

802 N. Twin Oaks Valley Road, Suite 105 • San Marcos, CA 92069 • U.S.A. TEL (760) 471-2100 • FAX (760) 471-2121 <u>http://www.rfexposurelab.com</u>

CERTIFICATE OF COMPLIANCE RF EXPOSURE & NERVE STIMULATION EVALUATION

XP Metal Detectors 8 Rue du Developpement ZI de VIC Castanet-Tolosan 31320 France

Dates of Test: Test Report Number: March 12-13, 2025 SAR.20250320

Lab Designation Number: US1195

FCC ID: Model(s): Serial Number: Equipment Type: Classification: TX Frequency Range: Frequency Tolerance: Maximum RF Output: Signal Modulation: Antenna Type: Application Type: Standard(s): Maximum E-Field (6 Min. Avg.): Maximum H-Field (6 Min. Avg.): Distance to Probe:	XFJDELLFMFHP DELLFMFHP 4C0051 Metal Detector Low Frequency Transmitter 8.8 – 120 kHz ± 2.5 ppm 33 kHz – 35.7 dBµV/m at 300 m EIRP CW Internal Certification KDB680106 D01 v04 14.73 V/m 1.52 A/m 0 mm
Distance to Probe:	0 mm

This wireless mobile device has been shown to meet the requirements for RF exposure testing for uncontrolled environment/general exposure limits specified in above listed standards. The device has also been shown to meet the simultaneous requirements of each standard as well (See test report).

I attest to the accuracy of the data. I assume full responsibility for the completeness of these calculations and vouch for the qualifications of all persons making them.

Jay M. Moulton Vice President

N/V - Not Provided

Table of Contents

	Introduction	
2.	Radiation Sources	4
3.	DELLFMFHP	5
4.	RF Exposure Classifications	6
	RF Exposure Limits	
	CC Requirements	
	General Conditions	
	Environmental Conditions	
	Test Equipment	
9.	EUT Description	9
	Nerve Stimulation Evaluation Results 8.8 – 120.3 kHz	
Appe	endix A – Calibration Certificates	15
Thhe		10

Report No.: SAR.20250320

Comment/Revision	Date
Original Release	March 15, 2025

Note: The latest version supersedes all previous versions listed in the above table. The latest version shall be used.

1. Introduction

This report shows the RF exposure evaluation of the XP Metal Detectors Model DELLFMFHP Metal Detector with KDB680106 D01 v04.

The test results recorded herein are based on a single type test of XP Metal Detectors Model DELLFMFHP and therefore apply only to the tested sample.

2. Radiation Sources

Radio	Description	
	Frequency (MHz)	33 kHz
8.8 – 120.3 kHz	Maximum Power (dBm)	35.7 dBµV/m at 300 m (EIRP)
	Maximum Duty Cycle (%)	100%

3. DELLFMFHP

Photo Removed

Testing Position

4. **RF Exposure Classifications**

Device Types			
Fixed	A fixed device is defined as a device physically secured at one fixed location and cannot be easily re-located.		
Mobile	A mobile device is defined as a transmitting device designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at least 20 centimeters is normally maintained between the transmitter's radiating structure(s) and the body of the user or nearby persons. (47 CFR 2.1091)		
Portable	A portable device is defined as a transmitting device designed to be used so that the radiating structure(s) of the device is/are within 20 centimeters of the body of the user. (47 CFR 2.1093)		

Exposure Categories			
Controlled Limits apply in situations in which persons are exposed as a consequence their employment provided those persons are fully aware of the potential exposure and can exercise control over their exposure. Limits occupational/controlled exposure also apply in situations when an individual transient through a location where occupational/controlled limits apply provid he or she is made aware of the potential for exposure.			
General population / Exposures apply in situations in which the general public may be exposed, or i which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.			

RF Exposure Limits 5.

FCC Requirements

The RF exposure limits, as set forth in § 1.1310, do not cover the frequency range below 100 kHz for Specific Absorption Rate (SAR) and below 300 kHz for Maximum Permitted Exposure (MPE). In addition, present limitations of RF exposure evaluation systems prevent an accurate evaluation of SAR below 4 MHz. For these reasons, a specific MPE-based RF Exposure compliance procedure for devices operating in the aforementioned low-frequency ranges has been set in place. This procedure is applicable to Equipment Authorization of all RF devices, thus including, but not limited to, Part 18 and WPT devices.

