

FCC/ISED - TEST REPORT

Report Number	68.950.22.0673.01	Date of Issue: August 18, 2022
Model	MDZ-28-AA	
Product Type	Xiaomi Box 4K	
Applicant	Beijing Xiaomi Electronic	s Co., Ltd
Address	Room 802, 8F, Building 8	5, No.15, Kechuang Ten Street, Beijing
	Economic & Technologic	al Development Zone Beijing China 100085
Manufacturers	Beijing Xiaomi Electronic	s Co., Ltd
Address	Room 802, 8F, Building 8	5, No.15, Kechuang Ten Street, Beijing
	Economic & Technologic	al Development Zone Beijing China 100085
Test Result	■ Positive □ Ne	gative
Total pages including Appendices	67	

Any use for advertising purposes must be granted in writing. This technical report may only be quoted in full. This report is the result of a single examination of the object in question and is not generally applicable evaluation of the quality of other products in regular production. For further details, please see testing and certification regulation, chapter A-3.4.

1 Table of Contents

1]	Cable of Contents
2	Ι	Details about the Test Laboratory
3	Ι	Description of the Equipment Under Test4
4	S	Summary of Test Standards
5	S	Summary of Test Results
6	(General Remarks
7]	Fest Setups
8	S	Systems test configuration
9]	Fechnical Requirement 10
	9.1	Conducted Emission
(9.2	Conducted peak output power and e.i.r.p
(9.3	20 dB bandwidth and 99% Occupied Bandwidth20
	9.4	Carrier Frequency Separation
	9.5	Number of hopping frequencies
	9.6	Dwell Time
	9.7	Spurious RF conducted emissions
(9.8	Band edge testing
	9.9	Spurious radiated emissions for transmitter
10]	Гest Equipment List
11	S	System Measurement Uncertainty

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name:	TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052 P.R. China
Telephone: Fax:	86 755 8828 6998 86 755 8288 5299
FCC Registration	514049
ISED test site number:	10320A

3 Description of the Equipment Under Test

Product:	Xiaomi Box 4K
Model no/HVIN/PMN:	MDZ-28-AA
FVIN:	R104
FCC ID	2AIMRMITVMDZ28AA
IC:	25940-MITVMDZ28AA
Options and accessories:	Adapter, HDMI Cable
Rating:	5.2VDC, 2.1A(Supplied by AC/DC Adapter) Adapter information: Model: AD-0100520210US-1 Input: 100-240V~50/60Hz, 0.3A Output: 5.2VDC, 2.1A, 10.92W
RF Transmission Frequency: No. of Operated Channel:	Bluetooth BR+EDR: 2402-2480MHz Bluetooth LE: 2402-2480MHz Wi-Fi 2.4G: 2412-2462MHz Wi-Fi 5G: 5150MHz~5350MHz; Wi-Fi 5G: 5470MHz – 5725MHz Wi-Fi 5G: 5725MHz – 5850MHz. Note: until further notice, device subject to this section shall not be capable of transmitting in the band 5600-5650MHz. This restriction is for the protection of Environment Canada's weather radars operating in this band. 79
·	
Modulation:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	Integrated antenna
Antenna Gain:	0.5dBi
Description of the EUT:	The Equipment Under Test (EUT) is a Xiaomi Box 4K support Bluetooth function.

4 Summary of Test Standards

Test Standards					
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES				
10-1-2020 Edition					
RSS-Gen General Requirements for the Certification of Radio Apparatus					
Issue 5, Amendment 2,					
February 2021	February 2021				
RSS-247 Issue 2	Digital Transmission Systems (DTSS), Frequency Hopping Systems				
February 2017	(FHSS) and License-Exempt Local Area Network (LE-LAN) Devices				

All the test methods were according to Public Notice DA 00-705 -Frequency Hopper Spread Spectrum Test Procedure, KDB558074 D01 v05r02 and ANSI C63.10-2013.

5 Summary of Test Results

Technical Requirements							
FCC Part 15 Subpart C/ RSS-247 Issue 2/RSS-Gen Issue 5							
Test Condition Test Site Test Result							
§15.207	RSS-GEN 8.8	Conducted emission AC power port	Site 1	PASS			
§15.247(b)(1)	RSS-247 Clause 5.4(b)	Conducted peak output power and e.i.r.p.	Site 1	PASS			
§15.247(e)	RSS-247 Clause 5.2(b)	Power spectral density		N/A			
§15.247(a)(2)	RSS-247 Clause 5.2(a)	6dB bandwidth		N/A			
§15.247(a)(1)	RSS-247 Clause 5.1(a) & RSS-Gen 6.7	20dB bandwidth and 99% Occupied Bandwidth	Site 1	PASS			
§15.247(a)(1)	RSS-247 Clause 5.1(b)	Carrier frequency separation	Site 1	PASS			
§15.247(a)(1)(iii)	RSS-247 Clause 5.1(d)	Number of hopping frequencies	Site 1	PASS			
§15.247(a)(1)(iii)	RSS-247 Clause 5.1(d)	Dwell Time	Site 1	PASS			
§15.247(d)	RSS-247 Clause 5.5	Spurious RF conducted emissions	Site 1	PASS			
§15.247(d)	RSS-247 Clause 5.5	Band edge	Site 1	PASS			
§15.247(d) & §15.209 & §15.205	RSS-247 Clause 5.5 & RSS-GEN 6.13 RSS-GEN 8.9 RSS-GEN 8.10	Spurious radiated emissions for transmitter and receiver	Site 1	PASS			
§15.203	RSS-GEN 6.8	Antenna requirement	See note 2	PASS			

Note 1: N/A=Not Applicable.

Note 2: The EUT uses Integrated antenna, which gain is 0.5dBi. In accordance to §15.203 and RSS-GEN 6.8, it is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: 2AIMRMITVMDZ28AA, IC: 25940-MITVMDZ28AA complies with Section 15.205, 15.207, 15.209, 15.247 of the FCC Part 15, Subpart and RSS-247 issue 2 and RSS-Gen issue 5 rules.

Note: The report is for BDR+EDR only.

SUMMARY:

All tests according to the regulations cited on page 6 were

- Performed
- □ Not Performed

The Equipment Under Test

- - Fulfills the general approval requirements.
- □ **Does not** fulfill the general approval requirements.

Sample Received Date: July 6, 2022

Testing Start Date: July 6, 2022

Testing End Date: July 20, 2022

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Reviewed by:

ehn st

John Zhi EMC Project Manager

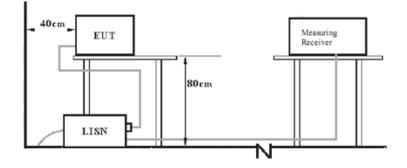
Prepared by:

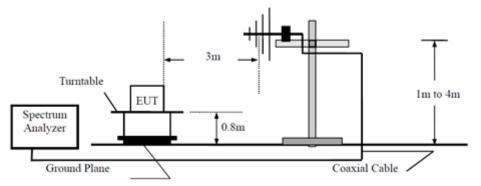
Tested by:

Mark Chen **EMC** Project Engineer

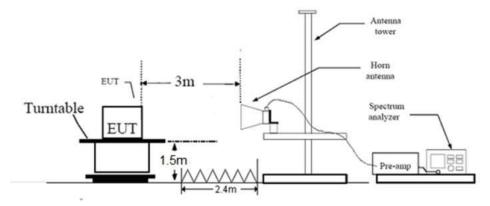
Mark chen

TÜ SEID


Carry Cai EMC Test Engineer



7 Test Setups


7.1 AC Power Line Conducted Emission test setups

7.2 Radiated test setups Below 1GHz

Above 1GHz

7.3 Conducted RF test setups

Measuring	EUT
Receiver	

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.	S/N
Notebook	Lenovo	X220	

Test software: serial port Test Tool, which used to control the EUT in continues transmitting mode

The system was configured to hopping mode and non-hopping mode.

Hopping mode: typical working mode (normal hopping status)

Non-hopping mode: The system was configured to operate at a signal channel transmitting. The test software allows the configuration and operation at the worst-case duty and the highest transmit power.

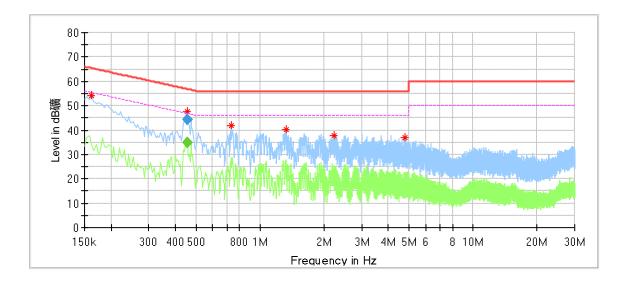
9 Technical Requirement

9.1 Conducted Emission

Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit


Frequency	QP Limit	AV Limit
MHz	dBµV	dBµV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

*Decreasing linearly with logarithm of the frequency.

