

FCC PAR	T 15 SUBPART C TEST REPORT					
FCC PART 15 SUBPART E 15.407						
Report Reference No	BSL240515001P04-R01					
FCC ID :	2AL7F-Q5					
Compiled by (position+printed name+signature):	Engineer/ Cindy Zheng Manager/Haley Wen RF Manager/ Vivian Jiang Cindy Zheng Haley wen Vivian Jiang					
Supervised by (position+printed name+signature):	Manager/Haley Wen Haley wen					
Approved by (position+printed name+signature):	RF Manager/ Vivian Jiang					
Date of issue	May 15, 2024 V					
Testing Laboratory Name	BSL Testing Co., Ltd.					
Address:	1/F, Building B, Xinshidai GR Park, Shiyan Street, Bao'an District, Shenzhen, Guangdong, 518052, People's Republic of China					
Applicant's name:	Focus Industrial (HongKong) Development CO.,LIMITED					
Address:	Room 803, Chevalier House, 45-51 Chatham Road South, Tsim Sha Tsui, Kowloon , Hong Kong					
Test specification:						
FCC CFR Title 47 Part 15 Subpart C Section 15.407						
Standard:	ANSI C63.10:2013 KDB 789033 D02 v02r01					
BSL Testing Co., Ltd. All rights rese	rved.					
Testing Co., Ltd.is acknowledged as co	whole or in part for non-commercial purposes as long as the BSL opyright owner and source of the material. BSL Testing Co., Ltd.takes liability for damages resulting from the reader's interpretation of the ent and context.					
Test item description	WIFI CAMERA					
Trade Mark	N/A					
Manufacturer	.: Shenzhen Focus Electronics CO.,Itd					
Model/Type reference:	Q5					
Listed Models	: 21013, Q2 ,Q4, Q6, Q8, IK-I200, IK-I300, QC01, Q3 Pro, Q3 Max, Q11, C30, C31, C31 Pro, C32, C32 Pro					
Modulation Type	: OFDM					
Operation Frequency	.: From 5745MHz-5825MHz					
Rating	DC 5V					
Result	PASS					

Report No.: BSL240515001P04-R01

TEST REPORT

Equipment under Test	:	WIFI CAMERA
Model /Type	:	Q5
Series Model No.		21013, Q2 ,Q4, Q6, Q8, IK-I200, IK-I300, QC01, Q3 Pro, Q3 Max, Q11, C30, C31, C31 Pro, C32, C32 Pro
Model Declaration	:	All the models are electrical identical including the same software parameter and hardware design, same mechanical structure and design, the only difference is the model named different.
Applicant	:	Focus Industrial (HongKong) Development CO.,LIMITED
Address	:	Room 803, Chevalier House, 45-51 Chatham Road South, Tsim Sha Tsui, Kowloon , Hong Kong
Manufacturer	:	Shenzhen Focus Electronics CO.,Itd
Address	:	9/F,F building, Guancheng low-carbon Industrial Park, Shangcun community,Gongming Street, Guangming District, Shenzhen

|--|

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1 TEST STANDARDS	4
2 SUMMARY	5
2.1 General Remarks	
2.2 Product Description	
2.3 Equipment Under Test	
2.4 Short description of the Equipment under Test (EUT)	
2.5 EUT operation mode	
2.6 Block Diagram of Test Setup	
2.7 Related Submittal(s) / Grant (s)	
2.8 Modifications	6
3 TEST ENVIRONMENT	7
3.1 Address of the test laboratory	
3.2 Test Facility	
3.3 Environmental conditions	
3.4 Test Description	
3.5 Statement of the measurement uncertainty	
3.6 Equipments Used during the Test	9
4 TEST CONDITIONS AND RESULTS	11
4.1 AC Power Conducted Emission	
4.2 Radiated Emission	
4.3 Maximum Peak Conducted Output Power	
4.4 Power Spectral Density	22
4.5 Emission Bandwidth (26dBm Bandwidth)	. 26
4.6 Minimum Emission Bandwidth (6dBm Bandwidth)	
4.7 Out of Band Emissions	
4.8 SPURIOUS RF CONDUCTED EMISSIONS	
4.9 Frequency Stability	
4.10 Antenna Requiremen	36
5 TEST SETUP PHOTOS OF THE EUT	37
6 PHOTOS OF THE EUT	38

1 <u>TEST STANDARDS</u>

The tests were performed according to following standards:

<u>CC Rules Part 15 Subpart E</u>—Unlicensed National Information Infrastructure Devices <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices <u>KDB789033 D02</u>: General UNII Test Procedures New Rules v02r01

Report No.: BSL240515001P04-R01

2 <u>SUMMARY</u>

2.1 General Remarks

Date of receipt of test sample	:	April 18, 2024
Testing commenced on	:	April 26, 2024
Testing concluded on	:	May 15, 2024

