

TEST REPORT FCC ID:2BBGK-CP8

Product : PORTABLE CAR SCREEN

Model Name : CP8
Brand : N/A

Report No. : NCT24048715E1-5

Prepared for

Shenzhen Xincheng Times Technology Co.,Ltd

104-105, Block C, Donghai Wang Building, No. 369 Bulong Road, Ma'antang Community, Bantian Street, Longgang District, Shenzhen, China

Prepared by

Shenzhen NCT Testing Technology Co., Ltd.

A101&2F B2, Fuqiao 6th Area, Xintian Community, Fuhai Street, Baoan District, Shenzhen, People's Republic of China

TEL: 400-8868-419

FAX: 86-755-27790922

1 TEST RESULT CERTIFICATION

Applicant's name : Shenzhen Xincheng Times Technology Co.,Ltd

104-105, Block C, Donghai Wang Building, No. 369 Bulong Road,

Address : Ma'antang Community, Bantian Street, Longgang District,

Shenzhen, China

Manufacture's name : Shenzhen Xincheng Times Technology Co.,Ltd

104-105, Block C, Donghai Wang Building, No. 369 Bulong Road,

Address : Ma'antang Community, Bantian Street, Longgang District,

Shenzhen, China

Product name : PORTABLE CAR SCREEN

Model name : CP8

FCC PART 15 C 15.407

ANSI C63.10:2020

Standards : KDB 789033 D02 v01r02

KDB 905462 D02 v02 KDB 905462 D03 v01r02

Test procedure : ANSI C63.10:2020

Test Date : Nov. 28, 2024-Jan. 13, 2025

Date of Issue : Jan. 14, 2025

Test Result : Pass

This device described above has been tested by NCT, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of NCT, this document may be altered or revised by NCT, personal only, and shall be noted in the revision of the document.

Fax: 86-755-27790922

Test Engineer:

Hotline: 400-8868-419

Technical Manager:

Keven Wu / End

Henry Wang / Man

Page 2 of 30 http://www.ncttesting.cn

Report No.: NCT24048715E1-5

Contents

		Page
1	TEST RESULT CERTIFICATION	2
2 .	TEST SUMMARY	4
3 .	TEST FACILITY	5
4 (GENERAL INFORMATION	6
	4.1 GENERAL DESCRIPTION OF E.U.T.	
	4.2 Test Setup Configuration	9
	4.3 Test Mode	10
	4.4 EQUIPMENT UNDER TEST (EUT) DETAILS	10
5	4.4 EQUIPMENT UNDER TEST (EUT) DETAILS EQUIPMENT DURING TEST	11
	5.1 EQUIPMENTS LIST	11
	5.2 Measurement Uncertainty	12
	5.3 DESCRIPTION OF SUPPORT UNITS	12
6	DFS MEASUREMENT INSTRUMENTATION	13
	DFS PARAMETERS	
	7.1 DFS PARAMETERS	
	7.2 DFS -TEST RESULTS	20
	7.3 DFS TEST DATA	
8		
9	EUT PHOTOGRAPH	30
•		

2 Test Summary

Test procedures according to the technical standards: KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02 and 905462 D03 UNII Clients Without Radar Detection New Rules v01r02

Part 15.407				
Requirement	Operation	Operational Mode		
·	Master	Client		
Non-Occupancy Period	Yes	Yes	Pass	
DFS Detection Threshold	Yes	Not required	Not required	
Channel Availability Check Time	Yes	Not required	Not required	
Channel Closing Transmission Time	Yes	Yes	Pass	
Channel Move Time	Yes	Yes	Pass	
U-NII Detection Bandwidth	Yes	Not required	Not required	

Fax: 86-755-27790922

Remark: Operational Mode is Client for this module.

Hotline: 400-8868-419

Page 4 of 30 http://www.ncttesting.cn

3 TEST FACILITY

Site Description

Hotline: 400-8868-419

EMC Lab. : Accredited by CNAS, 2022-09-27

The certificate is valid until 2028.01.07

The Laboratory has been assessed and proved to be in compliance with

CNAS-CL01:2006 (identical to ISO/IEC 17025:2017)

The Certificate Registration Number is L8251

Designation Number: CN1347

Test Firm Registration Number: 894804

Accredited by A2LA, June 14, 2023

The Certificate Registration Number is 6837.01

Accredited by Industry Canada, November 09, 2018

The Conformity Assessment Body Identifier is CN0150

Company Number: 30806

Name of Firm : Shenzhen NCT Testing Technology Co., Ltd.

