Automation Inc. dba RADAR

TEST REPORT FOR

RFID sensor operating in the UHF band Model: RS510

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.247 (FHSS 902-928MHz)

Report No.: 108867-4

Date of issue: September 18, 2023

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 40 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	7
-CC Part 15 Subpart C	12
15.247(b)(2) Output Power	12
15.247(d) Radiated Emissions & Band Edge	22
Supplemental Information	39
Measurement Uncertainty	39
Emissions Test Details	39

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Automation Inc. dba RADAR 15150 Avenue of Science, Ste. 200 San Diego, CA 92121

Representative: Mark Easton Customer Reference Number: 1962-SJ1-Test

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING: **REPORT PREPARED BY:**

Viviana Prado CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Project Number: 108867

September 5, 2023 September 5, 2023

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve -7 Belo

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable, and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 110 North Olinda Place Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.20

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

*CKC's list of NIST designated countries can be found at: <u>https://standards.gov/cabs/designations.html</u>

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
15.247(a)(1)(i)	Occupied Bandwidth	NA	NP
15.247(a)(1)	Carrier Separation	NA	NP
15.247(a)(1)(i)	Number of Hopping Channels	NA	NP
15.247(a)(1)(i)	Average Time of Occupancy	NA	NP
15.247(b)(2)	Output Power	NA	Pass
15.247(d)	RF Conducted Emissions & Band Edge	NA	NP
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	NP

NA = Not Applicable

NP = CKC Laboratories was not contracted to perform test.

Evaluation for Permissive Change II to accommodate different antenna.

ISO/IEC 17025 Decision Rule

The equipment sample utilized for testing is selected by the manufacturer. The declaration of pass or fail herein is a binary statement for simple acceptance rule (ILAC G8) based upon assessment to the specification(s) listed above, without consideration of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions	
-----------------------	--

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Eau	inm	ont	Teste	. d.
EUU	DIII	ent	reste	:u:

zquipinent resteur				
Device	Manufacturer	Model #	S/N	
RFID sensor operating in	Automaton Inc dba RADAR	RS510	508	
the UHF band				

Support Equipment:

Device	Manufacturer	Model #	S/N
Gigabit POE	Trendent	TPE-117G1A	E18H7G2000147
Keyboard	Perixx	Perboard 505 Plus	1906000719
Mouse	DPI	TM176G	20220523000709
Minicomputer	Intel	NUC8HN	BTHN009003HV

Configuration 2

Fauinment Tested				
Equipment Tested:				
Device	Manufacturer	Model #	S/N	
RFID sensor operating in	Automaton Inc dba RADAR	RS510	507	
the UHF band				

Support Equipment:

Device	Manufacturer	Model #	S/N
Gigabit POE	Trendent	TPE-117G1A	E18H7G2000147
Keyboard	Perixx	Perboard 505 Plus	1906000719
Mouse	DPI	TM176G	20220523000709
Minicomputer	Intel	NUC8HN	BTHN009003HV

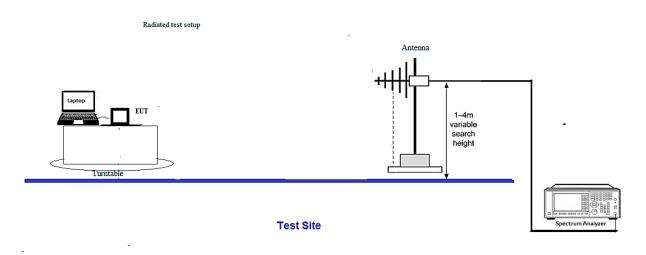
General Product Information:

Equipment Type:	Stand-Alone Equipment		
Type of Wideband System:	FHSS		
Operating Frequency Range:	902.75-927.25MHz		
Number of Hopping Channels:	50		
Receiver Bandwidth and Synchronization:	The manufacturer declares the receiver input bandwidth matches the transmit channel bandwidth and shifts frequencies in synchronization with the transmitter.		
Modulation Type(s):	PR-ASK *		
Maximum Duty Cycle:	98% or better		
Number of TX Chains:	4		
Antenna Type(s) and Gain:	Patch Array 7.04 – 8.62dBi (Measured ant gain + beamforming gain as provided by the manufacturer)		
Beamforming Type:	Digital		
Antenna Connection Type:	Integral (External connector provided to facilitate testing)		
Nominal Input Voltage:	48VDC from POE		
Firmware / Software used for Test: Test mode firmware version: 0.85.11			
The validity of results is dependent on the stated product details, the accuracy of which the manufacturer assumes full responsibility.			

EUT Photo(s)

Page 8 of 40 Report No.: 108867-4

Page 9 of 40 Report No.: 108867-4


Page 10 of 40 Report No.: 108867-4

Support Equipment Photo(s)

Block Diagram of Test Setup(s)

FCC Part 15 Subpart C

15.247(b)(2) Output Power

Test Setup/Conditions					
Test Location:	Brea Lab A	Test Engineer:	E. Wong		
Test Method:	ANSI C63.10 (2013)	Test Date(s):	9/5/2023		
Configuration:	1				
Test Setup:	The equipment under test (EUT) is The EUT is powered via a cat 6 ner connected to a remotely located F cable is a remotely located compu- The computer is used to set frequency the EUT. Frequency Range of EUT: 902.75M TX 902.75MHz, 914.75MHz, 927.2 TARI = 6.25us as intended. Worst case Antenna Pattern and a Lowest antenna gain sector 180.0 20.3dBm	twork cable (nominal v POE Injector. Connecto Iter. ency channel, frequen /IHz-927.25MHz 25MHz	ed to the POE Injector via cat 6 cy hopping, and modulation of evaluated.		

