RF TEST REPORT

Report No.: FCC_IC_RF_SL15120101-HID-031 Ribbon Supersede Report No.: NONE

Applicant	;	HID Global Corporation				
Product Name	:	Color Card Printer				
Model No.	;	X002100				
Test Standard	:	FCC 15.225 RSS-210 Issue 8: 2010				
Test Method	:	FCC 15.225 ANSI C63.10 2013 RSS Gen Issue 4 2014				
FCC ID	;	JQ6-X002100				
IC ID	:	2236B-X002100				
Dates of test	;	12/28/2015 to 03/10/2016				
Issue Date	;	03/18/2016				
Test Result	;	🖂 Pass 🛛 Fail				
Equipment complied with the specification[X]Equipment did not comply with the specification[]						

This Test Report is Issued Under the Authority of:				
Dananach	Clan Ge			
Teody Manansala	Chen Ge			
Test Engineer	Engineer Reviewer			
This test report may be reproduced in full only				
Test result presented in this test report is applicable to the tested sample only				

Issued By: SIEMIC Laboratories 775 Montague Expressway, Milpitas, CA 95035

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

f Cin 🖓

 Test report
 FCC_IC_RF_SL15120101-HID-031Ribbon

 Page
 2 of 35

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Accreditation Body	Scope
USA	FCC, A2LA	EMC, RF/Wireless, Telecom
Canada	IC, A2LA, NIST	EMC, RF/Wireless, Telecom
Taiwan	BSMI, NCC, NIST	EMC, RF, Telecom, Safety
Hong Kong	OFTA, NIST	RF/Wireless, Telecom
Australia	NATA, NIST	EMC, RF, Telecom, Safety
Korea	KCC/RRA, NIST	EMI, EMS, RF, Telecom, Safety
Japan	VCCI, JATE, TELEC, RFT	EMI, RF/Wireless, Telecom
Mexico	NOM, COFETEL, Caniety	EMC, RF/Wireless, Telecom, Safety
Europe	A2LA, NIST	EMC, RF, Telecom, Safety
Israel	MOC, NIST	EMC, RF, Telecom, Safety

Accreditations for Product Certifications

Country	Accreditation Body	Scope
USA	FCC TCB, NIST	EMC, RF, Telecom
Canada	IC FCB, NIST	EMC, RF, Telecom
Singapore	iDA, NIST	EMC, RF, Telecom
EU	NB	EMC & R&TTE Directive
Japan	MIC (RCB 208)	RF, Telecom
Hong Kong	OFTA (US002)	RF, Telecom

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report FCC_IC_RF_SL15120101-HID-031Ribbon Page 3 of 35

CONTENTS

1	REPORT REVISION HISTORY	4
2	EXECUTIVE SUMMARY	5
3	CUSTOMER INFORMATION	5
4	TEST SITE INFORMATION	5
5	MODIFICATION	5
6	EUT INFORMATION	6
6.1	1 EUT Description	6
6.2	2 Radio Description	6
6.3	3 EUT test modes/configuration Description	7
6.4	4 EUT Photos – External	8
6.5	5 EUT Photos – Internal	9
6.6	6 EUT Test Setup Photos	15
7	SUPPORTING EQUIPMENT/SOFTWARE AND CABLING DESCRIPTION	16
7.1	1 Supporting Equipment	16
7.2	2 Cabling Description	16
7.3	3 Test Software Description	16
8	TEST SUMMARY	17
9	MEASUREMENT UNCERTAINTY	
10	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	19
10.	0.1 Antenna Requirement	19
10.	0.2 Conducted Emissions Test Result	20
10.	0.3 Radiated Measurements	23
	10.3.1 Radiated Measurements below 1GHz	23
	10.3.2 Radiated Measurements below 30MHz	25
	10.3.3 Frequency Stability	29
	10.3.4 Occupied bandwidth	
ANNE	IEX A. TEST INSTRUMENT	
ANNE	IEX B. SIEMIC ACCREDITATION	34