Site Location : A101&2F B2, Fuqiao 6th Area, Xintian Community, Fuhai Street, Baoan

Fax: 86-755-27790922

District, Shenzhen, People's Republic of China

4 General Information

Hotline: 400-8868-419

4.1 General Description of E.U.T.

Product Name:	PORTABLE CAR SCREEN
Model No.:	CP8
HVIN:	24048715-001#
Sample ID	Engineer sample
Operation Frequency Range:	U-NII Band 1: 5.18~5.24 GHz U-NII Band 2A: 5.26~5.32 GHz U-NII Band 2C: 5.50~5.70 GHz U-NII Band 3: 5.745~5.825 GHz
Frequency Block	U-NII Band 1: 5.15~5.25 GHz U-NII Band 2A: 5.25~5.35 GHz U-NII Band 2C: 5.47~5.725 GHz U-NII Band 3: 5.725~5.85 GHz
Modulation type:	OFDM with BPSK/QPSK/16QAM/64QAM for 802.11a/n
Antenna Type:	Internal Antenna
Channel Bandwidth	802.11a: 20 MHz 802.11n: 20 MHz, 40 MHz
TPC:	⊠ Supported ☐ Unspported
Channel Puncturing Function:	⊠ Supported □ Unspported
Support RU:	
Antenna gain:	4.03 dBi(WIFI5.2G) ; 3.03 dBi(WIFI5.3G) 3.09 dBi(WIFI5.6G); 3.43 dBi(WIFI5.8G)
Power supply	DC 12V
Hardware Version:	N/A
Software Version:	N/A
Remark:	the Antenna gain is provided by customer from Antenna spec. and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

☐ Wifi 5G with U-NII -2A

Frequency and Channel list for 802.11a/n (HT20):

Channel	Frequency	Channel	Frequency	Channel	Frequency
Chamilei	(MHz)	Channel	(MHz)	Channel	(MHz)
52	5260	60	5300		
56	5280	64	5320		

Frequency and Channel list for 802.11n (HT40):

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
54	5270	1.00	20	277	0/11
62	5310				0

Test Frequency and Channel for 802.11a/n (HT20):

Lowest Fi	requency	Middle F	requency	Highest	Frequency
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
52	5260	60	5300	64	5320

Test Frequency and channel for 802.11n (HT40):

Hotline: 400-8868-419

Lowest F	requency	Middle F	requency	Highes	st Frequency
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
54	5270	N/A	N/A	62	5310

Wifi 5G with U-NII -2C
 Frequency and Channel list for 802.11a/n (HT20):

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
100	5500	116	5580	132	5660
104	5520	120	5600	136	5680
108	5540	124	5620	140	5700
112	5560	128	5640	Pa.	

Frequency and Channel list for 802.11n (HT40):

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
102	5510	118	5590	134	5670
110	5550	126	5630	1 6	

Test Frequency and Channel for 802.11a/n (HT20):

Lowest Fr	requency	Middle I	Frequency	Highest	Frequency
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
100	5500	120	5600	140	5700

Test Frequency and channel for 802.11n (HT40):

Hotline: 400-8868-419

Lowest F	requency	Middle F	requency	Highe	st Frequency
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
102	5510	118	5590	134	5670

Note: 1. The EUT not support TPC function, Radar detection and hotspot.

2.The master device fixed the test mode and working channel on the background management page, the client device is connected to the wireless network sent by the master device, it takes 120 seconds for the master device to fully boot up, and 8.0 seconds for the client device.