Conducted Emission

Product Type	:	Xiaomi Box 4K
M/N	:	MDZ-28-AA
Operating Condition	:	Normal working with transmitting
Test specification	:	Live
Comment	:	AC 120V/60Hz

Critical_Freqs

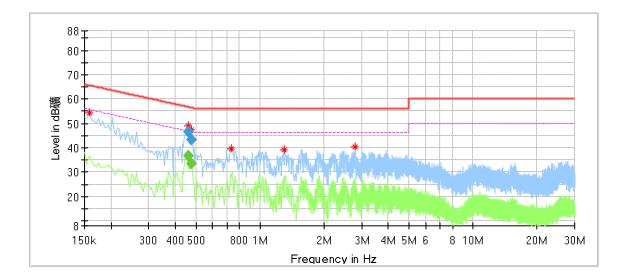
Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB/m)
0.162000	54.09		65.36	11.27	L1	9.26
0.453500	47.42		56.73	9.31	L1	9.20
0.730000	41.69		56.00	14.31	L1	9.20
1.322000	40.06		56.00	15.94	L1	9.21
2.230000	37.90		56.00	18.10	L1	9.23
4.798000	36.74		56.00	19.26	L1	9.30

Final_Result

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB/m)
0.453500		34.77	46.81	12.04	L1	9.20
0.453500	44.51		56.81	12.30	L1	9.20

Remark:

Level=Reading Level + Correction Factor


Correction Factor=Cable Loss + LISN Factor

(The Reading Level is recorded by software which is not shown in the sheet)

Conducted Emission

Product Type	:	Xiaomi Box 4K
M/N	:	MDZ-28-AA
Operating Condition	:	Normal working with transmitting
Test specification	:	Neutral
Comment	:	AC 120V/60Hz

Critical_Freqs

Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB/m)
0.158000	54.48		65.57	11.09	Ν	9.40
0.458500	48.96		56.80	7.84	Ν	9.39
0.473500	47.53		56.37	8.85	Ν	9.39
0.730000	39.66		56.00	16.34	Ν	9.39
1.302000	38.98		56.00	17.02	Ν	9.41
2.806000	40.45		56.00	15.55	Ν	9.44

Final_Result

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB/m)
0.458500		36.85	46.72	9.87	N	9.39
0.458500	46.42		56.72	10.30	Ν	9.39
0.473500		33.50	46.45	12.95	Ν	9.39
0.473500	43.37		56.45	13.08	Ν	9.39

Remark:

Level=Reading Level + Correction Factor

Correction Factor=Cable Loss + LISN Factor

(The Reading Level is recorded by software which is not shown in the sheet)

9.2 Conducted peak output power and e.i.r.p.

Test Method

- Use the following spectrum analyzer settings: Span = approximately 5 times the 20dB bandwidth, centered on a hopping channel RBW > the 20dB bandwidth of the emission being measured, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power

Limits

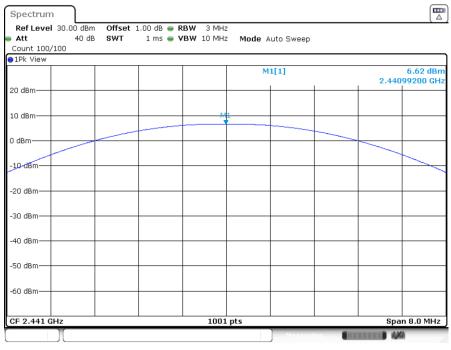
Conducted Peak Output Power:

	Frequency Range MHz	Limit W	Limit dBm
	2400-2483.5	≤1	≤30
For e.i.r.p.:			
	Frequency Range	Limit	Limit
	MHz	W	dBm
	2400-2483.5	≤4	≤36

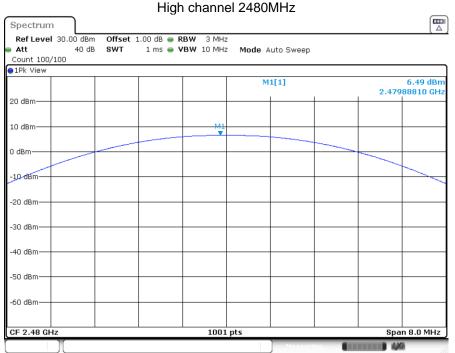
Conducted peak output power

Bluetooth Mode GFSK modulation Test Result Conducted

	Result		
Frequency	Power	e.i.r.p.	
MHz	dBm	dBm	
Low channel 2402MHz	6.58	7.08	Pass
Middle channel 2441MHz	6.62	7.12	Pass
High channel 2480MHz	6.49	6.99	Pass


	LOW	channel 2402		
Spectrum				
Ref Level 30.00 dBm	Offset 1.00 dB 👄 RB	W 3 MHz		\
Att 40 dB	SWT 1 ms 👄 VB	W 10 MHz Mode A	Auto Sweep	
Count 100/100				
●1Pk View				
		M	1[1]	6.58 dBm 2.40179220 GHz
20 dBm			<u> </u>	2.40179220 0112
10 dBm		M1		
0 dBm				
-10-dBm				
-20 dBm				
-30 dBm				
-40 dBm				
-50 dBm				
-60 dBm				
CF 2.402 GHz		1001 pts		Span 8.0 MHz
			Measuring	4,20

Low channel 2402MHz

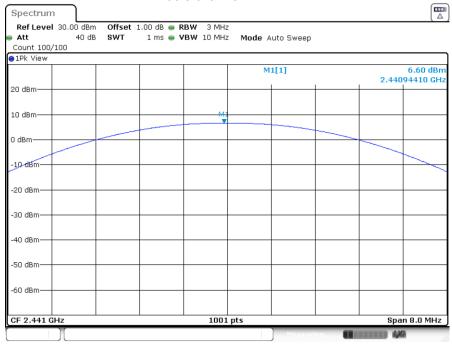

Date: 12.JUL.2022 16:14:26

Middle channel 2441MHz

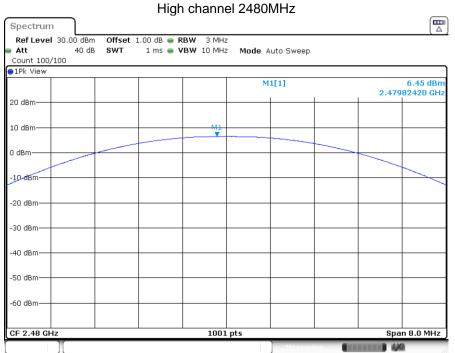
Date: 12.JUL.2022 16:15:16

Date: 12.JUL.2022 16:15:38

Bluetooth Mode $\pi/4$ -DQPSK modulation Test Result Conducted


	Result		
Frequency	Power	e.i.r.p.	
MHz	dBm	dBm	
Low channel 2402MHz	6.57	7.07	Pass
Middle channel 2441MHz	6.6	7.1	Pass
High channel 2480MHz	6.45	6.95	Pass

			Low	/ channe	el 2402	MHz			
Spectrum	ı)								
Ref Level	30.00 dBm	Offset	1.00 dB 😑 🖡	RBW 3 MH	z				
🖷 Att	40 dB	SWT	1 ms 😑 🕅	/BW 10 MH	z Mode A	Auto Sweep			
Count 100/	/100								
⊖1Pk View]
					м	1[1]		2.4020	6.57 dBm 17990 GHz
20 dBm									
10 dBm					41				
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
CF 2.402 G	Hz			100:	l pts			Span	8.0 MHz
][]					Measuri	ing		

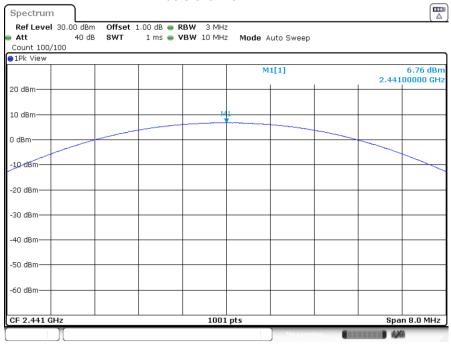

Date: 12.JUL.2022 16:16:07

Middle channel 2441MHz

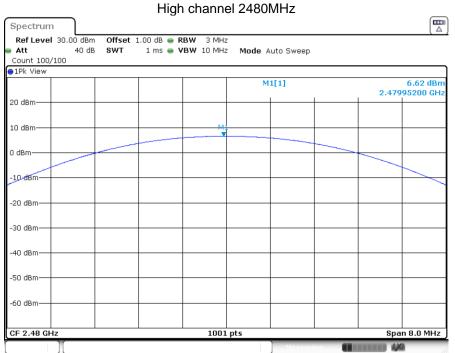
Date: 12.JUL.2022 16:16:29

Date: 12.JUL.2022 16:16:41

Bluetooth Mode 8DPSK modulation Test Result Conducted


	Result		
Frequency	Power	e.i.r.p.	
MHz	dBm	dBm	
Low channel 2402MHz	6.73	7.23	Pass
Middle channel 2441MHz	6.76	7.26	Pass
High channel 2480MHz	6.62	7.12	Pass

		Low channe	l 2402MHz	
Spectrum				
	dBm Offset 10 dB SWT	1.00 dB 👄 RBW 3 MHz 1 ms 👄 VBW 10 MHz	Mode Auto Sweep	
Count 100/100 ●1Pk View				
			M1[1]	6.73 dBm 2.40202400 GHz
20 dBm				
10 dBm		M	<u>1</u>	
0 dBm				
-10 dBm				
-20 dBm				
-30 dBm				
-40 dBm				
-50 dBm				
-60 dBm				
CF 2.402 GHz		1001	pts	Span 8.0 MHz
			Measuri	 4/4


Date: 12.JUL.2022 16:16:53

Middle channel 2441MHz

Date: 12.JUL.2022 16:17:07

Date: 12.JUL.2022 16:17:38

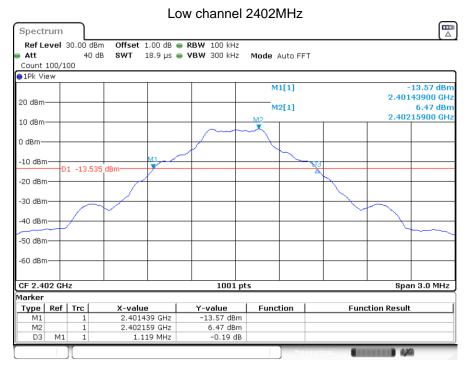
9.3 20 dB bandwidth and 99% Occupied Bandwidth

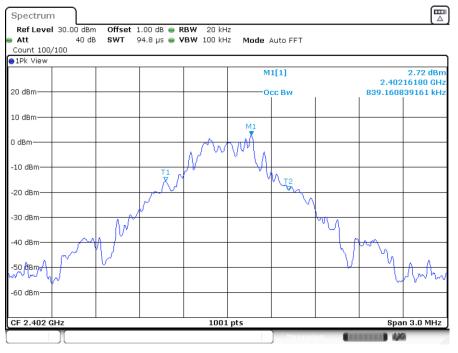
Test Method

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Limit

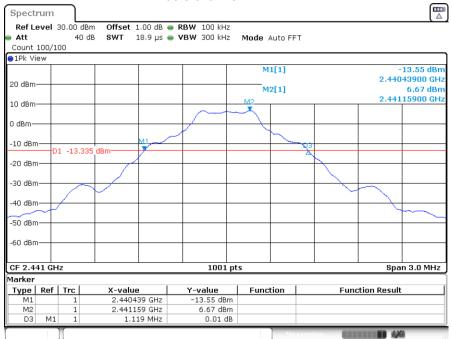
Limit [kHz]