2.2 **Product Description**

WIFI CAMERA						
Q5						
DC 5V						
Model: YTY-12F-01 05100EU Input: AC 100-240V~50/60Hz 0.3A Max Output: DC 5.0V-= 1.0A 5W						
V1.0						
V1.0						
20MHz system	40MHz system	80MHz system	160MHz system			
802.11a 802.11n	1	1	N/A			
5745MHz-5825MHz	1	/	N/A			
OFDM	1	/	N/A			
5	1	/	N/A			
20MHz	1	/	N/A			
	Q5 DC 5V Model: YTY-12F-01 0 Input: AC 100-240V~8 Output: DC 5.0V= 1.0 BSL240515001P04-R BSL240515001P04-R BSL240515001P04-R V1.0 V1.0 V1.0 V1.0 V1.0 S5745MHz-5825MHz OFDM 5	Q5 DC 5V Model: YTY-12F-01 05100EU Input: AC 100-240V~50/60Hz 0.3A Max Output: DC 5.0V= 1.0A 5W BSL240515001P04-R01-1# (Engineer sample V1.0 V1.0 V1.0 S02.11a 802.11a 802.11n 5745MHz-5825MHz OFDM 1 0 7 5	Q5 DC 5V Model: YTY-12F-01 05100EU Input: AC 100-240V~50/60Hz 0.3A Max Output: DC 5.0V= 1.0A 5W BSL240515001P04-R01-1# (Engineer sample), BSL240515001P04-R01-2# (Normal sample) V1.0 V1.0 V1.0 V1.0 S02.11a 802.11a 802.11n S745MHz-5825MHz Input S745MHz-5825MHz Input S0 Input S745MHz-5825MHz Input S0 Input S0 Input S0 Input S0 Input S0 Input S0 S0 S0 S0 Input Input			

Antenna type:	FPC antenna		
Data Rate:	802.11a: 6,9,12,18,24 802.11n(HT20):MCS0		
Antenna gain:	3.98 dBi		

2.3 Equipment Under Test

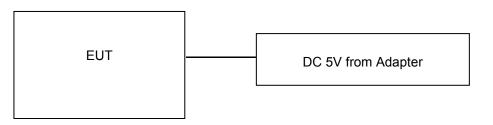
Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		\bullet	5 V DC	0	24 V DC
		0	Other (specified in blank below))

2.4 Short description of the Equipment under Test (EUT)

This is WIFI CAMERA. For more details, refer to the user's manual of the EUT.

2.5 EUT operation mode


The Applicant provides communication tools software (AT command) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing. All test performed at the low, middle and high of operational frequency range of each mode.

	20MHz		40	MHz	80MHz		
Operating band	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
	149	5745					
U-NII 3 (5725MHz-5850MHz)	153	5765					
	157	5785					
	161	5805					
	165	5825					

Operation Frequency List WIFI on 5G Band:

Note: The line display in grey is those Channels/Frequencies select to test in this report for each operation mode.

2.6 Block Diagram of Test Setup

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for filing to comply with Section 15.407 of the FCC Part 15, Subpart E Rules.

2.8 Modifications

No modifications were implemented to meet testing criteria.

3 <u>TEST ENVIRONMENT</u>

3.1 Address of the test laboratory

BSL Testing Co., Ltd.

1/F, Building B, Xinshidai GR Park, Shiyan Street, Bao'an District, Shenzhen, Guangdong, 518052, People's Republic of China

3.2 Test Facility

FCC-Registration No.: 562200 Designation Number: CN1338

BSL Testing Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Industry Canada Registration Number. Is: 11093A CAB identifier: CN0019

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

A2LA-Lab Cert. No.: 4707.01

BSL Testing Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Temperature:	25 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

Conducted testing:

25 ° C
44 %
950-1050mbar

AC Power Conducted Emission

Temperature:	24 ° C
Humidity:	44 %
Atmospheric pressure:	950-1050mbar

3.4 Test Description

FCC Requirement		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 15.407(a)	Emission Bandwidth(26dBm Bandwidth)	N/A _{Note1}
FCC Part 15.407(e)	Minimum Emission Bandwidth(6dBm Bandwidth)	PASS _{Note2}
FCC Part 15.407(a)	Maximum Conducted Output Power	PASS
FCC Part 15.407(a)	Peak Power Spectral Density	PASS
FCC Part 15.407(g)	Frequency Stability	PASS
FCC Part 15.407(b)	Undesirable emission	PASS
FCC Part 15.407(b)/15.205/15.209	Radiated Emissions	PASS
15.407(b)(1)/ 15.407(b)(2) 15.407(b)(3)/ 15.407(b)(4)	Band Edge	PASS
15.407(b)	Spurious Emissions at Antenna Terminals	PASS
FCC Part 15.407(h)	Dynamic Frequency Selection	N/A Note 3
FCC Part 15.203/15.247(b)	Antenna Requirement	PASS
FCC Part 15.407(c)	Automatically discontinue transmission	PASS _{Note4}

Note 1: Apply to U-NII 1, U-NII 2A, and U-NII 2C band.

Note 2: Apply to U-NII 3 band only.

Note 3: This device not work in DFS band.

Note 4: While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ASK message transmitting from remote device and verify whether it shall resend or discontinue transmission. (Manufacturer declare)

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate
MMaximum Conducted Output Power Power Spectral Density Emission Bandwidth(26dBm Bandwidth)	11a/OFDM	6 Mbps
Minimum Emission Bandwidth(6dBm Bandwidth) Undesirable emission Frequency Stability	11n(20MHz)	7.2 Mbps

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the BSL Testing Co., Ltd.quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for BSL Testing Co., Ltd.