4.2 Test Setup Configuration

Setup for Master with injection at the Master

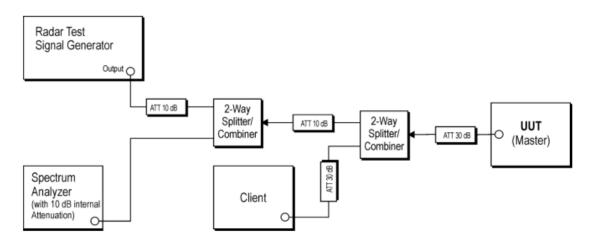


Figure 2: Example Conducted Setup where UUT is a Master and Radar Test Waveforms are injected into the Master

Setup for Client with injection at the Master

Hotline: 400-8868-419

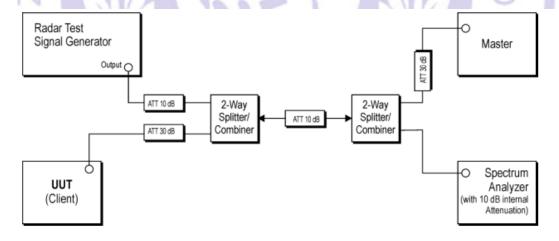


Figure 3: Example Conducted Setup where UUT is a Client and Radar Test Waveforms are injected into the Master

4.3 Test Mode

Transmitting mode	Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

Test Software	FCC RF-Test
Power level setup	ring To

4.4 EQUIPMENT UNDER TEST (EUT) DETAILS

The manufacturer declared values for the EUT operational characteristics that affect DFS are as follows

Operating Modes (5260 - 5320 MHz, 5470-5725)

- ☐ Master Device
- M Client Device (no In Service Monitoring, no Ad-Hoc mode)
- ☐ Client Device with In-Service Monitoring

Antenna Gains / EIRP (5260 - 5320 MHz, 5470-5725)

0 118	5260 - 5320 MHz, 5470-5725MHz		
Lowest Antenna Gain (dBi)	3.94		
Highest Antenna Gain (dBi)	3.94		
DFS Detection Threshold (dBm)	-62		

Channel Protocol

▼ IP Based

☐ Frame Based

Hotline: 400-8868-419

☐ OTHER

The EUT did not require modifications during testing in order to comply with the requirements of the standard(s) referenced in this test report.

5 Equipment During Test

5.1 Equipments List

Name	Model No.	Serial No.	Manufacturer	Date of Cal.	Due Date
MXG Signal Analyzer	N9020A	MY50510202	Agilent	2024/6/17	2025/6/16
MXG Vector Signal Generator	N5182A	MY50140020	Agilent	2024/6/17	2025/6/16
MXG Analog Signal Generator	N5181A	MY47420919	Agilent	2024/6/17	2025/6/16
Power Sensor	TR1029-2	512364	Techoy	2024/6/17	2025/6/16
RF Swith	TR1029-1	512364	Techoy	2024/6/17	2025/6/16
MXG Signal Analyzer	N9020A	MY50510202	Agilent	2024/6/17	2025/6/16
Attenuator	eastsheep	90db	N/A	2024/6/17	2025/6/16

Other

1	Item	Name	Manufacturer	Model	Software version
l	1	RF test system	TACHOY	RFTest	V1.0.0
	2	RF communication test system	TACHOY	RFTest	V1.0.0

Page 11 of 30 Hotline: 400-8868-419 Fax: 86-755-27790922 http://www.ncttesting.cn

5.2 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	ltem	Uncertainty
1	DFS Threshold (radiated)	±1.50dB
2	DFS Threshold (conducted)	±1.45dB
3	Temperature	±0.5°C
4	Humidity	±2%

5.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	PORTABLE CAR SCREEN	N/A	CP8	N/A	EUT
E-2	Battery	RITAR	RA12-75	N/A	Auxiliary
E-3	Router	TP-LINK	TL-WR885N	FCC ID: Q87-WRT3200ACM	Auxiliary

Note:

Hotline: 400-8868-419

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column.

6 DFS MEASUREMENT INSTRUMENTATION

DFS MEASUREMENT INSTRUMENTATION

a. RADAR GENERATION SYSTEM

An Agilent PSG is used as the radar-generating source. The integral arbitrary waveform generators are programmed using Agilent's "Pulse Building" software and Elliott custom software to produce the

required waveforms, with the capability to produce both unmodulated and modulated (FM Chirp) pulses. Where there are multiple values for a specific radar parameter then the software selects a value at

random and, for FCC tests, the software verifies that the resulting waveform is truly unique.

With the exception of the hopping waveforms required by the FCC's rules (see below), the radar generator is set to a single frequency within the radar detection bandwidth of the EUT.

