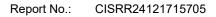


TEST REPORT

Report No.	CISRR24121715705	
Project No.	CISR241217157	
FCC ID	2A49W-M2	
Applicant	Shenzhen Shengmai Electronics Co., Ltd.	
Address	4th Floor,Building 1,No. 34,Hezhou Road,Hezhou Community,Hangcheng Street,Baoan District,Shenzhen,China	
Manufacturer	Shenzhen Shengmai Electronics Co., Ltd.	
Address	4th Floor,Building 1,No. 34,Hezhou Road,Hezhou Community,Hangcheng Street,Baoan District,Shenzhen,China	
Product Name	Smart voice recorder	
Trade Mark	shmai shmai	
Model/Type reference	M2	
Listed Model(s)	D20, M20, R20, H20, E20, G20, D2, R2, H2, E2, G2	
Standard	47 CFR Part 15.247	
Test date	December 18, 2024 to December 24, 2024	
Issue date	December 26, 2024	
Test result	Complied	

Edward Womg


Prepared by: Edward Wang

GenryLong

Approved by: Genry Long

The test results relate only to the tested samples.

The test report should not be reproduced except in full without the written approval of Shenzhen Bangce Testing Technology Co., Ltd.

Contents

	3
2. TEST DESCRIPTION	4
3. SUMMARY	5
3.1. Product Description *	
3.2. Radio Specification Description *	
3.3. Modification of EUT	
3.4. Deviation from standards 3.5. Testing Site	
	0
4. TEST CONFIGURATION	7
4.1. Test frequency list	7
4.2. Descriptions of test mode	7
4.3. Support unit used in test configuration	
4.4. Test sample information	
4.5. Environmental conditions4.6. Equipment Used during the Test	
4.6. Equipment used during the rest	0
5. TEST RESULTS	10
5.1. Evaluation Results (Evaluation)	10
5.1.1. Antenna Requirement	10
5.2. Radio Spectrum Matter Test Results (RF)	11
5.2.1. Conducted Emission at AC power line	11
• • • • •	
5.2.1. Conducted Emission at AC power line	14
5.2.1. Conducted Emission at AC power line	14 15
 5.2.1. Conducted Emission at AC power line	14 15 16
 5.2.1. Conducted Emission at AC power line 5.2.2. 6dB Bandwidth 5.2.3. Maximum Conducted Output Power 5.2.4. Power Spectral Density 	14 15 16 17
 5.2.1. Conducted Emission at AC power line	14 15 16 17 18
 5.2.1. Conducted Emission at AC power line 5.2.2. 6dB Bandwidth 5.2.3. Maximum Conducted Output Power 5.2.4. Power Spectral Density 5.2.5. Conducted band edge and spurious emission 5.2.6. Radiated band edge emission 	14 15 16 17 18 24
 5.2.1. Conducted Emission at AC power line	14 15 16 17 18 24 28
 5.2.1. Conducted Emission at AC power line	14 15 16 17 18 24 28
 5.2.1. Conducted Emission at AC power line 5.2.2. 6dB Bandwidth 5.2.3. Maximum Conducted Output Power 5.2.4. Power Spectral Density 5.2.5. Conducted band edge and spurious emission 5.2.6. Radiated band edge emission 5.2.7. Radiated Spurious Emission (below 1GHz) 5.2.8. Radiated Spurious Emission (Above 1GHz) 6. TEST SETUP PHOTOS 7. EXTERNAL AND INTERNAL PHOTOS 7.1. External Photos 	14 15 16 17 18 24 28 36 38
 5.2.1. Conducted Emission at AC power line 5.2.2. 6dB Bandwidth 5.2.3. Maximum Conducted Output Power 5.2.4. Power Spectral Density 5.2.5. Conducted band edge and spurious emission 5.2.6. Radiated band edge emission 5.2.7. Radiated Spurious Emission (below 1GHz) 5.2.8. Radiated Spurious Emission (Above 1GHz) 6. TEST SETUP PHOTOS 7. EXTERNAL AND INTERNAL PHOTOS 	14 15 16 17 18 24 28 36 38

1. <u>REPORT VERSION</u>

Version No.	Issue date	Description
00	December 26, 2024	Original

2. TEST DESCRIPTION

No.	Test Item	Standard Requirement	Result
1	Antenna Requirement	47 CFR 15.203	Pass
2	Conducted Emission at AC power line	47 CFR 15.207(a)	Pass
3	6dB Bandwidth	47 CFR 15.247(a)(2)	Pass
4	Maximum Conducted Output Power	47 CFR 15.247(b)(3)	Pass
5	Power Spectral Density	47 CFR 15.247(e)	Pass
6	Conducted band edge and spurious emission	47 CFR 15.247(d), 15.209, 15.205	Pass
7	Radiated band edge emission	47 CFR 15.247(d), 15.209, 15.205	Pass
8	Radiated Spurious Emission (below 1GHz)	47 CFR 15.247(d), 15.209, 15.205	Pass
9	Radiated Spurious Emission (Above 1GHz)	47 CFR 15.247(d), 15.209, 15.205	Pass

Note:

- The measurement uncertainty is not included in the test result.

3. SUMMARY

3.1. Product Description *

Main unit information:	
Product Name:	Smart voice recorder
Trade Mark:	shindi shindi
Model No.:	M2
Listed Model(s):	D20, M20, R20, H20, E20, G20, D2, R2, H2, E2, G2
Model difference:	The series model is the same product, there are not any different in material or color changed, with only different model names due to marketing sales.
Power supply:	DC 5V
Hardware version:	V1.0
Software version:	V1.0
Accessory unit information:	
Battery information:	3.7V

3.2. Radio Specification Description *

Modulation type:	GFSK
Operation frequency:	2402MHz to 2480MHz
Channel number:	40
Channel separation:	2MHz
Antenna type:	Chip Antenna
Antenna gain:	1.7dBi

Note:

 *: Since the above information is provided by the applicant relevant results or conclusions of this report are only made for these information, Bangce is not responsible for the authenticity, integrity and results of the information and/or the validity of the conclusion.

3.3. Modification of EUT

No modifications are made to the EUT during all test items.

3.4. Deviation from standards

None

3.5. Testing Site

Laboratory Name	Shenzhen Bangce Testing Technology Co., Ltd.
Laboratory Location	101, building 10, Yunli Intelligent Park, Shutianpu community, Matian Street, Guangming District, Shenzhen,Guangdong, China
Contact information	Tel: 86-755-2319 6848, email: <u>service@cis-cn.net</u> Website: <u>http://www.cis-cn.net/</u>
FCC registration number	736346
FCC designation number	CN1372

4. TEST CONFIGURATION

4.1. Test frequency list

Lowest Channel (LCH)	Middle Channel (MCH)	Highest Channel (HCH)
(MHz)	(MHz)	(MHz)
2402	2440	2480

4.2. Descriptions of test mode

No	Test mode	Description
TM1	TX mode	Keep the EUT in continuously transmitting mode with GFSK modulation at lowest, middle and highest channel.
TM2	Link mode	Keep the EUT in Bluetooth linking mode with AE.
TM3	Charging mode	Keep the EUT in Charging mode with AE.