N/A


20 dB bandwidth and 99% Occupied Bandwidth

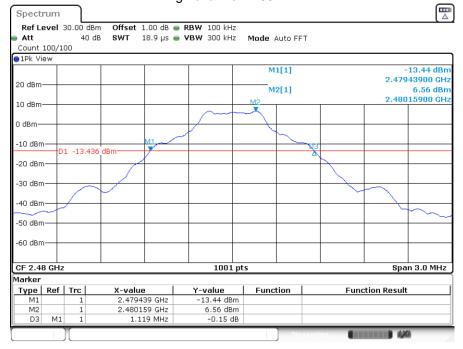
Bluetooth Mode GFSK Modulation test result

Frequency	20 dB Bandwidth	99% Bandwidth	Limit	Result
MHz	kHz	kHz	kHz	
2402	1119	839		Pass
2441	1119	839		Pass
2480	1119	839		Pass


Date: 13.JUL.2022 14:54:22

Date: 13.JUL.2022 14:54:33

Middle channel 2441MHz


Date: 13.JUL.2022 14:56:09

Date: 13.JUL.2022 14:56:20

High channel 2480MHz

Date: 13.JUL.2022 14:57:59

Date: 13.JUL.2022 14:58:10

EMC_SZ_FR_21.00FCC Release 2014-03-20 Page 23 of 67

20 dB bandwidth and 99% Occupied Bandwidth

Bluetooth Mode $\pi/4$ -DQPSK Modulation test result

	Frequency	20 dB Bandwidth	99% Bandwidth	Limit	Result
_	MHz	kHz	kHz	kHz	
	2402	1320	1145		Pass
	2441	1317	1145		Pass
	2480	1320	1145		Pass

Date: 13.JUL.2022 15:00:19

CF 2.402 GHz

-60 dBm-

EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052, P.R. China

1001 pts

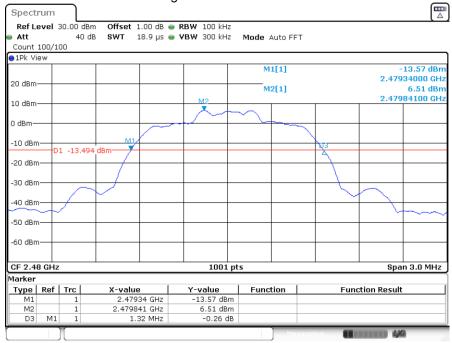

Page 24 of 67

Span 3.0 MHz

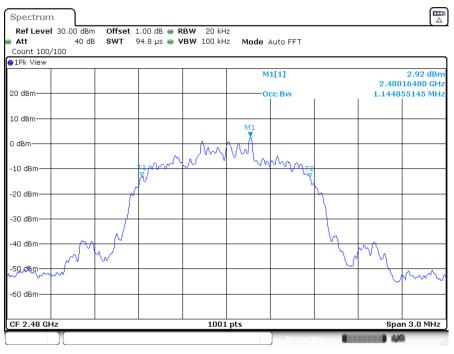
П

Middle channel 2441MHz

Date: 13.JUL.2022 15:02:05

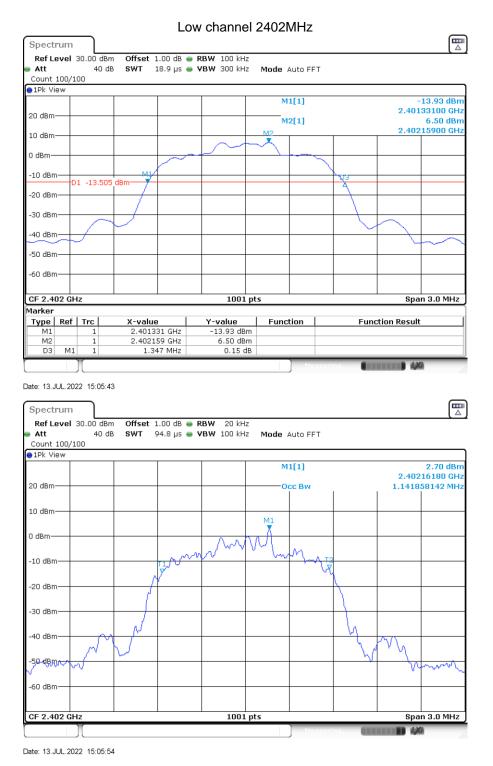


Date: 13.JUL.2022 15:02:15


EMC_SZ_FR_21.00FCC Release 2014-03-20 Page 25 of 67

High channel 2480MHz

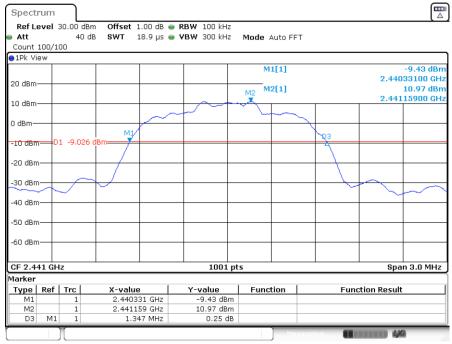
Date: 13.JUL.2022 15:03:28

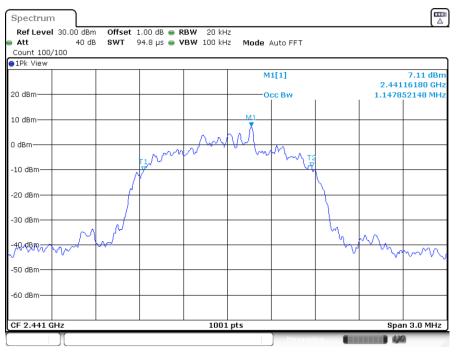


Date: 13.JUL.2022 15:03:39

Bluetooth Mode 8DPSK Modulation test result

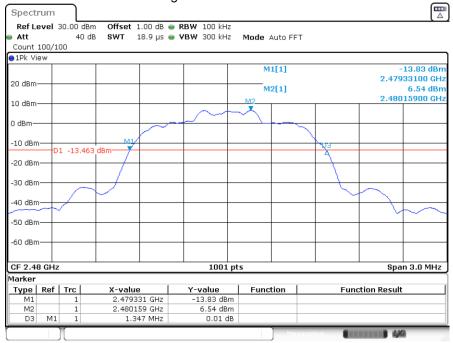
Frequency	20 dB Bandwidth	99% Bandwidth	Limit	Result
MHz	kHz	kHz	kHz	
2402	1347	1142		Pass
2441	1347	1148		Pass
2480	1347	1142		Pass



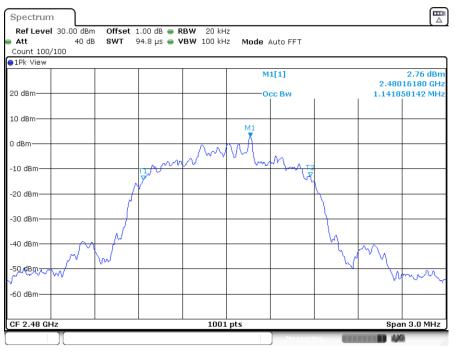

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052, P.R. China Page 27 of 67

Middle channel 2441MHz

Date: 13.JUL.2022 15:07:16



Date: 13.JUL.2022 15:07:27


EMC_SZ_FR_21.00FCC Release 2014-03-20 Page 28 of 67

High channel 2480MHz

Date: 13.JUL.2022 15:08:43

Date: 13.JUL.2022 15:08:54

EMC_SZ_FR_21.00FCC Release 2014-03-20 Page 29 of 67

9.4 Carrier Frequency Separation

Test Method

- Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels, RBW ≥ 1% of the span, VBW) ≥RBW, Sweep = auto, Detector function = peak
- 2. By using the Max-Hold function record the separation of two adjacent channels.
- 3. Measure the frequency difference of these two adjacent channels by spectrum analyzer marker function.
- 4. Repeat above procedures until all frequencies measured were complete.

Limit

Limit				
kHz				
≥25KHz or 2/3 of the 20 dB bandwidth which is greater				

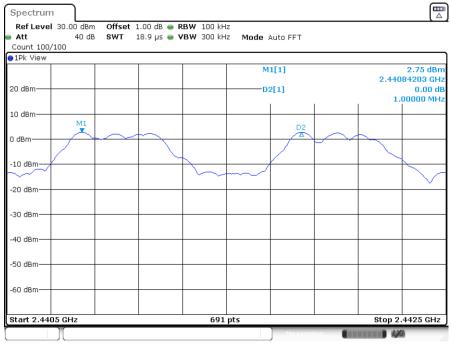
GFSK Modulation Limit

Test Mode	2/3 of 20 dB Bandwidth kHz		
DH5	746		
2DH5	878		
3DH5	898		

Carrier Frequency Separation

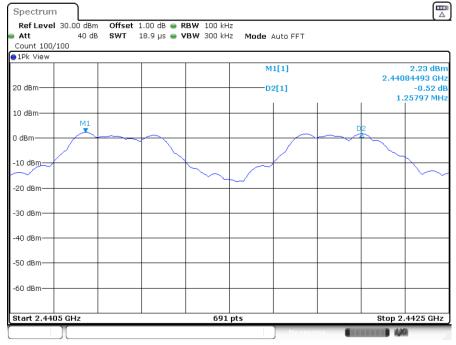
Test result: The measurement was performed with the typical configuration (normal hopping status), here GFSK modulation mode was used to show compliance.

