to supply mains power to the EUT from the LISN.

A preliminary emissions scan was conducted for each current-carrying conductor of the EUT, using a peak detector over a frequency range of 150 kHz to 30 MHz. At least six of the greatest peak emissions, frequency positions were selected from each preliminary emissions scan for further evaluation as final measuring points.

Final measurement points were measured using quasi-peak and average detectors. All final measurements were assessed against the emission limits in Clause 15.207 of FCC CFR 47 FCC Part 15.

#### 2.1.6 Environmental Conditions

| Ambient Temperature | 19.7°C |
|---------------------|--------|
| Relative Humidity   | 27.0%  |



#### 2.1.7 Test Results

#### Live Line



| Frequency<br>(MHz) | QP Level<br>(dBµV) | QP Limit<br>(dBµV) | QP Margin<br>(dBµV) | AV Level<br>(dBµV) | AV Limit<br>(dBµV) | AV Margin<br>(dBµV) |
|--------------------|--------------------|--------------------|---------------------|--------------------|--------------------|---------------------|
| 0.191              | 45.0               | 64.0               | -19.0               | 25.9               | 54.0               | -28.1               |
| 0.221              | 37.8               | 62.8               | -25.0               | 19.5               | 52.8               | -33.3               |
| 2.100              | 30.7               | 56.0               | -25.3               | 19.4               | 46.0               | -26.6               |
| 2.534              | 30.0               | 56.0               | -26.0               | 18.3               | 46.0               | -27.7               |
| 2.748              | 30.3               | 56.0               | -25.7               | 18.9               | 46.0               | -27.1               |
| 4.407              | 29.1               | 56.0               | -26.9               | 18.0               | 46.0               | -28.0               |



## Neutral Line



| Frequency<br>(MHz) | QP Level<br>(dBµV) | QP Limit<br>(dBµV) | QP Margin<br>(dBµV) | AV Level<br>(dBµV) | AV Limit<br>(dBµV) | AV Margin<br>(dBµV) |
|--------------------|--------------------|--------------------|---------------------|--------------------|--------------------|---------------------|
| 0.151              | 54.5               | 65.9               | -11.5               | 30.7               | 55.9               | -25.2               |
| 0.189              | 50.2               | 64.1               | -13.9               | 29.7               | 54.1               | -24.4               |
| 0.223              | 41.7               | 62.7               | -21.0               | 21.4               | 52.7               | -31.3               |
| 0.399              | 33.4               | 57.9               | -24.5               | 18.8               | 47.9               | -29.1               |
| 3.121              | 29.4               | 56.0               | -26.6               | 15.6               | 46.0               | -30.4               |
| 4.941              | 25.6               | 56.0               | -30.4               | 13.3               | 46.0               | -32.7               |



## 2.2 FREQUENCY HOPPING SYSTEMS - 20dB BANDWIDTH AND CHANNEL SEPARATION

2.2.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (a)(1)

2.2.2 Equipment Under Test and Modification State

SHL25 S/N: IMEI 004401115170694 - Modification State 0

#### 2.2.3 Date of Test

3 April 2014

#### 2.2.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.2.5 Test Procedure

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 15.247 (a) and Part 15.215 (c).

The EUT was transmitted at maximum power on bottom, middle and top hopping frequency channels for DH5, 2DH5 and 3DH5 packet types. The EUT was connected to a spectrum analyser via a cable and attenuator. The Analyser settings were adjusted to display the resultant trace on screen with an RBW of 10 kHz. The peak point of the trace was measured and the markers positioned to give the -20 dBc points of the displayed spectrum.

The EUT was then configured to transmit over all hopping frequencies. The trace was set to Max Hold to store several adjacent channels on screen. Using the marker delta function, the markers were positioned to show the separation between adjacent channels.

#### 2.2.6 Environmental Conditions

| Ambient Temperature | 23.4°C |
|---------------------|--------|
| Relative Humidity   | 39.3%  |



#### 2.2.7 Test Results

4.0 V DC Supply

20dB Bandwidth

2402 MHz

| Data Rate (Mbps) | 20dB Bandwidth (kHz) |
|------------------|----------------------|
| DH5              | 885                  |
| 2DH5             | 1215                 |
| 3DH5             | 1250                 |

<u>DH5</u>





<u>2DH5</u>



<u>3DH5</u>





#### <u>2441 MHz</u>

| Data Rate (Mbps) | 20dB Bandwidth (kHz) |
|------------------|----------------------|
| DH5              | 885                  |
| 2DH5             | 1215                 |
| 3DH5             | 1240                 |

## <u>DH5</u>





<u>2DH5</u>



<u>3DH5</u>





#### <u>2480 MHz</u>

| Data Rate (Mbps) | 20dB Bandwidth (kHz) |
|------------------|----------------------|
| DH5              | 885                  |
| 2DH5             | 1215                 |
| 3DH5             | 1240                 |

## <u>DH5</u>





<u>2DH5</u>



<u>3DH5</u>



#### Limit Clause

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater.



## **Channel Separation**

#### Channel Separation: 1 MHz



#### Limit Clause

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125 W.

The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.