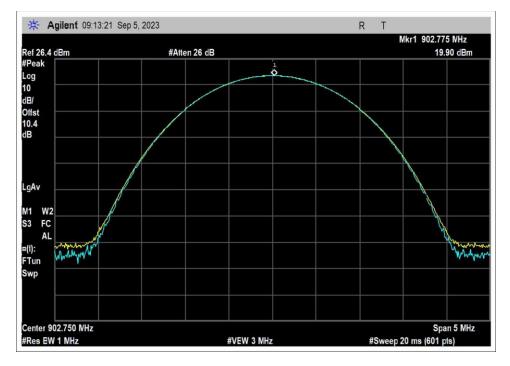
Environmental Conditions						
Temperature (ºC)	23	Relative Humidity (%):	61			

	Test Equipment											
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due							
02869	Spectrum Analyzer	Agilent	E4440A	12/13/2022	12/13/2023							
03430	Attenuator	Aeroflex/Weinschel	75A-10-12	1/14/2022	1/14/2024							
07658	Cable	Astrolab, Inc.	32022-29094K- 29094K-24TC	6/22/2022	6/22/2024							

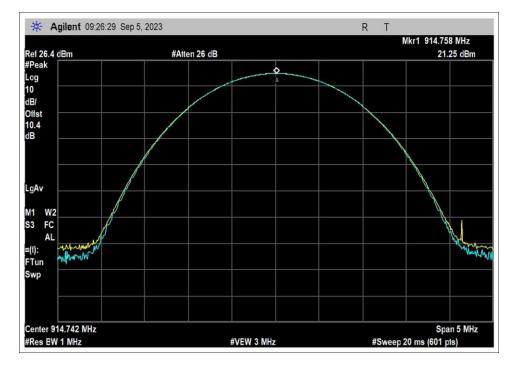
Test Data Summary - Voltage Variations

Note: Voltage variation is NOT evaluated for Permissive change, the hardware meets voltage variation requirement during original evaluation.

Test Data Summary - RF Conducted Measurement
$Limit = \begin{cases} 30dBm \ Conducted/36dBm \ EIRP \ \ge 50 \ Channels \\ 24dBm \ Conducted/36dBm \ EIRP \ \ge 50 \ Channels \\ 24dBm \ Conducted/36dBm \ EIRP \ \ge 50 \ Channels \\ 24dBm \ Conducted/36dBm \ EIRP \ \ge 50 \ Channels \\ 24dBm \ Conducted/36dBm \ EIRP \ \ge 50 \ Channels \\ 24dBm \ Conducted/36dBm \ EIRP \ \ge 50 \ Channels \\ 24dBm \ Conducted/36dBm \ EIRP \ \ge 50 \ Channels \\ 24dBm \ Conducted/36dBm \ EIRP \ \ge 50 \ Channels \\ 34dBm \ Conducted/36dBm \ EIRP \ \ge 50 \ Channels \\ 34dBm \ Conducted/36dBm \ EIRP \ \ge 50 \ Channels \\ 34dBm \ Conducted/36dBm \ EIRP \ \ge 50 \ Channels \\ 34dBm \ Conducted/36dBm \ EIRP \ \ge 50 \ Channels \\ 34dBm \ Conducted/36dBm \ EIRP \ \ge 50 \ Channels \\ 34dBm \ Conducted/36dBm \ EIRP \ \ge 50 \ Channels \\ 34dBm \ Conducted/36dBm \ EIRP \ \ge 50 \ Channels \\ 34dBm \ Conducted/36dBm \ EIRP \ \ge 50 \ Channels \\ 34dBm \ Conducted/36dBm \ EIRP \ \ge 50 \ Channels \\ 34dBm \ Conducted/36dBm \ EIRP \ \ge 50 \ Channels \\ 34dBm \ Conducted/36dBm \ EIRP \ \ge 50 \ Channels \\ 34dBm \ Conducted/36dBm \ EIRP \ \ge 50 \ Channels \\ 34dBm \ Conducted/36dBm \ EIRP \ \ge 50 \ Channels \\ 34dBm \ Conducted/36dBm \ EIRP \ \ge 50 \ Channels \\ 34dBm \ Conducted/36dBm \ EIRP \ \ge 50 \ Channels \\ 34dBm \ Conducted/36dBm \ EIRP \ \ge 50 \ Channels \\ 34dBm \ Conducted/36dBm \ EIRP \ \ge 50 \ Channels \ EIRP \ = 50 \ Channels \ EIRP \ = 50 \ Channel \ EIRP \ = 50 \ EIRP \ = 50 \ Channel \ EIRP \ = 50 \ EIRP \ = 50 \ Channel \ EIRP \ = 50 \ EIRP \$
$Limit = \{24dBm Conducted/30dBm EIRP < 50 Channels (min 25)\}$

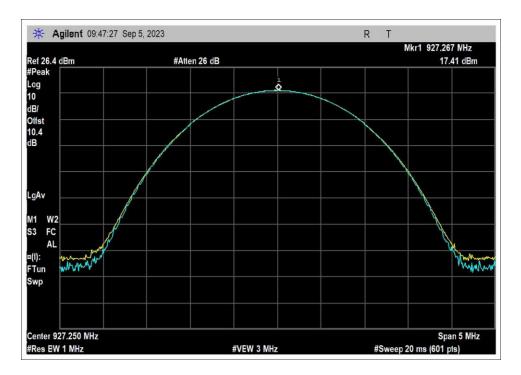

Ant Port		0		1		2		3	Linear	sum	Ant gain Beamform- ing gain	Total EIRP
Freq	dBm	Watts	dBm	Watts	dBm	Watts	dBm	Watts	watt	dBm	dBi	dBm
902.75	19.90	0.0977	22.47	0.1766	21.42	0.1387	21.68	0.1472	0.5602	27.5	7.04	34.5
914.75	21.25	0.1334	23.61	0.2296	22.73	0.1875	23.45	0.2213	0.7718	28.9	7.04	35.9
927.25	17.41	0.0551	20.36	0.1086	19.18	0.0828	20.31	0.1074	0.3539	25.5	7.04	32.5

Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured Total EIRP (dBm)	EIRP Limit (dBm)	Results				
Lowes	Lowest antenna gain sector 180,0, highest power setting. L= 22.5dBm, M= 23.5dBm, H= 20.3dBm								
902.75 (L)	PR-ASK Patch Array		34.5	≤ 36	Pass				
914.75 (M) PR-ASK Patch A		Patch Array	35.9	≤ 36	Pass				
927.25 (H)	PR-ASK	Patch Array	32.5	≤ 36	Pass				



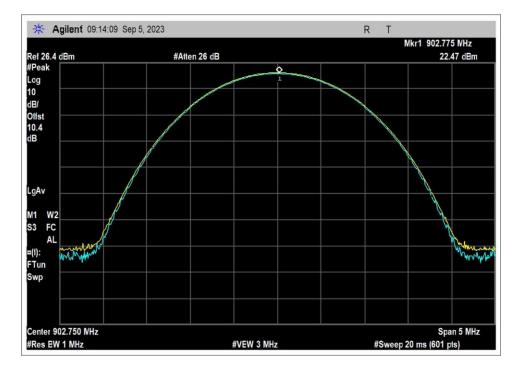
Plots

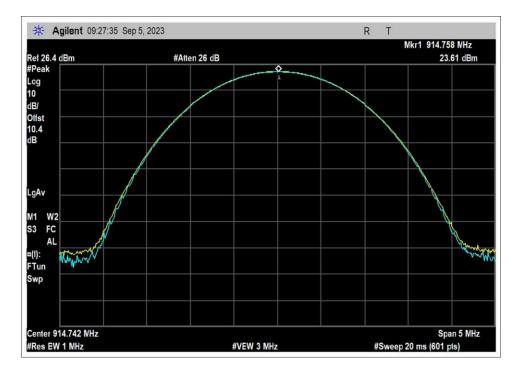
Antenna 0



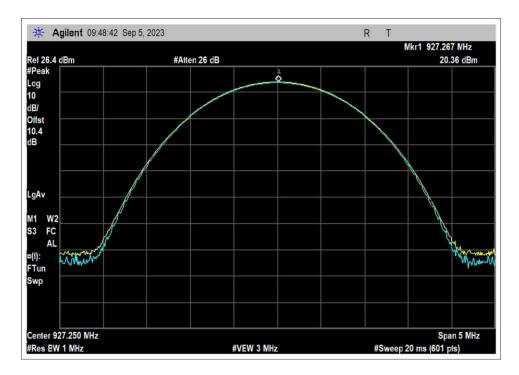
Low Channel

Middle Channel



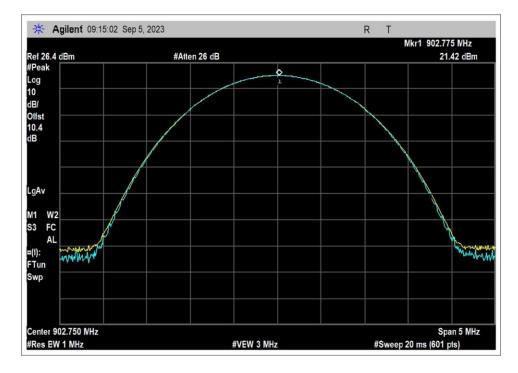

High Channel

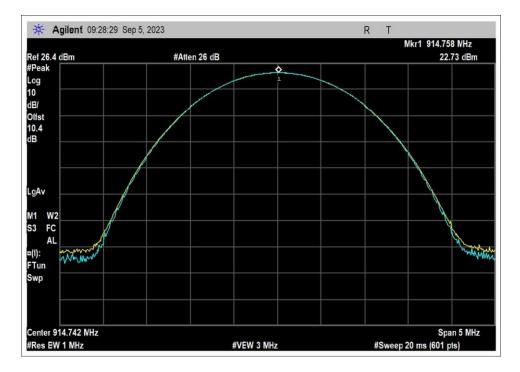
Antenna 1



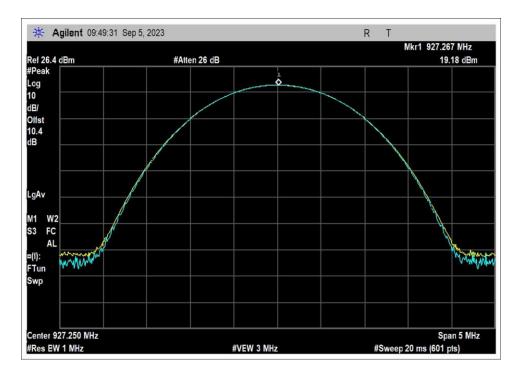
Low Channel

Middle Channel



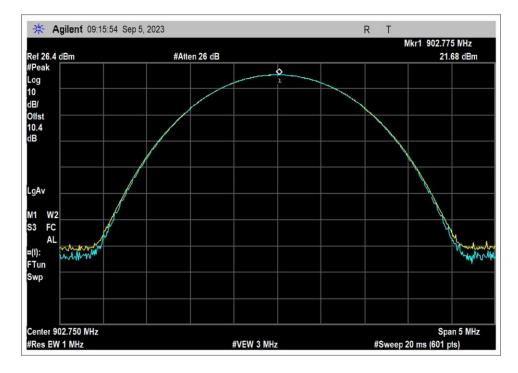

High Channel

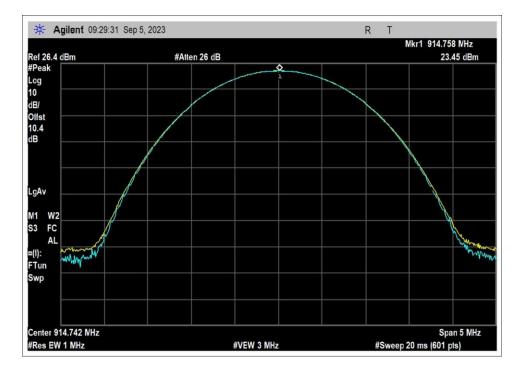
Antenna 2



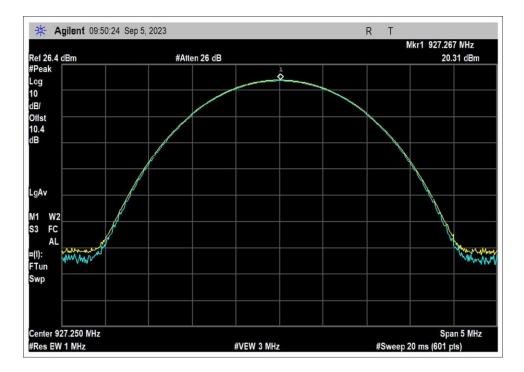
Low Channel

Middle Channel




High Channel

Antenna 3



Low Channel

Middle Channel

High Channel

Test Setup Photo(s)

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc • 11	0 N. Olinda Place • Brea, CA	• (714) 993-6112
Customer:	Automation Inc dba RADA	R	
Specification:	15.247(d) / 15.209/ 15.205	Radiated Spurious Emission	s
Work Order #:	108867	Date:	9/5/2023
Test Type:	Maximized Emissions	Time:	13:35:00
Tested By:	E. Wong	Sequence#:	2
Software:	EMITest 5.03.20	_	

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				
Same and Family and				

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

The equipment under test (EUT) is set on a Styrofoam tabletop in the maximized emission orientation.