4.3. Support unit used in test configuration

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Item	Equipment name	Trade Name	Model No.
1	Adapter	Guangdong Sangu Technology Co. Itd	SG-0501000AU
2	Phone	Huawei	NZONE S7

4.4. Test sample information

Туре	Sample No.
Engineer sample	CISR241217157-S01
Normal sample	CISR241217157-S02

4.5. Environmental conditions

Туре	Requirement
Temperature:	15~35°C
Relative Humidity:	25~75%
Air Pressure:	860~1060mbar

9

Antenna

4.6. Equipment Used during the Test

Condu	Conducted Emission at AC power line								
Item	Equipment name	Manufacturer	Model	Serial No.	Calibration date	Due date			
1	EMI Test Receiver	Rohde&schwarz	ESCI7	100853	2024-01-08	2025-01-07			
2	Artificial power network	Schwarzbeck	NSLK812 7	8127-01096	2024-01-08	2025-01-07			
3	8-wire Impedance Stabilization Network	Schwarzbeck	NTFM 8158	8158-00337	2024-01-08	2025-01-07			
4	Artificial power network	Schwarzbeck	ENV216	1	2024-01-08	2025-01-07			

6dB Bandwidth Maximum Conducted Output Power Power Spectral Density Emissions in non-restricted frequency bands							
Item	Equipment name	Manufacturer	Model	Serial No.	Calibration date	Due date	
1	MXG RF Signal Generator	Agilent	N5181A	MY50145362	2024-01-08	2025-01-07	
2	Spectrum analyzer	R&S	FSV-40N	102130	2024-01-08	2025-01-07	
3	Vector Signal Generator	Agilent	N5182A	MY50142364	2024-06-14	2025-06-13	
4	Power Meter	WCS	WCS-PM	WCSPM23040 5A	2024-01-08	2025-01-07	

Band edge emissions (Radiated) Emissions in frequency bands (below 1GHz) Emissions in frequency bands (above 1GHz) Calibration Item Equipment name Manufacturer Model Serial No. Due date date 1 **EMI Test Receiver** Rohde&schwarz ESCI7 100853 2024-01-08 2025-01-07 TAP9K3G AP23A806027 2 Amplifier Tonscend 2024-01-08 2025-01-07 40 0 TAP0101 AP23A806028 3 Tonscend Prime amplifier 2024-01-08 2025-01-07 8050 0 9*6*6 anechoic 4 SKET N/A 9.3*6.3*6 2024-09-02 2027-09-01 chamber 5 MY50530263 Spectrum analyzer Agilent N9020A 2024-01-08 2025-01-07 6 R&S Spectrum analyzer FSV-40N 102130 2024-01-08 2025-01-07 VULB 7 Bilog Antenna Schwarzbeck 1463 2023-01-09 2025-01-08 9163 **BBHA** 8 2487 Horn Antenna SCHWARZBECK 2023-01-09 2025-01-08 9120 D Active Loop FMZB

1519B

1

2023-01-09

2025-01-08

SCHWARZBECK

10	RF Cable	Tonscend	Cable 1	1	2024-01-08	2025-01-07
11	RF Cable	Tonscend	Cable 2	1	2024-01-08	2025-01-07
12	RF Cable	SKET	Cable 3	1	2024-01-08	2025-01-07
13	L.I.S.N.#1	Schwarzbeck	NSLK812 7	/	2024-01-08	2025-01-07
14	L.I.S.N.#2	ROHDE&SCHWA RZ	ENV216	/	2024-01-08	2025-01-07
15	Horn Antenna	SCHWARZBECK	BBHA917 0	1130	2023-01-09	2025-01-08
16	Preamplifier	Tonscend	TAP1804 0048	AP21C806126	2024-01-08	2025-01-07
17	Variable-frequency power source	Pinhong	PH1110	/	2024-01-08	2025-01-07
18	6dB Attenuator	SKET	DC-6G	1	1	/
19	Antenna tower	SKT	Bk-4AT- BS	AT202104010 1-V1	2024-06-14	2025-06-13

5. TEST RESULTS

5.1. Evaluation Results (Evaluation)

5.1.1. Antenna Requirement

Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	---

5.1.1.1. Test Result

Pass

5.1.1.2. Conclusion:

The EUT antenna is Chip Antenna(1.7dBi), the directional gain of the antenna less than 6dBi. It comply with the standard requirement. In case of replacement of broken antenna the same antenna type must be used. Antenna structure please refer to the EUT internal photographs antenna photo.

5.2. Radio Spectrum Matter Test Results (RF)

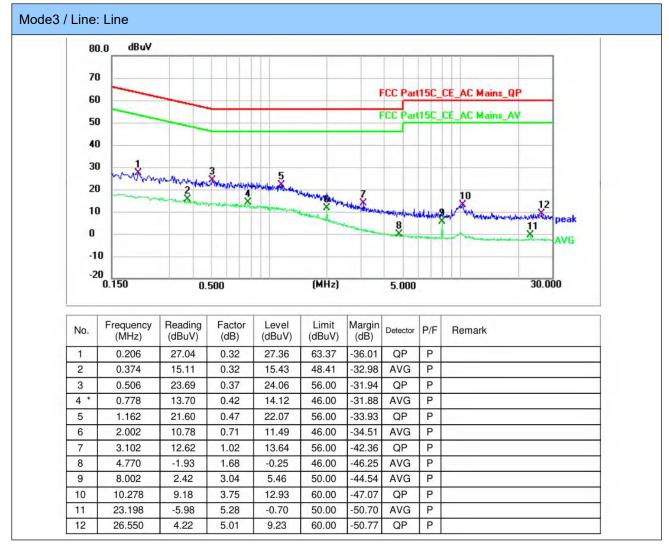
5.2.1. Conducted Emission at AC power line

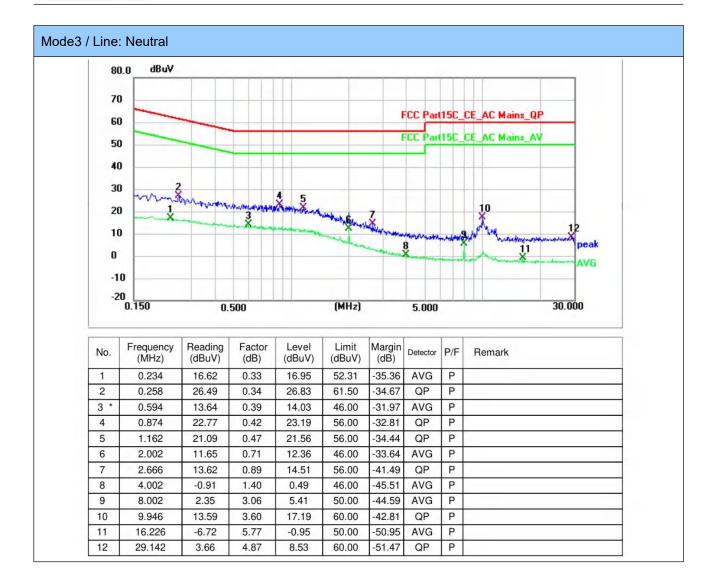
Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).					
	Frequency of emission (MHz)	Conducted limit (dBµV)				
Test Limit:		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	*Decreases with the logarithm of the frequency.					
Test Method:	ANSI C63.10-2020 section 6.2					
Procedure:	 ANSI C63.10-2020 section 6.2 1. The EUT was setup according to ANSI C63.10 requirements. 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment. 4. The peripheral devices are also connected to the main power through a LISN. (Refer to the block diagram of the test setup and photographs) 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source. 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length. 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz. 					

5.2.1.1. E.U.T. Operation

Operating Environment:								
Temperature:	23.1 °C	Humidity: 56.6 % Atmospheric Pressu		ric Pressure:	102 kPa			
Pre test mode:		TM3						
Final test mode	e:	TM3						

5.2.1.2. Test Setup Diagram




5.2.1.3. Test Result

Pass

5.2.1.4. Test Data

Note:

1). Result = Reading +Correct (Insertion Loss + Cable Loss + Attenuator Factor)

2). Margin = Result - Limit

BANGCE

5.2.2. 6dB Bandwidth

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 11.8
Procedure:	 11.8.1 Option 1 The steps for the first option are as follows: a) Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz. b) Set the VBW ≥ [3 × RBW]. c) Detector = peak. d) Trace mode = max-hold. e) Sweep = No faster than coupled (auto) time. f) Allow the trace to stabilize. g) Measure the maximum width of the emission by placing two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude" value, then it shall be as close as possible to this value. 11.8.2 Option 2 The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW ≥ 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.