Frequency hopping radar waveforms are simulated using a time domain model. A randomly hopping sequence algorithm (which uses each channel in the hopping radar's range once in a hopping sequence) generates a hop sequence. A segment of the first 100 elements of the hop sequence are

then examined to determine if it contains one or more frequencies within the radar detection bandwidth of the EUT. If it does not then the first element of the segment is discarded and the next frequency in the sequence is added. The process repeats until a valid segment is produced. The radar system is then

programmed to produce bursts at timeslots coincident with the frequencies within the segment that fall

in the detection bandwidth. The frequency of the generator is stepped in 1 MHz increments across the EUT's detection range.

The radar signal level is verified during testing using a CW signal with the AGC function switched on.

Correction factors to account for the fact that pulses are generated with the AGC functions switched off are measured annually and an offset is used to account for this in the software. The generator output is connected to the coupling port of the conducted set-up or to the radar-generating antenna.

b. CHANNEL MONITORING SYSTEM

Hotline: 400-8868-419

Channel monitoring is achieved using a spectrum analyzer and digital storage oscilloscope. The analyzer is configured in a zero-span mode, center frequency set to the radar waveform's frequency or the center frequency of the EUT's operating channel.

The IF output of the analyzer is connected to one input of the oscilloscope and analyzer.

A signal generator output is set to send either the modulating signal directly or a pulse gate with an output pulse co-incident with each radar pulse. This output is connected to a second input on the oscilloscope and the oscilloscope displays both the channel traffic (via the if input) and the radar pulses on its display.

For in service monitoring tests the analyzer sweep time is set to > 20 seconds and the oscilloscope is configured with a data record length of 10 seconds for the short duration and frequency hopping waveforms, 20 seconds for the long duration waveforms. Both instruments are set for a single acquisition sequence. The analyzer is triggered 500ms before the start of the waveform and the

Fax: 86-755-27790922

Page 13 of 30 http://www.ncttesting.cn

Report No.: NCT24048715E1-5

oscilloscope is triggered directly by the modulating pulse train. Timing measurements for aggregate

channel transmission time and channel move time are made from the oscilloscope data, with the end of the waveform clearly identified by the pulse train on one trace. The analyzer trace data is used to

confirm that the last transmission occurred within the 10-second record of the oscilloscope. If necessary the record length of the oscilloscope is expanded to capture the last transmission on the channel prior to the channel move.

Channel availability check time timing plots are made using the analyzer. The analyzer is triggered at start of the EUT's channel availability check and used to verify that the EUT does not transmit when radar is applied during the check time.

The analyzer detector and oscilloscope sampling mode is set to peak detect for all plots.

7 DFS PARAMETERS

7.1 DFS PARAMETERS

Hotline: 400-8868-419

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

Requirement	Operational Mode			
	Master	Client Without Radar Detection	Client With Radar Detection	
Non-Occupancy Period	Yes	Not required	Yes	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Availability Check Time	Yes	Not required	Not required	
U-NII Detection Bandwidth	Yes	Not required	Yes	

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode		
	Master Device or Client with Radar Detection	Client Without Radar Detection	
DFS Detection Threshold	Yes	Not required	
Channel Closing Transmission Time	Yes	Yes	
Channel Move Time	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not required	

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

Fax: 86-755-27790922

Page 15 of 30 http://www.ncttesting.cn

Table 3: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Maximum Transmit Power	Value (See Notes 1, 2, and 3)	
EIRP ≥ 200 milliwatt	-64 dBm	
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm	
EIRP < 200 milliwatt that do not meet the power spectral density requirement	-64 dBm	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Table 4: DFS Response Requirement Values

Hotline: 400-8868-419

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an
	aggregate of 60
	milliseconds over
	remaining 10 second
	period.
	See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-
	NII 99% transmission
	power bandwidth. See
	Note 3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Fax: 86-755-27790922

Page 16 of 30 http://www.ncttesting.cn

Table 5 - Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	Roundup $ \left\{ \frac{\left(\frac{1}{360}\right)}{\left(\frac{19 \cdot 10^6}{\text{PRI}_{\mu \text{sec}}}\right)} \right\} $	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
ggregate	Radar Type	5 1-4)		80%	120

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Fax: 86-755-27790922

Table 5a - Pulse Repetition Intervals Values for Test A

Hotline: 400-8868-419

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

The aggregate is the average of the percentage of successful detections of Short Pulse Radar

Types 1-4. For example, the following table indicates how to compute the aggregate of percentage of successful detections.