#### 2.3 FREQUENCY HOPPING SYSTEMS - CHANNEL DWELL TIME AND NUMBER OF HOPPING CHANNELS

#### 2.3.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (a)(1)(iii)

#### 2.3.2 Equipment Under Test and Modification State

SHL25 S/N: IMEI 004401115170694 - Modification State 0

#### 2.3.3 Date of Test

7 April 2014

#### 2.3.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.3.5 Test Procedure

#### <u>DH1</u>

The Bluetooth system hops at a rate of 1600 times per second. Thus, this equates to 1600 timeslots in 1 second.

The DH1 data rate operates on a Transmit on 1 timeslot and Receive on 1 timeslot basis. Thus, in 1 second, there are 800 Transmit timeslots and 800 Receive timeslots.

Thus:

1 Timeslot =  $\frac{1}{1600}$  = 625µs

In 1 transmit timeslot, the transmit on time is only  $405\mu$ s.  $220\mu$ s is reserved as off time for the synthesizer to re-tune ready for the next transmit frequency. The following timeslot is a receive slot. This process continues assuming the data rate remains the same.





#### DH1 Timeslot Arrangement Showing One Complete Transmit and Receive Cycle

So, with 800 Tx and 800 Rx timelsots, the transmitter is on for 800 x  $405\mu$ s = 0.324 seconds.

| <i>:</i> . | Total Tx Time On | = | 0.324 | = | 4.05ms |
|------------|------------------|---|-------|---|--------|
|            | No of Channels   |   | 80    |   |        |

So, in 32 seconds, the transmitter dwell time per channel is:

 $32 \times 4.05 \text{ms} = 0.1296 \text{ seconds}$ 

#### <u>DH3</u>

With data rate DH3, the data payload is higher and can use up to 3 timeslots. When more than one timeslot is used, the frequency does not hop and transmission is continuous on all 3 slots, (ie. no receive slot in-between the 3 transmit slots). The  $220\mu$ s off time for synthesizer retuning at the end of a slot is only used on the final slot. Thus, for one cycle, there are 3 transmit timeslots. 2 are  $625\mu$ s long and the final slot is transmitting for  $405\mu$ s.

The DH3 data rate operates on a Transmit on 3 timeslots and Receives on 1 timeslot basis, (assuming maximum data payload). The frequency-hopping rate is the same. Thus, in 1 second, there are 1200 Transmit timeslots and 400 Receive timeslots.

Thus:

1 Timeslot =  $\frac{1}{1600}$  = 625µs

The first 2 Transmit timeslots are transmitting for the complete  $625\mu$ s. In the third transmit slot, the transmit on time is only  $405\mu$ s.  $220\mu$ s is reserved as off time for the synthesizer to re-tune ready for the next transmit frequency. The following timeslot is a receive slot. This process continues assuming the data rate remains the same.





# DH3 Timeslot Arrangement Showing One Complete Transmit and Receive Cycle, (Maximum Payload)

Thus, the transmitter for one complete transmit and receive cycle would be on for:

Tx  $(2 \times 625 \mu s) + (1 \times 405 \mu s) = 1.655 m s$ 

So:

| 800 x 625µs | = | 0.5 seconds   |
|-------------|---|---------------|
| 400 x 405µs | = | 0.162 seconds |

Thus: 0.5 + 0.162 = 0.662 seconds

| <i>.</i> :. | Total Tx Time On | = | 0.662 | = | 8.275ms |
|-------------|------------------|---|-------|---|---------|
|             | No Of Channels   |   | 80    |   |         |

So, in 32 seconds, the transmitter dwell time per channel is:

32 x 8.275ms = 0.2648 seconds

#### <u>DH5</u>

With data rate DH5, the data payload is higher and can use up to 5 timeslots. When more than one timeslot is used, the frequency does not hop and transmission is continuous on all 5 slots, (ie. no receive slot in-between the 5 transmit slots). The 220 $\mu$ s off time for synthesizer retuning at the end of a slot is only used on the final slot. Thus, for one cycle, there are 5 transmit timeslots. 4 are 625 $\mu$ s long and the final slot is transmitting for 405 $\mu$ s.

The DH5 data rate operates on a Transmit on 5 timeslots and Receives on 1 timeslot basis, (assuming maximum data payload). The frequency-hopping rate is the same. Thus, in 1 second, there are 1333.3 Transmit timeslots and 266.7 Receive timeslots.

Thus:

1 Timeslot = 
$$\frac{1}{1600}$$
 = 625µs

The first 4 Transmit timeslots are transmitting for the complete  $625\mu$ s. In the fifth transmit slot, the transmit on time is only  $405\mu$ s.  $220\mu$ s is reserved as off time for the synthesizer to re-tune ready for the next transmit frequency. The following timeslot is a receive slot. This process continues assuming the data rate remains the same.





