UHF Demo User Manual - User Operation Guide

V5. 3

FCC Statement

This device complies with part 15 of the FCC Rules. Operation is subject to the

outside of the device into which the module is installed must also display a label

in the user documentation that comes with the product.

Any company of the host device which install this modular with modular approvalshould perform the test of radiated & conducted emission and spurious emission,

FPC connector (30Pin , Space between PINs 0.5mm)

PIN	Interface	Instruction						
1	GND							
2	GND							
3	GND	Meanwhile grounding						
4	GND							
5	GND							
6	4.5V-5.5V DC							
7	4.5V-5.5V DC							
8	4.5V-5.5V DC							
9	4.5V-5.5V DC							
10	4.5V-5.5V DC	Meanwhile connect power, Recommended input voltage: 4.8V						
11	4.5V-5.5V DC	Meanwrite connect power, recommended input voltage. 4.0v						
12	4.5V-5.5V DC							
13	4.5V-5.5V DC							
14	4.5V-5.5V DC							
15	4.5V–5.5V DC							
16	GND							
17	GND							
18	GND	Meanwhile grounding						
19	GND							
20	GND							
21	UART_RXD	TTL level						
22	UART_TXD	TTL level						
23	EN	High level enable						
24	GPIO1	Input						
25	Beeper	Has driven with > 50mA output current						
26	GPIO3	Output						
27	GPIO4	Output						
28	GPIO5	RS-485 direction control						
29	GND							
30	GND	Meanwhile grounding						

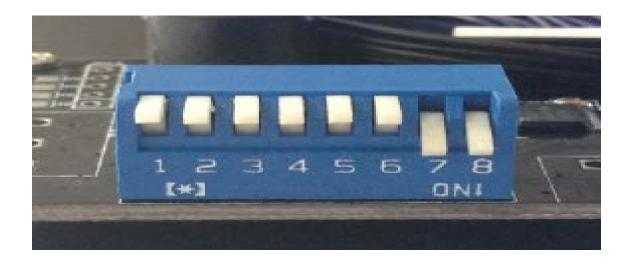
How to connect module

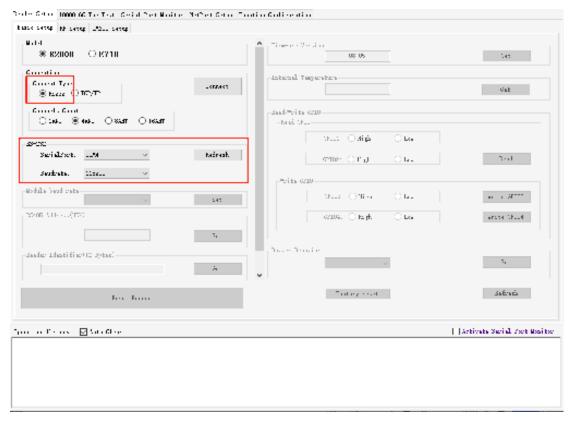
We need an FPC flexible cable to connect the module to a communication interface board (the interface board is only used for testing, and the module can be connected the FPC flexible cable to the customer's own interface board in actual application). The communication interface board is then connected to the computer to conduct communication tests.

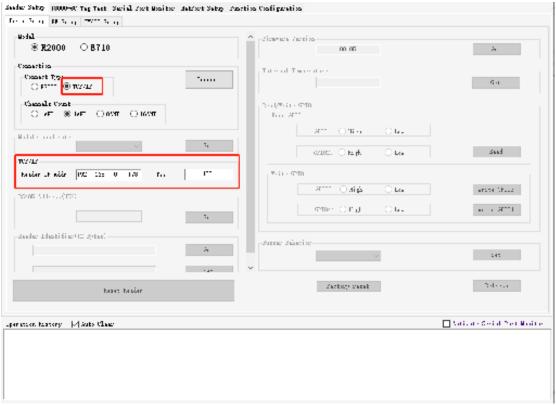
Table of contents

UHF Demo User Manual - User Operation Guide	1
Chapter 1: Reader setting	9
1 Basic parameter setting	9
1.1 Connection method	9
1.2 Reader Type	11
1.3 Reader command address (HEX)	12
1.4 Reader ID	13
1.5 Firmware version	15
1.6 Operating temperature	16
1.7 Read GPIO	17
1.8 Write to GPIO	18
1.9 buzzer status	19
1.10 Restart the reader	20
2 RF parameter setting	21
2.1 Read and set the current working antenna	21
2.2 Measuring Antenna Return Loss	21
2.3 Antenna detection sensitivity	23
2.4 Antenna output power	24
2.5 Quickly read TID	24
2.6 Radio Frequency Spectrum	27
2.7 RF communication link	29
Chapter 2: 18000-6C label test	30
1 inventory label	30
1.1 Single antenna inventory (8B instruction)	31
1.2 Multi-antenna inventory (8A instruction)	32
2 access tags	36
2.1 Obtain and set the working antenna	36
2.2 Selected tabs	36
2.3 Get selected tags	38
2.4 clear(label)	38
2.5 Read tags	39
2.6 Write tags	41
2.7 Locked area	46
2.8 Kill tags	48
3 Tag filtering	49
3.1 Set filter	49
3.2 Clear filter	53
Chapter 3: Special function configuration	54
1 Special function configuration	55
1.1 Configuration via software	55
1.2 Manual send command settings	57
2 Set the switching order of the four antennas	58

UHF Demo User Manual V5.3

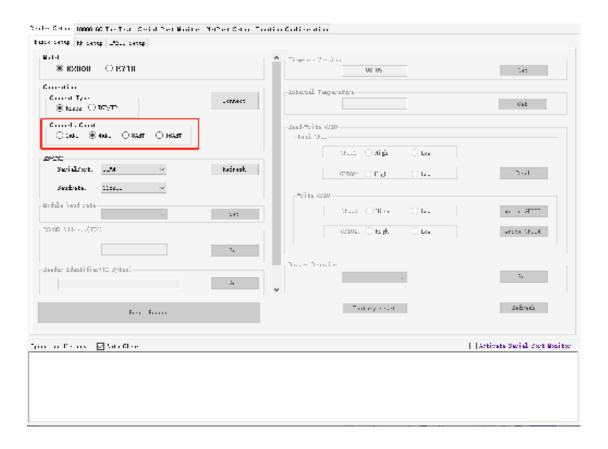

Chapter 4:	Serial port monitoring	61
1 seria	al monitor	61
2 Ope	ration records	61
Chapter 5:	Network configuration guide	63
1 seria	al port connection reader/kit	63
2 Ethe	rnet to connect to the reader/kit	63
3 Netv	work parameter configuration	63
3	.1 Refresh/select network card	63
3	.2 Search device	64
3	.3 Load/View Device Details	65
3	4 Server mode	67

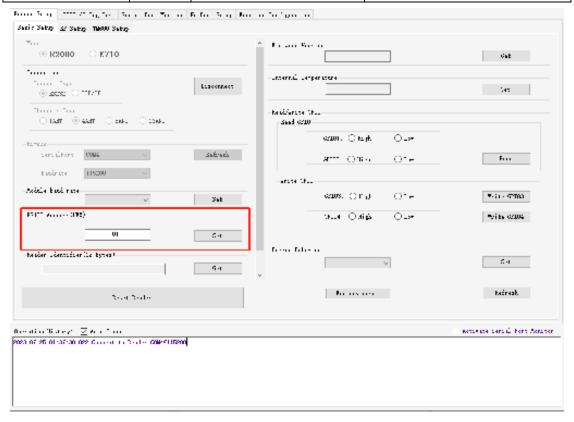

Chapter 1: Reader setting


1 Basic parameter setting

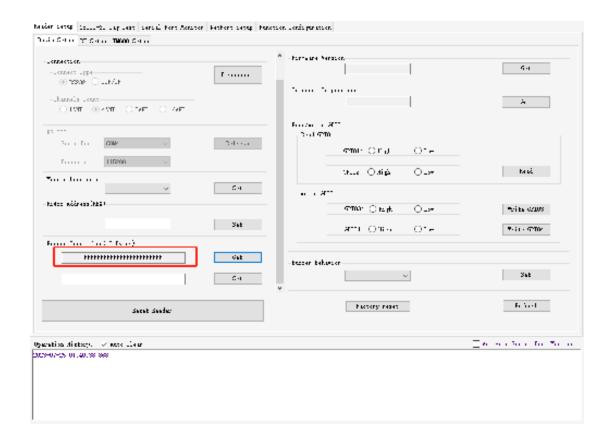
1.1 Connection method

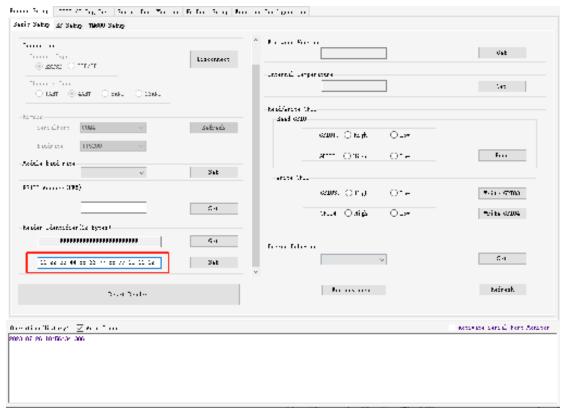
Туре	Parameter	Flip the switch	Remark
Serial port (RS232)	serial number, baud	Dial 7, 8 face down	The default baud rate is 115200
	rate	(toward the number),	
		others face up	
Network port (TCP/IP)	IP, port	Dial 3 and 4 down,	The default is 192.168.0.178,
		others up	port 4001. The IP of the
			computer must be connected to
			the same LAN as the reader.