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

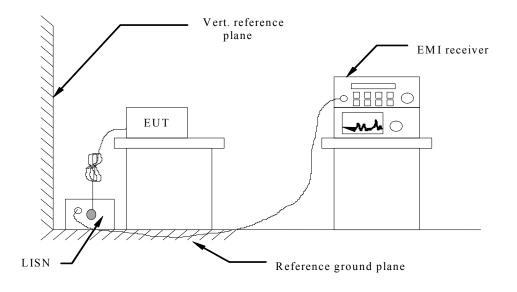
3.6 Equipments Used during the Test

Conducted Emission							
Test Equipment	Manufacturer	Model	Serial No.	Date of Cal.	Due Date		
Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	BSL252	2023-10-28	2024-10-27		
EMI Test Receiver	R&S	ESCI 7	BSL552	2023-10-28	2024-10-27		
Coaxial Switch	ANRITSU CORP	MP59B	BSL225	2023-10-28	2024-10-27		
ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	BSL226	2023-10-28	2024-10-27		
Coaxial Cable	BSL	N/A	BSL227	N/A	N/A		
EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
Thermo meter	KTJ	TA328	BSL233	2023-10-28	2024-10-27		
Absorbing clamp	Elektronik- Feinmechanik	MDS21	BSL229	2023-10-28	2024-10-27		
LISN	R&S	ENV216	308	2023-10-28	2024-10-27		
LISN	R&S	ENV216	314	2023-10-28	2024-10-27		

Radiation Test equ	Radiation Test equipment						
Test Equipment	Manufacturer	Model	Serial No.	Date of Cal.	Due Date		
3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	BSL250	2023-10-28	2024-10-27		
Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	BSL251	N/A	N/A		
EMI Test Receiver	Rohde & Schwarz	ESU26	BSL203	2023-10-28	2024-10-27		
BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	BSL214	2023-10-28	2024-10-27		
Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	BSL208	2023-10-28	2024-10-27		
Horn Antenna	ETS-LINDGREN	3160	BSL217	2023-10-28	2024-10-27		
EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
Coaxial Cable	BSL	N/A	BSL213	2023-10-28	2024-10-27		
Coaxial Cable	BSL	N/A	BSL211	2023-10-28	2024-10-27		
Coaxial cable	BSL	N/A	BSL210	2023-10-28	2024-10-27		
Coaxial Cable	BSL	N/A	BSL212	2023-10-28	2024-10-27		
Amplifier(100kHz- 3GHz)	HP	8347A	BSL204	2023-10-28	2024-10-27		
Amplifier(2GHz- 20GHz)	HP	84722A	BSL206	2023-10-28	2024-10-27		
Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	BSL218	2023-10-28	2024-10-27		

Report No.: BSL240515001P04-R01

Band filter	Amindeon	82346	BSL219	2023-10-28	2024-10-27
Power Meter	Anritsu	ML2495A	BSL540	2023-10-28	2024-10-27
Power Sensor	Anritsu	MA2411B	BSL541	2023-10-28	2024-10-27
Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	BSL575	2023-10-28	2024-10-27
Splitter	Agilent	11636B	BSL237	2023-10-28	2024-10-27
Loop Antenna	ZHINAN	ZN30900A	BSL534	2023-10-28	2024-10-27
Breitband hornantenne	SCHWARZBECK	BBHA 9170	BSL579	2023-10-28	2024-10-27
Amplifier	TDK	PA-02-02	BSL574	2023-10-28	2024-10-27
Amplifier	TDK	PA-02-03	BSL576	2023-10-28	2024-10-27
PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	BSL578	2023-10-28	2024-10-27
Antenna tower	SKET	BK-4AT	BSL589	2023-10-28	2024-10-27


RF Conducted Test:					
Test Equipment	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
MXA Signal Analyzer	Agilent	N9020A	BSL566	2023-10-28	2024-10-27
EMI Test Receiver	R&S	ESCI 7	BSL552	2023-10-28	2024-10-27
Spectrum Analyzer	Agilent	E4440A	BSL533	2023-10-28	2024-10-27
MXG vector Signal Generator	Agilent	N5182A	BSL567	2023-10-28	2024-10-27
ESG Analog Signal Generator	Agilent	E4428C	BSL568	2023-10-28	2024-10-27
USB RF Power Sensor	DARE	RPR3006W	BSL569	2023-10-28	2024-10-27
RF Switch Box	Shongyi	RFSW3003328	BSL571	2023-10-28	2024-10-27
Programmable					
Constant Temp &	WEWON	WHTH-150L-40-880	BSL572	2023-10-28	2024-10-27
Humi Test Chamber					

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received power from adapter, the adapter receivedDC 5V from Adapter AC 120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Eroquency range (MHz)	Limit (dBuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
* Decreases with the logarithm of the frequer	ncy.	