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

Te	est report	FCC_IC_RF_SL15120101-HID-031Ribbon
Pa	age	4 of 35

Report Revision History 1

Report No.	Report	Description	Issue Date
FCC_IC_RF_SL15120101-HID-031 Ribbon	-	Original	03/18/2016

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

Test report	FCC_IC_RF_SL15120101-HID-031Ribbon
Page	5 of 35

Executive Summary 2

The purpose of this test program was to demonstrate compliance of following product

Company:	HID Global Corporation
Product:	Color Card Printer
Model:	X002100

against the current Stipulated Standards. The specified model product stated above has demonstrated compliance with the Stipulated Standard listed on 1st page.

Customer information 3

Applicant Name	: HID Global Corporation	
Applicant Address : 15370 Barranca Parkway, Irvine, CA 92618 USA		
Manufacturer Name : HID Global Corporation		HID Global Corporation
Manufacturer Address	:	15370 Barranca Parkway, Irvine, CA 92618 USA

Test site information 4

Lab performing tests	:	SIEMIC Laboratories	
Lab Address : 775 Montague Expressway, Milpitas, CA 95035		775 Montague Expressway, Milpitas, CA 95035	
FCC Test Site No. : 881796		881796	
IC Test Site No.	:	4842D-2	
VCCI Test Site No.		A0133	

Modification 5

Index	ltem	Description	Note
-	-	-	-

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 in

t

-

Т

Test report	FCC_IC_RF_SL15120101-HID-031Ribbon
Page	6 of 35

EUT Information 6

EUT Description <u>6.1</u>

Product Name	:	Color Card Printer
Model No.	:	X002100
Trade Name	:	HID
Serial No.	:	N/A
Input Power	:	110-240VAC
Product hardware version	:	Rev-B
Product software version		Rev-1.0.1.6
Radio hardware version	:	Rev-B1
Radio software version		Rev-1.0.1.6
Test SW Version	:	Rev-1.0
Date of EUT received	:	December 28, 2015
Equipment Class/ Category	:	DXX, DCD
Working Frequencies	:	125 kHz, 13.56MHz
Port/Connectors	•	USB

6.2 **Radio Description**

Specifications for Radio:

Radio Type	RFID
Operating Frequency	13.56MHz
Modulation	ASK (13.56MHz)
Channel Spacing	None
Antenna Type	H field coils of wire
Antenna Gain	1 dBi
Antenna Connector Type	N/A

Channel List:

Туре	Mode	Channel No.	Frequency (MHz)	Available (Y/N)
RFID	13.56MHz	1	13.56	Y

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

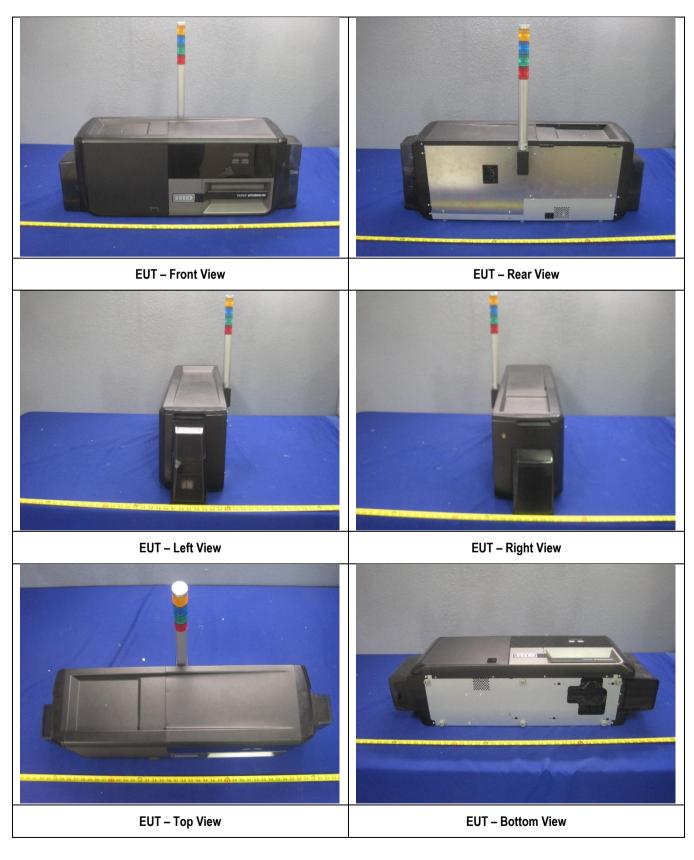
Test report	FCC_IC_RF_SL15120101-HID-031Ribbon
Page	7 of 35