Radar Type	Number of Trials	Number of Successful	Minimum Percentage			
		Detections	of Successful			
			Detection			
1	35	29	82.9%			
2	30	18	60%			
3	30	27	90%			
4	50	44	88%			
Aggregate (82.9% + 60% + 90% + 88%)/4 = 80.2%						

Long Pulse Radar Test Waveform

Hotline: 400-8868-419

Table 6 - Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per <i>Burst</i>	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000- 2000	1-3	8-20	80%	30

Fax: 86-755-27790922

Figure 1 provides a graphical representation of the Long Pulse Radar Test Waveform.

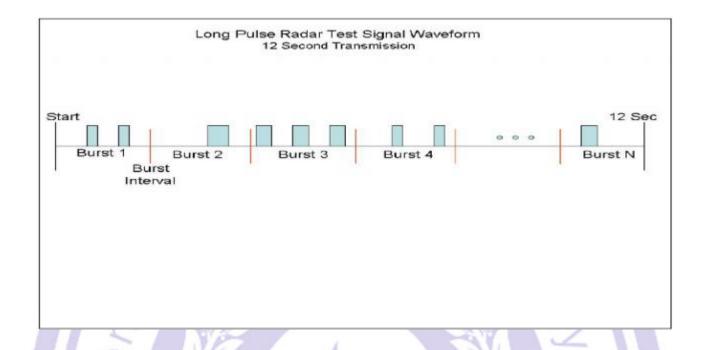


Table 7 - Frequency Hopping Radar Test Waveform

	Radar	Pulse	PRI	Pulses	Hopping	Hopping	Minimum	Minimum
	Type	Width	(µsec)	per	Rate	Sequence	Percentage of	Number of
١		(µsec)		Hop	(kHz)	Length	Successful	Trials
١				-1		(msec)	Detection	
	6	1	333	9	0.333	300	70%	30
					_			

Fax: 86-755-27790922

Page 19 of 30 http://www.ncttesting.cn

7.2 DFS -TEST RESULTS

7.2.1 DFS MEASUREMENT METHODS

a. DFS - CHANNEL CLOSING TRANSMISSION TIME AND CHANNEL MOVE TIME

Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count guiet periods in between transmissions.

b. DFS - CHANNEL NON-OCCUPANCY AND VERIFICATION OF PASSIVE SCANNING

Non-occupancy Period. A channel that has been flagged as containing a radar system, either by a channel availability check or in-service monitoring, is subject to a non-occupancy period of at least 30 minutes. The non-occupancy period starts at the time when the radar system is detected.

c. CHANNEL AVAILABILITY CHECK TIME

Channel Availability Check Time. A U-NII device shall check if there is a radar system already operating on the channel before it can initiate a transmission on a channel and when it has to move to a new channel. The U-NII device may start using the channel if no radar signal with a power level greater than the interference threshold values listed in paragraph (h)(2) of this section, is detected within 60 seconds.

d. CONTROL (TPC)

Compliance with the transmit power control requirements for devices is demonstrated through measurements showing multiple power levels and manufacturer statements explaining how the power control is implemented.

e. DETECTION PROBABILITY / SUCCESS RATE

During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each

frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic. Minimum 100% of the U-NII 99% transmission power bandwidth.

f. NON- OCCUPANCY PERIOD

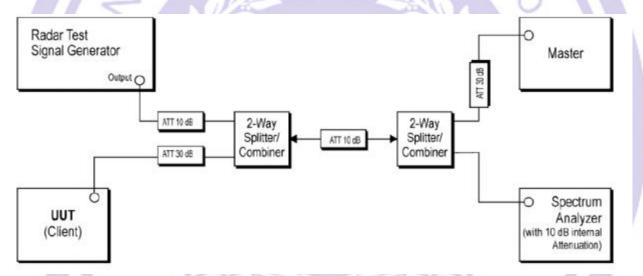
Hotline: 400-8868-419

During the 30 minutes observation time, UUT did not make any transmissions on a channel after a radar signal was detected on that channel by either the Channel Availability Check or the In-Service Monitoring

7.2.2 DFS CONDUCTION TEST METHOD

a. The signal level of the simulated waveform is set to a reference level equal to the threshold

level (plus 1dB if testing against FCC requirements). Lower levels may also be applied on request of the manufacturer.