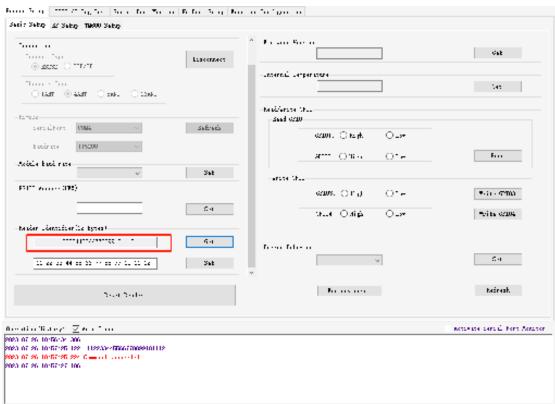



1.2 Reader Type

Type single channel	4 channels	8 channels	16 channels	
---------------------	------------	------------	-------------	--

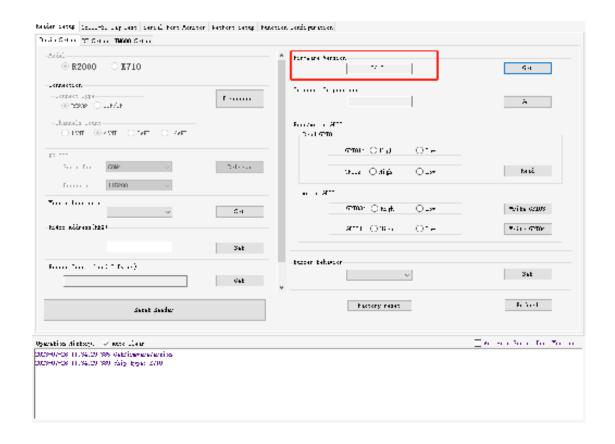

1.3 Reader command address (HEX)

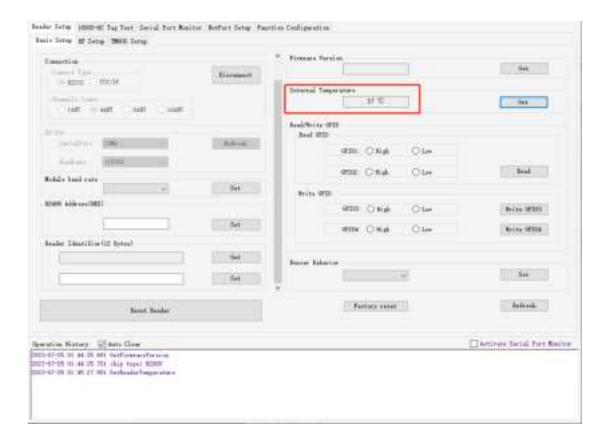

Name	Defaults	Meaning			Remark			
reader address	01	Indicates	the	reader	Only one	byte can	be hel	d; the
		address, ed	litable		address	appears	with	each
					instructio	n		



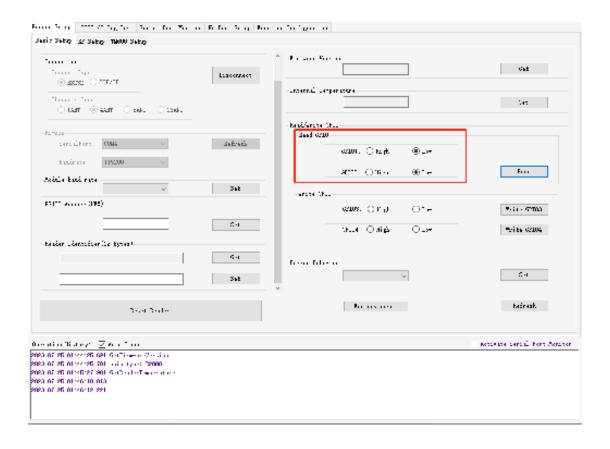
1.4 Reader ID

Name	Default (12 bytes)	Remark
Reader ID	FF	Distinguish between readers and
		readers as well as reader addresses

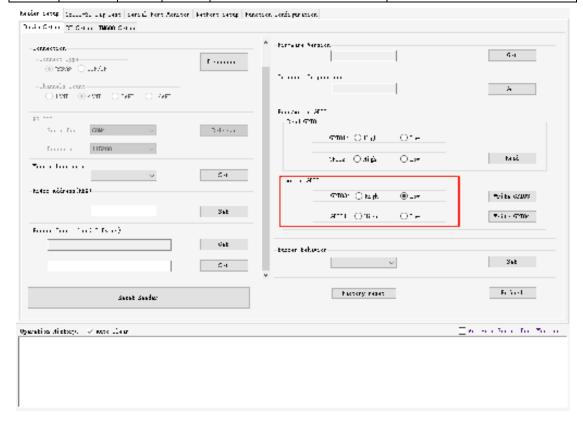



1.5 Firmware version

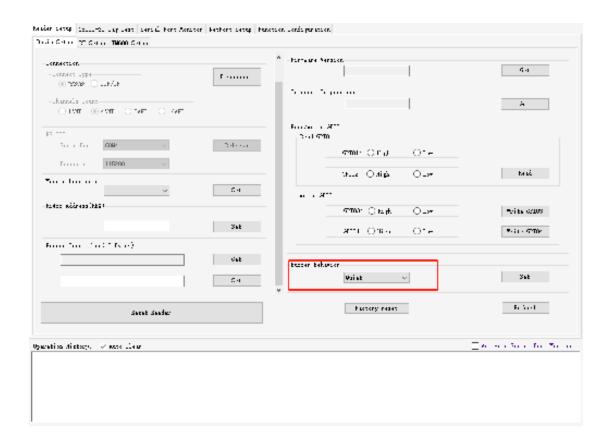
Name	Effect
Firmware	Differentiate between firmware batches
version	


1.6 Operating temperature

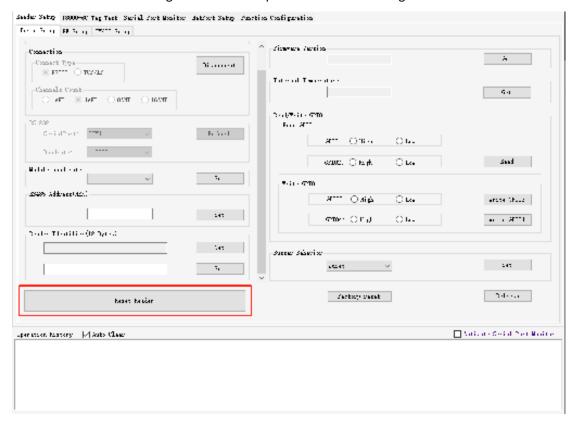
Working temperature monitoring refers to the temperature inside the module. If it is combined into a whole, because there are peripheral circuits or equipment, the external temperature may be slightly higher.


1.7 Read GPIO

GPIOs	Туре	Read	Write	Expand	Remark
GPIO1	enter	Υ	N	Can be used as a switch for	Send a command to read the
				active read mode	level status of these 2 GPIOs
GPIO2	enter	Υ	N	Can be used with GPIO1 to	at the same time
				judge in and out	
GPIO3	output	N	Υ	Applicable to alarm lights	separate settings
				and horn scenes	
GPIO4	output	N	Υ	Applicable to alarm lights	separate settings
				and horn scenes	

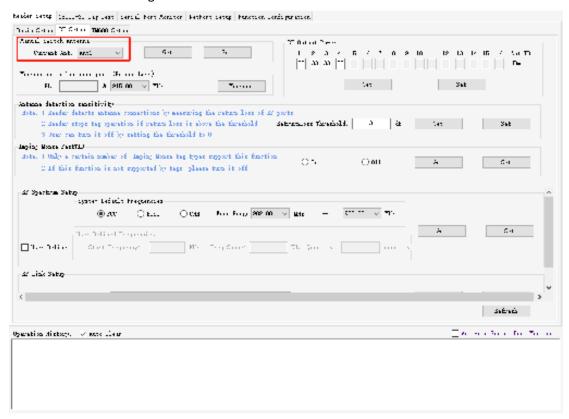

1.8 Write to GPIO

GPIOs	Туре	Read	Write	Expand	Remark
GPIO1	enter	Υ	N	Can be used as a switch for	Send a command to read the
				active read mode	level status of these 2 GPIOs
GPIO2	enter	Υ	N	Can be used with GPIO1 to	at the same time
				judge in and out	
GPIO3	output	N	Υ	Applicable to alarm lights	separate settings
				and horn scenes	
GPIO4	output	N	Υ	Applicable to alarm lights	separate settings
				and horn scenes	


1.9 buzzer status

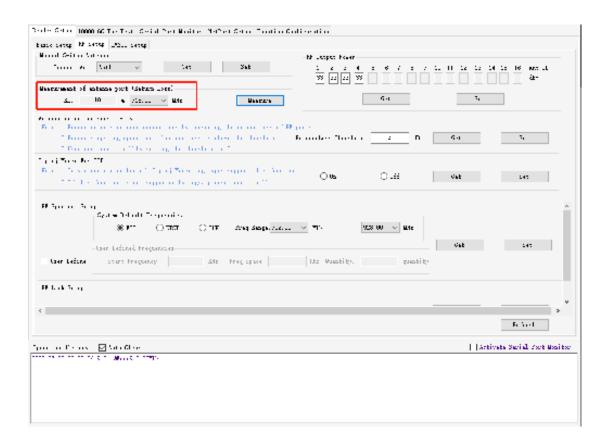
model	illustrate
Quiet	Inventory to the label, the buzzer does not sound
beep after inventory	Send an inventory command, and read the tag, and it will beep
	when the order is over
beeps every time a tag is read	Like the literal meaning, every time a label is read, it rings once

1.10 Restart the reader

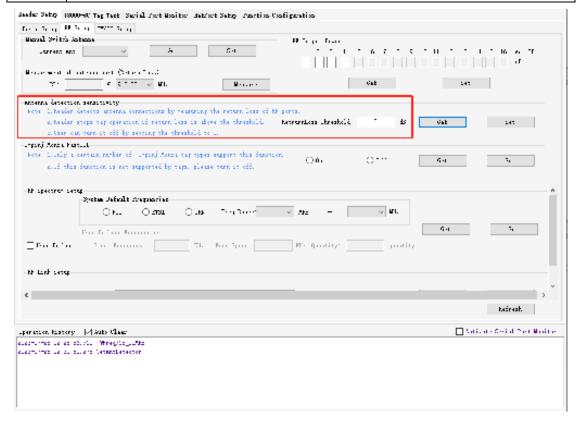

The action of restarting the reader is to power on the module again.