Accordingly, for § 2.1091-Mobile devices, the MPE limits between 100 kHz to 300 kHz are to be considered the same as those at 300 kHz in Table 1 of § 1.1310, that is, 614 V/m and 1.63 A/m, for the electric field and magnetic field, respectively. For § 2.1093-Portable devices below 4 MHz and down to 100 kHz, the MPE limits in § 1.1310 (with the 300 kHz limit applicable all the way down to 100 kHz) can be used for the purpose of equipment authorization in lieu of SAR evaluations. For frequencies below 100 kHz, the peak temporal field strength must not exceed 83 V/m and 90 A/m.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
	(i) Limits for O	ccupational/Controlled E	kposure	
0.3-3.0	614	1.63	*(100)	≤6
3.0-30	1842/f	4.89/f	*(900/f ²)	<6
30-300	61.4	0.163	1.0	<6
300-1,500			f/300	<6
1,500-100,000			5	<6

Table 1 to § 1.1310(e)(1)-Limits for Maximum Permissible Exposure (MPE)

(ii) Limits for General Population/Uncontrolled Exposure

······				
0.3-1.34	614	1.63	*(100)	<30
1.34-30	824/f	2.19/f	*(180/f ²)	<30
30-300	27.5	0.073	0.2	<30
300-1,500			f/1500	<30
1,500-100,000			1.0	<30

f = frequency in MHz. * = Plane-wave equivalent power density.

6. General Conditions

- This report is only in reference to the item that has undergone the assessment.
- This report does not constitute or imply on its own an approval of the product by the Certification Bodies
 or Competent Authorities.

7. Environmental Conditions

The following limits were not exceeded during the test:

Min. = 15 °C
<u>Max. = 35 °C</u>
Min. = 30%
Max. = 60%

8. Test Equipment

.

	Serial Number	Last Cal. Date	Cal. Due Date
Wavecontrol SMP2	19SN1179	04/15/2024	04/15/2026
WP400-3	19WP120054	04/15/2024	04/15/2026 32 mm

- Positioning Apparatus used is a plastic tripod to hold the meter and probe at a specified position, a camera motion device is installed on the tripod to make precise positions at 10 mm steps away from the EUT
- Testing was conducted in a shielded room with the EUT sitting on a wooden table.
- Testing was conducted on all four sides of the antenna at the low, middle and high frequency of the transmitter. Only the highest value (Back) is recorded in this report.

9. EUT Description

The DELLFMFHP is a Metal Detector that is used to scan for metal in areas of interest to the user. There is one transmitter in the device (8.8 - 120.3 kHz). Therefore, simultaneous evaluation is not required.

The device does not have any standby mode. It is either on or off during use.

For the measurements, the device had remote device that was used to set each transmitter into the maximum Tx power on the frequency of test. The testing at each measurement point was conducted for 3 seconds to ensure the maximum power was detected.

The description of the antenna is listed in a confidential document number 'DELLFMFHP Coil Antenna Specifications' which has been filed with this application.

10. Nerve Stimulation Evaluation Results 8.8 – 120.3 kHz

The measurements for the DELLFMFHP was conducted at 20 mm distance from the device to the center of the probe diameter. A pre-scan of the around the antenna was conducted first by moving the probe around all areas of the device being tested. The movement was conducted at a very slow pace to find the peak value for the device. Once the peak position was determined for the device, the meter and probe were installed on the positioning apparatus for conducting the final measurements. The location of the highest value was at x=-111 mm, y=-27 mm, z=20 mm. The grid is based on the center of the antenna being 0,0,0 mm.

Below are all the measured values for the e- and h-field. All evaluations were conducted with a 95% confidence.

E-fi	eld	H-field		
Distance Measure Value		Distance	Measured Value	
20 mm	10.21	20 mm	0.938	
30 mm	8.62	30 mm	0.721	
40 mm	8.32	40 mm	0.572	
50 mm	6.76	50 mm	0.455	
60 mm	6.35	60 mm	0.365	
70 mm	6.48	70 mm	0.301	
80 mm	6.44	80 mm	0.247	
90 mm	5.65	90 mm	0.206	
100 mm	6.16	100 mm	0.174	
110 mm	4.96	110 mm	0.148	
120 mm	5.89	120 mm	0.125	
130 mm	5.53	130 mm	0.110	
140 mm	4.41	140 mm	0.095	
150 mm	4.83	150 mm	0.064	

Report No.: SAR.20250320

The highest value of all the sides at 20 mm was then tested at 20 mm moving away from the device every 10 mm. All the values were used to extrapolate to the 0 mm distance. The equation used to extrapolate the value to zero is $y = a * b^x$, where x is the distance and y is the extrapolated value. This form of regression is exponential regression decay.