TEST RESULTS

	er supply:	DC 5V from A 120V/60	0Hz	Po	olarization		L	
	t Mode:	TX(5.8	iG)					
0.0 dBu								
						Part15 CE-CI		-
I w	3				FCC	Part15 CE-CI	ass B_AVe	-
	www.www.www.www.	March	7 X	23 - 23 A - 54	9 11			_
	how when he was a set of the set	March all when	•10*10*10*10*10*10*10*10*10*10*10*10*10*1	when the state of the state of the	man	What was Allena	when the man	
0			and the stand with the second s	man 8	10		12	Why .
0				- V	wwwww	the manufacture and the second second	pullique and more and more and	AV
								_
0								_
:0								
io		9	C - 26					
0.150		.500	(MI	1z)	5.000			30.00
					1	N 4		1
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
1 *	0.1995	32.92	16.73	49.65	63.63	-13.98	peak	Ρ
		Prove Contractor Sta						1
2	0.2983	13.74	16.7 <mark>1</mark>	30.45	50.29	- <mark>19.84</mark>	AVG	P
2 3	0.2983 0.3300	13.74 27.92	16.71 16.71	30.45 44.63	50.29 59.45	-19.84 -14.82	AVG peak	P P
3	0.3300	27.92	<mark>16.71</mark>	44. <mark>6</mark> 3	59.45	-14.82	peak	Ρ
3 4	0.3300 0.6584	27.92 24.03	16.71 16.66	44.63 40.69	59.45 56.00	-14.82 -15.31	peak peak	P
3 4 5	0.3300 0.6584 0.7754	27.92 24.03 11.81	16.71 16.66 16.65	44.63 40.69 28.46	59.45 56.00 46.00	-14.82 -15.31 -17.54	peak peak AVG	P P P
3 4 5 6	0.3300 0.6584 0.7754 1.6485	27.92 24.03 11.81 7.87	16.71 16.66 16.65 16.54	44.63 40.69 28.46 24.41	59.45 56.00 46.00 46.00	-14.82 -15.31 -17.54 -21.59	peak peak AVG AVG	P P P P
3 4 5 6 7	0.3300 0.6584 0.7754 1.6485 1.9185	27.92 24.03 11.81 7.87 19.66	16.71 16.66 16.65 16.54 16.50	44.63 40.69 28.46 24.41 36.16	59.45 56.00 46.00 46.00 56.00	-14.82 -15.31 -17.54 -21.59 -19.84	peak peak AVG AVG peak	P P P P P
3 4 5 6 7 8	0.3300 0.6584 0.7754 1.6485 1.9185 3.5430	27.92 24.03 11.81 7.87 19.66 1.89	16.71 16.66 16.65 16.54 16.50 16.28	44.63 40.69 28.46 24.41 36.16 18.17	59.45 56.00 46.00 46.00 56.00 46.00	-14.82 -15.31 -17.54 -21.59 -19.84 -27.83	peak peak AVG AVG peak AVG	P P P P P P
3 4 5 6 7 8 9	0.3300 0.6584 0.7754 1.6485 1.9185 3.5430 4.4790	27.92 24.03 11.81 7.87 19.66 1.89 18.04	16.71 16.66 16.65 16.54 16.50 16.28 16.17	44.63 40.69 28.46 24.41 36.16 18.17 34.21	59.45 56.00 46.00 46.00 56.00 46.00 56.00	-14.82 -15.31 -17.54 -21.59 -19.84 -27.83 -21.79	peak peak AVG AVG peak AVG peak	Р Р Р Р Р Р Р

Note:1).Level (dB μ V)= Reading (dB μ V)+ Factor (dB)

2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)

3). Margin(dB) = Limit (dB μ V) - Level (dB μ V)