2 RF parameter setting

2.1 Read and set the current working antenna

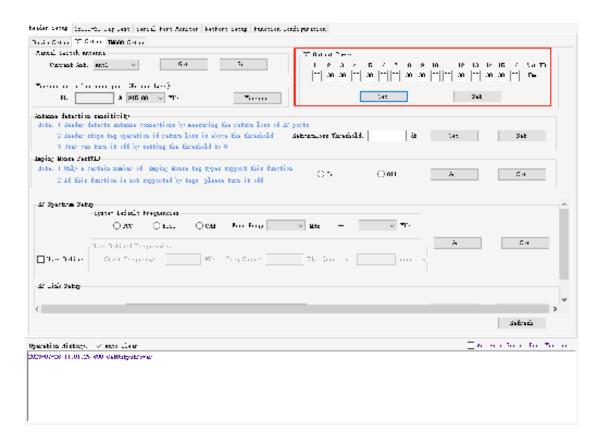

At the same time, only one antenna of the reader is working, so it is necessary to read and write the current working antenna or set the antenna.

2.2 Measuring Antenna Return Loss


serial	introduce
number	
1	Antenna return loss: indicates the test data of a certain antenna at a certain frequency
	point; for example: the data of antenna 1 at a frequency point of 915MHz is 27db;
2	To measure the return loss of the antenna, you need to set the antenna number you
	need to set first; of course, you can also not set it, if you don't set it, you will test the
	current working antenna.
3	When testing, it is necessary to select a certain frequency point within the
	corresponding frequency point range for testing; for example, the module and antenna
	are American standard, so the frequency point range is 915-928, but in order to ensure
	the accuracy and compatibility of the test, the middle value of 915-928 is generally
	selected as 915 for testing.
4	Under normal circumstances, when the matching between the antenna and the

	module is relatively good, it is greater than 7, generally tens, or even twenty; the
	return loss of the antenna indicates to a certain extent whether the antenna and the
	module are suitable for each other.
5	If the American standard module chooses a certain value of the European standard or
	the national standard to test, the return loss may be 0 or very low (assuming that the
	antenna is in good contact), so the corresponding frequency point should be selected
	for testing.
6	When testing, the default is to set the "return loss threshold" to 3, and then test the
	return loss of the antenna. If the return loss of the antenna is 0, it means that the
	antenna is not connected (except in special cases);
7	If the "Return Loss Threshold" is set to 0, the module cannot identify whether the
	antenna is connected;

2.3 Antenna detection sensitivity


serial	illustrate
number	
1	The default is to set the "Return Loss Threshold" to 3, and then test the return loss of
	the antenna. If the return loss of the antenna is 0, it means that the antenna is not
	connected (except in special cases);
2	If the "Return Loss Threshold" is set to 0, the module cannot identify whether the
	antenna is connected;

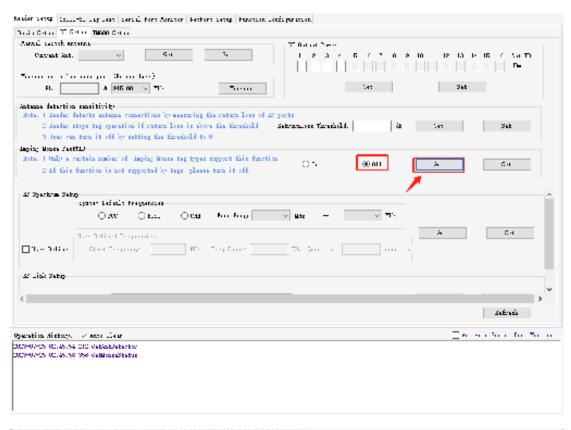
2.4 Antenna output power

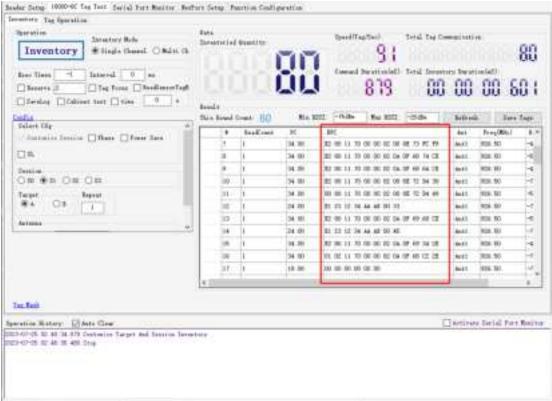
mainly two types of current power ranges:

Module	chip	power range
type		
PR9200		10dBm, 18-26dBm
R2000		0-33dBm

2.5 Quickly read TID

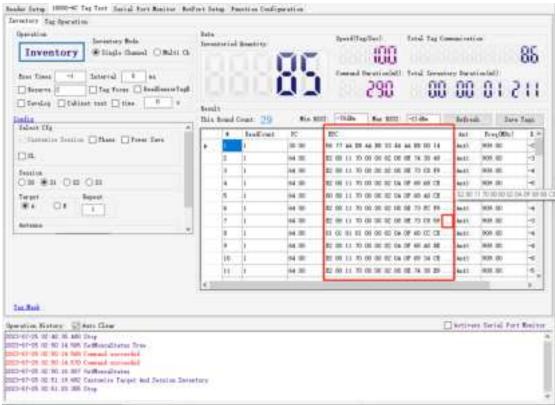
illustration below for details;


```
Impinj Monza FastTID

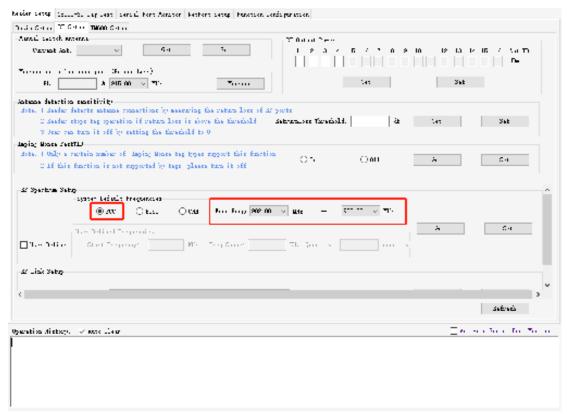

Note: 1.Only a certain number of Impinj Monza tag types support this function.

2.If this function is not supported by tags, please turn it off.
```

(2) After opening, the inventory interface will display both TID and EPC;


The function is turned off, and the display is as shown in the figure below:

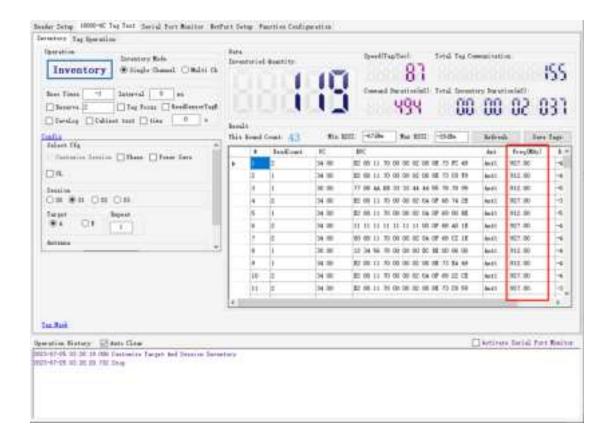
The function is enabled, and the display is as shown in the following figure:


2.6 Radio Frequency Spectrum

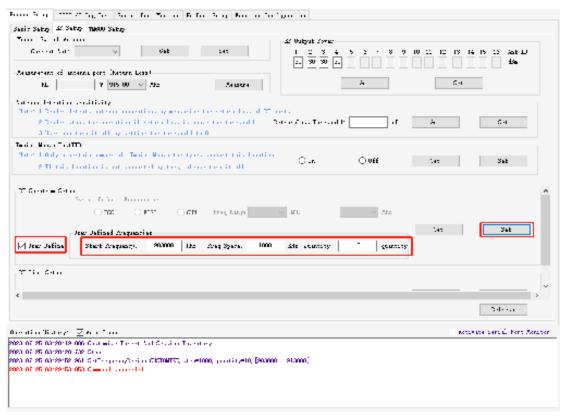
Introduction to RF Spectrum

type	scope
FCC (American Standard)	902.00-928.00MHz
ETSI (European Standard)	865.00-868.00MHz
CHN (national standard)	920.00-925.00MHz

(1) System default frequency


Reasonable settings can be made according to the actual type of RFID module. For example, the module can be set to American standard, or the original frequency range can be narrowed down, or even fixed to a certain frequency point;

Note that


FCC certified equipment has FCC band filters inside. If an FCC certified equipment is set to other bands, the module will be restricted by the filter to emit RF signals.(Only 902-928MHz settings can work for FCC certified equipment properly)

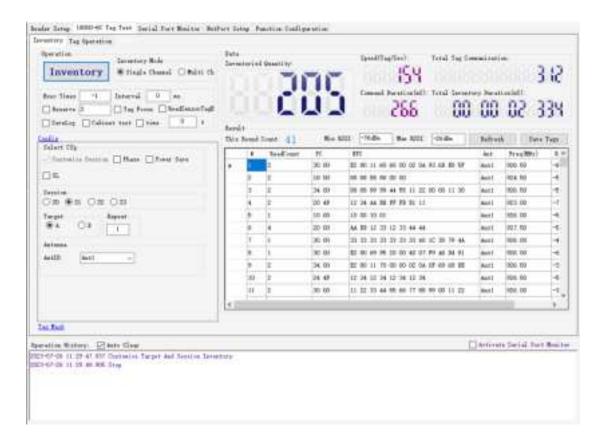
Similarly, CE certified equipment is also a filter with CE frequency band, which is set to other frequency bands and also fails to work normally.