The signal level is verified by measuring the CW signal level at the coupling point to the RDD

antenna port. The radar signal level is calculated from the measured level, R (dBm) and the lowest gain antenna assembly intended for use with the RDD

If both master and client devices have radar detection capability then the radar level at the non

RDD is verified to be at least 20dB below the threshold level to ensure that any responses are due to the RDD detecting radar.

The antenna connected to the channel monitoring subsystem is positioned to allow both master and client transmissions to be observed, with the level of the EUT's transmissions between 6 and 10dB higher than those from the other device.

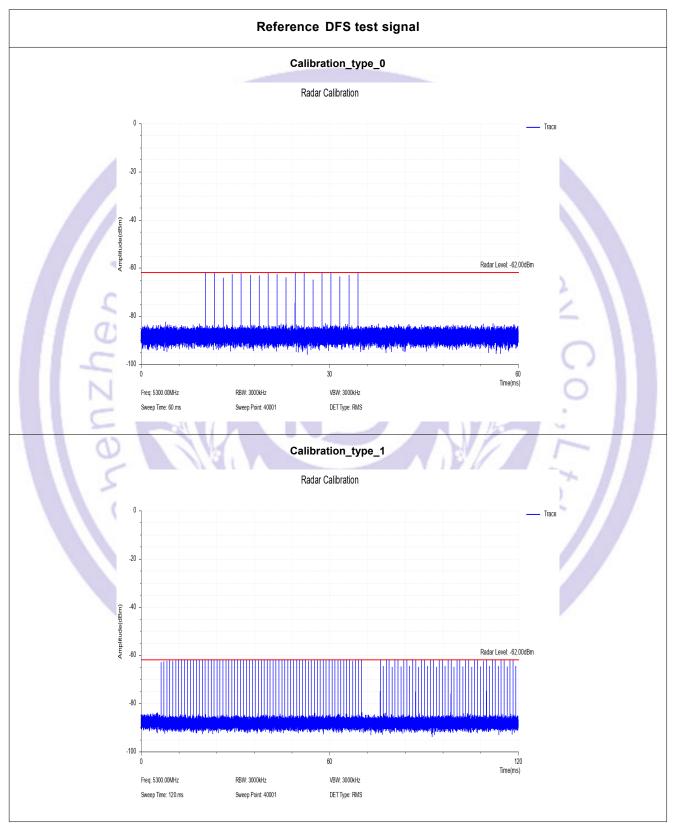
b. Set-up B is a set-up whereby the UUT is an RLAN device operating in slave mode, with or without Radar Interference Detection function. This set-up also contains an RLAN device

operating in master mode. The radar test signals are injected into the master device. The UUT

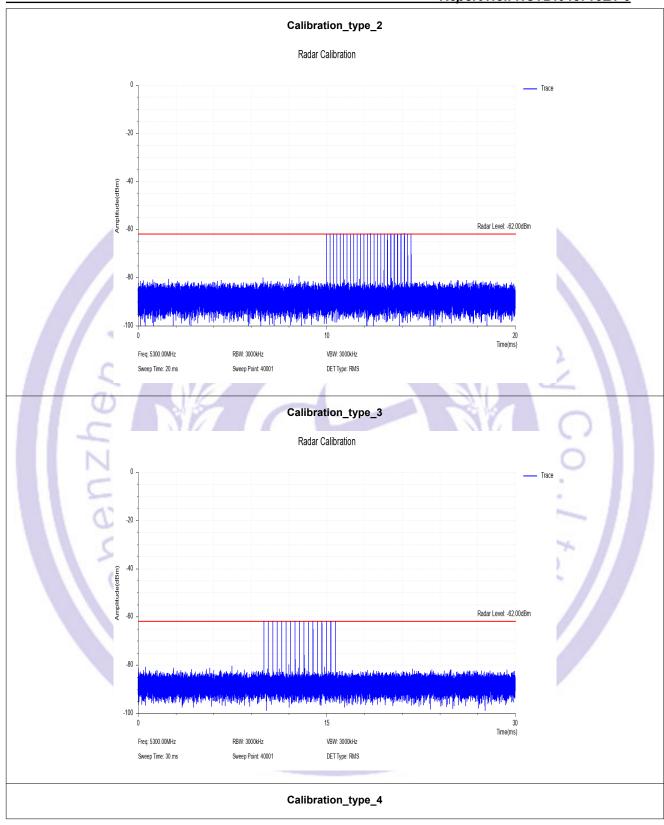
(slave device)is associated with the master device. Figure 5 shows an example for Set-up B. The set-up used