5.2.2.1. E.U.T. Operation

Operating Environment:								
Temperature:	22.4 °C	C Humidity:	55.6 %	Atmospheric Pressure:	102 kPa			
Pre test mode:		TM1						
Final test mode	e:	TM1						

5.2.2.2. Test Setup Diagram

5.2.2.3. Test Result

Pass

5.2.2.4. Test Data

5.2.3. Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2020 section 11.9.1
Procedure:	ANSI C63.10-2020, section 11.9.1 Maximum peak conducted output power

5.2.3.1. E.U.T. Operation

Operating Environment:							
Temperature:	22.4 °C	C Humidity:	55.6 %	Atmospheric Pressure:	102 kPa		
Pre test mode:		TM1					
Final test mode	e:	TM1					

5.2.3.2. Test Setup Diagram

5.2.3.3. Test Result

Pass

5.2.3.4. Test Data

5.2.4. Power Spectral Density

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2020, section 11.10
Procedure:	ANSI C63.10-2020, section 11.10, Maximum power spectral density level in the fundamental emission

5.2.4.1. E.U.T. Operation

Operating Environment:							
Temperature:	; н	Humidity: 55.6 % Atmospheric Pressur		Atmospheric Pressure:	102 kPa		
Pre test mode:	TM1						
Final test mode	TM1						

5.2.4.2. Test Setup Diagram

5.2.4.3. Test Result

Pass

5.2.4.4. Test Data

5.2.5. Conducted band edge and spurious emission

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 11.11
Procedure:	ANSI C63.10-2020 Section 11.11.1, Section 11.11.2, Section 11.11.3

5.2.5.1. E.U.T. Operation

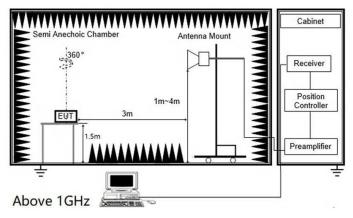
Operating Environment:									
Temperature: 22.4 °C		C Humidity:	55.6 %	Atmospheric Pressure:	102 kPa				
Pre test mode:		TM1							
Final test mode:		TM1							

5.2.5.2. Test Setup Diagram

5.2.5.3. Test Result

Pass

5.2.5.4. Test Data

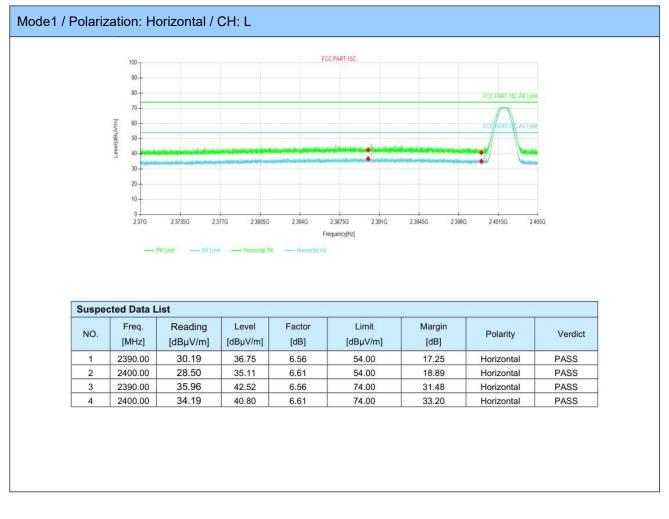

5.2.6. Radiated band edge emission

Test Requirement:	restricted bands, as defined	In addition, radiated emissions w l in § 15.205(a), must also comply § 15.209(a)(see § 15.205(c)).`		
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)	
	0.009-0.490	2400/F(kHz)	300	
	0.490-1.705	24000/F(kHz)	30	
	1.705-30.0	30	30	
	30-88	100 **	3	
	88-216	150 **	3	
To add in the	216-960	200 **	3	
Test Limit:	Above 960	500	3	
	15.231 and 15.241. In the emission table above The emission limits shown i employing a CISPR quasi-p 110–490 kHz and above 10	, the tighter limit applies at the ba n the above table are based on m eak detector except for the freque 00 MHz. Radiated emission limits is employing an average detector.	nd edges. neasurements ency bands 9–90 kHz, in these three bands	
Test Method:	ANSI C63.10-2020 section 6.10			
Procedure:				

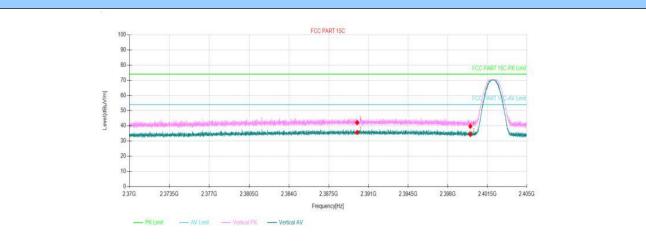
5.2.6.1. E.U.T. Operation

Operating Envi	ironment:				
Temperature:	22.2 °C	: Humidi	ty: 55.1 %	Atmospheric Pressure:	102 kPa
Pre test mode:		TM1			
Final test mode:		TM1			

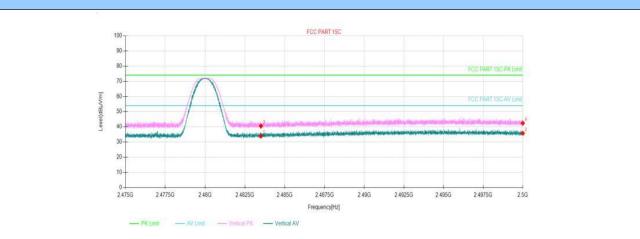
5.2.6.2. Test Setup Diagram


5.2.6.3. Test Result

Pass


5.2.6.4. Test Data

Have pre-scan all test mode, found GFSK 1M mode which it was worst case, so only show the worst case's data on this report.


Mode1 / Polarization: Vertical / CH: L

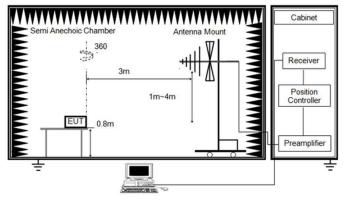
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Polarity	Verdict
1	2390.00	29.09	35.65	6.56	54.00	18.35	Vertical	PASS
2	2400.00	27.71	34.32	6.61	54.00	19.68	Vertical	PASS
3	2390.00	35.55	42.11	6.56	74.00	31.89	Vertical	PASS
4	2400.00	33.10	39.71	6.61	74.00	34.29	Vertical	PASS

Mode1 / Polarization: Horizontal / CH: H

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Polarity	Verdict
1	2483.5	27.37	33.93	6.56	54.00	20.07	Vertical	PASS
2	2500	29.21	35.76	6.55	54.00	18.24	Vertical	PASS
3	2483.5	33.98	40.54	6.56	74.00	33.46	Vertical	PASS
4	2500	35.85	42.40	6.55	74.00	31.60	Vertical	PASS

Mode1 / Polarization: Vertical / CH: H

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Polarity	Verdict
1	2483.5	27.44	34.00	6.56	54.00	20.00	Horizontal	PASS
2	2500	29.38	35.93	6.55	54.00	18.07	Horizontal	PASS
3	2483.5	36.84	43.40	6.56	74.00	30.60	Horizontal	PASS
4	2500	36.16	42.71	6.55	74.00	31.29	Horizontal	PASS


5.2.7. Radiated Spurious Emission (below 1GHz)

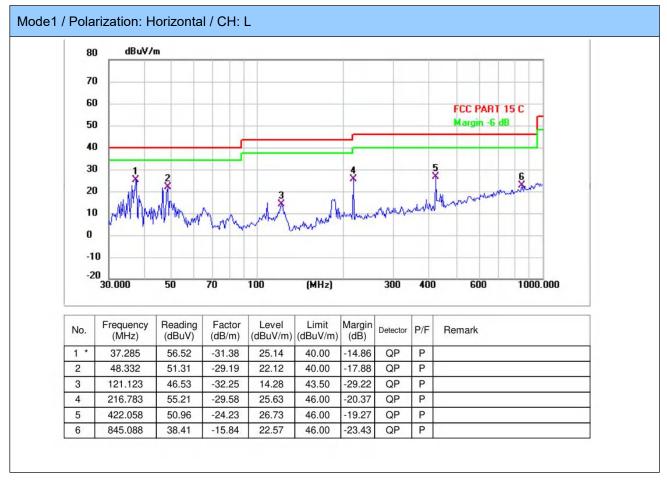
Test Requirement:	restricted bands, as defined	In addition, radiated emissions w in § 15.205(a), must also comply § 15.209(a)(see § 15.205(c)).`	
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
Toot Limit	216-960	200 **	3
Test Limit:	Above 960	500	3
	15.231 and 15.241. In the emission table above The emission limits shown i employing a CISPR quasi-p 110–490 kHz and above 10	ermitted under other sections of t , the tighter limit applies at the ba n the above table are based on n eak detector except for the frequ 00 MHz. Radiated emission limits s employing an average detector	and edges. neasurements ency bands 9–90 kHz, s in these three bands
Test Method:	ANSI C63.10-2020 section	6.6.4	
Procedure:	2. The EUT is placed on a t GHz, and 1.5 m for above 1 determine the position of the 3. The EUT was set 3 meter the top of a variable height a 4. For each suspected emiss tune the Antenna tower (from degrees) to find the maximum for the test in order to get be 5. Set to the maximum pow 6. Use the following spectrue a) Span shall wide enough b) RBW=120 kHz, VBW=30 Trace=max hold; If the emission level of the E the applicable limit, the pea	rs from the receiving antenna, wh antenna tower. sion, the EUT was arranged to it m 1 m to 4 m) and turntable (fron im reading. A pre-amp and a high etter signal level to comply with the er setting and enable the EUT tra	re ground for below 1 60 degrees to nich was mounted on s worst case and then n 0 degree to 360 n pass filter are used ne guidelines. ansmit continuously. g measured; nction=peak, etor is 3 dB lower than Otherwise, the

