Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Client CCS | D1800V2 - SN:29 | 4 | | |--|---|--| | QA CAL-05.v2
Calibration proced | lure for dipole validation kit | | | April 9, 2003 | | | | In Tolerance (acco | ording to the specific calibra | ation document) | | | · | | | TE critical for calibration) | my. environment temperature 22 17-2 de | grees delaius and numuny < 7376. | | ID# | Cal Date | Scheduled Calibration | | 100698 | 27-Mar-2002 | In house check: Mar-05 | | MY41092317 | 18-Oct-02 | Oct-04 | | US37292783 | 30-Oct-02 | Oct-03 | | GB37480704 | 30-Oct-02 | Oct-03 | | US38432426 | 3-May-00 | In house check: May 03 | | | | | | Name | Function | Signature | | Name
Judith Mueller | Function
Technician | Signature | | Name of the Control o | i di | Signature
John Holyander
Identi Udya | | , | Calibration proced April 9, 2003 In Tolerance (acceeds that traceability of M&TE used that the closed laboratory factor of the critical for calibration) ID # 100698 MY41092317 US37292783 GB37480704 | Calibration procedure for dipole validation kits April 9, 2003 In Tolerance (according to the specific calibrates traceability of M&TE used in the calibration procedures and conformated in the closed laboratory facility: environment temperature 22 +/- 2 defective of the calibration) ID # Cal Date 100698 27-Mar-2002 MY41092317 18-Oct-02 US37292783 30-Oct-02 GB37480704 30-Oct-02 | 880-KP0301061-A Page 1 (1) Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com # **DASY** ## Dipole Validation Kit Type: D1800V2 Serial: 294 Manufactured: March 22, 2001 Calibrated: April 9, 2003 #### 1. Measurement Conditions The measurements were performed in the flat section of the SAM twin phantom filled with head simulating solution of the following electrical parameters at 1800 MHz: Relative Dielectricity 39.2 $\pm 5\%$ Conductivity 1.36 mho/m $\pm 5\%$ The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 5.3 at 1800 MHz) was used for the measurements. The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning. The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration. The dipole input power (forward power) was $250 \text{mW} \pm 3 \%$. The results are normalized to 1W input power. #### 2. SAR Measurement with DASY4 System Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>advanced extrapolation</u> are: averaged over 1 cm 3 (1 g) of tissue: 38.2 mW/g \pm 16.8 % (k=2) 1 averaged over 10 cm³ (10 g) of tissue: **20.1 mW/g** \pm 16.2 % (k=2)¹ _ ¹ validation uncertainty #### 3. Dipole Impedance and Return Loss The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are: Electrical delay: 1.198 ns (one direction) Transmission factor: 0.980 (voltage transmission, one direction) The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements. Feedpoint impedance at 1800 MHz: $Re\{Z\} = 47.4 \Omega$ Im $\{Z\} = -8.5 \Omega$ Return Loss at 1800 MHz -20.8 dB ### 4. Handling Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole. #### Design The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. #### 6. Power Test After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. Date/Time: 04/09/03 17:30:35 Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN294 SN1507 HSL1800 090403.da4 ### DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN294 Program: Dipole Calibration Communication System: CW-1800; Frequency: 1800 MHz; Duty Cycle: 1:1 Medium: HSL 1800 MHz (σ = 1.36 mho/m, ϵ_r = 39.22, ρ = 1000 kg/m³) Phantom section: Flat Section #### DASY4 Configuration: - Probe: ET3DV6 SN1507; ConvF(5.3, 5.3, 5.3); Calibrated: 1/18/2003 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE3 SN411; Calibrated: 1/16/2003 - Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006 - Measurement SW: DASY4, V4.1 Build 33; Postprocessing SW: SEMCAD, V1.6 Build 109 Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.8 V/m Peak SAR = 16.3 W/kg SAR(1 g) = 9.55 mW/g; SAR(10 g) = 5.03 mW/g Power Drift = -0.0008 dB