Powe	er supply:	DC 5V from A 120V/6		Pc	larization		Ν	
Tes	st Mode:	TX(5.8	3G)					
.0 dBu	v		1			1. 1.	1	
								_
						Part15 CE-Cl		-
AX.					FCC	Part15 CE-CI	ass B_AVe	-
	manummun		4 X		ç			
~~~	many	S water water	www.wanapper.up	My Martin Martin	an month	When the special is	9 9	
		with Marsonathrouse	warmen when when the		8 AA.	A ANALAS	10	une.
					NAANN	manun a nation	manner	p
								A
								-
D								_
0								
0.150	0.	.500	(MI	Hz)	5.000			30.00
No.	Frequency	Reading	Factor	Level	Limit	Margin		
INU.						U U	Detector	P/F
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	Detector	P/F
1		(dBuV) 31.23	(dB) 17.53	(dBuV) 48.76	(dBuV) 64.63		Detector peak	P/F
1 2*	(MHz)			Contraction (1997)	the states of a plantation	(dB)	Chandra Chandra	
	(MHz) 0.1768	31.23	17.53	48.76	64.63	(dB) -15.87	peak AVG	P
2 *	(MHz) 0.1768 0.6450	31.23 14.93	17.53 17.51	48.76 32.44	64.63 46.00	(dB) -15.87 -13.56 -13.99	peak	P P
2 * 3	(MHz) 0.1768 0.6450 0.6540	31.23 14.93 24.50 21.42	17.53 17.51 17.51 17.48	48.76 32.44 42.01 38.90	64.63 46.00 56.00	(dB) -15.87 -13.56 -13.99 -17.10	peak AVG peak	P P P
2 * 3 4	(MHz) 0.1768 0.6450 0.6540 1.9230	31.23 14.93 24.50	17.53 17.51 17.51	48.76 32.44 42.01	64.63 46.00 56.00 56.00	(dB) -15.87 -13.56 -13.99	peak AVG peak peak	P P P
2 * 3 4 5	(MHz) 0.1768 0.6450 0.6540 1.9230 2.1345	31.23 14.93 24.50 21.42 8.28	17.53 17.51 17.51 17.48 17.47	48.76 32.44 42.01 38.90 25.75	64.63 46.00 56.00 56.00 46.00	(dB) -15.87 -13.56 -13.99 -17.10 -20.25	peak AVG peak peak AVG	P P P P
2 * 3 4 5 6	(MHz) 0.1768 0.6450 0.6540 1.9230 2.1345 3.5880	31.23 14.93 24.50 21.42 8.28 8.07	17.53 17.51 17.51 17.48 17.47 17.43	48.76 32.44 42.01 38.90 25.75 25.50	64.63 46.00 56.00 56.00 46.00 46.00	(dB) -15.87 -13.56 -13.99 -17.10 -20.25 -20.50	peak AVG peak peak AVG AVG	P P P P P
2 * 3 4 5 6 7	(MHz) 0.1768 0.6450 0.6540 1.9230 2.1345 3.5880 4.2900	31.23 14.93 24.50 21.42 8.28 8.07 20.15	17.53 17.51 17.51 17.48 17.47 17.43 17.42	48.76 32.44 42.01 38.90 25.75 25.50 37.57	64.63 46.00 56.00 56.00 46.00 46.00 56.00	(dB) -15.87 -13.56 -13.99 -17.10 -20.25 -20.50 -18.43	peak AVG peak peak AVG AVG peak	P P P P P P

Note:1).Level (dBµV)= Reading (dBµV)+ Factor (dB)

2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)

3). Margin(dB) = Limit (dB $\mu$ V) - Level (dB $\mu$ V)



## 4.2 Radiated Emission

### <u>Limit</u>

The maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

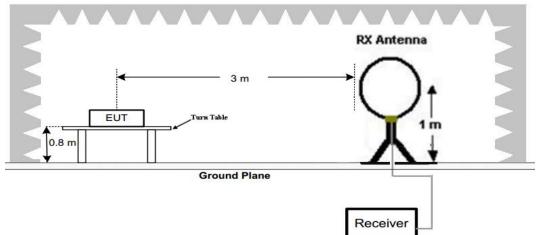
(3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(4) For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge.

Requirement	Limit(EIRP)	Limit (Field strength at 3m) Note1	
15.407(b)(1)			
15.407(b)(2)		DK(GR,2(dPu)/m)	
15.407(b)(3)	PK:-27(dBm/MHz)	PK:68.2(dBµV/m)	
15.407(b)(4)			

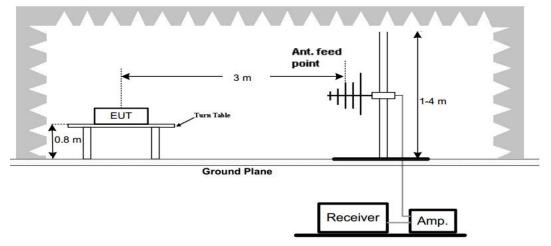
Note1: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \,\mu\text{V/m}$$
, where P is the eirp (Watts)

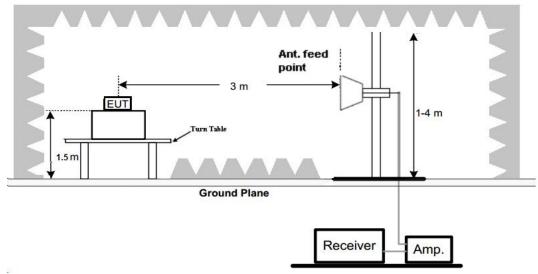

(5) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209
(6)In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)			
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)			
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)			
1.705-30	3	20log(30)+ 40log(30/3)	30			
30-88	3	40.0	100			
88-216	3	43.5	150			
216-960	3	46.0	200			
Above 960	3	54.0	500			

Radiated emission limits




### **TEST CONFIGURATION**




(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency below 1000MHz



(C) Radiated Emission Test Set-Up, Frequency above 1000MHz





### TEST PROCEDURE

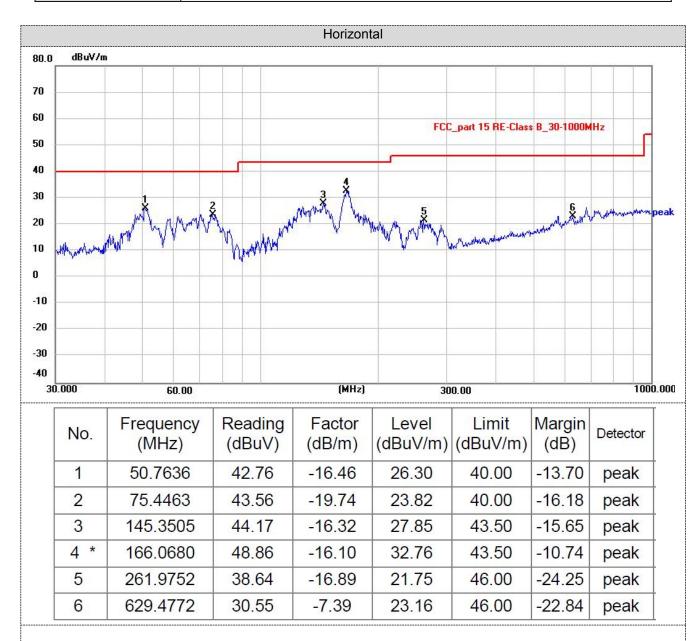
- 1. Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 40GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance				
9KHz-30MHz	Active Loop Antenna	3				
30MHz-1GHz	Bilog Antenna	3				
1GHz-18GHz	Horn Antenna	3				
18GHz-25GHz	Horn Anternna	1				