# DH5 Timeslot Arrangement Showing One Complete Transmit and Receive Cycle, (Maximum Payload)

Thus, the transmitter for one complete transmit and receive cycle would be on for:

Τх (2 x 625µs) + (1 x 405µs) = 2.905ms So: = 1066.7 x 625μs 0.666 seconds 266.7 x 405µs 0.108 seconds Thus: 0.666 + 0.108 = 0.774 seconds Total Tx Time On = 0.774 = 9.675ms *:*.. No Of Channels 80

So, in 32 seconds, the transmitter dwell time per channel is:

32 x 9.675ms = 0.31 seconds

#### 2.3.6 Environmental Conditions

| Ambient Temperature | 22.8°C |
|---------------------|--------|
| Relative Humidity   | 47.6%  |



#### 2.3.7 Test Results

4.0 V DC Supply

Channel Dwell Time

<u>DH1</u>

158.888 ms



Date: 7.APR.2014 11:22:47



<u>DH3</u>

88.477 ms



Date: 7.APR.2014 11:24:54

#### <u>DH5</u>





Date: 7.APR.2014 11:25:17



#### <u>Limit</u>

Frequency hopping systems operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that a minimum of 15 hopping channels are used.

## Number of Hopping Channels

| * A               | gilent          | 16           | ):05:51            | Mar 31, 2            | 014       |                                        |     | R T              |         |               |                    |
|-------------------|-----------------|--------------|--------------------|----------------------|-----------|----------------------------------------|-----|------------------|---------|---------------|--------------------|
| Ref 7.            | 224 c           | :Bm          |                    | At                   | ten 20 di | 3                                      |     |                  | Mkr2    | 2.48<br>-17   | 000 GHz<br>.34 dBm |
| Peak<br>Log<br>10 |                 |              |                    |                      |           |                                        |     |                  |         |               |                    |
| dB/               | 1_1             |              |                    |                      |           |                                        |     |                  |         |               | Ext Ref            |
|                   | Ŵ               |              | AAAAAAA<br>VVVVVVV | AAAAAAAA<br>Aaaaaaaa |           | YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | WWW | AAAAAA<br>VYYYYY |         |               |                    |
|                   |                 |              |                    |                      |           |                                        |     |                  |         |               |                    |
|                   |                 |              |                    |                      |           |                                        |     |                  |         |               |                    |
| M1 S2<br>S3 F0    |                 |              |                    |                      |           |                                        |     |                  |         |               |                    |
| ÂA                | Ļ               |              |                    |                      |           |                                        |     |                  |         |               | ļ                  |
|                   |                 |              |                    |                      |           |                                        |     |                  |         |               |                    |
|                   |                 |              |                    |                      |           |                                        |     |                  |         |               |                    |
| Cente<br>#Res E   | r 2.44<br>3W 30 | 11 GI<br>kHz | lz                 |                      |           | VBW 30 k                               | Hz  | Sweep            | 117.4 ı | Span<br>ns (4 | 82 MHz<br>01 pts)  |
|                   |                 |              |                    |                      |           |                                        |     |                  |         |               |                    |

## 79

<u>Limit</u>

≥ 15 channels



## 2.4 MAXIMUM PEAK CONDUCTED OUTPUT POWER

2.4.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (b)(3)

2.4.2 Equipment Under Test and Modification State

SHL25 S/N: IMEI 004401115170694 - Modification State 0

#### 2.4.3 Date of Test

31 March 2014

#### 2.4.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.4.5 Test Procedure

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 15.247 (b) and KDB 558074.

The EUT was connected to a broadband peak RF power meter via a cable and attenuator. The EUT was transmitting at maximum power, for bottom, middle and top channels on DH1, DH3 and DH5 packet types. The path loss between the EUT and sensor was measured and entered as a reference level offset. The peak power was recorded for measurements on the bottom, middle and top channels on DH1, DH3 and DH5 packet types

#### 2.4.6 Environmental Conditions

Ambient Temperature23.4°CRelative Humidity39.3%



#### 2.4.7 Test Results

4.0 V DC Supply

|             | Maximum Peak Conducted Output Power |          |          |          |          |          |  |  |  |
|-------------|-------------------------------------|----------|----------|----------|----------|----------|--|--|--|
| Packet Type |                                     | dBm      |          | mW       |          |          |  |  |  |
|             | 2402 MHz                            | 2441 MHz | 2480 MHz | 2402 MHz | 2441 MHz | 2480 MHz |  |  |  |
| DH1         | 3.84                                | 5.11     | 4.79     | 2.42     | 3.24     | 3.01     |  |  |  |
| DH3         | 3.73                                | 5.08     | 4.77     | 2.36     | 3.22     | 3.00     |  |  |  |
| DH5         | 3.75                                | 5.04     | 4.77     | 2.37     | 3.19     | 3.00     |  |  |  |

#### Limit Clause

The maximum peak conducted output power of the intentional radiator shall not exceed the following:

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non overlapping hopping channels, and all frequency hopping systems in the 5725-5850MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.



#### 2.5 EIRP PEAK POWER

#### 2.5.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (b)(4)

#### 2.5.2 Equipment Under Test and Modification State

SHL25 S/N: IMEI 004401115170256 - Modification State 0

#### 2.5.3 Date of Test

8 April 2014

#### 2.5.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.5.5 Test Procedure

The EUT was transmitted at maximum power via a cable to the Spectrum Analyser. The Analyser settings were adjusted to display the resultant trace on screen and a resolution bandwidth and video bandwidth of 1 MHz were used to perform the measurement. The level on the spectrum analyser was maximised by rotating the EUT through 360° and a height search of the measuring antenna. A substitution was then performed using a suitable calibrated antenna and signal generator.