(2) user-defined frequency

It can be set according to the user's own needs, such as the following figure:

2.7 RF communication link

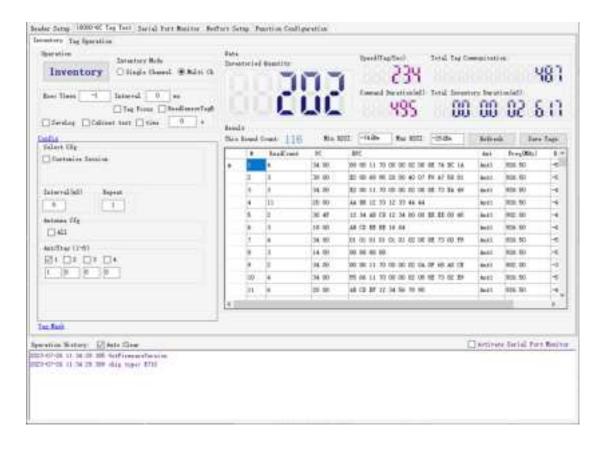
There are four links, default and recommended: configuration 1



Chapter 2: 18000-6C label test

1 inventory label

Inventory method	illustrate	Remark
single	The single-antenna inventory in 4.3demo	If you need to use the 8B
antenna	corresponds to the 8B command of the previous	command with multiple
inventory	version of [Real-time Inventory], and [Real-time	antennas, please implement
	Inventory] has two commands: [Real-time Inventory	the code . For details, please
	(custom)] = 8B command, [Real-time Inventory	refer to 3.9 demo.
	(automatic)] = 89 command, which is not	
	recommended, so the demo interface of this version	
	is no longer displayed. If you are not familiar with the	
	command, please check the communication	
	protocol !	
Multi-antenna	Multi-antenna inventory corresponds to [Fast	Although 8A is also working
inventory	multi-antenna inventory] of version 3.9 demo, and	with a single antenna at the
	the command corresponds to 8A	same time, the switching of
		the antenna is automatically
		switched by the module.
Cache Mode	Corresponding to the [cache mode] of the demo	A single antenna works at the
Inventory	version 3.9	same time, and switching
		antennas requires code
		switching.

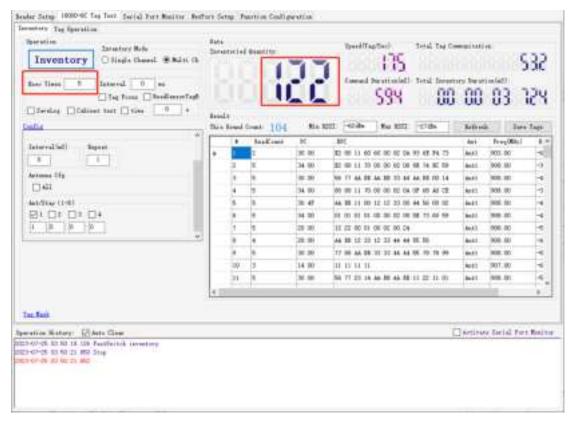

1.1 Single antenna inventory (8B instruction)

Software	illustrate
instruction	
parameter	
Number of runs	Enter -1 to keep inventorying; input a positive number, send as many instructions as
	the value is, and then stop inventorying.
time interval	The time interval of inventory command time, the default is 0ms.
Reverse AB	The state of the tag is switched back and forth between state A and state B. The
	default is state A, so the command is generally Session+A. Reversing AB means that
	after reading the label, send an instruction to return the label from state B to state A.
Tag Focus	Indicates that the 8D8C function has been started to improve the reading speed, and
	it is generally used with S1.
Phase	Tick to enable the phase
Power save	If checked, it means that the power saving mode is turned on, and the essence is to
	set the command interval time (firmware layer processing)
SL	00, 01, 02, 03
session	S0, S1, S2, S3, it is recommended to use S0 and S1
target	A and B respectively represent the A side and B side of the label, or the A state and
	the B state, and the default is A
Antenna	You can choose the antenna you need for inventory
number	

Software Interface	illustrate
Parameters	
The total number of tags	the total number of all labels of one or more instructions after deduplication
that have been inventoried	
recognition speed	The speed of identifying labels is generally around 200
Cumulative return data	This data is the total number of labels for one or more instructions

1.2 Multi-antenna inventory (8A instruction)

Software instruction	illustrate
parameter	
Number of runs	Input -1 to keep inventorying, input a positive number, send as many
	instructions as the value is, and then stop inventorying.
time interval	The time interval of inventory command time, the default is 0ms.
Delay between antennas	Spacing time between antennas (firmware controlled, not software
	controlled)
Phase	phase
temporary power	Not save when power off
optimization	is not equal to the number of tags in the last inventory, it will be
	inventoried again (cancelled)
Cycles	Send a single instruction, the number of executions

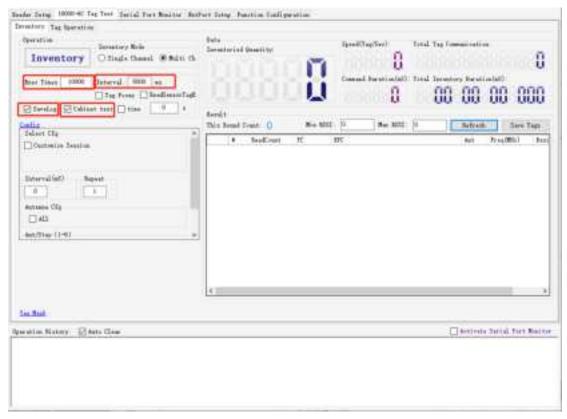

Software Interface Parameters	illustrate
The total number of tags that	the total number of all labels of one or more instructions after
have been inventoried	deduplication
recognition speed	The speed of identifying labels is generally around 200
Cumulative return data	This data is the total number of labels for one or more instructions

1.2.1 How many instructions need to be sent to test read

In some scenarios, it is necessary to read all tag data, but one command may not be read completely, so this software has a test function in this case, which is convenient for customers to test. The specific parameters are as follows: (data are just examples, for reference only)

(1) Enter a positive number for the number of runs , generally not too large, just to solve the problem of incomplete reading of an instruction

In this way, the user can see the total number of tags read by the 5 instructions (data accumulated between each instruction)


1.2.2 Test the configuration of the read-full rate parameters in the cabinet-like scenario

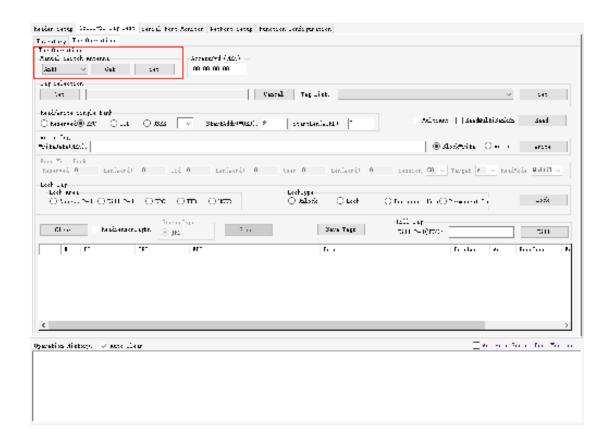
Using this function, the scenario is generally that all tags can be read with one command. In the current case, retail and smart medical cabinets can read all 300 tags in about 3 seconds (the data in this case is for reference only, see the test environment for details);

When the user needs to test the read rate of RFID tags, for example, a smart medical cabinet needs to test the read rate, assuming that the cabinet has a total of 300 tags, it needs to be tested 10,000 times as a reference base, and through the statistics of the read rate of 300 tags, you can choose to check [Save Log] at this time.

In the case of [number of runs = positive number] and the time interval is greater than 1ms and [freezer test] is checked, there will be two important observation areas:

(1) The data on the right will be refreshed every time a command is executed, which is convenient for users to observe the number of tags read each time. If there are too many missed readings, the inventory can be stopped in time, and the parameters can be adjusted before testing to avoid unnecessary delays in testing time.

(2) The record file is automatically generated in the directory of the same level as the demo, so that it is convenient to clearly view the reading time, test time, and running times, and can calculate the reading rate.

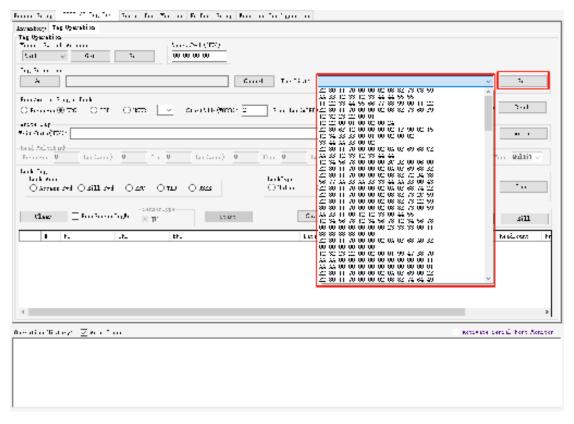


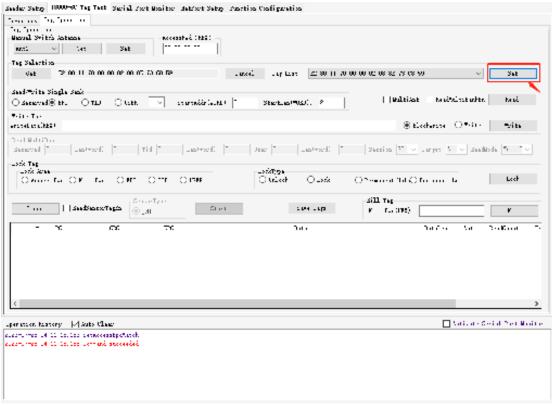
Note: This screenshot is just a simple demonstration, so the data looks very messy. In the actual application process, the **total number of tags** should tend to a certain number, and it will not be so messy.