(slave device) is associated with the master device. Figure 5 shows an example for Set-up B. The set-up used shall be documented in the test report.

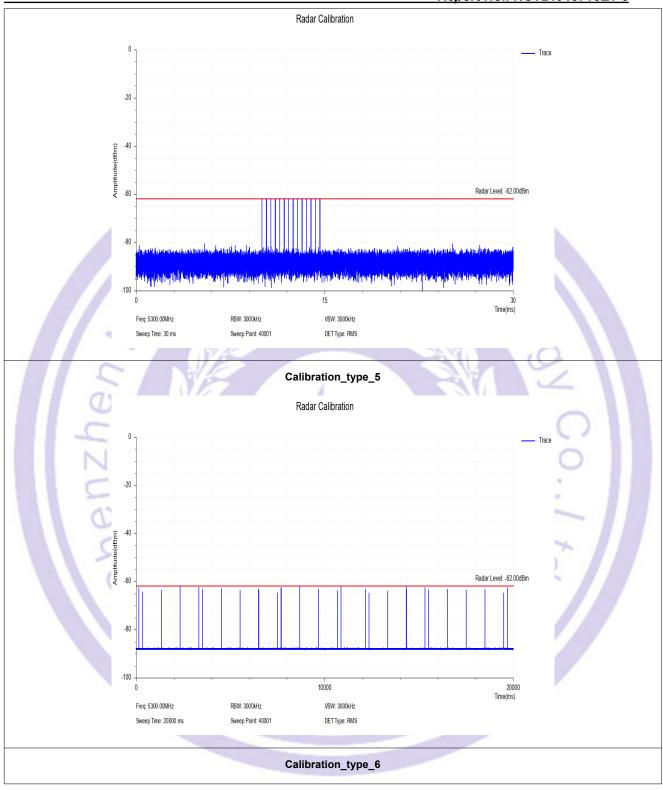
Channel loading mode:


Hotline: 400-8868-419

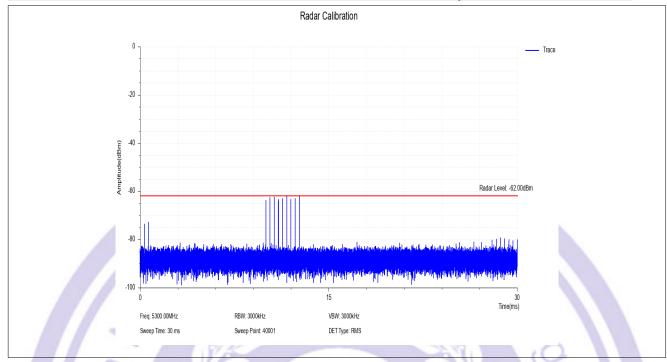
EUT connects to the router through DFS setup, then controls and switches the EUT channel on the router background page.