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz	Sweep time=Auto	Peak
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,	reak
	Sweep time=Auto	

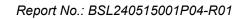
#### TEST RESULTS


Between 9KHz – 30MHz

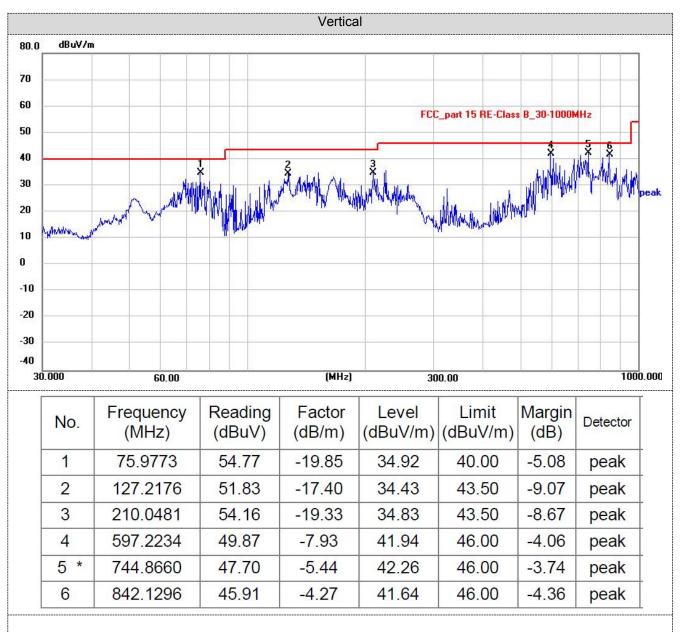
The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.



### For 30MHz-1GHz


Temperature:	<b>25</b> ℃	Relative Humidity:	54%
Pressure:	101 kPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX(5.8G)		




Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dBµV/m) - Level (dBµV/m)







Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB $\mu$ V/m) - Level (dB $\mu$ V/m)



#### For 1GHz to 40GHz

Note: All 802.11a/n(HT20) modes have been tested for above 1GHz test, only the worst case 802.11a(HT20) was recorded.

			• • • •		2.114 1000						
Tested	Frequency	Emission		ANT	Limit	Margin	Raw	Antenna	Cable	Pre-	Correction
Channel	(MHz)	Limit	Mode	Pol	(dBuV/m)		Value	Factor	Factor	amplifier	Factor
Channel	(11112)	(dBuV/m)		FUI	(ubu v/III)	(ub)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
	5720.00	56.45	PK	Н	68.20	11.75	51.65	34.21	5.11	34.52	4.80
149	5720.00	46.16	AV	Н	54.00	7.84	41.36	34.21	5.11	34.52	4.80
5745MHz	11490.00	47.62	PK	Н	68.20	20.58	38.62	38.35	5.86	35.21	9.00
157	11570.00	44.56	PK	Н	68.20	23.64	35.24	38.61	5.96	35.25	9.32
5785MHz											
105	5855.00	38.77	PK	Н	68.20	29.43	33.62	34.56	5.22	34.63	5.15
165 5825MHz	11650.00	40.70	PK	Н	68.20	27.50	31.25	38.78	6.21	35.54	9.45
5025IVII IZ											

U-NII 3 & 802.11a Mode (above 1GHz)

Tested Channel	Frequency (MHz)	Emission Limit (dBuV/m)	Detector Mode	ANT Pol	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)		Pre- amplifier (dB)	Correction Factor (dB/m)
	5720.00	55.44	PK	V	68.20	12.76	50.64	34.21	5.11	34.52	4.80
149	5720.00	45.12	AV	V	54.00	8.88	40.32	34.21	5.11	34.52	4.80
5745MHz	11490.00	47.69	PK	V	68.20	20.51	38.69	38.35	5.86	35.21	9.00
157	11570.00	45.77	PK	V	68.20	22.43	36.45	38.61	5.96	35.25	9.32
5785MHz											
165	5855.00	37.67	PK	V	68.20	30.53	32.52	34.56	5.22	34.63	5.15
165 5825MHz	11650.00	39.57	PK	V	68.20	28.63	30.12	38.78	6.21	35.54	9.45
5625IVII 12											

#### **REMARKS**:

1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)

2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

3. Margin value = Limit value- Emission level.

4. -- Mean the other emission levels were very low against the limit.5. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

6. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20,;



## 4.3 Maximum Peak Conducted Output Power

#### <u>Limit</u>

#### For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1W

#### Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

#### **Test Configuration**





## <u>Test Results</u>

## U-NII 3

Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	149	0.564		
802.11a	157	1.241	30.00	Pass
	165	1.658		
	149	2.456		Pass
802.11n(HT20)	157	3.458	30.00	
	165	3.965		

Note:

- 1) Measured output power at difference data rate for each mode and recorded worst case for each mode.
- Test results including cable loss.
   Worst case data at 54Mbps at IE
- 3) Worst case data at 54Mbps at IEEE 802.11a; MCS7 at IEEE 802.11n(HT20);



## 4.4 **Power Spectral Density**

### <u>Limit</u>

(1) For the band 5.15 - 5.25 GHz.

(i) For an outdoor access point operating in the band 5.15 - 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band.^{note1}

(ii) For an indoor access point operating in the band 5.15 - 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band.^{note1}

(iii) For fixed point-to-point access points operating in the band 5.15 - 5.25 GHz, transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.

(iv) For mobile and portable client devices in the 5.15 - 5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 MHz band. ^{note1}