This level was maximised by adjusting the height of the measuring antenna once more. The level from the signal generator was then adjusted to achieve the same raw result as with the EUT. This level was then corrected to account for cable loss and antenna factor. A peak power analyser was also used to obtain a correction factor for the wideband signal.

A calculation was then performed to obtain the final figure.

#### 2.5.6 Environmental Conditions

| Ambient Temperature | 20.9°C |
|---------------------|--------|
| Relative Humidity   | 30.0%  |



#### 2.5.7 Test Results

#### <u>2402 MHz</u>





Date: 8.APR.2014 18:12:54



#### <u>2441 MHz</u>

| EIRP (dBm) | EIRP (mW) |
|------------|-----------|
| 3.42       | 2.20      |



Date: 8.APR.2014 18:37:58



#### <u>2480 MHz</u>

| EIRP (dBm) | EIRP (mW) |
|------------|-----------|
| 2.60       | 1.82      |



Date: 8.APR.2014 18:59:57

<u>Limit</u>

| EIRP (dBm) | EIRP (mW) |
|------------|-----------|
| 36.0       | 4000      |



## 2.6 SPURIOUS AND BAND EDGE EMISSIONS

2.6.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (d)

2.6.2 Equipment Under Test and Modification State

SHL25 S/N: IMEI 004401115170256 - Modification State 0

#### 2.6.3 Date of Test

3 April 2014, 8 April 2014 & 9 April 2014

#### 2.6.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.6.5 Test Procedure

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 15.247 (d) and KDB 558074.

For conducted emissions, the EUT was set to operate at maximum power on the bottom, middle and top channels for the data rate which resulted in the highest peak output power. The power of each fundamental frequency was measured in 100 kHz RBW, the resultant limit line on the trace was set at -20 dBc of this value. The measurement path loss in each relevant frequency band was measured and entered as a reference level offset. The test was performed from 9 kHz to 25 GHz.

#### **Radiated Emissions**

A preliminary profile of the Spurious Radiated Emissions is obtained up to the 10th harmonic of the EUT's fundamental frequency. For frequencies from 30MHz to 18GHz the EUT is placed on a test table 800mm above the ground plane. For frequencies above 18GHz, the EUT height is increased by 200mm to a height of 1000mm. This is to ensure the beam width of the measuring antenna gives sufficient vertical coverage of the EUT.

During characterisation the turntable azimuth is adjusted from 0 to 360 degrees with the measuring antenna in one polarity. It is then repeated for the other polarity. Any frequencies of interest are noted for formal measuring later. The distance from the measuring antenna to the boundary of the EUT is 3m. Above 18GHz this distance may be reduced to 1m.

During formal measurement the spectrum analyser is tuned to the frequency of the emission. The turntable azimuth is adjusted from 0 to 360 degrees to determine the point at which the maximum emission level occurs. Then the height of the measuring antenna is adjusted from a height of 1m to 4m to determine the height at which the maximum emission level occurs. Once the point of maximum emission has been determined the emission is measured. Emissions in the 30MHz to 1GHz range are measured using a CISPR Quasi – Peak detector function in a 120kHz bandwidth. Emissions in the range 1GHz to 40GHz require Peak and Average measurements. The Peak measurements are made using a peak detector with 1MHz Resolution and Video bandwidths.



The average measurements employ a peak detector with a Resolution bandwidth of 1MHz and a Video bandwidth of 10Hz. If measurements are made at a 1m measuring distance, then 10dB is added to the specification limit.

#### 2.6.6 Environmental Conditions

Ambient Temperature20.9 - 24.6°CRelative Humidity30.0 - 41.3%

#### 2.6.7 Test Results

4.0 V DC Supply

**Spurious Conducted Emissions** 

<u>DH5</u>

2402 MHz

9 kHz to 4 GHz

| ∰ Ag               | jilent 11         | l:41:08 ƙ                              | Apr 3,20 | 14        |         |     | l                | RT       |                                        |                     |
|--------------------|-------------------|----------------------------------------|----------|-----------|---------|-----|------------------|----------|----------------------------------------|---------------------|
| Ref 5.             | 929 dBm           |                                        | #A       | tten 5 df | 3       |     |                  |          | Mkr1 2                                 | .400 GHz<br>011 dBm |
| Peak<br>Log        |                   |                                        |          |           |         |     | <b>&gt;</b><br>- |          |                                        |                     |
| 10<br>dB/<br>Offst |                   |                                        |          |           |         |     |                  |          |                                        | Ext Ref             |
| 10.9<br>dB         |                   |                                        |          |           |         |     |                  |          |                                        |                     |
| DI<br>-17.1<br>dBm |                   |                                        |          |           |         |     |                  |          |                                        |                     |
|                    |                   |                                        |          |           |         |     |                  |          |                                        |                     |
| V1 S2<br>S3 FS     |                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | manna    |           |         |     | Lune             | mentur   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                     |
| AA                 |                   |                                        |          |           |         |     |                  |          |                                        |                     |
|                    |                   |                                        |          |           |         |     |                  |          |                                        |                     |
|                    |                   |                                        |          |           |         |     |                  |          |                                        |                     |
| Center<br>#Res B   | 2 GHz<br>W 100 kH | z                                      |          | #         | VBW 100 | kHz |                  | Sweep 51 | Spa<br>5.4 ms (4                       | n 4 GHz<br>101 pts) |
|                    |                   |                                        |          |           |         |     |                  |          |                                        |                     |