5.2.7.1. E.U.T. Operation

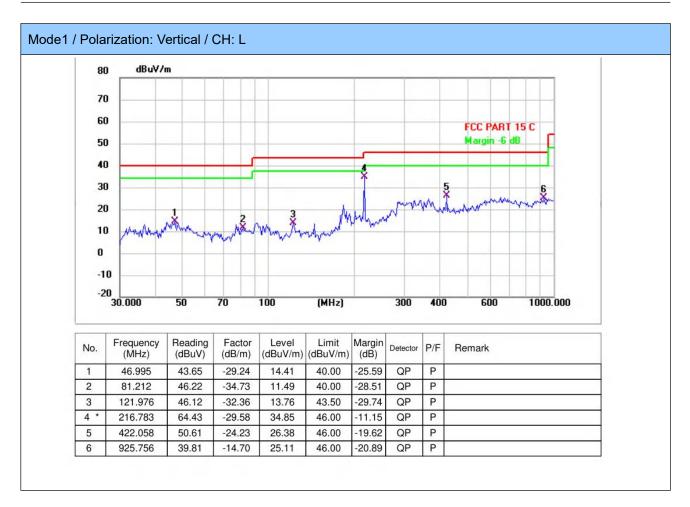
Operating Envi	ronment:				
Temperature: 22.2 °C		Humidity:	55.1 %	Atmospheric Pressure:	102 kPa
Pre test mode:		TM1,TM2,TM3			
Final test mode:		TM1,TM2,TM3			

5.2.7.2. Test Setup Diagram

Below 1 GHz and above 30 MHz


5.2.7.3. Test Result

Pass



5.2.7.4. Test Data

Have pre-scan all test channel, found CH00(GFSK 1M) mode which it was worst case, so only show the worst case's data on this report.

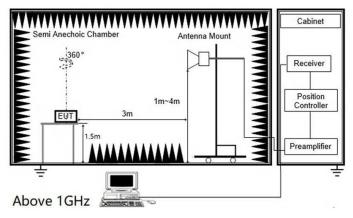
Note:

1) For 9 kHz ~ 30 MHz Measurement

The EUT was pre-scanned this frequency band, found the radiated level 20dB lower than the limit, so don't show data on this report.

2) Level= Reading + Factor; Factor = Antenna Factor+ Cable Loss- Preamp Factor

3) Margin = Limit – Level


5.2.8. Radiated Spurious Emission (Above 1GHz)

Test Requirement:		sions which fall in the restricted I ply with the radiated emission lir)).`			
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)		
	0.009-0.490	2400/F(kHz)	300		
	0.490-1.705	24000/F(kHz)	30		
	1.705-30.0	30	30		
	30-88	100 **	3		
	88-216	150 **	3		
Test Limit:	216-960	200 **	3		
Test Limit.	Above 960	500	3		
	these frequency bands is 15.231 and 15.241. In the emission table above The emission limits shown employing a CISPR quasi 110–490 kHz and above 2	74-216 MHz or 470-806 MHz. H permitted under other sections of re, the tighter limit applies at the n in the above table are based o -peak detector except for the fre 1000 MHz. Radiated emission limins employing an average detector	of this part, e.g., §§ band edges. n measurements equency bands 9–90 kHz, nits in these three bands		
Test Method:	ANSI C63.10-2020 section 6.6.4				
Procedure:	2. The EUT is placed on a GHz, and 1.5 m for above determine the position of 3. The EUT was set 3 me the top of a variable heigh 4. For each suspected em tune the Antenna tower (fi degrees) to find the maxim for the test in order to get 5. Set to the maximum po 6. Use the following spect a) Span shall wide enoug b) Set RBW=1MHz, VBW Trace=max hold for Peak	nission, the EUT was arranged to rom 1 m to 4 m) and turntable (fr num reading. A pre-amp and a h better signal level to comply with wer setting and enable the EUT rum analyzer settings h to fully capture the emission be =3MHz for >1GHz, Sweep time= measurement it: use duty cycle correction factor	bove ground for below 1 d 360 degrees to which was mounted on to its worst case and then rom 0 degree to 360 high pass filter are used h the guidelines. transmit continuously. eing measured; =auto, Detector=peak,		

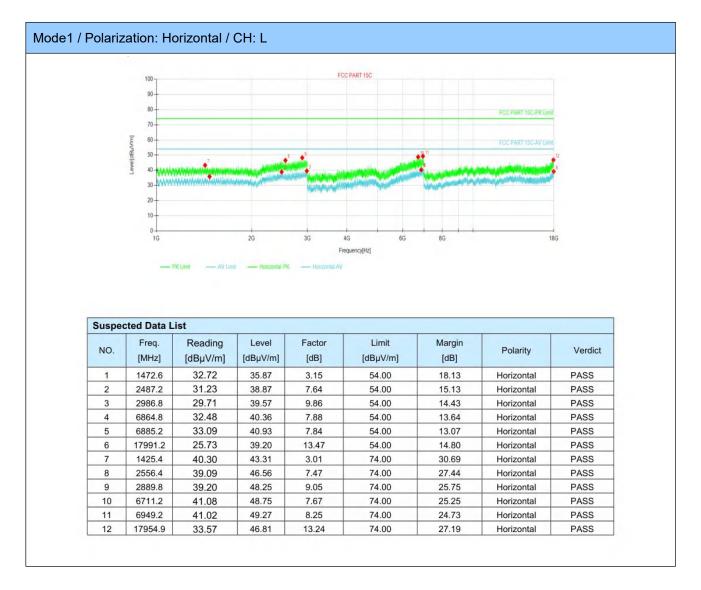
5.2.8.1. E.U.T. Operation

Operating Env	Operating Environment:								
Temperature: 22.2 °C)	Humidity:	55.1 %	Atmospheric Pressure:	102 kPa			
Pre test mode:		ΤM	1,TM2,TM3						
Final test mode:		ΤM	1,TM2,TM3						

5.2.8.2. Test Setup Diagram

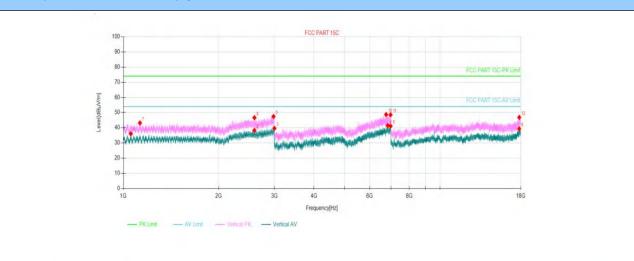
5.2.8.3. Test Result

Pass

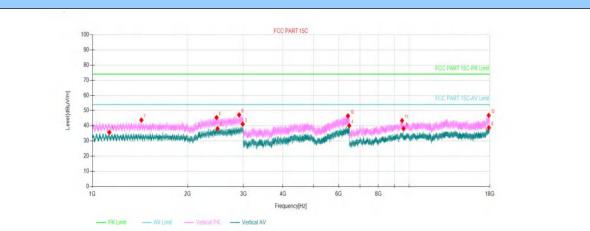

5.2.8.4. Test Data

Note:

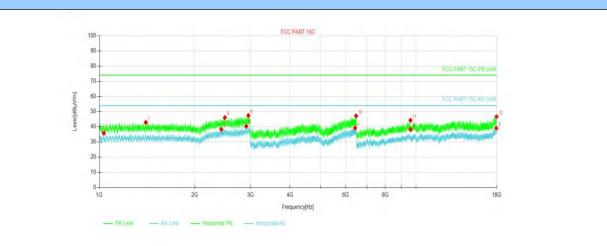
1. In order to prevent the amplifier from saturating, we add a band-stop filter that filters out the main frequency.