The extrapolated value at 10 mm is 9.25 V/m. The extrapolated value at 0 mm is 9.74 V/m.

Regression Statistics		
Multiple R 0.918948243		
R Square	0.844465873	
Adjusted R Square	0.831504696	
Standard Error	0.095459484	
Observations	14	

The extrapolated value at 10 mm is 1.01 A/m. The extrapolated value at 0 mm is 1.23 A/m.

Regression Statistics				
Multiple R	0.996340323			
R Square	0.992694038			
Adjusted R Square	0.992085208			
Standard Error	0.071746889			
Observations 14				

Report No.: SAR.20250320

The highest value of all the sides at 20 mm was then tested at 20 mm moving away from the device every 10 mm. All the values were used to extrapolate to the 0 mm distance. The equation used to extrapolate the value to zero is $y = a_4x^4 + a_3x^3 + a_2x^2 + a_1x^1 + a_0$, where x is the distance and y is the extrapolated value. Below are all the measured values for the e- and h-field. This form of regression is quartic regression decay.

The extrapolated value at 10 mm is 12.15 V/m. The extrapolated value at 0 mm is 14.73 V/m.

Regression Statistics				
Multiple R	0.970547551			
R Square	0.941962549			
Adjusted R Square	0.916168127			
Standard Error	0.463441684			
Observations 14				

The extrapolated value at 10 mm is 1.19 A/m. The extrapolated value at 0 mm is 1.52 A/m.

Regression Statistics				
Multiple R	0.999852442			
R Square	0.999704905			
Adjusted R Square	0.999573752			
Standard Error	0.005412287			
Observations 14				

Report No.: SAR.20250320

The highest value of all the sides at 20 mm was then tested at 20 mm moving away from the device every 10 mm. All the values were used to extrapolate to the 0 mm distance. The equation used to extrapolate the value to zero is the second degree polynomial $y = a_2x^2 + a_1x + a_0$, where x is the distance and y is the extrapolated value. This form of regression is quadradic regression decay.

The extrapolated value at 10 mm is 10.35 V/m. The extrapolated value at 0 mm is 11.21 V/m.

Regression Statistics				
Multiple R	0.946645897			
R Square	0.896138455			
Adjusted R Square	0.877254537			
Standard Error	0.560780924			
Observations	14			

The extrapolated value at 10 mm is 1.01 A/m. The extrapolated value at 0 mm is 1.17 A/m.

Regression Statistics				
Multiple R	0.990657992			
R Square	0.981403257			
Adjusted R Square 0.978022031				
Standard Error	0.038863623			
Observations	14			

Table of Regression Statistics									
	Multiple R	R ^ 2	Adjusted R ^ 2	Standard Error					
Exponential E-Field	0.918948243	0.844465873	0.831504696	0.095459484					
Exponential H-Field	0.996340323	0.992694038	0.992085208	0.071746889					
Quartic E-Field	0.970547551	0.941962549	0.916168127	0.463441684					
Quartic H-Field	0.999852442	0.999704905	0.999573752	0.005412287					
Quadradic E-Field	0.946645897	0.896138455	0.877254537	0.560780924					
Quadradic H-Field	0.990657992	0.981403257	0.978022031	0.038863623					

Comparison of the Three Interpolations					
E-Field H-Field					
Exponential	9.74	1.23			
Quartic	14.73	1.52			
Quadradic	11.21	1.17			

Frequency	E-Field Measurement	Limit [V/m]	% Limit	Verdict
8.8-120.3 kHz	14.73	614	2.4	Pass

Frequency	H-Field Measurement	Limit [A/m]	% Limit	Verdict
8.8-120.3 kHz	1.52	1.63	93.3	Pass