#### 4 GHz to 12 GHz



#### 12 GHz to 18 GHz





#### 18 GHz to 25 GHz



#### <u>2441 MHz</u>

9 kHz to 4 GHz





#### 4 GHz to 12 GHz



#### 12 GHz to 18 GHz





#### 18 GHz to 25 GHz



#### 2480 MHz

9 kHz to 4 GHz





#### 4 GHz to 12 GHz



#### 12 GHz to 18 GHz







18 GHz to 25 GHz

#### Limit Clause

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval the attenuation required shall be 30 dB instead of 20 dB.



## **Spurious Radiated Emissions**

## <u>2402 MHz</u>

## 30 MHz to 1 GHz



| Frequency<br>(MHz) | QP Level<br>(dBµV/m) | QP Level<br>(µV/m) | QP Limit<br>(dBµV/m) | QP Limit<br>(µV/m) | QP<br>Margin<br>(dBµV/m) | QP<br>Margin<br>(µV/m) | Angle<br>(Deg) | Height<br>(m) | Polarity |
|--------------------|----------------------|--------------------|----------------------|--------------------|--------------------------|------------------------|----------------|---------------|----------|
| 31.116             | 29.3                 | 29.2               | 40.0                 | 100                | -10.7                    | 70.8                   | 45             | 1.00          | Vertical |
| 33.104             | 28.2                 | 25.7               | 40.0                 | 100                | -11.8                    | 74.3                   | 0              | 1.00          | Vertical |
| 35.190             | 27.4                 | 23.4               | 40.0                 | 100                | -12.6                    | 76.6                   | 45             | 1.00          | Vertical |
| 869.487            | 33.0                 | 44.7               | 46.0                 | 200                | -13.0                    | 155.3                  | 0              | 1.00          | Vertical |
| 908.869            | 33.6                 | 47.9               | 46.0                 | 200                | -12.4                    | 152.1                  | 0              | 1.00          | Vertical |
| 948.639            | 33.7                 | 48.4               | 46.0                 | 200                | -12.3                    | 151.6                  | 45             | 1.00          | Vertical |



#### 1 GHz to 3 GHz



Date: 8.APR.2014 18:24:41





Date: 8.APR.2014 20:10:14



#### 8 GHz to 18 GHz



Date: 8.APR.2014 21:46:26

#### 18 GHz to 25 GHz



Date: 9.APR.2014 21:31:37



## <u>2441 MHz</u>

## 30 MHz to 1 GHz



| Frequency<br>(MHz) | QP Level<br>(dBµV/m) | QP Level<br>(µV/m) | QP Limit<br>(dBµV/m) | QP Limit<br>(µV/m) | QP<br>Margin<br>(dBµV/m) | QP<br>Margin<br>(µV/m) | Angle<br>(Deg) | Height<br>(m) | Polarity |
|--------------------|----------------------|--------------------|----------------------|--------------------|--------------------------|------------------------|----------------|---------------|----------|
| 30.679             | 29.5                 | 29.9               | 40.0                 | 100                | -10.5                    | 70.1                   | 0              | 1.00          | Vertical |
| 32.959             | 28.3                 | 26.0               | 40.0                 | 100                | -11.7                    | 74.0                   | 45             | 1.00          | Vertical |
| 36.160             | 27.0                 | 22.4               | 40.0                 | 100                | -13.0                    | 77.6                   | 45             | 1.00          | Vertical |
| 839.562            | 32.7                 | 43.2               | 46.0                 | 200                | -13.3                    | 156.8                  | 0              | 1.00          | Vertical |
| 883.794            | 33.4                 | 46.8               | 46.0                 | 200                | -12.6                    | 153.2                  | 45             | 1.00          | Vertical |
| 907.123            | 33.6                 | 47.9               | 46.0                 | 200                | -12.4                    | 152.1                  | 0              | 1.00          | Vertical |