2.18GHz-25GHz is the background of the site, there is no radiated spurious.

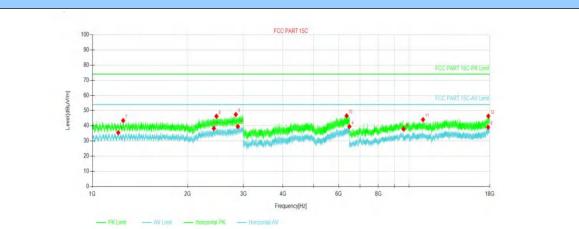
3.Have pre-scan all test mode, found GFSK 1M mode which it was worst case, so only show the worst case's data on this report.


Mode1 / Polarization: Vertical / CH: L

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Polarity	Verdict
1	1055.4	35.54	36.09	0.55	54.00	17.91	Vertical	PASS
2	2594.4	30.95	38.24	7.29	54.00	15.76	Vertical	PASS
3	2999.8	29.69	39.66	9.97	54.00	14.34	Vertical	PASS
4	6838.8	33.55	41.48	7.93	54.00	12.52	Vertical	PASS
5	6980.8	32.59	41.13	8.54	54.00	12.87	Vertical	PASS
6	17798.7	26.22	39.33	13.11	54.00	14.67	Vertical	PASS
7	1128	41.94	43.22	1.28	74.00	30.78	Vertical	PASS
8	2594.6	39.34	46.63	7.29	74.00	27.37	Vertical	PASS
9	2981	37.63	47.44	9.81	74.00	26.56	Vertical	PASS
10	6759.6	40.85	48.70	7.85	74.00	25.30	Vertical	PASS
11	6980.8	39.97	48.51	8.54	74.00	25.49	Vertical	PASS
12	17807.5	33.73	46.84	13.11	74.00	27.16	Vertical	PASS


Mode1 / Polarization: Horizontal / CH: M

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Polarity	Verdict
1	1131.4	34.33	35.63	1.30	54.00	18.37	Vertical	PASS
2	2486.4	30.53	38.17	7.64	54.00	15.83	Vertical	PASS
3	2983.6	31.28	41.11	9.83	54.00	12.89	Vertical	PASS
4	6476.9	33.57	40.10	6.53	54.00	13.90	Vertical	PASS
5	9609.6	35.05	38.19	3.14	54.00	15.81	Vertical	PASS
6	17893.0	25.83	38.74	12.91	54.00	15.26	Vertical	PASS
7	1428.6	40.74	43.76	3.02	74.00	30.24	Vertical	PASS
8	2467.8	37.92	45.42	7.50	74.00	28.58	Vertical	PASS
9	2907.4	38.02	47.20	9.18	74.00	26.80	Vertical	PASS
10	6416	40.00	46.53	6.53	74.00	27.47	Vertical	PASS
11	9509.55	40.25	43.42	3.17	74.00	30.58	Vertical	PASS
12	17867.7	33.90	46.87	12.97	74.00	27.13	Vertical	PASS


Mode1 / Polarization: Vertical / CH: M

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Polarity	Verdict
1	1033.4	35.49	35.77	0.28	54.00	18.23	Horizontal	PASS
2	2427	31.15	38.34	7.19	54.00	15.66	Horizontal	PASS
3	2910.6	31.08	40.29	9.21	54.00	13.71	Horizontal	PASS
4	6422.3	32.72	39.25	6.53	54.00	14.75	Horizontal	PASS
5	9609.6	35.08	38.22	3.14	54.00	15.78	Horizontal	PASS
6	17951.7	25.89	39.11	13.22	54.00	14.89	Horizontal	PASS
7	1402.4	39.96	42.90	2.94	74.00	31.10	Horizontal	PASS
8	2492.2	38.38	46.06	7.68	74.00	27.94	Horizontal	PASS
9	2956.4	37.79	47.39	9.60	74.00	26.61	Horizontal	PASS
10	6472.7	40.61	47.14	6.53	74.00	26.86	Horizontal	PASS
11	9607.3	41.09	44.23	3.14	74.00	29.77	Horizontal	PASS
12	17977	33.31	46.69	13.38	74.00	27.31	Horizontal	PASS

Mode1 / Polarization: Horizontal / CH: H

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Polarity	Verdict
1	1207.8	33.66	35.48	1.82	54.00	18.52	Horizontal	PASS
2	2420	31.14	38.28	7.14	54.00	15.72	Horizontal	PASS
3	2882	30.53	39.53	9.00	54.00	14.47	Horizontal	PASS
4	6483.2	32.97	39.50	6.53	54.00	14.50	Horizontal	PASS
5	9609.6	34.78	37.92	3.14	54.00	16.08	Horizontal	PASS
6	17786.1	26.12	39.07	12.95	54.00	14.93	Horizontal	PASS
7	1251.6	41.32	43.42	2.10	74.00	30.58	Horizontal	PASS
8	2465.8	38.79	46.27	7.48	74.00	27.73	Horizontal	PASS
9	2839.2	38.73	47.43	8.70	74.00	26.57	Horizontal	PASS
10	6356.15	40.32	46.56	6.24	74.00	27.44	Horizontal	PASS
11	11078.1	39.28	44.04	4.76	74.00	29.96	Horizontal	PASS
12	17812.5	33.26	46.36	13.10	74.00	27.64	Horizontal	PASS

Mode1 / Polarization: Vertical / CH: H FCC PART 15C 100 90 80 70 60 [mi/vi/Bb]leve_ 50 40 30 20 10 0-1G 2G 3G 4G 6G 8G 18G Frequency[Hz] - Vertical AV **Suspected Data List** Limit Freq. Reading Level Factor Margin NO. Polarity Verdict [MHz] [dBµV/m] [dBµV/m] [dB] [dBµV/m] [dB] 1128 34.51 35.79 1.28 54.00 18.21 PASS 1 Vertical 2 2549.6 30.97 38.47 7.50 54.00 15.53 Vertical PASS 3 2984.4 30.53 40.37 9.84 54.00 13.63 Vertical PASS 4 6434.2 32.81 39.34 6.53 54.00 14.66 Vertical PASS 5 9609.6 35.30 38.44 3.14 54.00 15.56 Vertical PASS 6 17868.9 26.00 38.97 12.97 54.00 15.03 Vertical PASS 7 1329.2 40.51 43.07 2.56 74.00 30.93 Vertical PASS 8 2457 38.55 45.97 7.42 74.00 28.03 Vertical PASS

Note:

1) Level= Reading + Factor; Factor = Antenna Factor+ Cable Loss- Preamp Factor

47.27

47.37

45.15

46.89

9.23

6.53

3.14

13.27

74.00

74.00

74.00

74.00

26.73

26.63

28.85

27.11

Vertical

Vertical

Vertical

Vertical

PASS

PASS

PASS

PASS

2) Margin = Limit – Level

9

10

11

12

2913.2

6410.75

9608.45

17959.7

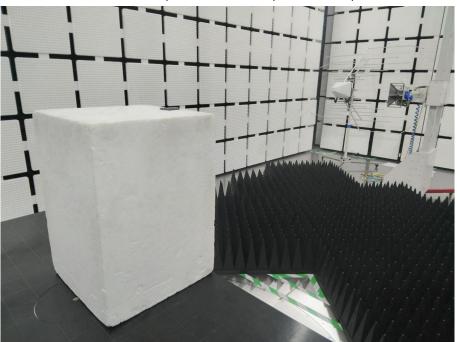
38.04

40.84

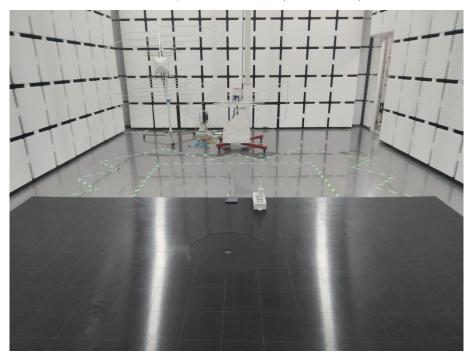
42.01

33.62

3) Average measurement was not performed if peak level is lower than average limit (54dBuV/m) for above 1GHz.