GFSK Modulation test result


Test Mode	Carrier Frequency Separation	on Result
	kHz	
DH5	1003	Pass
2DH5	1000	Pass
3DH5	1258	Pass
	DH5	
Spectrum		
·	set 1.00 dB 👄 RBW 100 kHz	
Att 40 dB SW	T 18.9 μs 👄 VBW 300 kHz Mode Auto FFT	
Count 100/100 1Pk View		
	M1[1]	2.51 dBm
20 dBm	D2[1]	2.44084203 GHz 0.13 dE
		1.00290 MH
10 dBm		
o ubin		
-10 dBm		
-20 dBm	~	
20 0011		
-30 dBm		
-40 dBm		
-40 0811		
-50 dBm		
-60 dBm		
Start 2.4405 GHz	691 pts	Stop 2.4425 GHz
	Measu	ring

Date: 13.JUL.2022 15:12:53

Report Number: 68.950.22.0673.01



2DH5

Date: 13.JUL.2022 15:16:49

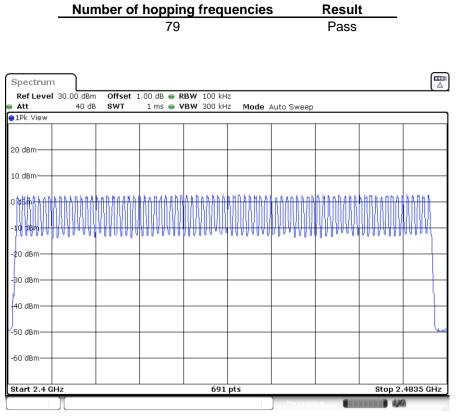
3DH5

Date: 13.JUL.2022 15:20:32

9.5 Number of hopping frequencies

Test Method

- Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels, RBW ≥ 1% of the span, VBW) ≥RBW, Sweep = auto, Detector function = peak
- 2. Set the spectrum analyzer on Max-Hold Mode, and then keep the EUT in hopping mode.
- 3. Record all the signals from each channel until each one has been recorded.
- 4. Repeat above procedures until all frequencies measured were complete.


Limit

Limit number ≥ 15

Number of hopping frequencies

Test result: The measurement was performed with the typical configuration (normal hopping status), and the total hopping channels is constant for the all modulation mode according with the Bluetooth Core Specification. Here GFSK modulation mode was used to show compliance.

Date: 13.JUL.2022 15:13:52

9.6 Dwell Time

Test Method

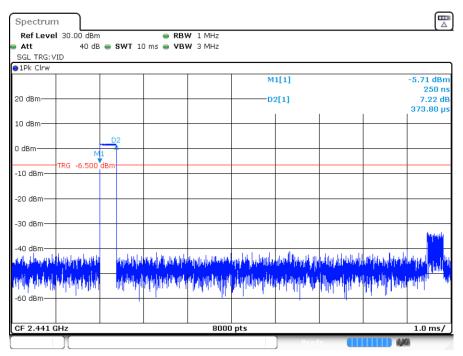
- 1. Connect EUT antenna terminal to the spectrum analyzer with a low loss cable. Equipment mode: Spectrum analyzer
- 2. RBW: 1MHz; VBW: 1MHz; SPAN: Zero Span
- 3. Adjust the center frequency of spectrum analyzer on any frequency be measured.
- 4. Measure the Dwell Time by spectrum analyzer Marker function.
- 5. Repeat above procedures until all frequencies measured were complete.

Limit

The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

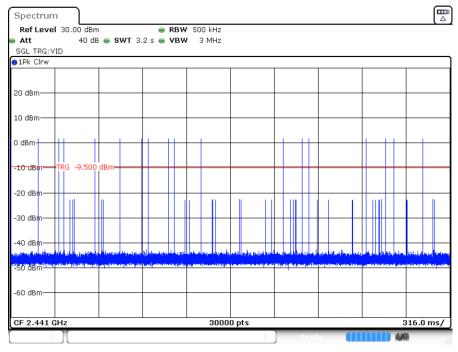
Dwell Time

Dwell time


The maximum dwell time shall be 0.4 s.

According to the Bluetooth Core Specification, the worse result (DH5 mode) was reported to show compliance.

The Dwell Time = Burst Width * Total Hops. The detailed calculations are showed as follows: The duration for dwell time calculation: 0.4 [s] * hopping number = 0.4 [s] * 79 [ch] = 31.6 [s*ch];


Test Result								
TestMode	Channel	Burst Width (ms)	Total Hops	Result(s)	Limit(s)	Verdict		
DH5	Нор	0.37	180	0.067	<=0.4	PASS		
2DH5	Нор	0.38	210	0.079	<=0.4	PASS		
3DH5	Нор	0.37	130	0.049	<=0.4	PASS		

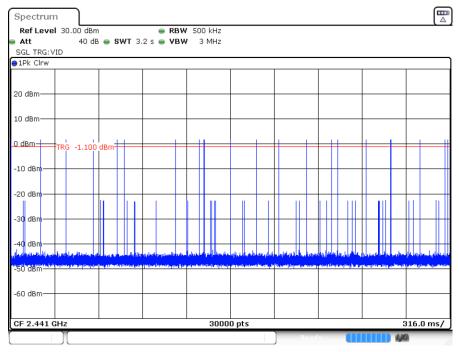
GFSK Modulation

Date: 13.JUL.2022 15:14:01



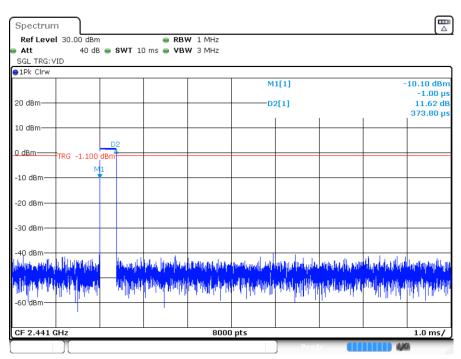
Date: 13.JUL.2022 15:14:06

DH5


π /4-DQPSK Modulation

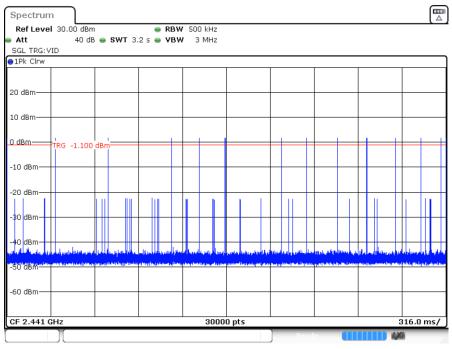
Date: 13.JUL.2022 15:17:57

EMC_SZ_FR_21.00FCC Release 2014-03-20



Date: 13.JUL.2022 15:18:03

2DH5


8-DPSK Modulation

Date: 13.JUL.2022 15:21:25

EMC_SZ_FR_21.00FCC Release 2014-03-20

Date: 13.JUL.2022 15:21:30

3DH5

9.7 Spurious RF conducted emissions

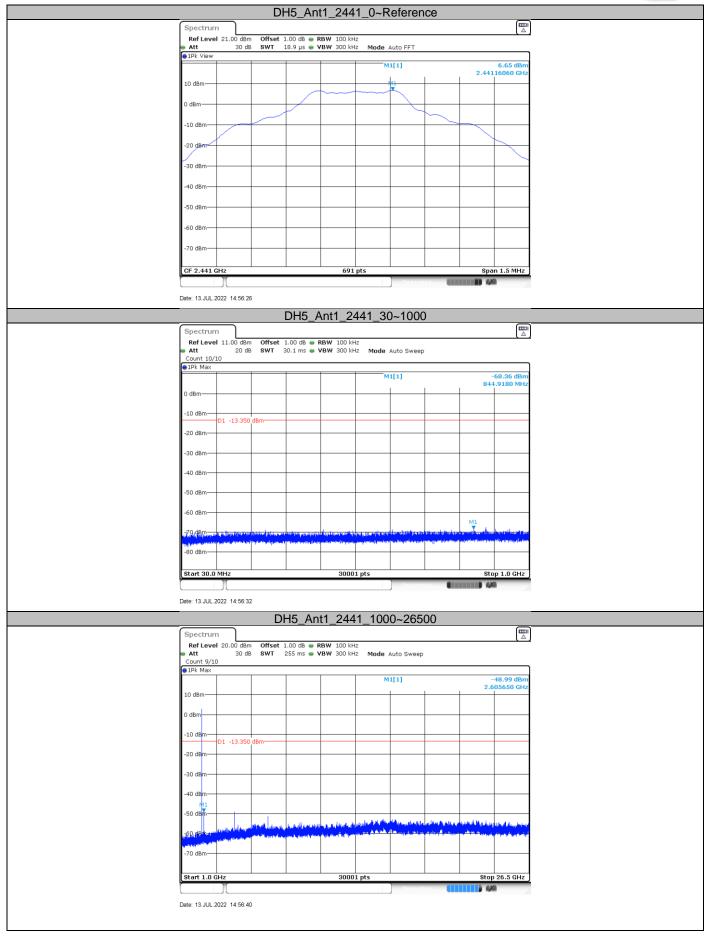
Test Method

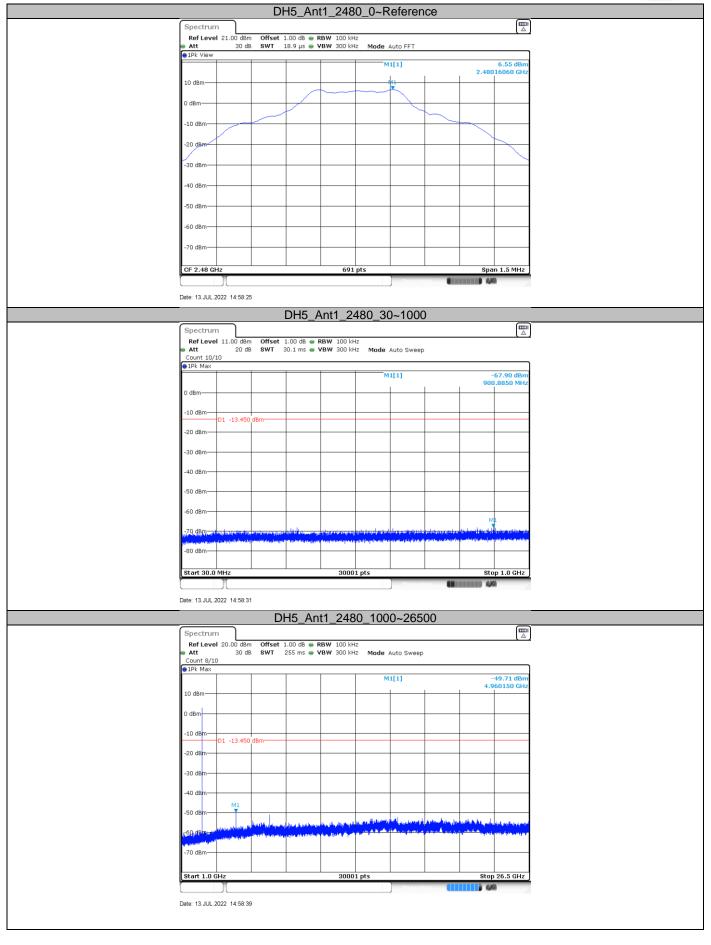
- 1. Use the following spectrum analyzer settings:
 - Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span. RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.
- 3. The level displayed must comply with the limit specified in this Section. Submit these plots.
- 4. Repeat above procedures until all frequencies measured were complete.