Evaluation for Permissive Change II, worse case frequency point based on original evaluation.

The EUT is powered via a cat 6 network cable (nominal voltage 48Vdc), which is connected to a remotely located POE Injector. Connected to the POE Injector via cat 6 cable is a remotely located computer. The computer is used to set frequency channel, frequency hopping, and modulation of the EUT.

Frequency Range of EUT: 902.75MHz-927.25MHz

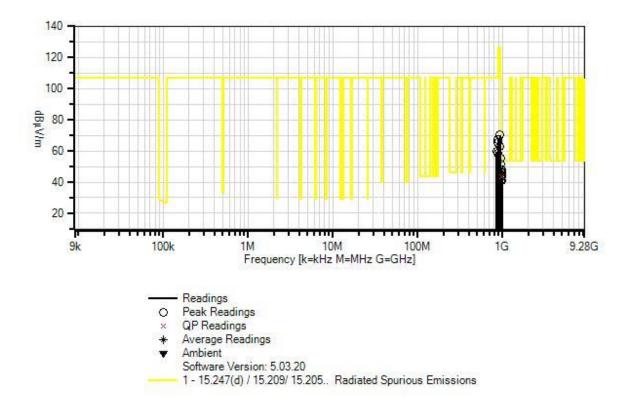
TX 902.75MHz, 914.75MHz, 927.25MHz

TARI = 6.25us as intended.

Firmware version: 0.85.11

Frequency Range of Measurement: 30MHz-1000MHz RBW=VBW=100kHz RBW=120kHz, VBW=360kHz restricted band

Lowest antenna gain sector 180.0, highest power setting. L= 22.5dBm, M= 23.5dBm, H= 20.3dBm


Site A Test Method: ANSI C63.10 (2013)

Test Environment Conditions: Temperature: 23°C Relative Humidity: 61% Pressure: 98.8kPa

Additional evaluation performed with the EUT lay flat on the Styrofoam. worst case emission presented.

Automation Inc dba RADAR WO#: 108867 Sequence#: 2 Date: 9/5/2023 15.247(d) / 15.209/ 15.205.. Radiated Spurious Emissions Test Distance: 3 Meters Horiz

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	12/13/2022	12/13/2023
T2	AN00851	Biconilog Antenna	CBL6111C	4/21/2022	4/21/2024
Т3	ANP05198	Cable-Amplitude +15C to +45C (dB)	8268	12/31/2022	12/31/2024
T4	AN00309	Preamp	8447D	12/13/2021	12/13/2023
T5	ANP05050	Cable	RG223/U	12/31/2022	12/31/2024
Т6	AN02749	High Pass Filter	9SH10- 1000/T10000- O/O	8/29/2023	8/29/2025