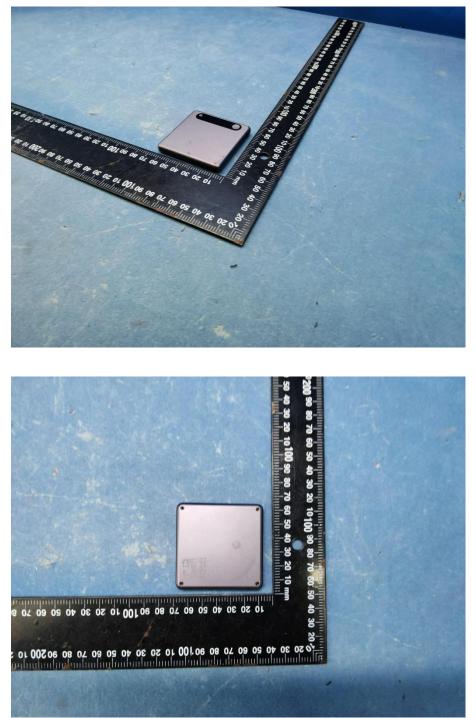


6. TEST SETUP PHOTOS



Conducted Emission at AC power line

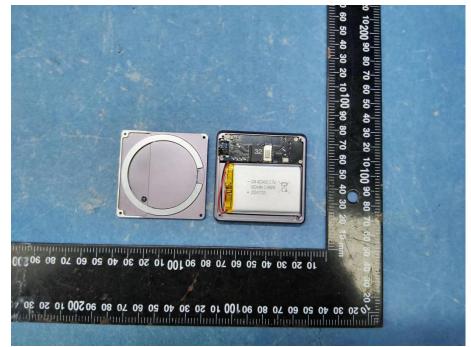
Radiated band edge emission Radiated Spurious Emission (Above 1GHz)

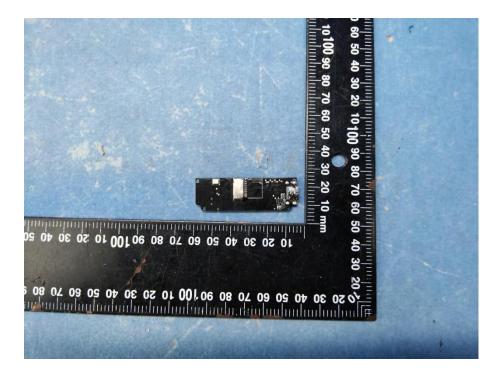


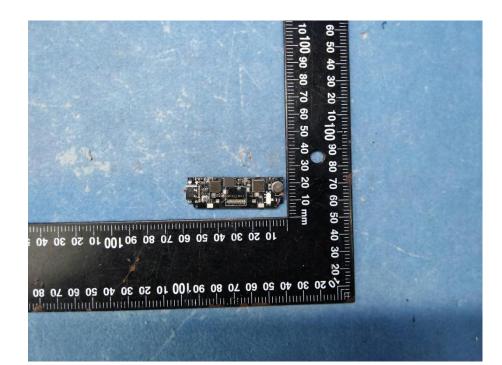
Radiated Spurious Emission (below 1GHz)