(3) When [Save Log] is checked, every time you click [Start Inventory], the log will be cleared, and then new data will be recorded. If you need to save the previous data, you can change the name of the log first, and it will not be replaced.

2 access tags

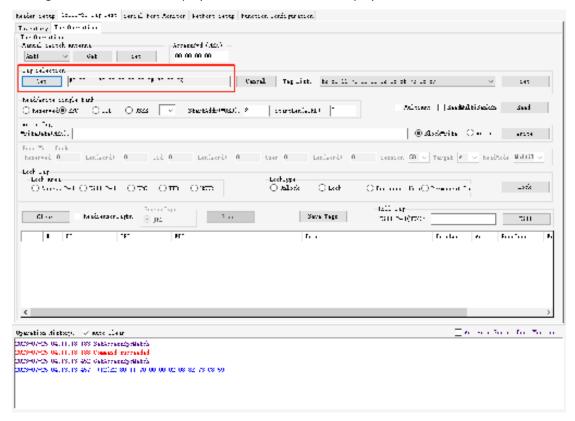
2.1 Obtain and set the working antenna

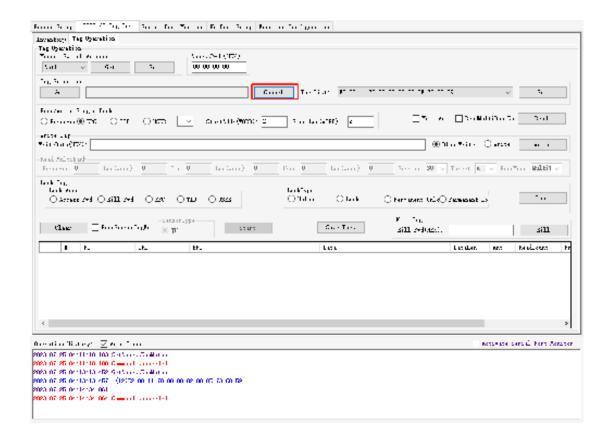

2.2 Selected tabs


Users can inventory tags in the inventory interface now, confirm that the tags they need are in the tag list, stop the inventory, and then they can pull down on the tag interface of the [Access Tags] interface, select the tags they need, and finally click the selected tag.

The function of the selected label is to operate on a certain label, and the nearby labels will not be affected.

Notice:

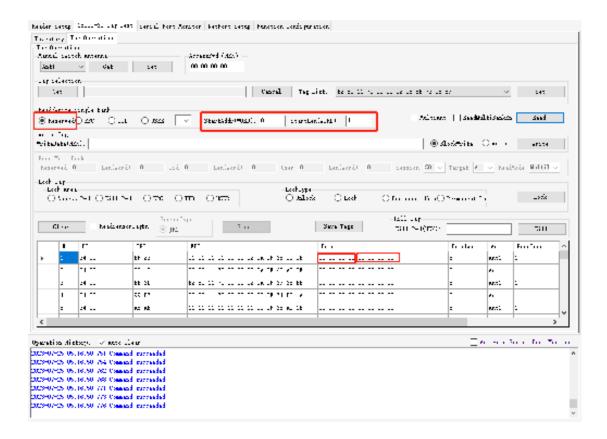

(1) The selected label will not be saved when the power is turned off.

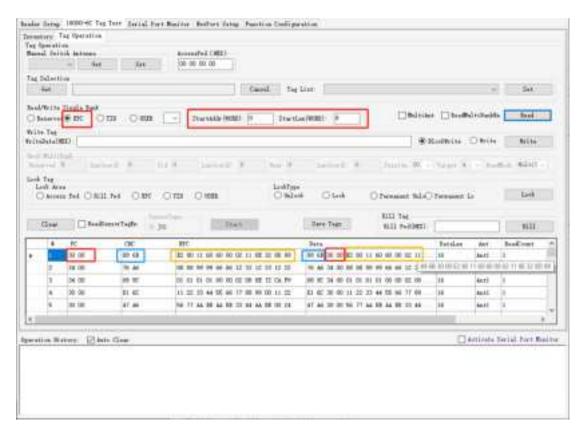

2.3 Get selected tags

You can click the [Get] button to get the tag selected by the user. If there is a selected tag, the tag information can be displayed. If not, it will not be displayed.

2.4 clear(label)

After clearing the label, the previously set selected label will become invalid.

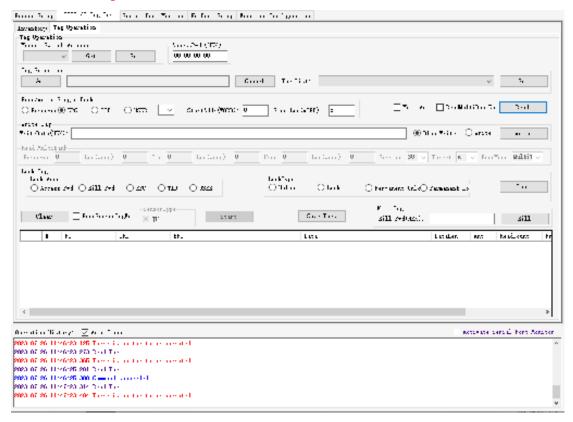

2.5 Read tags


label area	initial	length	Remark
	address		
password	00	04 (Adjusted according	Password area = destroy password +
area		to actual needs)	access password
EPC area	02	06 (Adjusted according	00-02 in the EPC area is PC+CRC
		to actual needs)	
TID area	00	04 (Adjusted according	not writable, readable
		to actual needs)	
UER area	00	04 (Adjusted according	user area
		to actual needs)	

password area	destroy password	access code
start address-length	Start address: 00 Length: 02	Start address: 02 Length: 02

The first two bytes of the EPC	PC	CRC
start address-length	0-1 word	1-1 word

The principle of reading the four areas of the label is the same. The following is a simple screenshot explanation for the password area and EPC:

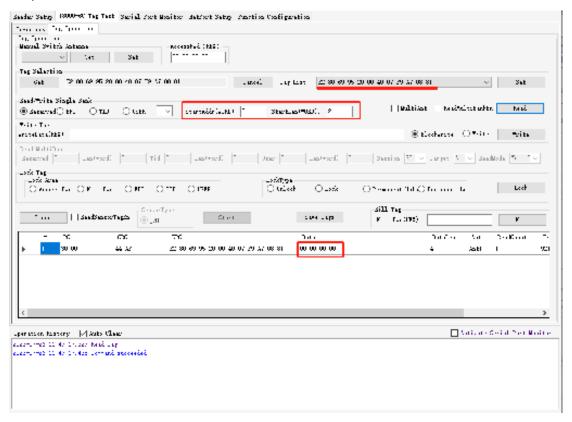


Remarks: If you need to operate on a certain tag, you can select the tag first, then read or write the tag.

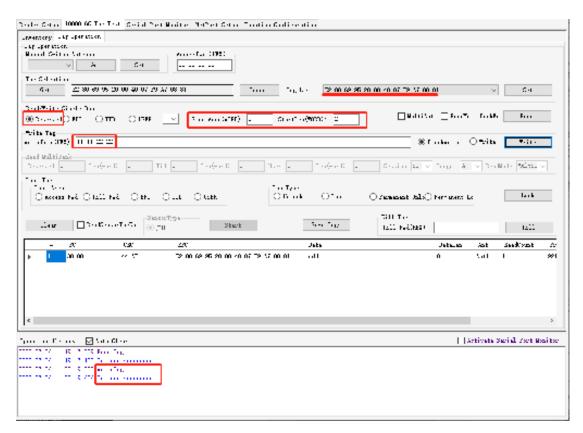
Since the reading and writing tags under the [Access Interface] are more difficult than

inventory, the power should be set higher. If the selected label is not within the recognition range, an error will be reported, as shown in the figure below, in this case:

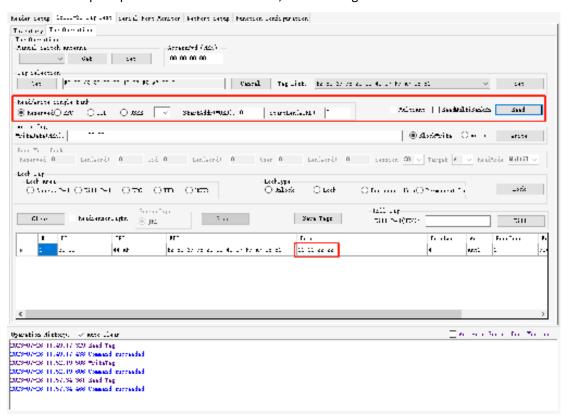
- (1) can try a few more times
- (2) Turn up the power
- (3) The tag is closer to the reader


2.6 Write tags

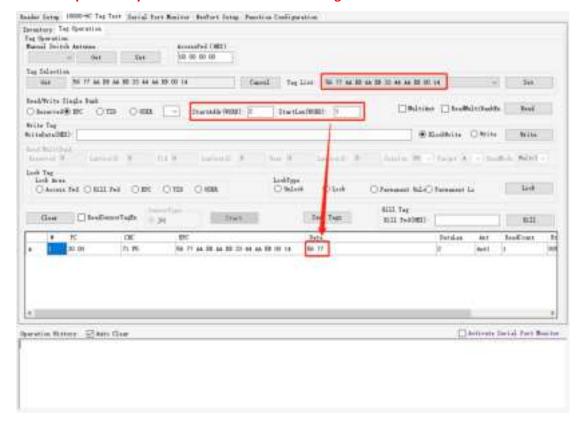
label area	initial	length	Remark
	address		
password	00	04 (Adjusted according	Password area = destroy password +
area		to actual needs)	access password
EPC area	02	06 (Adjusted according	00-02 in the EPC area is PC+CRC
		to actual needs)	
TID area	00	04 (Adjusted according	not writable, readable
		to actual needs)	
UER area	00	04 (Adjusted according	user area
		to actual needs)	