Appendix A – Calibration Certificates

Certificate of Calibration

ISO/IEC 17025:2017 and ANSI/NCSL Z540.1-1994

Certificate Number 240411-151731-99c41b

Model Number	WP400-3; SMP2	Customer
Manufacturer	Wavecontrol	RF Exposure Lab, LLC
Description	Field Probe	802 N. Twin Oaks Valley Rd
Serial Number	19WP120054; 19SN1179	Suite 105
Customer Asset No.	N/A	San Marcos, CA 92069
		USA
Date of Calibration	04/15/2024	Location of Calibration
Temperature	24°C	Keysight Technologies Inc.
Humidity	30% RH	1346 Yellowwood Road
		Kimballton, IA 51543

This certifies that the equipment has been calibrated using applicable Keysight Technologies procedures and in compliance with ISO/IEC 17025:2017 and ANSI/NCSL Z540.1-1994 (R2002). The quality management system is registered to ISO 9001:2015.

Calibration Standard(s)

IEEE Std 1309-2013

Calibration Method(s) Substitution Calibration Procedure(s) 909579

United States

Calibration Software

Probe Comparison 1.5.2

As Received Conditions

The measured values of the equipment were observed in specification at the points tested.

Action Taken

No action was taken.

As Completed Conditions

The measured values of the equipment were observed in specification at the points tested.

Calibration Due

Based on the customer's request, the next calibration is due on 15 Apr 2026

Remarks or Special Requirements

This calibration report shall not be reproduced, except in full. The documented results relate to the equipment calibrated only.

The test limits stated in the report correspond to the published specifications of the equipment, at the points tested.

Keysight Technologies, Inc. 1346 Yellowwood Road Kimballton, IA 51543 United States

donos.

Brandt Langer Iowa Service Center Manager

Issue Date 16 Apr 2024

Certificate of Calibration

ISO/IEC 17025:2017 and ANSI/NCSL Z540.1-1994

Certificate Number 240411-151731-99c41b

Traceability Information

Technician Name Dave Grabill

Measurements are traceable to the International System of Units (SI) via national metrology institutes (www.keysight.com/find/NMI) that are signatories to the CIPM Mutual Recognition Arrangement.

Calibration Equipment Used

Manufacturer	Model Number	Model Description	Equipment ID	Cal Due Date	Certificate Number
Agilent Technologies, Inc.	33250A	Function/Arbitrary Waveform Generator	11101	06/30/2024	230601-152459-8b26d8
AR	350AH1	Amp	11453	NA	NA
Hewlett-Packard	8563E	Spectrum Analyzer	2084	11/30/2024	231026-133128-431894
Combinova	FD1	Field Detector	10348	01/31/2025	240117-073922-a02261
Combinova	FD2	Field Detector	10347	02/28/2025	240202-080515-3d46de
Schwarzbeck Mess- Elektronik	FESP 5133-7/41	Loop	11285	10/31/2024	231026-131402-6bd9de
Schwarzbeck Mess- Elektronik	HHS 5204-12	Helmholtz Coil	11091	NA	NA
Holaday	HI-3624	ELF Magnetic Field Meter	10569	09/30/2024	230915-073549-c990d5
Holaday	HI-3627	ELF Magnetic Field Meter	10570	03/31/2025	240312-074557-4a2507

Compliance with Specification

Unless otherwise noted, the calibration results are reported without factoring in the effect of uncertainty on the assessment of compliance/specification.

In Specification/Out of Specification Explanation

The standard criteria to determine the "In Specification/Out of Specification" status is based on one or more of the following conditions, as requested by the client:

1. If the manufacturer has a specified specification for the item being calibrated, then the calibration values are compared to this specification, and the values must fall within the manufacturer's specification. The specification may be obtained from the manufacturer's web site, data sheets, equipment manuals, etc.

2. Where specifications are called out in a published standard, the calibration results are compared to this specification, and the measured values must fall within the standard's specification.

3. In cases where the manufacturer, standard, or client does not identify any relevant specifications, applicable calibration results are compared to historical data with a +/-3 dB specification.

Uncertainty of Measurement

The uncertainty evaluation has been performed in accordance with ISO/IEC Guide 98-3:2008(GUM). The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k such that the coverage probability corresponds to approximately 95%. This probability corresponds to a coverage factor of k=2 for a normal distribution.