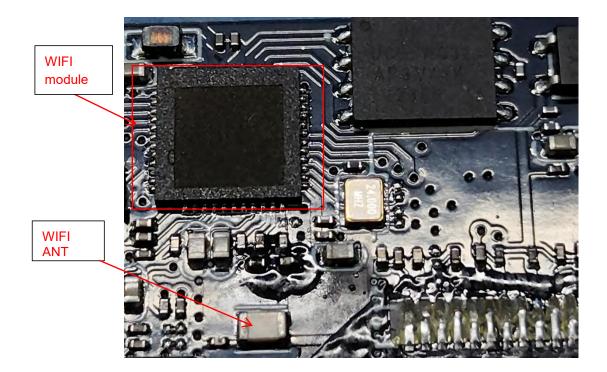
7. EXTERNAL AND INTERNAL PHOTOS

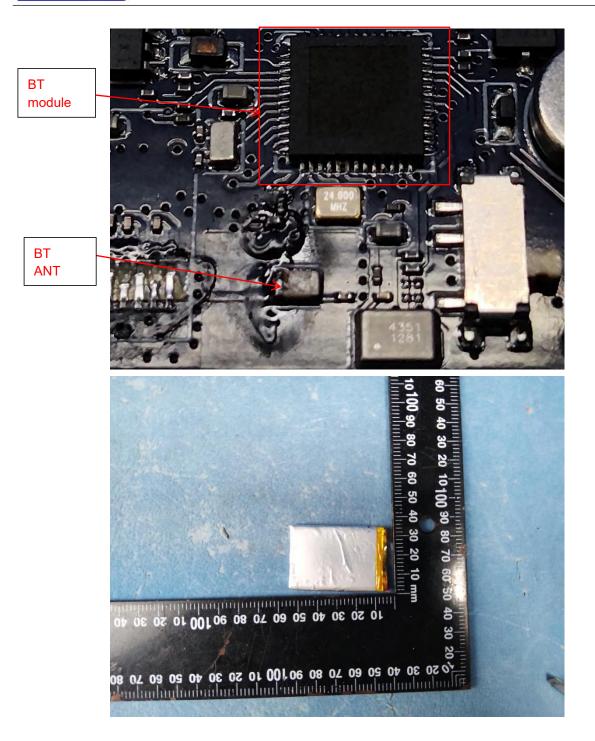
7.1. External Photos

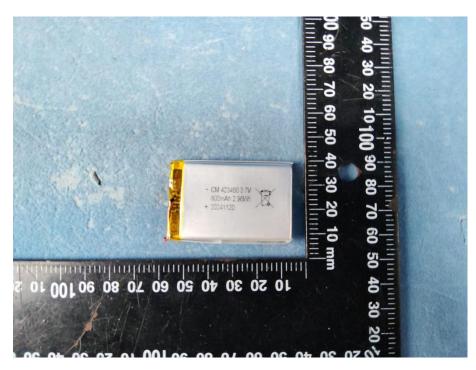




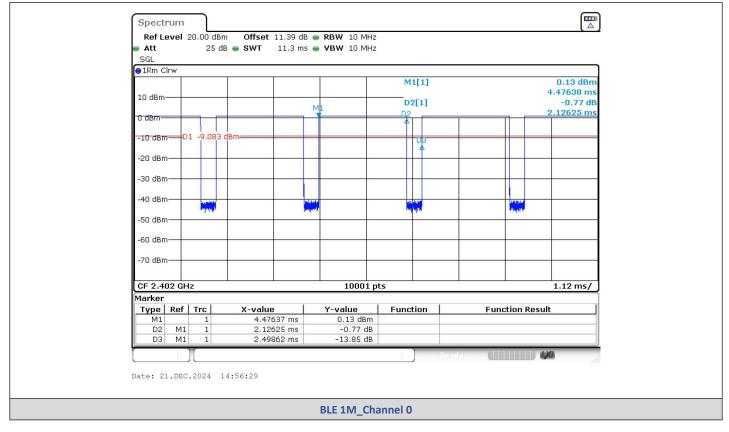



7.2. Internal Photos

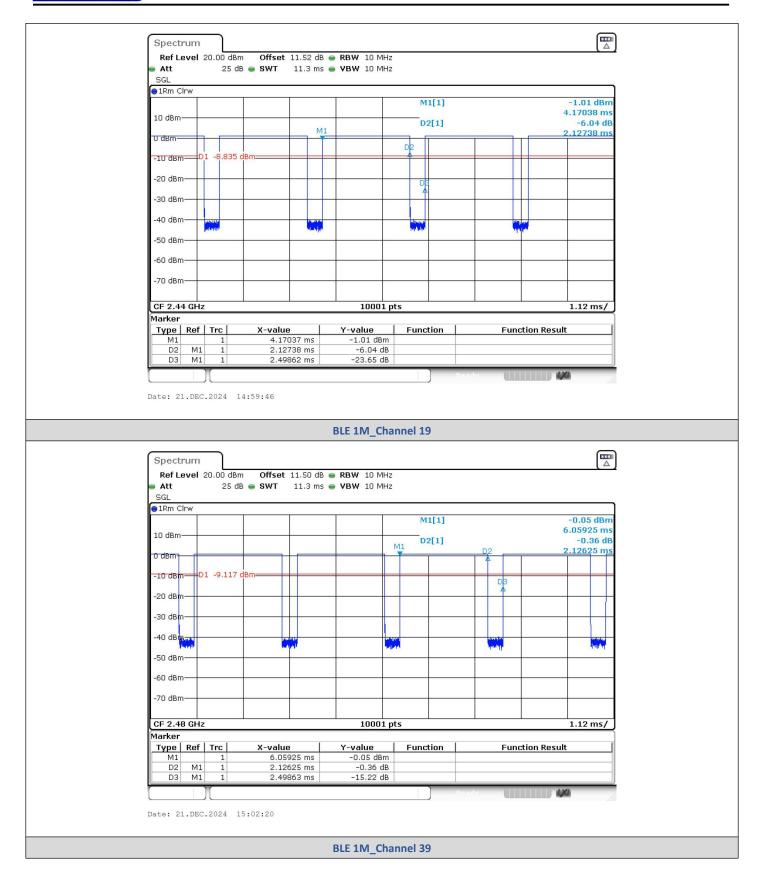




8. Appendix Report

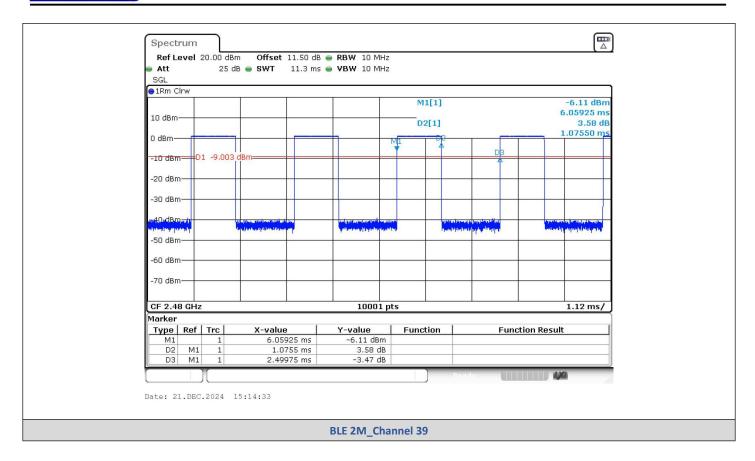

Appendix Report

Report No.:	CISRR24121715705
Test Engineer:	Mark Fu
Supervised by:	Rory Huang

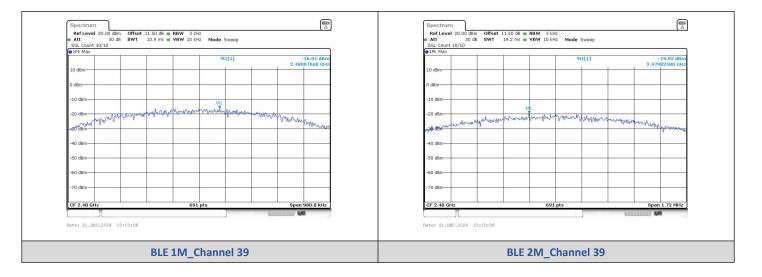

1) Duty Cycle

Test Result

Mode	Channel	On Time (ms)	Period (ms)	Duty Cycle (%)	Duty Cycle	Duty Cycle	1/T
	Channel	On thine (ins)	Feriou (iiis)	Duty Cycle (%)	(linear)	Factor (dB)	1/1
	0	2.126	2.499	85.10	0.8510	0.7007	0.4704
BLE 1M	19	2.127	2.499	85.14	0.8514	0.6987	0.4701
	39	2.126	2.499	85.10	0.8510	0.7007	0.4704
	0	1.074	2.499	43.00	0.4300	3.6653	0.9311
BLE 2M	19	1.074	2.499	43.00	0.4300	3.6653	0.9311
	39	1.075	2.500	43.02	0.4302	3.6633	0.9302

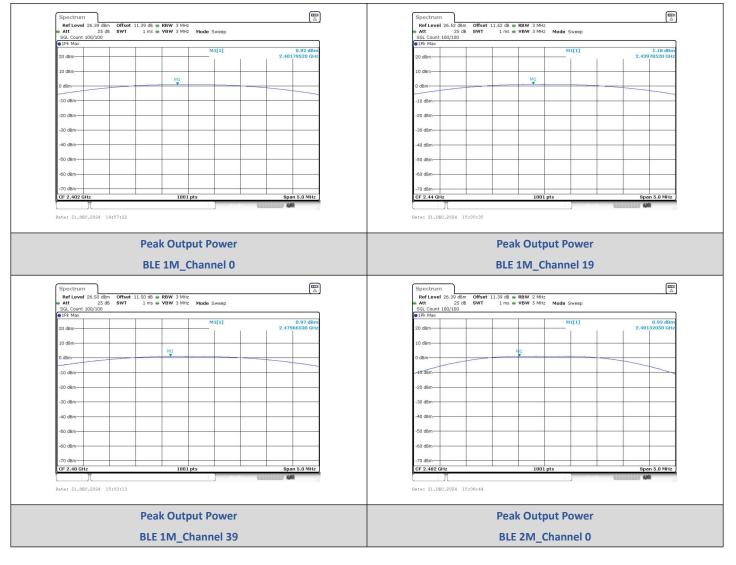





2) Power Spectral Density

Test Result

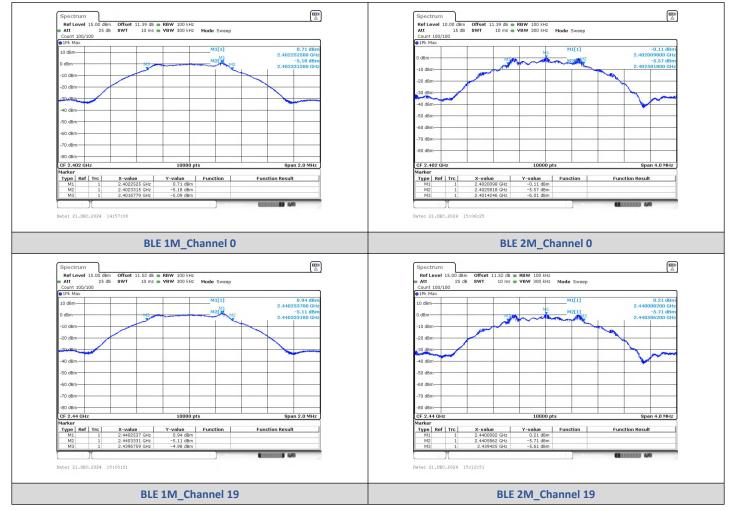
Mode	Channel	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result
BLE 1M	0	-16.000	≤8	PASS
BLE 1M	19	-15.870	≤8	PASS
BLE 1M	39	-16.010	≤8	PASS
BLE 2M	0	-19.220	≤8	PASS
BLE 2M	19	-18.470	≤8	PASS
BLE 2M	39	-19.820	≤8	PASS