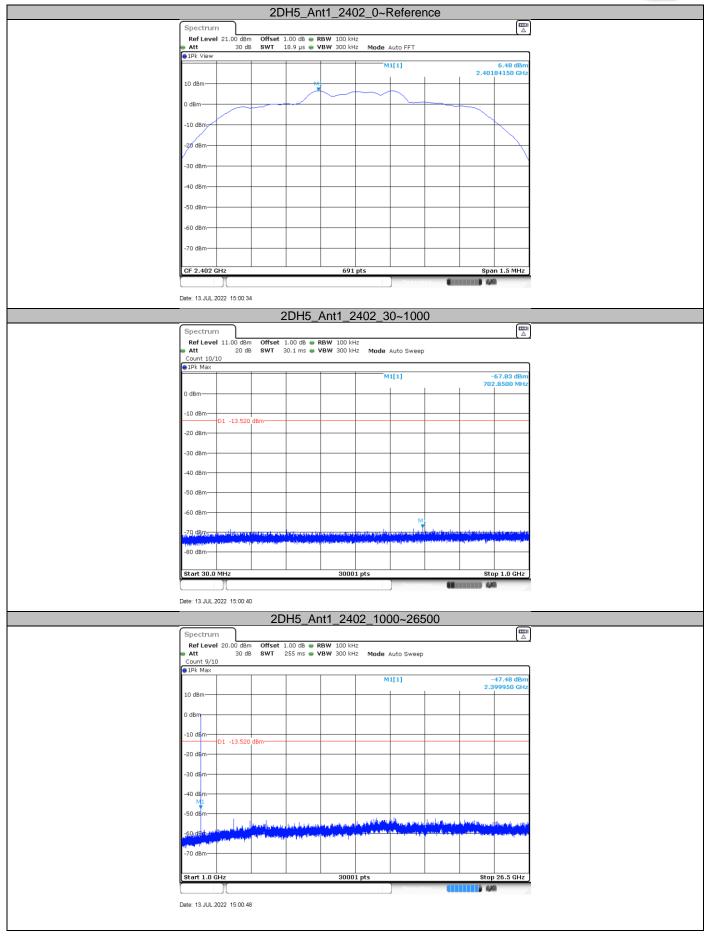
Limit

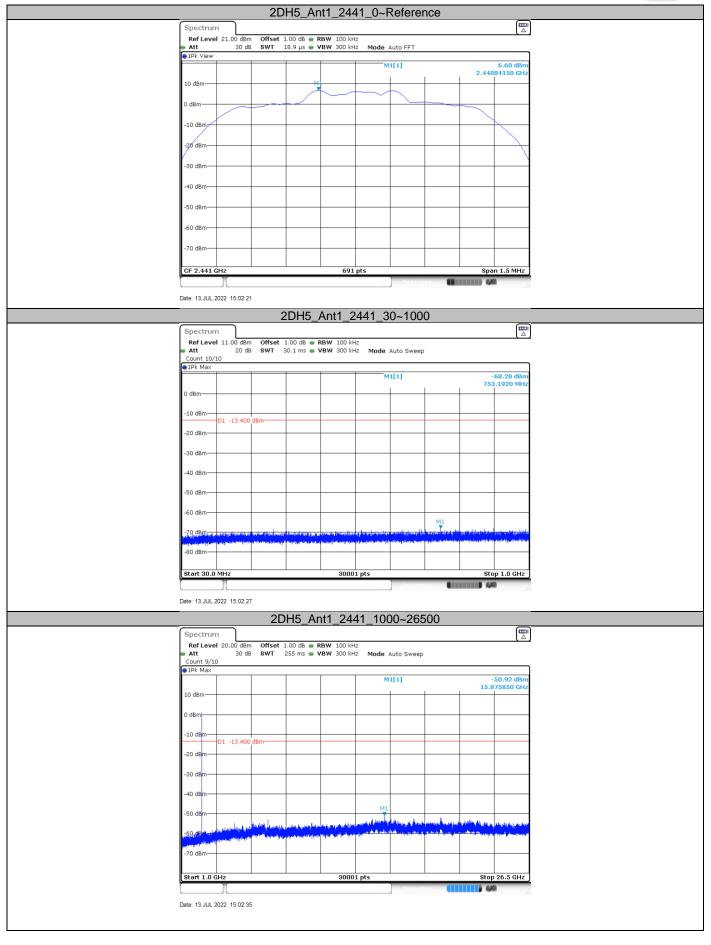
Frequency Range MHz	Limit (dBc)
30-25000	-20

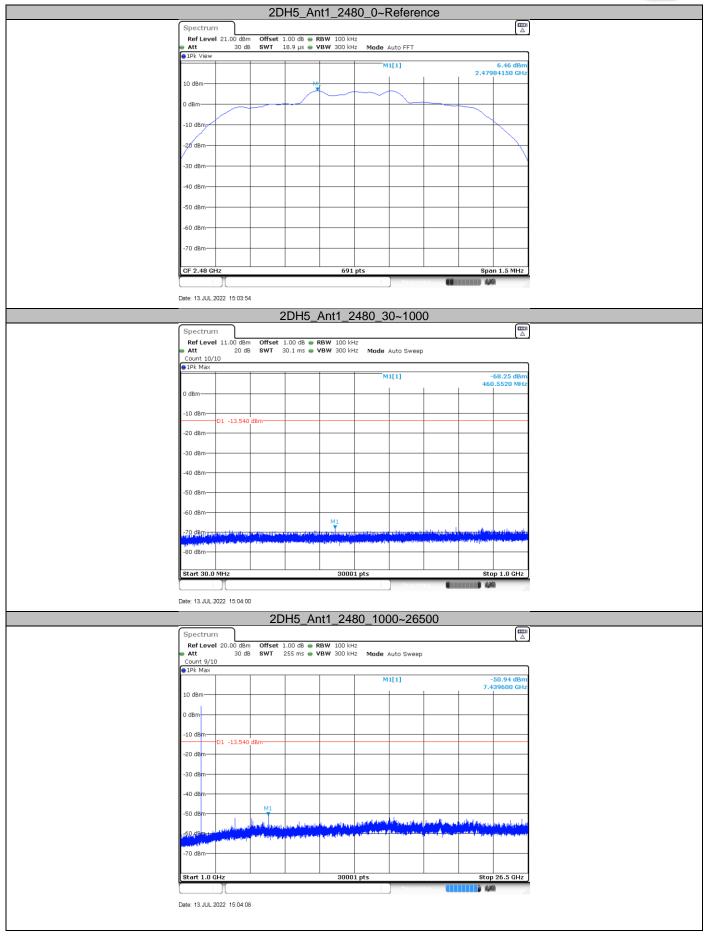
Spurious RF conducted emissions

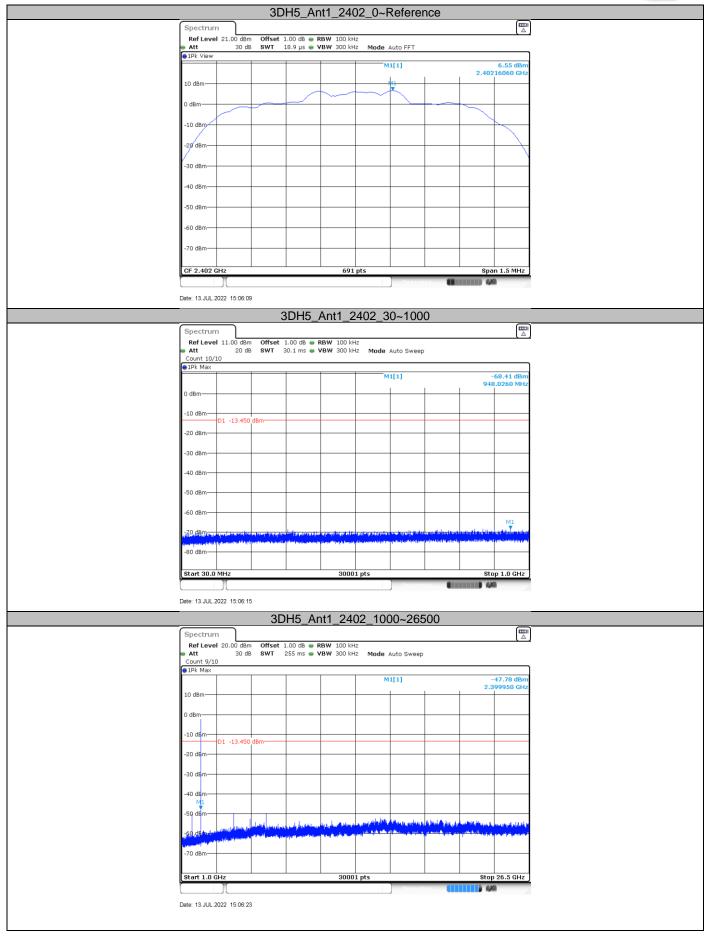

TestMode	Antenna	Channel (MHz)	FreqRange(MHz)	RefLevel	Result(dBm)	Limit(dBm)	Verdict
			Reference	6.49	6.49		PASS
		2402	30~1000	30~1000	-68	<=-13.51	PASS
			1000~26500	1000~26500	-47.23	<=-13.51	PASS
			Reference	6.65	6.65		PASS
DH5	DH5 Ant1	2441	30~1000	30~1000	-68.36	<=-13.35	PASS
			1000~26500	1000~26500	-48.99	<=-13.35	PASS
			Reference	6.55	6.55		PASS
		2480	30~1000	30~1000	-67.9	<=-13.45	PASS
			1000~26500	1000~26500	-49.71	<=-13.45	PASS
			Reference	6.48	6.48		PASS
		2402	30~1000	30~1000	-67.83	<=-13.52	PASS
			1000~26500	1000~26500	-47.48	<=-13.52	PASS
			Reference	6.60	6.60		PASS
2DH5	Ant1	nt1 2441 	30~1000	30~1000	-68.28	<=-13.4	PASS
			1000~26500	1000~26500	-50.92	<=-13.4	PASS
			Reference	6.46	6.46		PASS
			30~1000	30~1000	-68.25	<=-13.54	PASS
			1000~26500	1000~26500	-50.94	<=-13.54	PASS
			Reference	6.55	6.55		PASS
		2402	30~1000	30~1000	-68.41	<=-13.45	PASS
			1000~26500	1000~26500	-47.78	<=-13.45	PASS
			Reference	10.89	10.89		PASS
3DH5	Ant1	2441	30~1000	30~1000	-68.5	<=-9.11	PASS
			1000~26500	1000~26500	-45.19	<=-9.11	PASS
			Reference	6.52	6.52		PASS
		2480	30~1000	30~1000	-67.61	<=-13.48	PASS
			1000~26500	1000~26500	-52.45	<=-13.48	PASS