7.3 DFS Test Data

Hotline: 400-8868-419



Report No.: NCT24048715E1-5



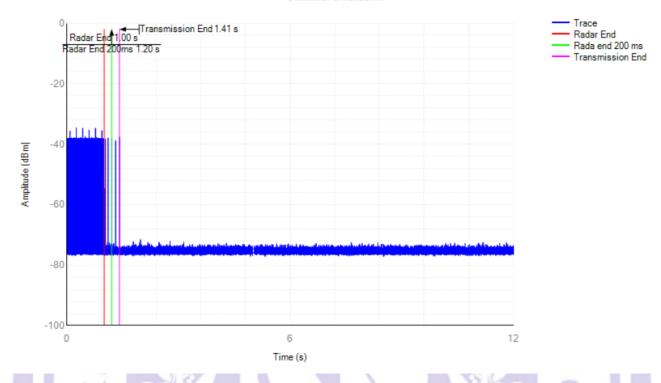
Report No.: NCT24048715E1-5

Report No.: NCT24048715E1-5

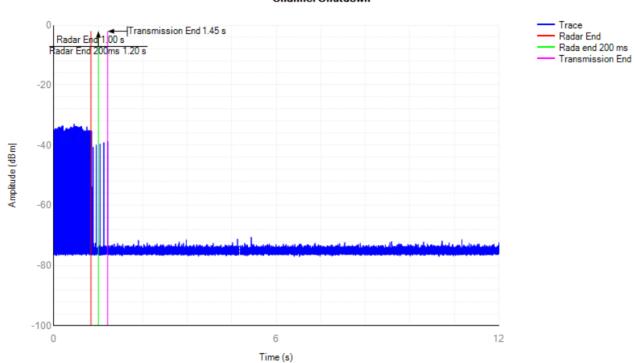
TEST RESULTS- FCC Part 15.407 CLIENT DEVICE Shutdown Time

	Channel	Channel	Limit	Close	Limit Close	Close	Limit Close	
Mode	Move Time	Move Time	Channel	Transmissio	Transmission	Transmission	Transmission	Verdict
		(s)	Move		Time	Time after	Time after	
	(s)		Time	Time (ms)	(ms)	200 (ms)	200 (ms)	
			(s)					
а	5320	0.4284	10	8.4	200+0.06	0.002	0.06	Pass
а	5500	0.5056	10	6.0	200+0.06	0.0024	0.06	Pass
n40	5310	0.41	10	4.0	200+0.06	0.0024	0.06	Pass
n40	5510	0.4512	10	7.2	200+0.06	0.0024	0.06	Pass

Notes:

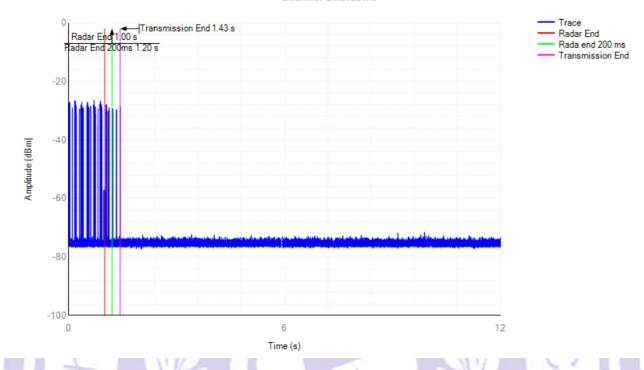

- 1) Tests were performed using the conduction test method.
- 2) Channel availability check, detection threshold and non-occupancy period are not applicable to client devices.

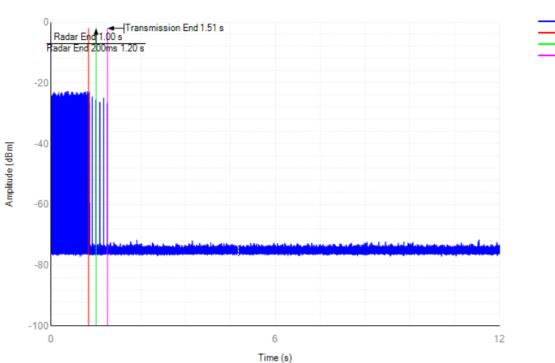
Page 26 of 30 Hotline: 400-8868-419 Fax: 86-755-27790922 http://www.ncttesting.cn


5310MHz n40 Shutdown

Channel Shutdown

5510MHz n40 Shutdown


Channel Shutdown


5320MHz a Shutdown

Channel Shutdown

5500MHz a Shutdown

Channel Shutdown

Fax: 86-755-27790922

Page 28 of 30 http://www.ncttesting.cn

Trace

Radar End Rada end 200 ms Transmission End

8 TEST SETUP & EUT PHOTOGRAPH

Please see the attachment for details.

Fax: 86-755-27790922

Page 29 of 30 http://www.ncttesting.cn

9 EUT PHOTOGRAPH

Hotline: 400-8868-419

Please see the attachment for details.