#### 1 GHz to 3 GHz



Date: 8.APR.2014 18:43:23





Date: 8.APR.2014 20:14:50



#### 8 GHz to 18 GHz



Date: 8.APR.2014 21:58:58

#### 18 GHz to 25 GHz



Date: 9.APR.2014 21:38:20



# <u>2480 MHz</u>

## 30 MHz to 1 GHz



| Frequency<br>(MHz) | QP Level<br>(dBµV/m) | QP Level<br>(µV/m) | QP Limit<br>(dBµV/m) | QP Limit<br>(µV/m) | QP<br>Margin<br>(dBµV/m) | QP<br>Margin<br>(µV/m) | Angle<br>(Deg) | Height<br>(m) | Polarity   |
|--------------------|----------------------|--------------------|----------------------|--------------------|--------------------------|------------------------|----------------|---------------|------------|
| 30.194             | 30.0                 | 31.6               | 40.0                 | 100                | -10.0                    | 68.4                   | 0              | 1.00          | Vertical   |
| 32.231             | 28.8                 | 27.5               | 40.0                 | 100                | -11.2                    | 72.5                   | 45             | 1.00          | Vertical   |
| 34.123             | 27.8                 | 24.5               | 40.0                 | 100                | -12.2                    | 75.5                   | 45             | 1.00          | Vertical   |
| 816.719            | 32.7                 | 43.2               | 46.0                 | 200                | -13.3                    | 156.8                  | 45             | 1.00          | Horizontal |
| 886.074            | 33.3                 | 46.2               | 46.0                 | 200                | -12.7                    | 153.8                  | 0              | 1.00          | Vertical   |
| 950.579            | 33.7                 | 48.4               | 46.0                 | 200                | -12.3                    | 151.6                  | 45             | 1.00          | Horizontal |



#### 1 GHz to 3 GHz



Date: 8.APR.2014 18:49:32

#### 3 GHz to 8 GHz



Date: 8.APR.2014 20:18:51



#### 8 GHz to 18 GHz



Date: 8.APR.2014 22:05:02

#### 18 GHz to 25 GHz





#### <u>Limit</u>

| Peak (dBµV/m) | Average (dBµV/m) |
|---------------|------------------|
| 74.0          | 54.0             |



## Band Edge Emissions

<u>2402 MHz</u>

| Polarisation | Final Peak (dBµV/m) | Final Average (dBµV/m) |
|--------------|---------------------|------------------------|
| Horizontal   | 47.85               | 37.74                  |



Date: 8.APR.2014 18:16:13



#### <u>2480 MHz</u>

| Polarisation | Final Peak (dBµV/m) | Final Average (dBµV/m) |
|--------------|---------------------|------------------------|
| Horizontal   | 50.22               | 38.61                  |



Date: 8.APR.2014 18:56:50

<u>Limit</u>

| Peak (dBµV/m) | Average (dBµV/m) |
|---------------|------------------|
| 74.0          | 54.0             |



**SECTION 3** 

# **TEST EQUIPMENT USED**



## 3.1 TEST EQUIPMENT USED

List of absolute measuring and other principal items of test equipment.