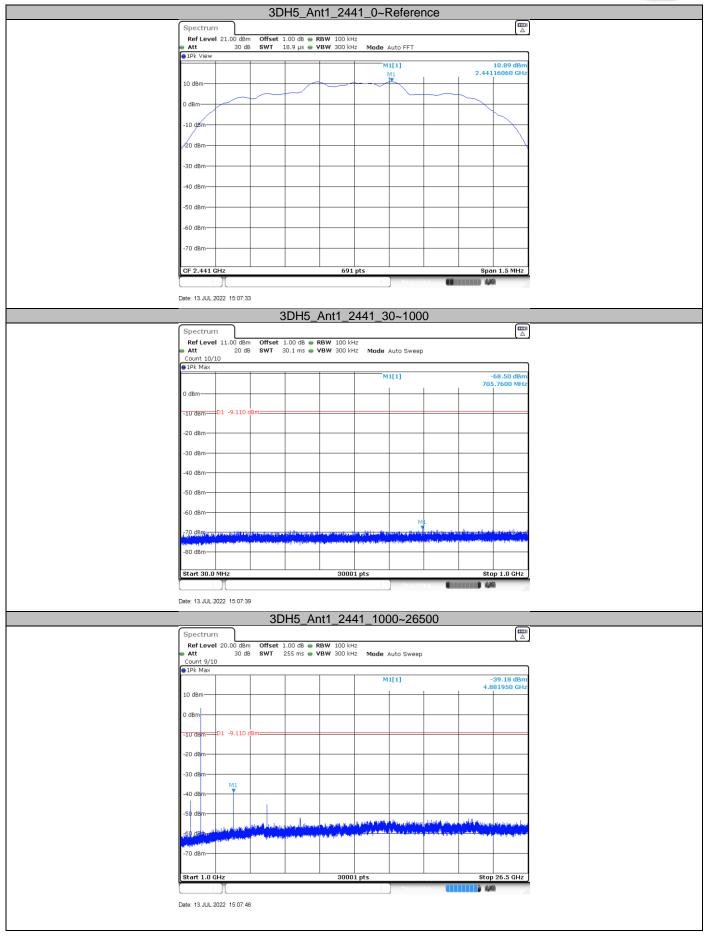

EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052, P.R. China Page 42 of 67

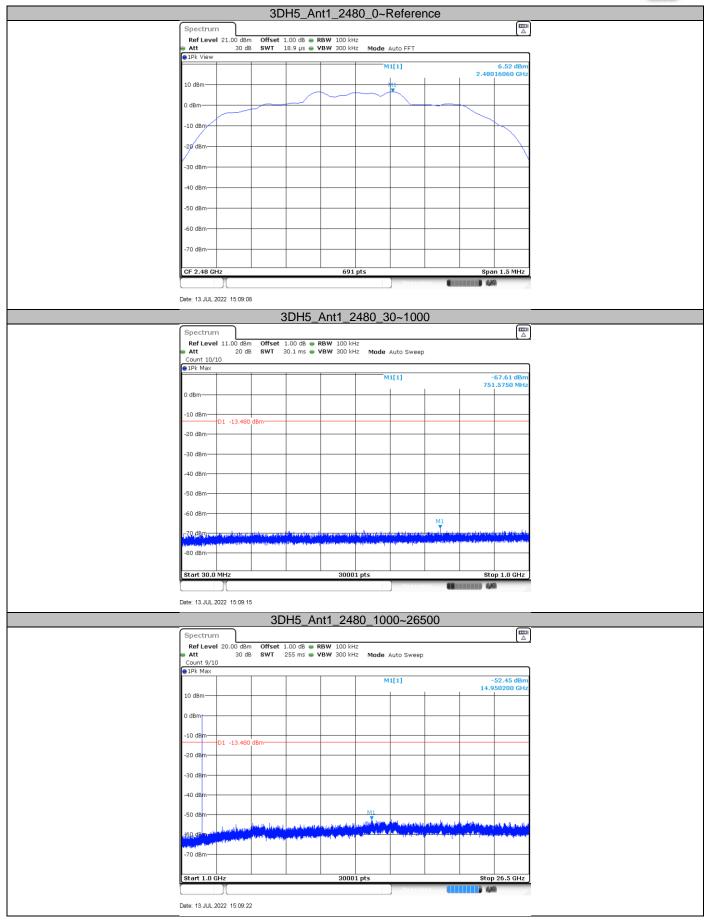

EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052, P.R. China


EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052, P.R. China


EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052, P.R. China


EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052, P.R. China Page 46 of 67


EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052, P.R. China Page 47 of 67


EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052, P.R. China Page 48 of 67

EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052, P.R. China Page 49 of 67

EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052, P.R. China Page 50 of 67

9.8 Band edge testing

Test Method

- Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section. .
- 4 Repeat the test at the hopping off and hopping on mode, submit all the plots.

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

GFSK mode: Hopping off

Ref L	evel	20.00 de	Bm Offset	1.00 dB (RBW 100 kHz					
Att		30	dB SWT 2	46.5 µs (📄 VBW 300 kHz	Mode /	Auto FF	т		
Count	300/3	00								
∋1Pk Vi	вw									
						M1	[1]			5.38 dBi
10 dBm										401880 GH
						M2	[1]			-55.66 dB
0 dBm—								1	2.	400000 C H
										1 1
-10 dBm		1 -14.62	20 d0 m							
-20 dBm		1 -14.02	20 0811							
20 000	·									1 1
-30 dBm			_							
										1 ()
-40 dBrr										
-50 dBrr	1								МЗ	M
-60 dBm					Marchel and Marchen				· · · · ·	I W
ALT PERM	mm	mond	manum	southing	O. Lawrence . An	militio	Current -	alonenad	hunner	mary.
-70 dBm			_							
Start 2	.3 GH	z			691 p	ts			Stop	2.405 GHz
Marker					· · ·					
Type	Ref	Trc	X-value	1	Y-value	Functi	ion	Fu	unction Resu	t
M1		1	2.4018		5.38 dBm					
M2		1		.4 GHz	-55.66 dBm					
MЗ		1		39 GHz	-59.53 dBm					
M4		1	2.39997	78 GHz	-56.14 dBm					

Date: 13.JUL.2022 14:54:42

Ref Level Att Count 300/3	30 d		 RBW 100 kHz VBW 300 kHz 		weep	
1Pk View						
				M1[1]		6.43 dBi
10 dBm	M1					2.480130 GH
	ă –			M2[1]		-58.74 dBi
) dBm					1	2.483500 GH
	A .					
-10 dBm	1 -13.57) dBm				
20 dBm						
20 0.0	[]					
30 dBm	Ц					
-40 dBm 🕂						
//						
-50 dBm 🚽	M24					
60°08m	140 A	and and a second se	M3	-	en anno an	
00 00						
70 dBm						
Start 2.47 G	Hz		691	ots		Stop 2.55 GHz
1arker						
	Trc	X-value	Y-value	Function	l Eu	nction Result
M1	1	2.48013 GHz			14	
M2	1	2.4835 GHz				
MЗ	1	2.5 GHz	-60.44 dBr	n		
M4	1	2.484377 GHz	-56.95 dBr	n		

Date: 13.JUL.2022 14:58:19

GFSK mode: Hopping on

Pofl	loud	20.00 dB	m Offset	1 00 dB		/ 100 kHz						
Att	ever	20.00 ut 30				V 300 kHz	Mode	Auto E	ст			
Count	300/3		ub 3 771 2	40.5 µs	• • • • •	Y 300 KH2	Moue	AULU P				
1Pk Vi	<u> </u>	00										
TER I							M	1[1]				-0.08 dB
								1[1]			2.4	-0.08 UB
10 dBm							м	2[1]				62.77 dB
								-[-]				00000 GH
0 dBm—								1	1		1	
-10 dBm												
10 000												
-20 dBm		1 -20.08	30 dBm									
-30 dBrr											+	
												1 (
-40 dBrr	-										-	
-50 dBm												
-20 aBu					M4							
60 dBm											M3	M2
William Million	wyu	hubble	helphopologia	yound	w j ~~	m. mars	mm	warehow	rwan	Mulan	m www.	and the
-70 dBrr			_		_							
Start 2	.3 GH	z				691 pts					Stop	1 2.405 GH
/arker												
Type	Ref	Trc	X-value	. 1	Y-	value	Func	tion		Fur	nction Result	
M1		1		01 GHz		-0.08 dBm						-
M2		1	2	.4 GHz	-6	52.77 dBm						
MЗ		1	2.3	39 GHz	-6	51.93 dBm						
M4		1	2.34139	91 GHz	- 5	58.34 dBm						