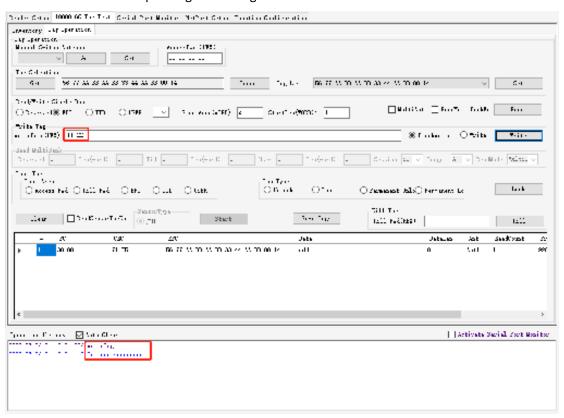

password area	destroy password	access code
start address-length	Start address: 00 Length: 02	Start address: 02 Length: 02

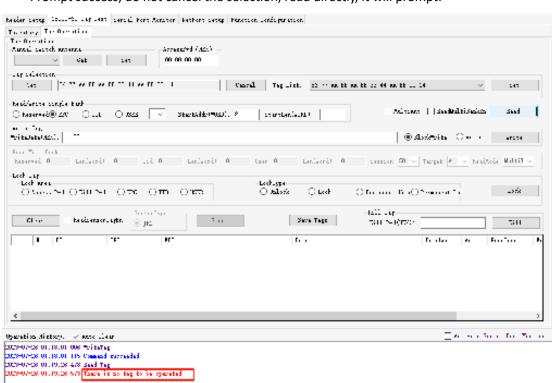
The first two bytes of the EPC	PC	CRC
start address-length	0-1 word	1-1 word


The four areas for writing labels have the same principle. In addition, [Write Label] has two commands, corresponding to two buttons. The following is a simple screenshot description for the password area and EPC:

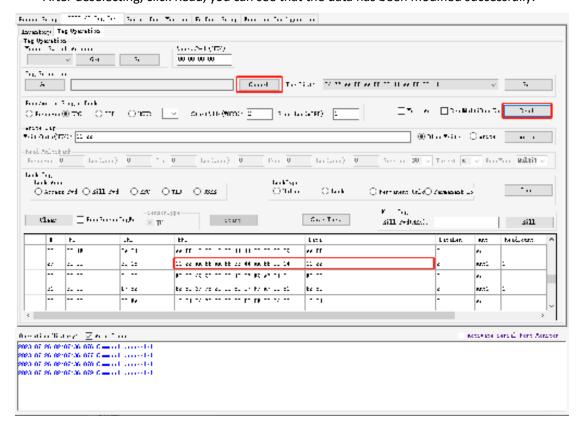
As can be seen from the figure, the current tag's **destruction password** is the default 8 0s. Now demonstrate [Write Tag], just fill in the content you need to modify:

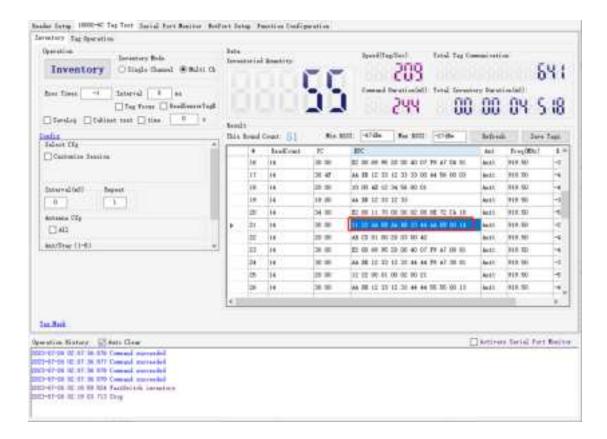

After the prompt modification is successful, click Read again to see the new data.


Note: If the selected tag is used and the modification is in the EPC area, after the writing is successful, it is necessary to cancel the selected tag first and then read the tag to find the tag


modified by the user, because the EPC value of the originally selected tag has changed:

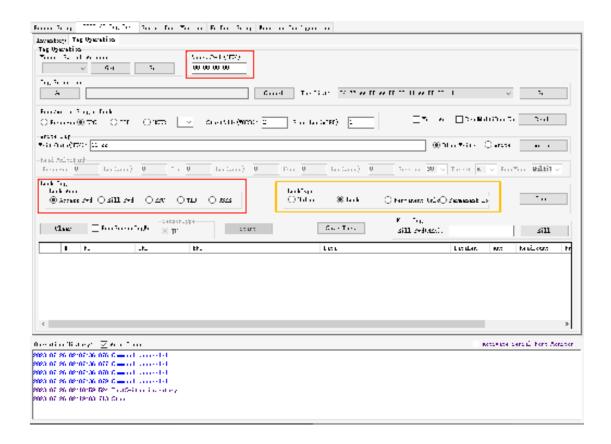
Example: Modify the value of 5677 of the following label to 1122:


Enter a value corresponding to the length:

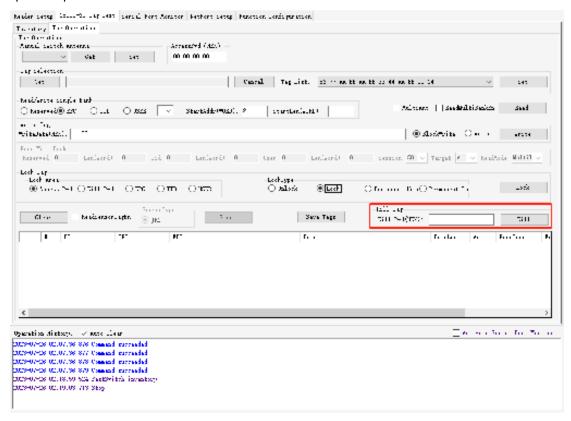


Prompt success, do not cancel the selection, read directly, it will prompt:

After deselecting, click Read, you can see that the data has been modified successfully:



2.7 Locked area


Locking the area refers to performing related operations on certain areas of the label, as follows:

name	introduce
open	Tags are open by default, readable and writable (EPC area of general tags),
	except for special tags.
locking	The default access password cannot be written, and a new access password is
	required to write.
permanently	After operation, the label cannot be locked.
open	
permanently	After the operation, the tab cannot be opened.
locked	

2.8 Kill tags

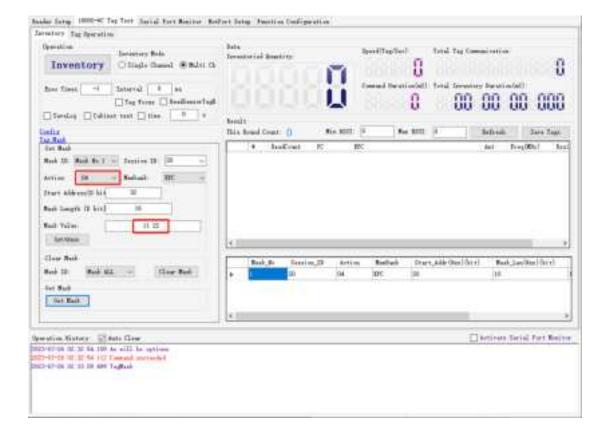
To destroy the label, you need to modify the default destruction password first. For specific modification steps, please refer to the tutorial of **writing the password area (kill password)**. After the label is destroyed, the label becomes invalid and cannot be used, read, or written. The specific operation is as follows:

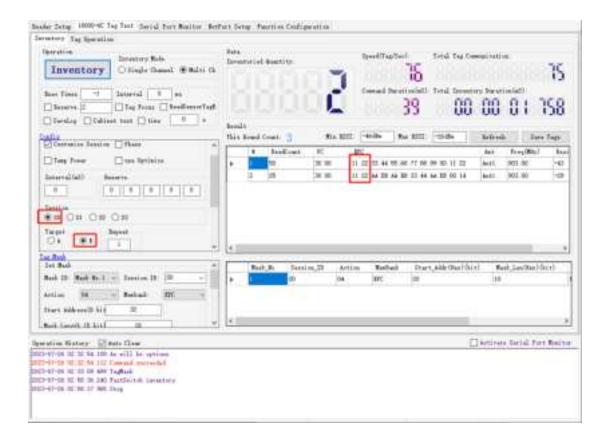
3 Tag filtering

3.1 Set filter

filtering behavior	illustrate
00	For [Access Tag]
04	For [Inventory Label]

Filter ID	illustrate
No.1	Default and commonly used, others are not commonly used

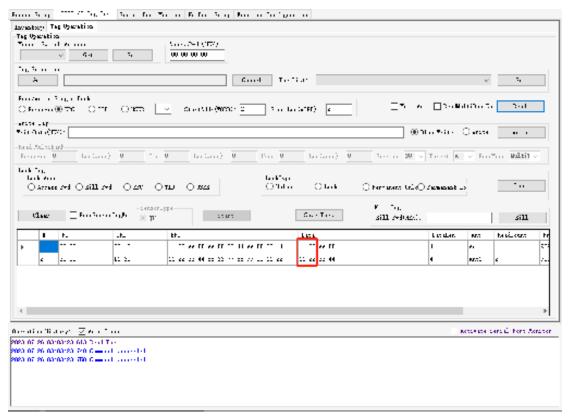

session	illustrate
S0, S1, S2	Choose according to the inventory method you use, but you need to correspond.
	For example, if you set the filter to use SO, use the SO mode to inventory the tags
	you need.


filter area	illustrate
EPC	The default and commonly used EPC, the software inventory refers to the EPC
	area