| Instrument                                                                      | Manufacturer               | Type No.                       | TE No.     | Calibration | Calibration Due |  |  |
|---------------------------------------------------------------------------------|----------------------------|--------------------------------|------------|-------------|-----------------|--|--|
|                                                                                 |                            |                                |            | Period      |                 |  |  |
|                                                                                 |                            |                                |            | (months)    |                 |  |  |
| Section 2.1– AC Line Conducted Emissions                                        |                            |                                |            |             |                 |  |  |
| Transient Limiter                                                               | Hewlett Packard            | 11947A                         | 15         | 12          | 10-Dec-2014     |  |  |
| LISN (1 Phase)                                                                  | Chase                      | MN 2050                        | 336        | 12          | 28-Mar-2015     |  |  |
| EMI Test Receiver                                                               | Rohde & Schwarz            | ESU40                          | 3506       | 12          | 22-Oct-2014     |  |  |
| Section 2.2 - Frequency Hopping Systems - 20dB Bandwidth and Channel Separation |                            |                                |            |             |                 |  |  |
| Power Splitter                                                                  | Weinschel                  | 1506A                          | 607        | 12          | 21-Mar-2015     |  |  |
| Spectrum Analyser                                                               | Agilent Technologies       | E4407B                         | 1154       | 12          | 13-Aug-2014     |  |  |
| Rubidium Standard                                                               | Rohde & Schwarz            | XSRM                           | 1316       | 6           | 22-Jul-2014     |  |  |
| Power Supply                                                                    | Farnell                    | LT30-2                         | 2903       | -           | TU              |  |  |
| Multimeter                                                                      | Fluke                      | 79 Series II                   | 3057       | 12          | 24-Sep-2014     |  |  |
| Hygrometer                                                                      | Rotronic                   | I-1000                         | 3220       | 12          | 16-Jul-2014     |  |  |
| Attenuator (10dB, 20W)                                                          | Lucas Weinschel            | 1                              | 3225       | 12          | 12-Dec-2014     |  |  |
| Network Analyser                                                                | Rohde & Schwarz            | ZVA 40                         | 3548       | 12          | 13-Sep-2014     |  |  |
| Calibration Unit                                                                | Rohde & Schwarz            | ZV-Z54                         | 4368       | 12          | 18-Sep-2014     |  |  |
| Frequency Standard                                                              | Spectracom                 | Secure Sync 1200-<br>0408-0601 | 4393       | 6           | 22-Jul-2014     |  |  |
| Section 2.3 - Frequency Hopp                                                    | ing Systems - Channel D    | well Time and Numbe            | r of Hoppi | ng Channels |                 |  |  |
| Power Splitter                                                                  | Weinschel                  | 1506A                          | 607        | 12          | 21-Mar-2015     |  |  |
| Spectrum Analyser                                                               | Agilent Technologies       | E4407B                         | 1154       | 12          | 13-Aug-2014     |  |  |
| Rubidium Standard                                                               | Rohde & Schwarz            | XSRM                           | 1316       | 6           | 22-Jul-2014     |  |  |
| High Pass Filter (4GHz)                                                         | RLC Electronics            | F-100-4000-5-R                 | 2773       | 12          | 4-Feb-2015      |  |  |
| Power Supply                                                                    | Farnell                    | LT30-2                         | 2903       | -           | TU              |  |  |
| Multimeter                                                                      | Fluke                      | 79 Series II                   | 3057       | 12          | 24-Sep-2014     |  |  |
| Hvarometer                                                                      | Rotronic                   | I-1000                         | 3220       | 12          | 16-Jul-2014     |  |  |
| Attenuator (10dB, 20W)                                                          | Lucas Weinschel            | 1                              | 3225       | 12          | 12-Dec-2014     |  |  |
| Signal Analyser                                                                 | Rohde & Schwarz            | FSQ 26                         | 3545       | 12          | 4-Jul-2014      |  |  |
| Network Analyser                                                                | Rohde & Schwarz            | ZVA 40                         | 3548       | 12          | 13-Sep-2014     |  |  |
| Micro USB breakout box                                                          | TUV SUD Product<br>Service | n/a                            | 4360       | -           | TU              |  |  |
| Calibration Unit                                                                | Rohde & Schwarz            | ZV-Z54                         | 4368       | 12          | 18-Sep-2014     |  |  |
| Frequency Standard                                                              | Spectracom                 | Secure Sync 1200-<br>0408-0601 | 4393       | 6           | 22-Jul-2014     |  |  |
| Section 2.4 - Maximum Peak 0                                                    | Conducted Output Power     | •                              |            |             |                 |  |  |
| Power Splitter                                                                  | Weinschel                  | 1506A                          | 607        | 12          | 21-Mar-2015     |  |  |
| Spectrum Analyser                                                               | Agilent Technologies       | E4407B                         | 1154       | 12          | 13-Aug-2014     |  |  |
| Rubidium Standard                                                               | Rohde & Schwarz            | XSRM                           | 1316       | 6           | 22-Jul-2014     |  |  |
| Power Supply                                                                    | Farnell                    | LT30-2                         | 2903       | -           | TU              |  |  |
| Multimeter                                                                      | Fluke                      | 79 Series II                   | 3057       | 12          | 24-Sep-2014     |  |  |
| Hygrometer                                                                      | Rotronic                   | I-1000                         | 3220       | 12          | 16-Jul-2014     |  |  |
| Attenuator (10dB, 20W)                                                          | Lucas Weinschel            | 1                              | 3225       | 12          | 12-Dec-2014     |  |  |
| Power Meter                                                                     | Rohde & Schwarz            | NRP                            | 3491       | 12          | 18-Apr-2014     |  |  |
| Wideband Power Sensor,                                                          | Rohde & Schwarz            | NRP-Z81                        | 3492       | 12          | 18-Apr-2014     |  |  |
| 50MHz - 18GHz                                                                   |                            |                                |            |             |                 |  |  |
| Network Analyser                                                                | Rohde & Schwarz            | ZVA 40                         | 3548       | 12          | 13-Sep-2014     |  |  |
| Calibration Unit                                                                | Rohde & Schwarz            | ZV-Z54                         | 4368       | 12          | 18-Sep-2014     |  |  |
| Frequency Standard                                                              | Spectracom                 | Secure Sync 1200-<br>0408-0601 | 4393       | 6           | 22-Jul-2014     |  |  |