(2) For the 5.25 - 5.35 GHz and 5.47 - 5.725 GHz bands, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. ^{note1}

(3) For the band 5.725 - 5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500 kHz band. ^{note1, note2}

Note1: If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note2: Fixed point - to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information.

transmission.

## Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW = 1MHz for U-NII 1, U-NII 2A, U-NII C band and 510KHz for U-NII 3 band.
- 3. Set the VBW  $\geq$  3× RBW.
- 4. Set the span to encompass the entire EBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.

## Test Configuration





## <u>Test Results</u>

Туре	Bands	Channel	Power Spectral Density (dBm/500KHz)	Limit (dBm/500KHz)	Result
		149	2.011		Pass
802.11a	U-NII 3	157	1.877	- 30	
		165	1.946		
	U-NII 3	149	1.319		
802.11n (HT20)		157	1.108		
(0)		165	1.072		



#### Test plot as follows:









## 4.5 Emission Bandwidth (26dBm Bandwidth)

### <u>Limit</u>

N/A

### Test Procedure

- 1. Set resolution bandwidth (RBW) = approximately 1 % of the EBW.
- 2. Set the video bandwidth (VBW) > RBW.
- 3. Detector = Peak.
- 4. Trace mode = Max hold.
- 5. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW / EBW ratio is approximately 1 %.

### Test Configuration

EUT	SPECTRUM ANALYZER

### Test Results

Туре	Bands	Channel	26dB Bandwidth (MHz)	Limit (MHz)	Result
		36	1		Pass
802.11a	U-NII 1	40	/	- N/A	
		48	1		
	U-NII 1	36	1		
802.11n(HT20)		40	1		
		48	1		



## 4.6 Minimum Emission Bandwidth (6dBm Bandwidth)

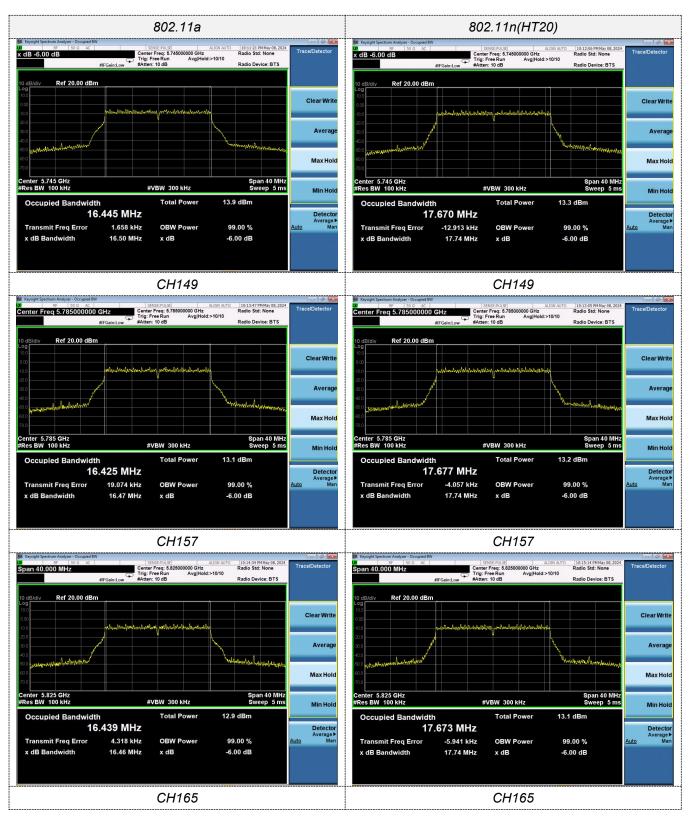
### <u>Limit</u>

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

### Test Procedure

- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth  $3 \times RBW$ .
- 3. Detector = Peak.
- 4. Trace mode = Max hold.
- 5. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

### Test Configuration




### Test Results

Туре	Bands	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
		149	16.50		
802.11a	U-NII 3	157	16.47		
		165	16.46	≥500KHz	Pass
		149	17.74		
802.11n(HT20)	U-NII 3	157	17.74		
		165	17.74		



Test plot as follows:





## 4.7 Out of Band Emissions

4.7.1 Applicable Standard

According to FCC §15.407(b)

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) For transmitters operating in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

#### 4.7.2 Test Procedure

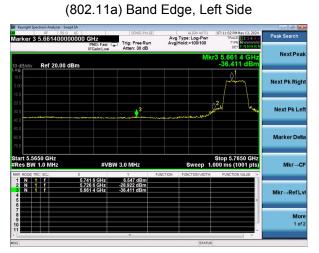
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 1 MHz with a convenient frequency span.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

#### 4.7.3 DEVIATION FROM STANDARD

No deviation.

#### 4.7.4 TEST SETUP




#### 4.7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.



#### 4.7.6 TEST RESULTS

Temperature:	<b>26</b> ℃	Relative Humidity:	54%
Pressure:	1012 hPa	Test Voltage :	DC 5V



5.745~5.825 GHz

(802.11n20) Band Edge, Left Side



#### (802.11a) Band Edge, Right Side



(802.11n20) Band Edge, Right Side



#### (802.11a) & 802.11n20 Band Edge, Left Side

out na dout nie bana Lago, Lon olao							
Frequency(GHz)	Limit (dbm)	Rate (dBm/MHz)	Test Results(dbm)	Test Results(dbm)			
		802.11a		802.11n20			
5.5650~5.6500	-27	0 -36.411		-36.354			
5.6500~5.7000	-27~10.6	15.6	15.6 -36.411				
5.7000~5.7200	10.6~15.6	10 -28.922		-29.465			
5.7200~5.7250	15.6~27	27 -28.922		-29.465			
5.7250~5.7650	27	0	6.547	5.462			

### (802.11a) & 802.11n20 Band Edge, Right Side

۰.							
	Frequency(GHz)	Limit (dbm)	Rate (dBm/MHz)	Test Results(dbm)	Test Results(dbm)		
				802.11a	802.11n20		
	5.8050~5.8500	27	0 5.880		4.520		
	5.8500~5.8550	27~15.6	27	-35.793	-30.431		
	5.8550~5.8750	15.6~10.6	10	-35.793	-30.431		
	5.8750~5.9250	10.6~-27	10.6	-36.339	-36.049		
	5.9250~6.0050	-27	0	-36.339	-36.049		



## SPURIOUS RF CONDUCTED EMISSIONS

#### 4.7.7 Conformance Limit

Frequency Band (MHz)	Limit			