Date: 13.JUL.2022 15:11:51

	evel	20.00 di			RBW 100 kHz					[Δ
Att		30	dB SWT 1	.1 ms 😑	VBW 300 kHz	Mode Auto S	weep			
Count		00								
1Pk Vi	ew									0.70.10
						M1[1]				2.72 dBi 78860 GH
LO dBm-	M				+ +	M2[1]				-59.73 dBr
	. Ο					mz[1]				83500 GH
' MAMIT	1440	λ					1	1	2.7	
10 CBm	NUU									
4 980		[]								
20 dBm	, The	1 -17.2	80 dBm							
	•									
30 dBm					+					
40 dBm		+								
50 dBm										
50 abii	'	M2		Ma			M4			
50 dBm			waldween wood	Lednewelson	ver tube-warmer		,	and the second		ميريهمديهور
70 dBm	-									
tart 2	.47 G	Hz			691 pt	s			Stop	2.55 GHz
arker										
Туре	Ref	Trc	X-value		Y-value	Function		Funct	ion Result	
M1		1	2.4788		2.72 dBm					
M2		1	2.483		-59.73 dBm					
M3		1		5 GHz	-58.70 dBm					
M4		1	2.524493	3 GHZ	-57.96 dBm					

Date: 13.JUL.2022 15:14:19

8DPSK mode: Hopping off

	rum	20.00 dBr	m Officiat 1 00 -0	RBW 100 kHz				L A
Att	ever 2	со. оставл 30 d		VBW 300 kHz	Made Auto F			
Count	200/20		b awi 240.5µs	- YDW 300 KH2	MODE AUTO P	FI		
1Pk Vi	<u> </u>	0						
					M1[1]			5.70 dBr
					(indial)		2.4	102040 GH
10 dBm·					M2[1]			56.49 dBr
0 dBm—								100000 dH
U UBIII-								1 1
-10 dBm							_	
	D1	L -14.300) dBm					+ ++
-20 dBm								
								L ()
-30 dBm								
								1 11
-40 dBm								
-50 dBm								
-50 abii	'							M₽
-60 dBm		L . h. a	- work - who was	Mary and the farm	-		M3	Ind Mark
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m	m	and the more than the first the second se	W		and an an an	where concerne	
-70 dBm								
Start 2	.3 GH:	z		691 pts	5	I	Stop :	2.405 GHz
4arker								
Type	Ref	Trc	X-value	Y-value	Function	Fui	nction Result	:
M1		1	2.40204 GHz	5.70 dBm				
M2		1	2.4 GHz	-56.49 dBm				
MЗ		1	2.39 GHz	-62.07 dBm				
M4		1	2.399978 GHz	-56.71 dBm				

Date: 13.JUL.2022 15:06:03

Spectrum Ref Level Att	30 di		<ul> <li>● RBW 100 kHz</li> <li>● VBW 300 kHz</li> </ul>	Mode Auto S	weep	
Count 300/3	800					
1Pk View	M1			M1[1]		6.38 dBr 2.480130 GH -57.31 dBr
0 dBm	Д					2.483500 GH
-10 dBmC -20 dBmC -30 dBm -40 dBmC -50 dBmC	M2M4		M3	without the protocol and the protocol an		
-70 dBm						
Start 2.47 G	Hz		691 pt	s		Stop 2.55 GHz
1arker						
	Trc	X-value	Y-value	Function	Fur	nction Result
M1	1	2.48013 GHz				
M2 M3 M4	1 1 1	2.4835 GHz 2.5 GHz 2.485072 GHz	-59.51 dBm			

Date: 13.JUL.2022 15:09:03

EMC_SZ_FR_21.00FCC Release 2014-03-20



# 8DPSK mode: Hopping on

Pofic	um wal 2	0.00 dB	- Offcot 1	00 dB =	• RBW 100 kHz					( /
Att	ver 2	о.оо ав 30 с			<b>VBW</b> 300 kHz	Mode Aut	FET			
Count 3	200/30		5 311 21	0.5 µs •	YBW 300 KH2	Moue Aut	J F F I			
1Pk Vie	<u> </u>									
						M1[1]				0.28 dB
									2.4	01880 G
10 dBm-						M2[1]				62.77 dB
) dBm—										00000
J ubiii—										
-10 dBm	_									
20 dBm	—D1	-19.72	D dBm		+					P P
30 dBm	+									
10 -10										
40 dBm										
50 dBm										
00 00.00					M4					
60 dBm	1 10		hungerhand	dan sa sak	سمينيكو والهادر سام	hall a second of	a. i.b. i.e.	. Margar de	M3	M2
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and a north of	0000-0-0-0		Marian Con		and a construction of the	and all a company of	and the second
70 dBm	-									
Start 2	3 GH:	z			691 pt:	5			Stop	2.405 GH
larker										
Type	Ref	Trc	X-value		Y-value	Function		Fun	ction Result	
M1		1	2.40188	3 GHz	0.28 dBm					
M2		1		4 GHz	-62.77 dBm					
M3		1		9 GHz	-62.83 dBm					
M4		1	2.3503	7 GHz	-58.85 dBm					

Date: 13.JUL.2022 15:19:14

Spectrum						
Ref Level			👄 RBW 100 kHz			
Att	30 d	B SWT 1.1 ms	😑 VBW 300 kHz	Mode Auto SV	weep	
Count 300/3	300					
∋1Pk View						
				M1[1]		2.44 dBm
10 dBm	M1					2.479900 GHz
				M2[1]		-60.53 dBm
₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	۸۸ – ۱ ۸				1	2.483500 GHz
ANNANHU	311					
149 8869 17 11						
-20 dBm	01 -17.560) dBm				
-30 dBm						
00 00						
-40 dBm						
						M4
-50 dBm			1 1			
	M2		M ³ M			1 A A A A .
-60 dBm	, 40 and 100	aley may new second	and a factor of the second sec	and the second s	. الر سمي ويشم تكثلوه يكم مقرور محاكم	ينه ۾ انبيان _ک ي کي کي ڪي ڪي ڪالي ۾ هندن _ک ا ڪري کا ليون کا <mark>پنج کي جو</mark>
-70 dBm						
-/0 dBm						
Start 2.47 (GHz		691 pt	5		Stop 2.55 GHz
Marker						
	Trc	X-value	Y-value	Function	Fu	nction Result
M1	1	2.4799 GHz	2.44 dBm			
M2	1	2.4835 GHz	-60.53 dBm			
M3 M4	1	2.5 GHz 2.53887 GHz	-60.75 dBm -50.52 dBm			
IV14		2.53667 GHZ	-50.52 dBm		1	
	T .			Me	asuring	430

Date: 13.JUL.2022 15:21:59

9.9 Spurious radiated emissions for transmitter

Test Method

1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.

2: The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.

3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

5: Use the following spectrum analyzer settings According to C63.10:

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz to 120KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Peak unwanted emissions Above 1GHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement ,Sweep = auto, Detector function = peak, Trace = max hold.

Procedures for average unwanted emissions measurements above 1000 MHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW=10Hz, Sweep = auto, Detector function = peak, Trace = max hold. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit.

If the emission is pulsed, modify the unit for continuous operation; use the settings shown above, then correct the reading by subtracting the peak-average correct factor, derived from the appropriate the duty cycle calculation.

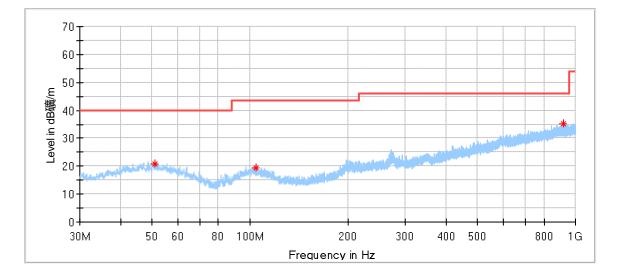
The setting method can refer to DA00-705.

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

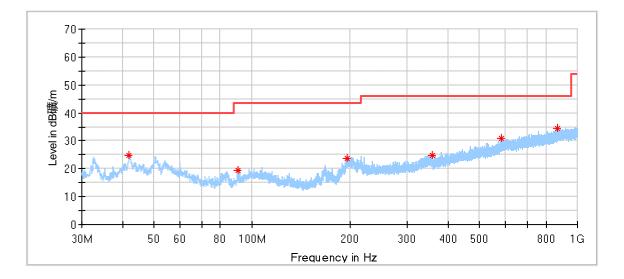
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Frequency MHz	Field Strength uV/m	Field Strength dBµV/m	Detector
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

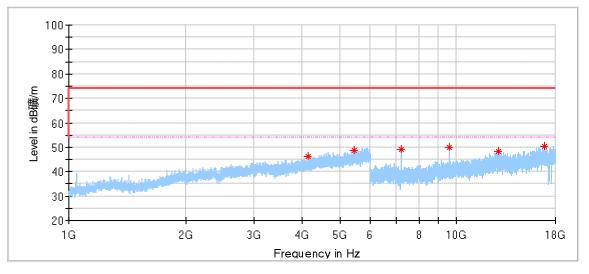

Spurious radiated emissions for transmitter

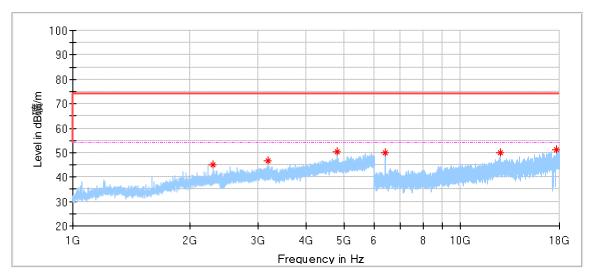
According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

The report only shows the GFSK worst test data.