Parameter

Magnetic Field Strength Meters - AC

Range 0.20 mG to 20 G

MU (+/-) 0.33% + 1.2 mG Customer Name: RF Exposure Lab, LLC Probe Manufacturer: Wavecontrol Probe Model: WP400-3; SMP2 Probe Serial No.: 19WP120054; 19SN1179 Notes: CAL CERT #: 240411-151731-99c41b

Magnetic Field

			Linearity	- 50Hz			
B Field	X axis	X axis	Y axis	Y axis	Z axis	Z axis	Mean
(uT)	CF	dB	CF	dB	CF	dB	CF
750	0.99	-0.12	0.99	-0.11	0.99	-0.12	0.99
500	0.97	-0.23	0.97	-0.24	0.97	-0.25	0.97
250	1.01	0.10	1.01	0.07	1.01	0.06	1.01
100	0.98	-0.16	0.98	-0.17	0.98	-0.19	0.98
50	1.00	0.02	1.00	-0.02	0.98	-0.19	0.99
10	1.05	0.43	1.04	0.33	1.03	0.22	1.04
5	0.96	-0.38	0.96	-0.31	0.94	-0.52	0.95

Frequency Response 10Hz-2kHz: 100uT / 10-200kHz: 25uT

10H2-2KH2: 100U1 / 10-200KH2: 25U1								
Freq	X axis	X axis	Y axis	Y axis	Z axis	Z axis	Mean	
Hz	CF	dB	CF	dB	CF	dB	CF	
10	1.07	0.59	1.06	0.51	1.06	0.50	1.06	
30	1.00	0.04	1.00	-0.01	1.00	0.01	1.00	
60	0.98	-0.16	0.98	-0.17	0.98	-0.20	0.98	
100	0.98	-0.22	0.98	-0.21	0.97	-0.22	0.98	
500	1.01	0.08	1.01	0.07	1.00	-0.02	1.01	
1000	0.99	-0.09	0.99	-0.08	0.98	-0.17	0.99	
2000	0.99	-0.06	0.99	-0.08	0.99	-0.12	0.99	
10000	0.85	-1.41	0.85	-1.38	0.85	-1.38	0.85	
100000	0.84	-1.48	0.84	-1.52	0.85	-1.45	0.84	
200000	0.81	-1.84	0.81	-1.87	0.80	-1.90	0.81	

Customer Name: RF Exposure Lab, LLC Probe Manufacturer: Wavecontrol Probe Model: WP400-3; SMP2 Probe Serial No.: 19WP120054; 19SN1179 Notes: CAL CERT #: 240411-151731-99c41b

Electric Field

Linearity - 50Hz								
E Field	X axis	X axis	Y axis	Y axis	Z axis	Z axis	Mean	
(V/m)	CF	dB	CF	dB	CF	dB	CF	
350	1.00	-0.02	0.99	-0.05	1.00	-0.02	1.00	
250	1.00	-0.01	1.00	0.03	1.00	0.04	1.00	
100	1.01	0.05	1.01	0.08	1.01	0.05	1.01	
50	1.03	0.24	1.02	0.16	1.02	0.15	1.02	
20	1.02	0.14	1.01	0.12	1.02	0.18	1.02	

Frequency Response

25Hz-100kHz: 350V/m / 10Hz, 200-400kHz: 300V/m

Freq	X axis	X axis	Y axis	Y axis	Z axis	Z axis	Mean	
Hz	CF	dB	CF	dB	CF	dB	CF	
10	1.23	1.83	1.23	1.80	1.24	1.84	1.23	
25	1.12	0.96	1.12	0.98	1.12	0.98	1.12	
50	1.00	-0.02	1.00	-0.02	1.00	-0.03	1.00	
100	0.99	-0.08	0.99	-0.09	0.99	-0.09	0.99	
500	0.99	-0.08	0.99	-0.09	0.99	-0.08	0.99	
1000	0.98	-0.21	0.98	-0.20	0.97	-0.23	0.98	
2000	1.02	0.18	1.02	0.16	1.02	0.14	1.02	
10000	1.02	0.20	1.02	0.19	1.02	0.19	1.02	
100000	1.04	0.32	1.04	0.32	1.04	0.32	1.04	
200000	1.02	0.17	1.02	0.16	1.02	0.16	1.02	
300000	1.02	0.19	1.02	0.19	1.02	0.18	1.02	
400000	1.06	0.49	1.06	0.51	1.06	0.48	1.06	