	rement Data:	Re	eading lis	ted by ma	argin.			est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	976.267M	34.9	+0.0	+31.4	+6.2	-27.4	+0.0	48.0	54.0	-6.0	Horiz
			+0.5	+2.4					Н		
2	987.733M	35.5	+0.0	+31.1	+6.2	-27.4	+0.0	47.6	54.0	-6.4	Vert
			+0.5	+1.7					L		
3	966.860M	35.6	+0.0	+31.5	+6.1	-27.3	+0.0	46.4	54.0	-7.6	Vert
_			+0.5	+0.0					Μ		
4	976.220M	33.0	+0.0	+31.4	+6.2	-27.4	+0.0	46.1	54.0	-7.9	Horiz
			+0.5	+2.4					H_Layflat		
5	977.770M	31.6	+0.0	+31.3	+6.2	-27.4	+0.0	44.5	54.0	-9.5	Horiz
C C	<i>,,,,,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,	0110	+0.5	+2.3					L	10	110112
6	977.870M	31.3	+0.0	+31.3	+6.2	-27.4	+0.0	44.2	54.0	-9.8	Horiz
Ũ	<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>	0110	+0.5	+2.3					L	,	110112
7	982.770M	31.6	+0.0	+31.2	+6.2	-27.4	+0.0	44.0	54.0	-10.0	Horiz
	, o _ , , oni	0110	+0.5	+1.9					L	1010	110112
8	987.740M	31.3	+0.0	+31.1	+6.2	-27.4	+0.0	43.4	54.0	-10.6	Horiz
	QP	51.5	+0.5	+1.7	10.2	27.1	10.0	15.1	L	10.0	HOHZ
^	987.700M	36.6	+0.0	+31.1	+6.2	-27.4	+0.0	48.7	54.0	-5.3	Horiz
	<i>JOT.</i> TOOM	50.0	+0.5	+1.7	10.2	27.1	10.0	10.7	L 51.0	5.5	HOHZ
^	987.733M	30.4	+0.0	+31.1	+6.2	-27.4	+0.0	42.5	54.0	-11.5	Horiz
	707.755WI	50.4	+0.5	+1.7	10.2	27.4	10.0	72.3	L_Layflat	11.5	HOHZ
11	976.260M	30.1	+0.0	+31.4	+6.2	-27.4	+0.0	43.2	<u>54.0</u>	-10.8	Vert
11	770.2001 v1	50.1	+0.5	+2.4	10.2	-27.4	10.0	73.2	H_Layflat	-10.0	ven
12	960.024M	30.5	+0.0	+31.4	+6.1	-27.3	+0.0	41.2	54.0	-12.8	Horiz
12	900.024101	50.5	+0.0 +0.5	+31.4 +0.0	± 0.1	-27.5	± 0.0	41.2	М	-12.0	TIOTIZ
13	987.733M	28.7	+0.0	+31.1	+6.2	-27.4	+0.0	40.8	54.0	-13.2	Vert
15	907.755IVI	20.7	+0.0 +0.5	+31.1 +1.7	± 0.2	-27.4	± 0.0	40.0	L_Layflat	-13.2	VCIT
14	939.470M	60.4	+0.3 +0.0	+1.7 +30.8	+6.0	-27.3	+0.0	70.4	106.8	-36.4	Horiz
14	939.470IVI	00.4	+0.0 +0.5	+30.8 +0.0	+0.0	-21.5	+0.0	70.4	H 100.8	-30.4	HOUL
15	890.460M	58.9	+0.3 +0.0	+0.0 +29.4	+5.8	-27.3	+0.0	67.3	106.8	-39.5	Horiz
15	890.400M	36.9			+3.8	-21.5	+0.0	07.5	100.8 L	-39.3	HOUL
16	200 450M	571	+0.5	+0.0	150	-27.3		65.5		41.2	Horiz
16	890.450M	57.1	+0.0	+29.4	+5.8	-27.3	+0.0	05.5	106.8	-41.3	HOLIZ
17	052 7001 4	Z 1 1	+0.5	+0.0	E.C.	27.2	10.0	50.6	L	47.0	II.
17	853.790M	51.1	+0.0	+29.7	+5.6	-27.2	+0.0	59.6	106.8	-47.2	Horiz
10	070 01014	EO 1	+0.4	+0.0		27.2	.0.0	50 F	L 106.0	40.0	II. '
18	878.210M	50.1	+0.0	+29.5	+5.7	-27.3	+0.0	58.5		-48.3	Horiz
10	051 7001 5	45.0	+0.5	+0.0		07.0	.0.0		L	51.0	
19	951.790M	45.3	+0.0	+31.1	+6.0	-27.3	+0.0	55.6	106.8	-51.2	Horiz
	000 5000 5	41.7	+0.5	+0.0		07.0	0.0		L		
20	939.700M	41.5	+0.0	+30.9	+6.0	-27.3	+0.0	51.6		-55.2	Horiz
	005 0 103 5		+0.5	+0.0		<u>a= c</u>			L		
21	927.240M	53.3	+0.0	+30.4	+5.9	-27.3	+0.0	62.8	126.8	-64.0	Vert
			+0.5	+0.0					L		

Test Location:	CKC Laboratories, Inc • 110		• (714) 993-6112
Customer:	Automation Inc dba RADA		
Specification:	15.247(d) / 15.209/ 15.205	Radiated Spurious Emission	S
Work Order #:	108867	Date:	9/5/2023
Test Type:	Maximized Emissions	Time:	15:27:23
Tested By:	E. Wong	Sequence#:	3
Software:	EMITest 5.03.20		

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				
Support Equipment:				

Device	Manufacturer	Model #	S/N
Configuration 2			

Test Conditions / Notes:

The equipment under test (EUT) is set on a Styrofoam tabletop in the maximized emission orientation.

Evaluation for Permissive Change II, worse case frequency point based on original evaluation.

The EUT is powered via a cat 6 network cable (nominal voltage 48Vdc), which is connected to a remotely located POE Injector. Connected to the POE Injector via cat 6 cable is a remotely located computer. The computer is used to set frequency channel, frequency hopping, and modulation of the EUT.

Frequency Range of EUT: 902.75MHz-927.25MHz

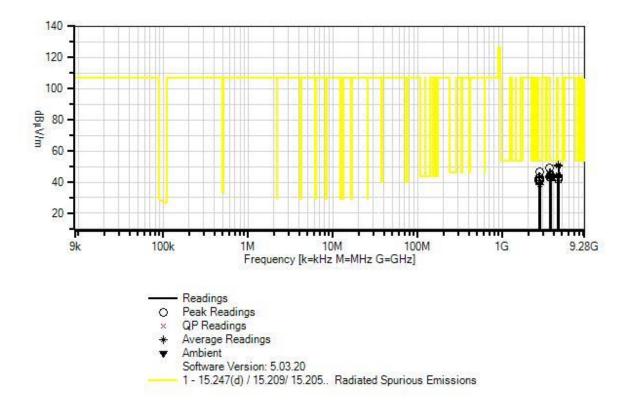
TX 902.75MHz, 914.75MHz, 927.25MHz

TARI = 6.25us as intended.