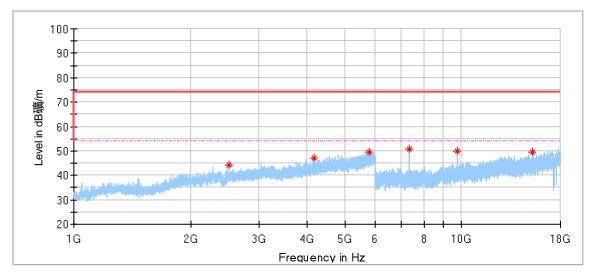

Transmitting spurious emission test result as below:

EUT: Xiaomi Box 4K M/N: MDZ-28-AA Operating Condition: Tx 2402MHz, lowest Channel

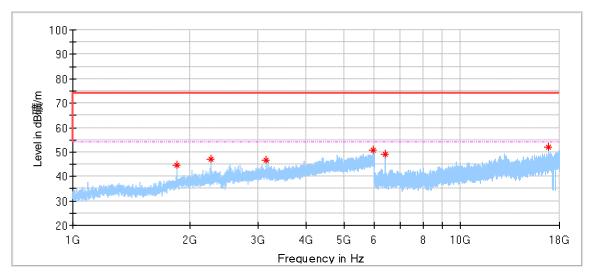

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
51.016667	20.86	40.00	19.14	100.0	Н	90.0	20.54
104.205000	19.33	43.50	24.17	100.0	Н	9.0	18.83
919.597778	35.01	46.00	10.99	100.0	Н	237.0	31.56


Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
41.963333	24.60	40.00	15.40	100.0	V	131.0	19.86
90.463333	19.49	43.50	24.01	100.0	V	33.0	16.82
196.570556	23.87	43.50	19.63	100.0	V	113.0	18.84
357.967778	24.73	46.00	21.27	100.0	V	304.0	22.29
582.091667	30.78	46.00	15.22	100.0	V	77.0	26.99
869.696667	34.58	46.00	11.42	100.0	V	341.0	30.94

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
4147.500000	46.41	74.00	27.59	150.0	н	41.0	1.86
5457.000000	48.51	74.00	25.49	150.0	н	4.0	5.30
7206.000000	49.12	74.00	24.88	150.0	н	330.0	8.49
9608.000000	49.95	74.00	24.05	150.0	н	50.0	12.20
12813.000000	48.17	74.00	25.83	150.0	Н	78.0	15.38
16852.500000	50.44	74.00	23.56	150.0	Н	50.0	21.81

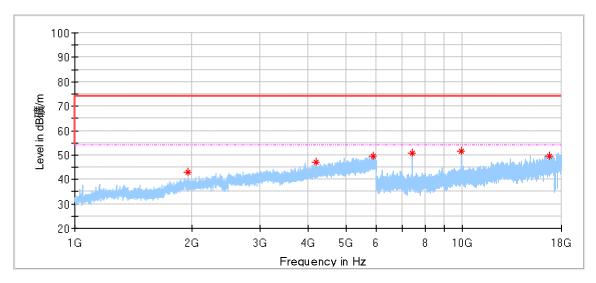


Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2294.500000	45.14	74.00	28.86	150.0	v	166.0	-2.97
3194.500000	46.58	74.00	27.42	150.0	V	148.0	-0.38
4796.500000	50.15	74.00	23.85	150.0	v	350.0	3.82
6378.500000	49.83	74.00	24.17	150.0	v	105.0	8.75
12637.500000	50.01	74.00	23.99	150.0	v	327.0	16.67
17672.000000	51.25	74.00	22.75	150.0	v	52.0	22.10

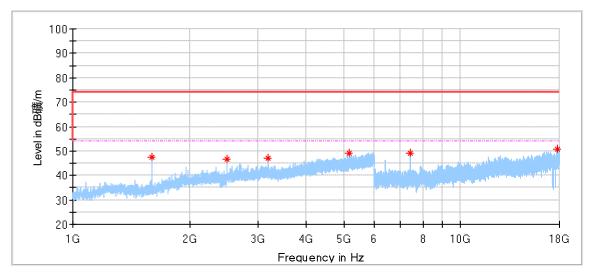


EUT: Xiaomi Box 4K M/N: MDZ-28-AA Operating Condition: Tx 2441MHz, Middle Channel

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2516.000000	44.05	74.00	29.95	150.0	Н	291.0	-2.27
4157.000000	47.11	74.00	26.89	150.0	Н	112.0	1.88
5787.000000	49.74	74.00	24.26	150.0	Н	148.0	6.09
7323.000000	50.97	74.00	23.03	150.0	Н	300.0	8.84
9764.000000	49.95	74.00	24.05	150.0	Н	188.0	12.55
15283.500000	49.35	74.00	24.65	150.0	Н	134.0	19.05



Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1855.000000	44.67	74.00	29.33	150.0	V	201.0	-5.01
2272.500000	46.89	74.00	27.11	150.0	v	166.0	-3.15
3149.500000	46.57	74.00	27.43	150.0	V	41.0	-0.36
5953.000000	50.57	74.00	23.43	150.0	V	94.0	6.55
6384.000000	48.99	74.00	25.01	150.0	V	108.0	8.71
16816.000000	51.89	74.00	22.11	150.0	V	7.0	21.77



EUT: Xiaomi Box 4K M/N: MDZ-28-AA Operating Condition: Tx 2480MHz, High Channel)

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1956.500000	42.98	74.00	31.02	150.0	н	148.0	-4.33
4185.000000	47.23	74.00	26.77	150.0	н	32.0	1.93
5871.000000	49.51	74.00	24.49	150.0	н	85.0	6.49
7440.000000	50.75	74.00	23.25	150.0	Н	188.0	8.94
9920.000000	51.63	74.00	22.37	150.0	Н	216.0	12.22
16807.000000	49.34	74.00	24.66	150.0	Н	330.0	21.76

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1597.500000	47.33	74.00	26.67	150.0	v	204.0	-8.19
2494.500000	46.64	74.00	27.36	150.0	v	106.0	-2.37
3197.500000	47.19	74.00	26.81	150.0	v	9.0	-0.39
5155.500000	49.04	74.00	24.96	150.0	v	346.0	4.86
7440.000000	49.12	74.00	24.88	150.0	v	5.0	8.94
17764.000000	50.83	74.00	23.17	150.0	v	356.0	22.20

Remark:

- (1) Data of measurement within frequency range18-26GHz are the noise floor or attenuated more than 20dB below the permissible limits or the field strength is too small to be measured, so test data does not present in this report.
- (2) Level=Reading Level + Correction Factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)

10 Test Equipment List

Conducted Emission Test

List of Test Instruments

Description	Manufacturer	Model no.	Equipment ID	Serial no.	cal interval (year)	cal. due date
EMI Test Receiver	Rohde & Schwarz	ESR 3	68-4-74-14-001	101782	1	2023-5-27
LISN	Rohde & Schwarz	ENV4200	68-4-87-14-001	100249	1	2023-5-27
LISN	Rohde & Schwarz	ENV432	68-4-87-16-001	101318	1	2023-5-27
LISN	Rohde & Schwarz	ENV216	68-4-87-14-002	100326	1	2023-5-27
ISN	Rohde & Schwarz	ENY81	68-4-87-14-003	100177	1	2023-5-27
ISN	Rohde & Schwarz	ENY81-CA6	68-4-87-14-004	101664	1	2023-5-27
High Voltage Probe	Schwarzbeck	TK9420(VT9420)	68-4-27-14-001	9420-584	1	2023-5-27
RF Current Probe	Rohde & Schwarz	EZ-17	68-4-27-14-002	100816	1	2023-5-31
Attenuator	Shanghai Huaxiang	TS2-26-3	68-4-81-16-003	080928189	1	2023-5-27
Test software	Rohde & Schwarz	EMC32	68-4-90-14-003- A10	Version9.15.00	N/A	N/A
Shielding Room	TDK	CSR #1	68-4-90-19-004		3	2022-11-07
Radiated Emissio	n Test					
Description	Monufacturar	Model no	Equipment ID	Sorial no	col intorval	cal dua data

Description	Manufacturer	Model no.	Equipment ID	Serial no.	cal interval (year)	cal. due date
EMI Test Receiver	Rohde & Schwarz	ESR 26	68-4-74-14-002	101269	1	2023-5-28
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9162	68-4-80-19-003	284	1	2023-1-17
Wave Guide Antenna	ETS	3117	68-4-80-19-001	00218954	1	2023-5-9
Pre-amplifier	Rohde & Schwarz	SCU 18F	68-4-29-19-001	100745	1	2023-5-28
Pre-amplifier	Rohde & Schwarz	SCU 18F	68-4-29-19-002	100746	1	2023-5-28
Sideband Horn Antenna	Q-PAR	QWH-SL-18- 40-K-SG	68-4-80-14-008	12827	1	2023-7-12
Pre-amplifier	Rohde & Schwarz	SCU 40A	68-4-29-14-002	100432	1	2023-7-27
Attenuator	Mini-circuits	UNAT-6+	68-4-81-21-002	15542	1	2023-5-27
3m Semi-anechoic chamber	TDK	SAC-3 #2	68-4-90-19-006		2	2023-5-28
Test software	Rohde & Schwarz	EMC32	68-4-90-19-006- A01	Version10.35.0 2	N/A	N/A

RF conducted test

	-					
Description	Manufacturer	Model no.	Equipment ID	Serial no.	cal interval	cal. due date
					(year)	
Signal Analyzer	Rohde & Schwarz	FSV40	68-4-74-14-004	101030	1	2023-5-27
RF Switch Module	Rohde & Schwarz	OSP120/OSP -B157	68-4-93-14-003	101226/100851	1	2023-5-27
Power Splitter	Weinschel	1580	68-4-85-14-001	SC319	1	2023-5-28
Test software	Tonscend	System for	68-4-74-14-006-	Version	N/A	N/A
Test soltware	Tonseend	BT/WIFI	A13	2.6.77.0518	1 1/7 1	11/7
Shielding Room	TDK	TS8997	68-4-90-19-003		3	2022-11-07

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty	System Measurement Uncertainty						
Test Items	Extended Uncertainty						
Uncertainty for Conducted Emission in new shielding room 9kHz-150KHz	3.62dB						
Radiated Spurious Emission 30MHz-1000MHz	Horizontal: 4.70dB; Vertical: 4.67dB;						
Radiated Spurious Emission 1000MHz-18000MHz	Horizontal: 4.65dB; Vertical: 4.63dB;						
Conducted RF test with TS 8997	RF Power Conducted: 1.31dB Frequency test involved: 0.6×10 ⁻⁷ or 1%						