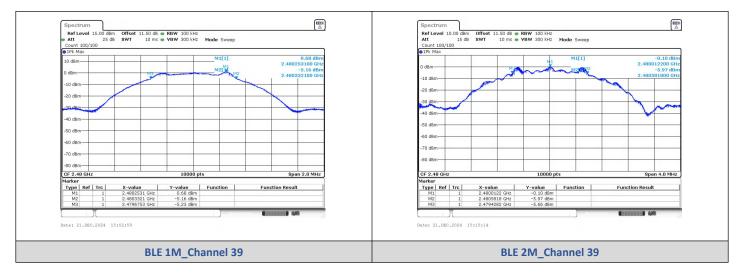
3) Conducted Output Power

Test Result

Mode	Channel	Peak Output Power	Peak Output Power	Limit	Decult	
Widde	Channel	(dBm)	(mW)	(dBm)	Result	
	0	0.92	1.24	≤30	PASS	
BLE 1M	19	1.18	1.31	≤30	PASS	
	39	0.97	1.25	≤30	PASS	
	0	0.93	1.24	≤30	PASS	
BLE 2M	19	1.31	1.35	≤30	PASS	
	39	1.01	1.26	≤30	PASS	

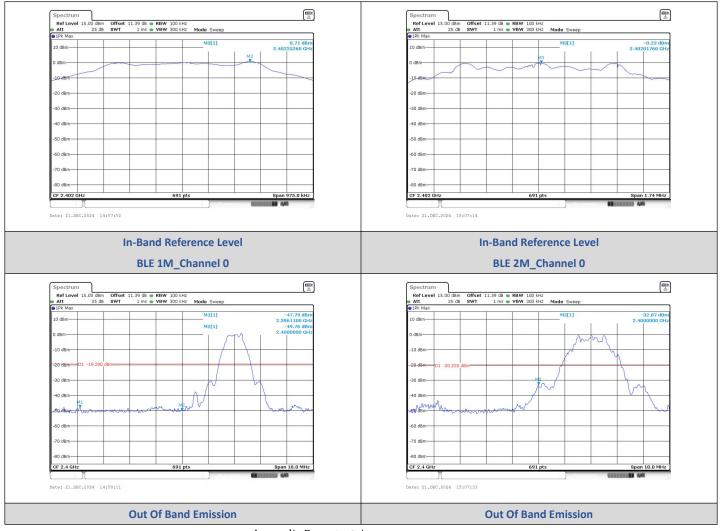


20 dBm	M1[1]	1.31 dBm 2.43952550 GHz	20 dBm	M1[1]	1.01 dBm 2.47944560 GHz
10 dBm			10 dBm		
0 dBm			0 dBm	M1	
-10 dBm			-10 dBm		
-20 dBm-			-20 dBm		
-30 dBm			-30 dBm		
-40 dBm			-40 dBm		
-50 dBm			-50 dBm		
-60 dBm			-60 dBm		
-70 dBm			-70 dBm		
CF 2.44 GHz	1001 pts	Span 5.0 MHz	CF 2.48 GHz	1001 pts	Span 5.0 MHz
Л	Ready	4243		Read	4/4
ate: 21.DEC.2024 15:13:06			Date: 21.DEC.2024 15:15:3	2	


4) 6dB Bandwidth

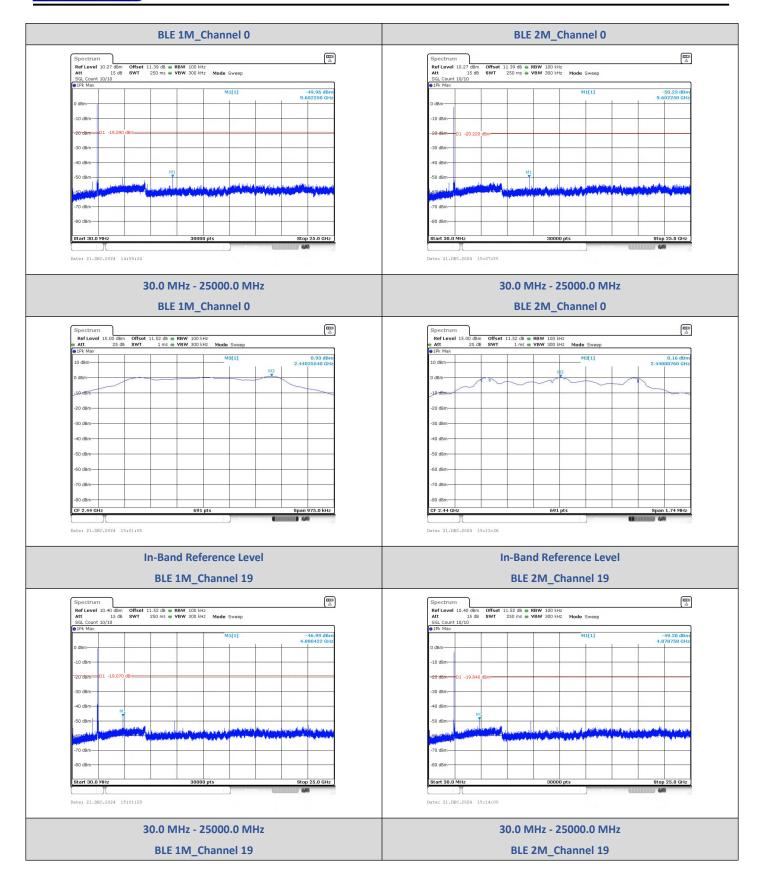
Test Result

Mode	Channel	Center Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)	Result
	0	2402	0.6500	- ≥0.5	PASS
BLE 1M	19	2440	0.6500		PASS
	39	2480	0.6500		PASS
	0	2402	1.160		PASS
BLE 2M	19	2440	1.160		PASS
	39	2480	1.150		PASS

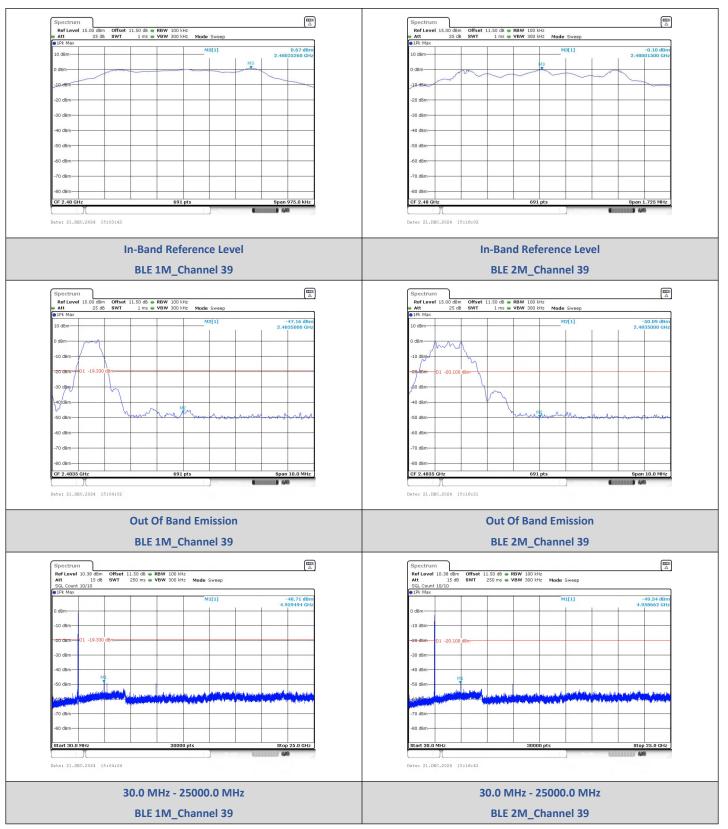


5) Conducted Out Of Band Emission

Test Result


Mode	Channel	OOB Emission Frequency (MHz)	OOB Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result
		2396.11	-47.791	-19.29	-28.501	PASS
	0	2400.00	-49.760	-19.29	-30.470	PASS
		9602.20	-49.955	-19.29	-30.665	PASS
BLE 1M	19	4880.42	-46.993	-19.07	-27.923	PASS
	39	2483.50	-47.160	-19.33	-27.830	PASS
		4959.49	-48.712	-19.33	-29.382	PASS
		2400.00	-32.870	-20.22	-12.650	PASS
0	0	9602.25	-50.227	-20.22	-30.007	PASS
BLE 2M	19	4878.76	-49.278	-19.84	-29.438	PASS
		2483.50	-50.090	-20.1	-29.990	PASS
	39	4958.66	-49.337	-20.1	-29.237	PASS

Test Graphs



Appendix Report 12 / 14

-----End of the report-----