Firmware version: 0.85.11

Frequency Range of Measurement: 1-10GHz RBW=VBW=1MHz RBW=100kHz, VBW=300kHz restricted band

Lowest antenna gain sector 180.0, highest power setting. L= 22.5dBm, M= 23.5dBm, H= 20.3dBm


Site A Test Method: ANSI C63.10 (2013)

Test Environment Conditions: Temperature: 23°C Relative Humidity: 61% Pressure: 98.8kPa

Additional evaluation performed with the EUT lay flat on the Styrofoam. worst case emission presented.

Automation Inc dba RADAR WO#: 108867 Sequence#: 3 Date: 9/5/2023 15.247(d) / 15.209/ 15.205.. Radiated Spurious Emissions Test Distance: 3 Meters Horiz

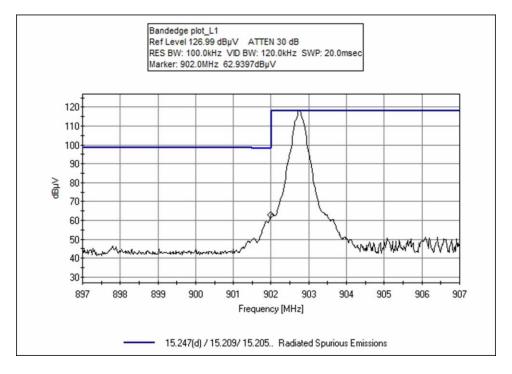
Test Equipment:

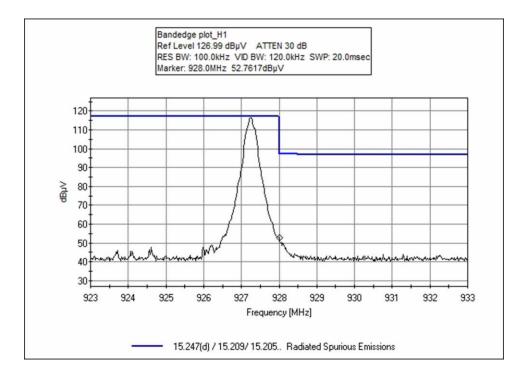
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	12/13/2022	12/13/2023
T2	AN00849	Horn Antenna	3115	3/21/2022	3/21/2024
Т3	ANP07658	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
T4	AN00786	Preamp	83017A	5/23/2022	5/23/2024
T5	ANP06360	Cable	L1-PNMNM-48	9/30/2021	9/30/2023
T6	AN03169	High Pass Filter	HM1155-11SS	5/15/2023	5/15/2025

	rement Data:		eading lis						e: 3 Meters		
#	Freq	Rdng	T1 T5	T2 T6	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	4575.017M	50.5	+0.0	+32.3	+0.7	-37.4	+0.0	51.1	54.0	-2.9	Vert
	Ave		+4.6	+0.4					Layflat_H_ cs of LO	Harmoni	
^	4575.017M	53.2	+0.0	+32.3	+0.7	-37.4	+0.0	53.8	54.0	-0.2	Vert
			+4.6	+0.4					Layflat_H_ cs of LO	Harmoni	
۸	4575.000M	46.2	+0.0	+32.3	+0.7	-37.4	+0.0	46.8	54.0	-7.2	Vert
			+4.6	+0.4					H_Harmon LO	ics of	
^	4575.000M	45.8	+0.0	+32.3	+0.7	-37.4	+0.0	46.4	54.0	-7.6	Vert
			+4.6	+0.4					L_Harmon		
۸	4575.040M	44.8	+0.0	+32.3	+0.7	-37.4	+0.0	45.4	54.0	-8.6	Vert
			+4.6	+0.4					M+Harmon LO		
	4574.883M	50.2	+0.0	+32.3	+0.7	-37.4	+0.0	50.8	54.0	-3.2	Vert
	Ave		+4.6	+0.4					Layflat_L_ cs of LO		
	4574.883M	50.0	+0.0	+32.3	+0.7	-37.4	+0.0	50.6	54.0	-3.4	Vert
	Ave		+4.6	+0.4					Layflat_M- ics of LO	+Harmon	
۸	4574.883M	53.8	+0.0	+32.3	+0.7	-37.4	+0.0	54.4	54.0	+0.4	Vert
			+4.6	+0.4					Layflat_M- ics of LO		
۸	4574.883M	53.1	+0.0	+32.3	+0.7	-37.4	+0.0	53.7	54.0	-0.3	Vert
			+4.6	+0.4					Layflat_L_ cs of LO		
10	3611.040M	50.8	+0.0	+31.4	+0.6	-38.1	+0.0	48.9	54.0	-5.1	Horiz
			+3.9	+0.3					L		
11	2744.920M	51.3	+0.0	+29.3	+0.5	-38.4	+0.0	46.5	54.0	-7.5	Horiz
			+3.4	+0.4					M+Harmon LO		
	3658.917M	46.5	+0.0	+31.5	+0.6	-37.9	+0.0	45.0	54.0	-9.0	Vert
	Ave		+4.0	+0.3					Layflat_M- ics of LO		
^	3658.917M	52.7	+0.0	+31.5	+0.6	-37.9	+0.0	51.2	54.0	-2.8	Vert
			+4.0	+0.3					Layflat_M- ics of LO	+Harmon	
14	3709.100M	45.5	+0.0	+32.0	+0.6	-37.8	+0.0	44.8	54.0	-9.2	Vert
			+4.1	+0.4					Layflat_H		
	4575.000M	44.2	+0.0	+32.3	+0.7	-37.4	+0.0	44.8	54.0	-9.2	Horiz
	Ave		+4.6	+0.4					H_Harmon LO	ics of	