| Instrument                                  | Manufacturer         | Туре No.                       | TE No. | Calibration<br>Period<br>(months) | Calibration Due |
|---------------------------------------------|----------------------|--------------------------------|--------|-----------------------------------|-----------------|
| Section 2.5 - EIRP Peak Power               |                      |                                |        |                                   |                 |
| Antenna (Double Ridge Guide,<br>1GHz-18GHz) | EMCO                 | 3115                           | 234    | 12                                | 3-May-2014      |
| Signal Generator (10MHz to 40GHz)           | Rohde & Schwarz      | SMR40                          | 1002   | 12                                | 18-Sep-2014     |
| Screened Room (5)                           | Rainford             | Rainford                       | 1545   | 24                                | 10-Jan-2015     |
| Turntable Controller                        | Inn-Co GmbH          | CO 1000                        | 1606   | -                                 | TU              |
| Antenna (DRG Horn)                          | ETS-LINDGREN         | 3115                           | 3125   | 12                                | 17-Jul-2014     |
| EMI Test Receiver                           | Rohde & Schwarz      | ESU40                          | 3506   | 12                                | 22-Oct-2014     |
| 7m Armoured RF Cable                        | SSI Cable Corp.      | 1501-13-13-7m<br>WA(-)         | 3600   | -                                 | TU              |
| 9m RF Cable (N Type)                        | Rhophase             | NPS-2303-9000-<br>NPS          | 3791   | -                                 | TU              |
| Tilt Antenna Mast                           | maturo Gmbh          | TAM 4.0-P                      | 3916   | -                                 | TU              |
| Mast Controller                             | maturo Gmbh          | NCD                            | 3917   | -                                 | TU              |
| Section 2.6 - Spurious and Bar              | nd Edge Emissions    |                                |        |                                   |                 |
| Antenna (Double Ridge Guide)                | Link Microtek Ltd    | AM180HA-K-TU2                  | 230    | 24                                | 26-Nov-2015     |
| Antenna (Double Ridge Guide,<br>1GHz-18GHz) | EMCO                 | 3115                           | 234    | 12                                | 3-May-2014      |
| Spectrum Analyser                           | Agilent Technologies | E4407B                         | 1154   | 12                                | 13-Aug-2014     |
| Rubidium Standard                           | Rohde & Schwarz      | XSRM                           | 1316   | 6                                 | 22-Jul-2014     |
| Pre-Amplifier                               | Phase One            | PS04-0086                      | 1533   | 12                                | 19-Dec-2014     |
| Pre-Amplifier                               | Phase One            | PSO4-0087                      | 1534   | 12                                | 30-Sep-2014     |
| Screened Room (5)                           | Rainford             | Rainford                       | 1545   | 24                                | 10-Jan-2015     |
| Turntable Controller                        | Inn-Co GmbH          | CO 1000                        | 1606   | -                                 | TU              |
| Power Supply                                | Farnell              | LT30-2                         | 2903   | -                                 | TU              |
| Antenna (Bilog)                             | Chase                | CBL6143                        | 2904   | 24                                | 10-Jun-2015     |
| Multimeter                                  | Fluke                | 79 Series II                   | 3057   | 12                                | 24-Sep-2014     |
| Hygrometer                                  | Rotronic             | I-1000                         | 3220   | 12                                | 16-Jul-2014     |
| Attenuator (10dB, 20W)                      | Lucas Weinschel      | 1                              | 3225   | 12                                | 12-Dec-2014     |
| EMI Test Receiver                           | Rohde & Schwarz      | ESU40                          | 3506   | 12                                | 22-Oct-2014     |
| Network Analyser                            | Rohde & Schwarz      | ZVA 40                         | 3548   | 12                                | 13-Sep-2014     |
| 9m RF Cable (N Type)                        | Rhophase             | NPS-2303-9000-<br>NPS          | 3791   | -                                 | TU              |
| Tilt Antenna Mast                           | maturo Gmbh          | TAM 4.0-P                      | 3916   | -                                 | TU              |
| Mast Controller                             | maturo Gmbh          | NCD                            | 3917   | -                                 | TU              |
| 1GHz to 8GHz Low Noise<br>Amplifier         | Wright Technologies  | APS04-0085                     | 4365   | 12                                | 1-Oct-2014      |
| Calibration Unit                            | Rohde & Schwarz      | ZV-Z54                         | 4368   | 12                                | 18-Sep-2014     |
| Frequency Standard                          | Spectracom           | Secure Sync 1200-<br>0408-0601 | 4393   | 6                                 | 22-Jul-2014     |
| Suspended Subtrate Highpass                 | Advance Power        | 11SH10-                        | 4411   | 12                                | 21-Mar-2015     |
| Filter                                      | Components           | 3000/X18000-O/O                |        |                                   |                 |
| Suspended Substrate                         | Advance Power        | 11SH10-                        | 4412   | 12                                | 21-Mar-2015     |
| Highpass Filter                             | Components           | 3000/X18000-O/O                |        |                                   |                 |

**Product Service** 

TU – Traceability Unscheduled O/P MON – Output Monitored with Calibrated Equipment



## 3.2 MEASUREMENT UNCERTAINTY

For a 95% confidence level, the measurement uncertainties for defined systems are:-

| Test Discipline                                                               | MU                                                 |  |  |
|-------------------------------------------------------------------------------|----------------------------------------------------|--|--|
| Frequency Hopping Systems - 20dB Bandwidth and Channel Separation             | ± 16.74 kHz                                        |  |  |
| Frequency Hopping Systems - Channel Dwell Time and Number of Hopping Channels | -                                                  |  |  |
| EIRP Peak Power                                                               | 30MHz to 1GHz: ± 5.1 dB<br>1GHz to 40GHz: ± 6.3 dB |  |  |
| Maximum Peak Conducted Output Power                                           | ± 0.70 dB                                          |  |  |
| Spurious and Band Edge Emissions                                              | 30MHz to 1GHz: ± 5.1 dB<br>1GHz to 40GHz: ± 6.3 dB |  |  |
| AC Line Conducted Emissions                                                   | ± 3.2 dB                                           |  |  |



**SECTION 4** 

# ACCREDITATION, DISCLAIMERS AND COPYRIGHT



## 4.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT



This report relates only to the actual item/items tested.

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation.

Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

This report must not be reproduced, except in its entirety, without the written permission of TÜV SÜD Product Service

© 2014 TÜV SÜD Product Service