5150 - 5250	Outside of the 5.15-5.35 GHz band: e.i.r.p27 dBm			
5250 - 5350	Outside of the 5.15-5.35 GHz band: e.i.r.p27 dBm			
5470 - 5725	Outside of the 5.47-5.725 GHz band: e.i.r.p27 dBm			
5725 - 5850	All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.			

#### 4.7.8 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 4.7.9 Test Setup



#### 4.7.10 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=1MHz and VBW= 3MHz to measure the peak field strength, and measure frequency range from 30MHz to 40GHz.

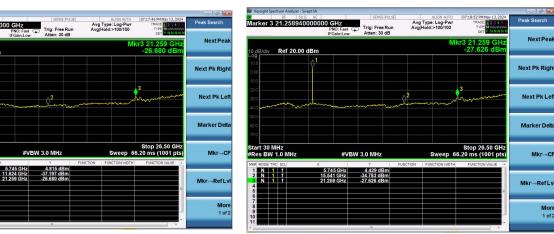
#### 4.7.11 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and band edge measurement data.

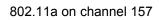
At 26.5GHz to 40GHz, the amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

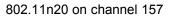
#### Report No.: BSL240515001P04-R01




Marker 3 21.258940000000 GHz

Ref 20.00 dBn

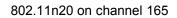

art 30 MHz Res BW 1.0 MH


N 1 1 N 1 1

### 5.8G Test Plot



#### 802.11a on channel 149






More 1 of 2









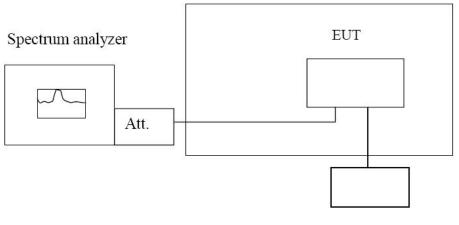
### 802.11a on channel 165





Frequency	Limit	Rate	Test Results(dbm)	Test Results(dbm)
(GHz)	(dbm)	(dBm/MHz)	802.11a on channel 149	802.11n20 on channel 149
0.030~5.7650	1	1	-34.393	-37.197
5.5650~5.6500	-27	0	-34.393	-37.197
5.6500~5.7000	-27~10.6	15.6	-34.393	-37.197
5.7000~5.7200	10.6~15.6	10	-34.393	-37.197
5.7200~5.7250	15.6~27	27	-34.393	-37.197
5.7250~5.7650	27	0	3.557	4.815
5.7650~26.5	1		-27.079	-26.688
Frequency	Limit	Rate	Test Results(dbm)	Test Results(dbm)
(GHz)	(dbm)	(dBm/MHz)	802.11a on channel 157	802.11n20 on channel 157
0.030~5.7550	1	1	-34.161	-36.049
5.7550~5.8500	27	0	4.707	4.161
5.8500~5.8550	27~15.6	27	-26.886	-27.348
5.8550~5.8750	15.6~10.6	10	-26.886	-27.348
5.8750~5.9250	10.6~-27	10.6	-26.886	-27.348
5.9250~5.9550	-27	0	-26.886	-27.348
5.9550~26.5	1	1	-26.886	-27.348
Frequency Limit		Rate	Test Results(dbm)	Test Results(dbm)
(GHz)	(dbm)	(dBm/MHz)	802.11a on channel 165	802.11n20 on channel 165
0.030~5.8050	1		-34.337	-34.393
5.8050~5.8500	27	0	4.602	3.557
5.8500~5.8550	27~15.6	27	-27.373	-27.079
5.8550~5.8750	15.6~10.6	10	-27.373	-27.079
5.8750~5.9250	10.6~-27	10.6	-27.373	-27.079
5.9250~6.0050	-27	0	-27.373	-27.079
6.0050~26.5	1	1	-27.373	-27.079




## 4.8 Frequency Stability

### <u>Limit</u>

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

### **TEST CONFIGURATION**

Temperature Chamber



Variable Power Supply

### TEST PROCEDURE

### Frequency Stability under Temperature Variations:

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.

### Frequency Stability under Voltage Variations:

Set chamber temperature to  $25^{\circ}$ C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation ( $\pm$ 15%) and endpoint, record the maximum frequency change.



Reference Frequency: 802.11ac channel=149 frequency=5745MHz					
Voltage (V)	Temperature (℃)	Frequency error		Limit (ppm)	Result
voltage (v)		Hz	ppm		Result
	-30	108.22	0.019	Within the band of operation	Pass
	-20	89.51	0.016		
	-10	49.27	0.009		
	0	62.58	0.011		
5.0	10	56.98	0.010		
	20	51.16	0.009		
	30	52.57	0.009		
	40	84.92	0.015		
	50	109.91	0.019		
5.75	25	54.60	0.010		
4.25	25	53.89	0.009		

## 4.9 Antenna Requiremen

#### Standard Applicable

#### For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

### FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

### <u>Test Result:</u>

The maximum gain of antenna is 3.98 dBi.

Remark:The antenna gain is provided by the customer, if the data provided by the customer is not accurate, BSL Testing Co., Ltd. does not assume any responsibility.



# 5 Test Setup Photos of the EUT

Reference to the appendix I for details.



Report No.: BSL240515001P04-R01

# 6 Photos of the EUT

Reference to the appendix II for details.