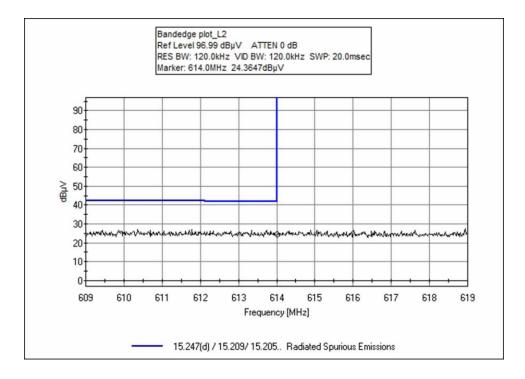
16 4575.000M	43.8	+0.0	+32.3	+0.7	-37.4	+0.0	44.4	54.0 -9.6	Horiz
Ave		+4.6	+0.4					L_Harmonics of LO	
^ 4575.000M	49.5	+0.0	+32.3	+0.7	-37.4	+0.0	50.1	54.0 -3.9	Horiz
		+4.6	+0.4					H_Harmonics of	
								LO	
^ 4575.050M	49.3	+0.0	+32.3	+0.7	-37.4	+0.0	49.9	54.0 -4.1	Horiz
		+4.6	+0.4					M+Harmonics of	
								LO	
^ 4575.000M	48.5	+0.0	+32.3	+0.7	-37.4	+0.0	49.1	54.0 -4.9	Horiz
		+4.6	+0.4					L_Harmonics of LO	
^ 4575.000M	45.7	+0.0	+32.3	+0.7	-37.4	+0.0	46.3	54.0 -7.7	Horiz
		+4.6	+0.4					Layflat_L_Harmoni	
								cs of LO	
^ 4575.000M	45.5	+0.0	+32.3	+0.7	-37.4	+0.0	46.1	54.0 -7.9	Horiz
		+4.6	+0.4					Layflat_H_Harmoni	
								s of LO	
^ 4574.917M	45.0	+0.0	+32.3	+0.7	-37.4	+0.0	45.6	54.0 -8.4	Horiz
		+4.6	+0.4					Layflat_M+Harmon	
								ics of LO	
23 3658.920M	45.5	+0.0	+31.5	+0.6	-37.9	+0.0	44.0	54.0 -10.0	Horiz
Ave	1010	+4.0	+0.3	10.0	5715	10.0	11.0	M+Harmonics of	HOHL
1110		11.0	10.5					LO	
^ 3658.950M	51.1	+0.0	+31.5	+0.6	-37.9	+0.0	49.6	54.0 -4.4	Horiz
5050.750101	51.1	+4.0	+0.3	10.0	51.7	10.0	47.0	M+Harmonics of	HOHZ
		14.0	10.5					LO	
25 3659.083M	45.4	+0.0	+31.5	+0.6	-37.9	+0.0	43.9	54.0 -10.1	Horiz
25 5057.065W	43.4	+0.0 $+4.0$	+31.3 +0.3	± 0.0	-37.9	± 0.0	43.9	Layflat_M+Harmon	HOHZ
		+4.0	± 0.3					ics of LO	
26 3611.000M	45.7	+0.0	+31.4	+0.6	-38.1	+0.0	43.8	54.0 -10.2	Vert
Ave	43.7	+0.0 $+3.9$	+31.4 +0.3	± 0.0	-30.1	± 0.0	43.0	Layflat_L	ven
	51.5	+3.9 +0.0	+0.3 +31.4	+0.6	-38.1	+0.0	49.6	54.0 -4.4	Vert
^ 3611.000M	51.5			+0.0	-36.1	+0.0	49.0		vert
^ 3611.040M	17 1	+3.9	+0.3	10.0	20.1		15 5	Layflat_L	Vant
^ 3611.040M	47.4	+0.0	+31.4	+0.6	-38.1	+0.0	45.5	54.0 -8.5	Vert
20. 2(11.000)/	45.5	+3.9	+0.3	0.6	20.1	0.0	10.6	L	
29 3611.000M	45.5	+0.0	+31.4	+0.6	-38.1	+0.0	43.6	54.0 -10.4	Horiz
	10.0	+3.9	+0.3					Layflat_L	
30 3708.867M	43.8	+0.0	+32.0	+0.6	-37.8	+0.0	43.1	54.0 -10.9	Horiz
		+4.1	+0.4					Н	
31 4513.750M	42.5	+0.0	+32.2	+0.7	-37.4	+0.0	42.9	54.0 -11.1	Vert
		+4.5	+0.4					Layflat_L	
32 2744.760M	47.4	+0.0	+29.3	+0.5	-38.4	+0.0	42.6	54.0 -11.4	Vert
		+3.4	+0.4					M+Harmonics of	
								LO	
33 2708.250M	47.4	+0.0	+29.2	+0.5	-38.4	+0.0	42.5	54.0 -11.5	Vert
		+3.4	+0.4					Layflat_L	
34 2708.280M	47.3	+0.0	+29.2	+0.5	-38.4	+0.0	42.4	54.0 -11.6	Horiz
		+3.4	+0.4					L	
35 2744.883M	46.6	+0.0	+29.3	+0.5	-38.4	+0.0	41.8	54.0 -12.2	Horiz
		+3.4	+0.4					Layflat_M+Harmon	
								ics of LO	
36 2781.650M	46.1	+0.0	+29.5	+0.5	-38.4	+0.0	41.6	54.0 -12.4	Horiz
		+3.5	+0.4					Н	
L									