3.1.1 Filtering of inventory tags

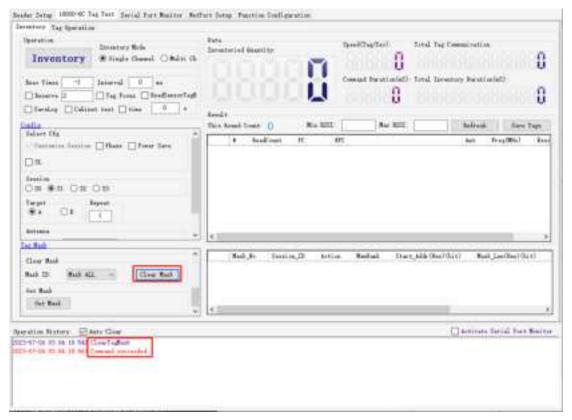
filtering behavior	illustrate
04	For [Inventory Label]

Since the EPC common data of the label starts from 02word, the corresponding starting address is: 32bit, and the length is filled in according to the length of the content you need to find, for example: use S0 mode to find the label starting with 1122



3.1.2 Filtering of access tags

filtering	illustrate
behavior	
00	For [Access Tag]



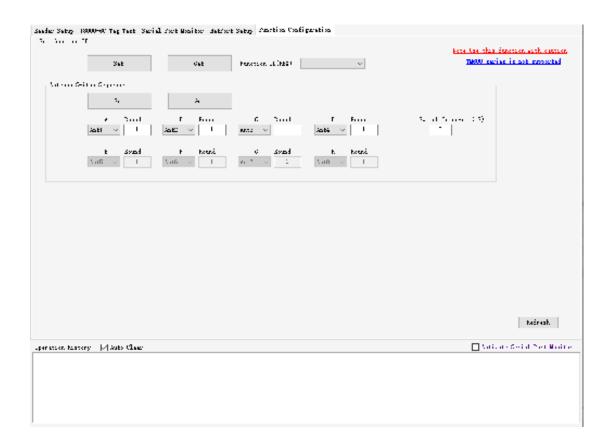
After setting, on the [Access Tags] interface, every time you click Read Tags, the returned tag information is returned according to the set rules. For example, the filter rule set this time is: only display tags starting with **1122**

3.2 Clear filter

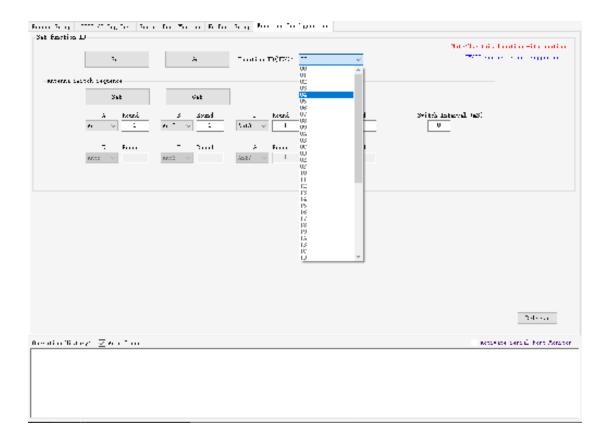
To clear the filter ID, you can choose to clear only a certain pattern, or choose to clear all filtering rules.

Chapter 3: Special function configuration

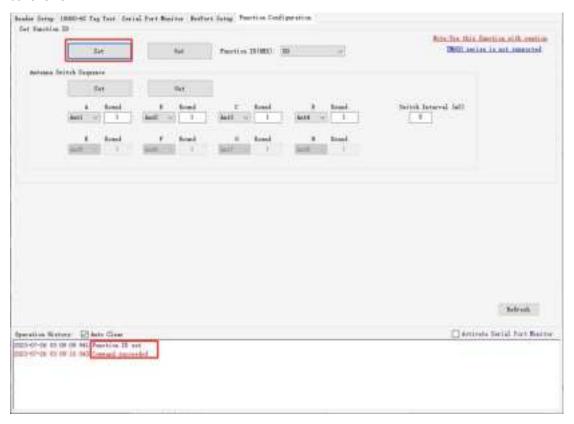
Function configuration list


function	Function	GPIO1 status	Note 1	Note 2
number				
0x00	standard mode	none		
0x04	automatic tag reading 4 – antenna	GPIO1 active high		
	polling cruise available .			
0x08	Automatic aging.	GPIO1 active low		
0x09	automatic tag reading 4 antenna	GPIO1 active high	M 500	
	polling, Wiegand 26 output (in phase).		automatically reads	
			tags, serial port	
			output, GPIO1	
			active high	
0x0F	automatic tag reading 4 – antenna	GPIO1 active low		
	polling cruise available .			
0x11	automatic tag reading 4-antenna polling			
	cruise , automatic reading reader			
	identification			
0x12	automatic tag reading 4- antenna	GPIO1 active	Change the trigger	
	polling cruise, triggering GPIO3	high	time by setting the	
	output (high) every time a tag is read		delay between	
			antennas	
			Note unit: 20	
			milliseconds	
0x13	Single tag low power consumption	GPIO1 low level	Handheld devices	
	(single antenna inventory)	automatic reading		
0x15	Automatically return to GPIO status	none		
	when reading tags		N . 0 1 0	
0x18	Automatic tag reading, 8-antenna	GPIO 1 active high	Note: Only for	
	polling cruise		8-channel	
0.10	A	CDIO1	modules	
0x19	Automatically read tags and	GPI01 active high		
0.22	automatically return to GPIO status			0.000 00 00
0x20	Automatically report when input GPIO	none		2 020 - 09 - 30 _
022	status changes	CDIO 1 o ativos lavo	Comments	2010 0 20
0x23	Automatic tag reading can be polled by	GPIO 1 active low	Conversational	2018-9-30
024	single antenna	CDIO 1 a attina la	Mode S1	0.000.04.00
0x24	Automatic tag reading can be polled by	GPIO 1 active low	session mode S 0	2 020-04-30
0.25	single antenna	CDIO 1 pativo lavv	Convergetierel	9 090 04 20
0x25	Automatic tag reading can be polled by	GPIO 1 active low	Conversational	2 020-04-30
	single antenna		Mode S1	_

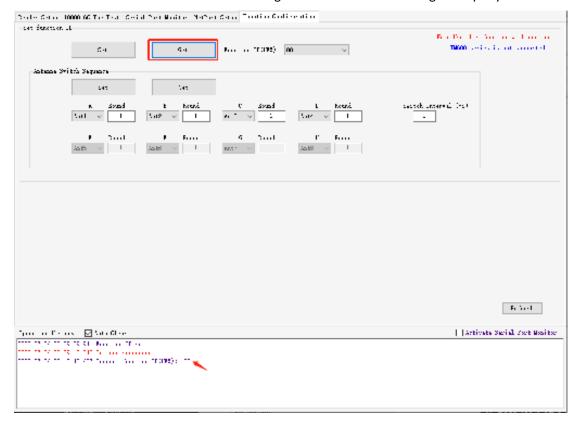
0x31	Automatic tag reading, 4-and	enna GPIO 1 active high	Conversational	
	polling navigation		Mode S1	
0x32	Automatic tag reading, 4-and	enna GPIO 1 active high	Conversational	
	polling navigation		Mode S2	


Note: 8-channel reader/writer 0x 18 mode configuration, please refer to 1.2->manual sending command setting When the reader is in automatic working mode, please do not send other commands to the reader frequently.

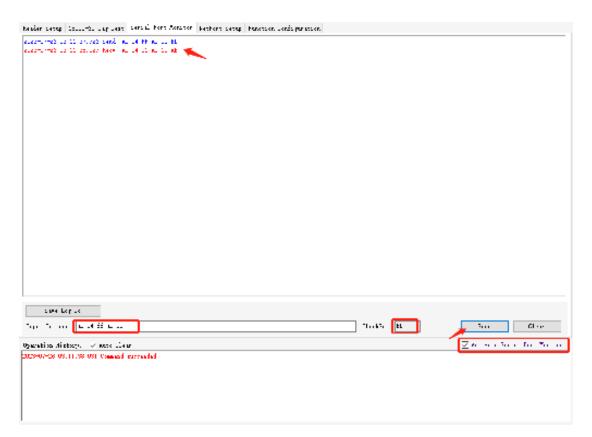
1 Special function configuration


1.1 Configuration via software

Connect the reader, select the corresponding working mode, and click **Settings**:


After setting the configuration function successfully, the software returns the data interface as follows:

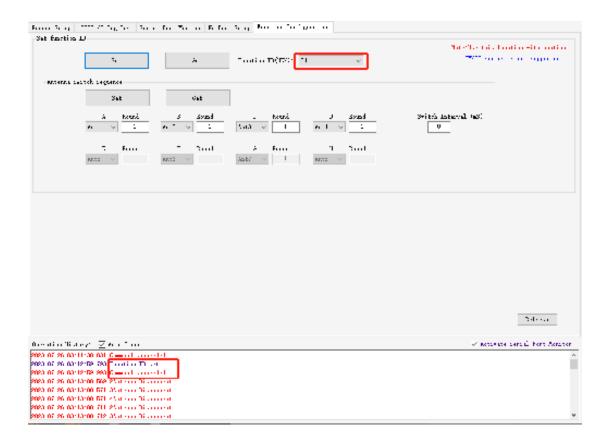
At this point, the special function configuration is successful, and the reader has started to


work in this mode.

Users can also confirm whether the configuration is successful through the query button:

1.2 Manual send command settings

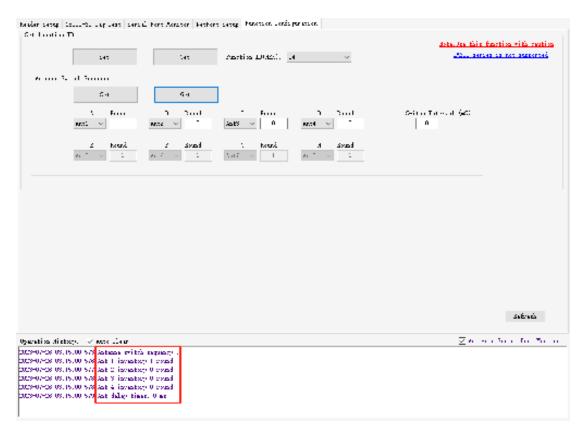
Command: A0 04 FF A0 **(Cmd No.) **(Check) For example: standard mode: A0 04 FF A0 00 BD


Note: For the calculation method of the check digit, please refer to the communication protocol user manual

After the command is sent successfully, the reader enters the corresponding working mode.