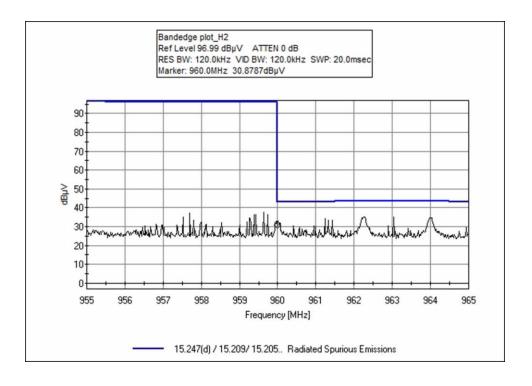
46.0	+0.0	+29.5	+0.5	-38.4	+0.0	41.5	54.0	-12.5	Vert
	+3.5	+0.4					Н		
45.9	+0.0	+29.5	+0.5	-38.4	+0.0	41.4	54.0	-12.6	Horiz
	+3.5	+0.4					Layflat_H		
40.9	+0.0	+32.2	+0.7	-37.4	+0.0	41.3	54.0	-12.7	Vert
	+4.5	+0.4					L		
45.7	+0.0	+29.5	+0.5	-38.4	+0.0	41.2	54.0	-12.8	Vert
	+3.5	+0.4					Layflat_H		
45.8	+0.0	+29.2	+0.5	-38.4	+0.0	40.9	54.0	-13.1	Vert
	+3.4	+0.4					L		
43.4	+0.0	+29.3	+0.5	-38.4	+0.0	38.6	54.0	-15.4	Vert
	+3.4	+0.4					Layflat_M-	Harmon	
							ics of LO		
52.0	+0.0	+29.3	+0.5	-38.4	+0.0	47.2	54.0	-6.8	Vert
	+3.4	+0.4					Layflat_M-	Harmon	
							ics of LO		
	45.9 40.9 45.7 45.8 43.4	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						




Band Edge

	Band Edge Summary								
Operating Mo	Operating Mode: Single Channel (Low and High)								
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results				
614	PR-ASK	Patch Array	28.4	<46	Pass				
902	PR-ASK	Patch Array	71.4	<106.8	Pass				
928	PR-ASK	Patch Array	62.4	< 106.8	Pass				
960	PR-ASK	Patch Array	45.1	<54	Pass				




Band Edge Plots

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc • 110 N	N. Olinda Place • Brea, CA	• (714) 993-6112
Customer:	Automation Inc dba RADAR		
Specification:	15.247(d) / 15.209/ 15.205 Ra	adiated Spurious Emission	S
Work Order #:	108867	Date:	9/5/2023
Test Type:	Maximized Emissions	Time:	10:46:27
Tested By:	E. Wong	Sequence#:	1
Software:	EMITest 5.03.20		

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				
Support Equipment:				
			~ ~ ~	

Device	Manufacturer	Model #	S/N
Configuration 2			

Test Conditions / Notes:

The equipment under test (EUT) is set on a Styrofoam tabletop in the maximized emission orientation.

Evaluation for Permissive Change II, worse case frequency point based on original evaluation. Hopping mode was not evaluated.

The EUT is powered via a cat 6 network cable (nominal voltage 48Vdc) which is connected to a remotely located POE Injector. Connected to the POE Injector via cat 6 cable is a remotely located computer. The computer is used to set frequency channel, frequency hopping, and modulation of the EUT.

Frequency Range of EUT: 902.75MHz-927.25MHz

TX 902.75MHz, 927.25MHz

TARI = 6.25us as intended.

Firmware version: 0.85.11

Frequency Range of Measurement: 614MHz-960MHz RBW=VBW=100kHz RBW=120kHz, VBW=360kHz restricted band

Lowest antenna gain sector 180.0, highest power setting. L= 22.5dBm, M= 23.5dBm, H= 20.3dBm

Site A Test Method: ANSI C63.10 (2013)

Test Environment Conditions: Temperature: 23°C Relative Humidity: 61% Pressure: 98.8kPa

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	12/13/2022	12/13/2023
T2	AN00851	Biconilog Antenna	CBL6111C	4/21/2022	4/21/2024
T3	ANP05198	Cable-Amplitude	8268	12/31/2022	12/31/2024
		+15C to +45C (dB)			
T4	AN00309	Preamp	8447D	12/13/2021	12/13/2023
T5	ANP05050	Cable	RG223/U	12/31/2022	12/31/2024

Measu	rement Data:	Re	Reading listed by margin.				Τe	est Distance	e: 3 Meters	5	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	960.000M	34.4	+0.0	+31.4	+6.1	-27.3	+0.0	45.1	54.0	-8.9	Horiz
			+0.5						Bandedge_	<u>H2</u>	
2	614.000M	24.4	+0.0	+26.3	+4.7	-27.4	+0.0	28.4	46.0	-17.6	Horiz
			+0.4						Bandedge_	_L2	
3	902.000M	62.9	+0.0	+29.5	+5.8	-27.3	+0.0	71.4	106.8	-35.4	Horiz
			+0.5						Bandedge_	_L1	
4	928.000M	52.8	+0.0	+30.5	+5.9	-27.3	+0.0	62.4	106.8	-44.4	Horiz
			+0.5						Bandedge_	<u>H1</u>	

Test Setup Photo(s)

Lay flat Position

Upright Position

Below 1GHz; 0.8m, View 1

Below 1GHz; 0.8m, View 2

Below 1GHz; 1.5m, View 1

Below 1GHz; 1.5m, View 2

Above 1GHz; View 1

Above 1GHz; View 2

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS			
	Meter reading	(dBµV)	
+	Antenna Factor	(dB/m)	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
=	Corrected Reading	(dBµV/m)	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE				
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING	
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz	
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz	
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz	
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz	
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz	

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band. Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a guasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.