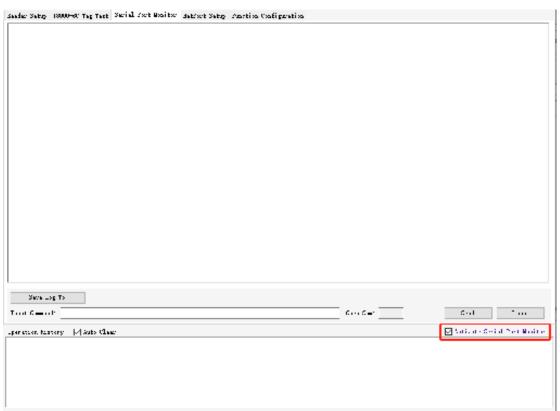

2 Set the switching order of the four antennas

Take antenna 1 as an example in working mode 04:.


The first step: set 04 working mode:

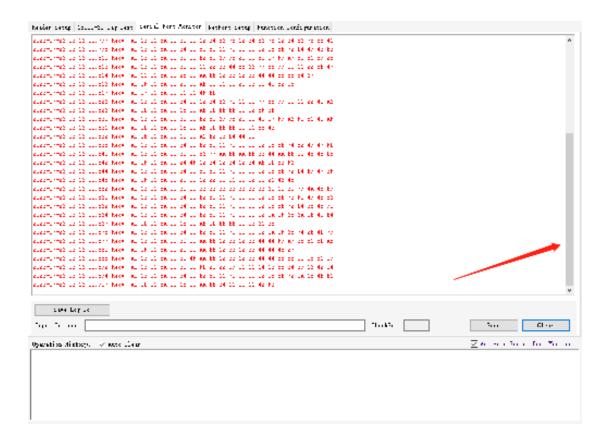
The second step is to change the rotation times of antenna 2, 3, and 4 to 0, and click Settings:

Then you can click the query button to confirm whether the setting is successful:



8 Antenna switching sequence is the same.

Chapter 4: Serial port monitoring


1 serial monitor

Serial port monitoring is used to view instruction set data, if you need to view it, check [Serial port monitoring]

2 Operation records

If you check the [Auto Clear] of the operation record, the serial port monitoring interface will automatically refresh after displaying all the data:

If you do not check the automatic clearing, the data does not need to be refreshed, and more serial port monitoring data can be retained.

Notice:

- 1. For short-term observation, you can open the serial port monitoring or not clear the serial port monitoring
- 2. If you want to run the demo for a long time, it is recommended not to enable serial port monitoring. If you need to enable serial port monitoring, it is recommended to clear it automatically. Otherwise, the amount of data is large, which will cause the refresh of the demo interface to freeze or increase the software burden.

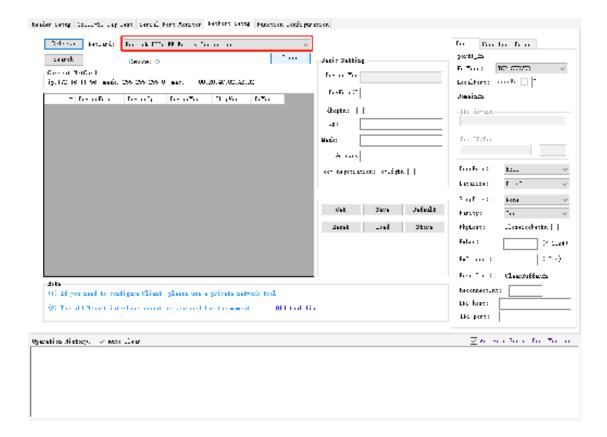
Chapter 5: Network configuration guide

1 serial port connection reader/kit

- (1) First, make sure that the DIP switch of the reader/kit is set correctly. To connect to the network port, you need to turn down the DIP switch 7-8 (towards the number), and then enter the corresponding serial port number and baud rate to connect to the reader/kit.
- (2) This software automatically obtains the serial port number, but if the software has already been opened, the serial port cable is inserted, and the serial port number can be automatically recognized only by clicking the refresh button (the demo version below 4.1 requires a drop-down box to select the serial port number, and the corresponding serial port number can be viewed at: Computer (right click)--Management--Device Manager--Port);
- (3) The default baud rate is: 115200.

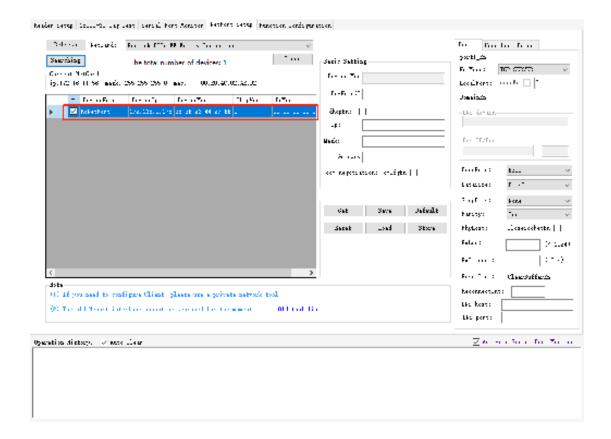
2 Ethernet to connect to the reader/kit

Firstly, make sure that the DIP switch of the reader/kit is set correctly. To connect to the network port, you need to turn down the DIP switch 3-4 (towards the number), and then enter the corresponding IP and port to connect to the reader/kit.

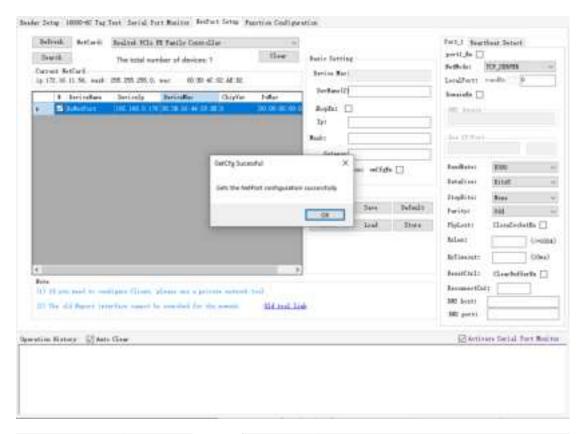

3 Network parameter configuration

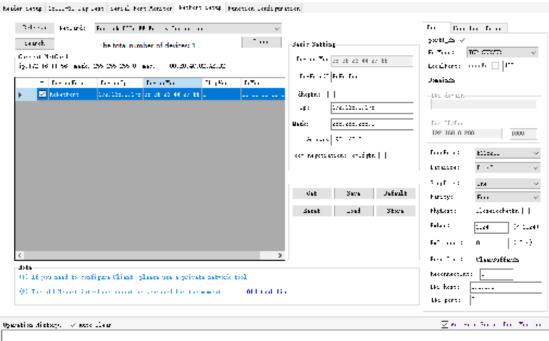
This function integrates the configuration function of the new version of the network port on the basis of the version 3.9 demo , so the devices with the old network port cannot be searched or configured with this software. If you have any questions, please consult the salesperson or technical support.

Time: Around July 2020, readers and kits will gradually use the new network port.


3.1 Refresh/select network card

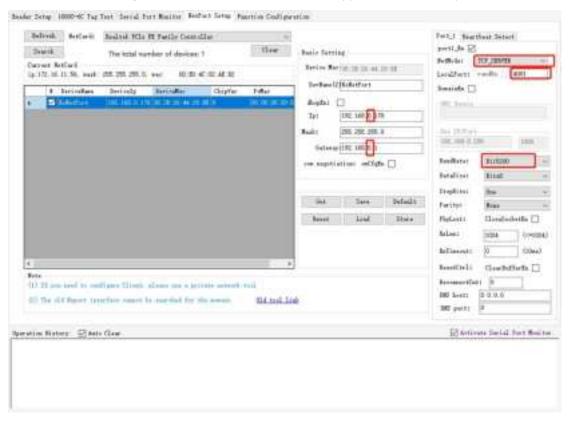
First select the network card corresponding to the reader. For example, the network card of a notebook may have a wired network card and a wireless network card. If a virtual machine is installed, there is also a network card of the virtual machine, so the corresponding network card must be selected first. If there is no network card, you can click the refresh button.


3.2 Search device


Click Search Device, if there is a device, it will be displayed first, and you can see the IP and other information of the reader/kit device, as shown in the figure below:

3.3 Load/View Device Details

After searching out the device, you can double-click the corresponding device list to view the detailed configuration information



some parameters	Parameter Description
DevName device name	Users can modify it to distinguish devices
DHCP	Not enabled by default
IP	The current IP of the reader

NetModel network	The default is to use Server mode, which can be set to Client mode,
model	but this software does not support it, you need to use the network
	port debugging assistant to test
LocalPort local port	The default is 4001, which is not recommended: the port number is
	randomly generated.
Baudrate serial port	Baud rate, the default is 115200
baud rate	
Phylost network	If it is not checked, it means that the disconnection reconnection
disconnected	mechanism of the network port is enabled

3.4 Server mode

Pull down **the network mode**, select the server mode TCP_SERVER, set the parameters, and then click [Save Configuration] . This software does not support client mode operation.

Note: Although the search device, the reader and the computer are directly connected, the IP of the two devices may not be in the same network segment, and the IP of the computer can also be searched; but if the software of the computer needs to be able to connect to the reader, it is best to let the IP of the reader and the IP of the computer be in the same **network segment**.