EUT test modes/configuration Description <u>6.3</u>

Mode	Note
RF test	EUT is set to continuously transmit at 13.56MHz
Note: None	

Test Item	Operating mode	Tested antenna port	Test frequencies
Antenna Requirement	N/A	-	
Conducted Emissions Voltage	Continuous Transmit	-	
Limit in the band of 13.553 – 13.567 MHz	Continuous Transmit	-	
Limit in the band of 13.410 – 13.553 MHz and 13.567 – 13.710 MHz	Continuous Transmit	-	
Limit in the band of 13.110 – 13.410 MHz and 13.710 – 14.010 MHz	Continuous Transmit	-	13.56MHz
Limit outside the band of 13.110 – 14.010 MHz	Continuous Transmit	-	
Frequency Stability	Continuous Transmit	-	
Occupied Bandwidth	Continuous Transmit	-	

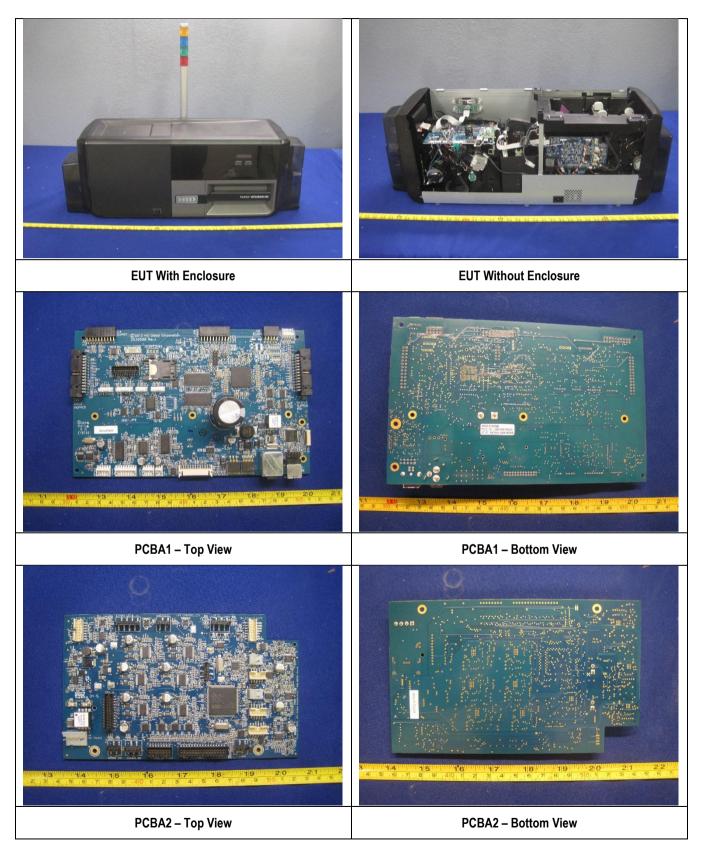
Note: EUT uses a PCB trace antenna attached to the PCB board. Only radiated measurements were performed during the test.


775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

Ú

Test report	FCC_IC_RF_SL15120101-HID-031Ribbon
Page	8 of 35

6.4 EUT Photos – External



775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report	FCC_IC_RF_SL15120101-HID-031Ribbon
Page	9 of 35

6.5 EUT Photos – Internal

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report	FCC_IC_RF_SL15120101-HID-031Ribbon
Page	10 of 35

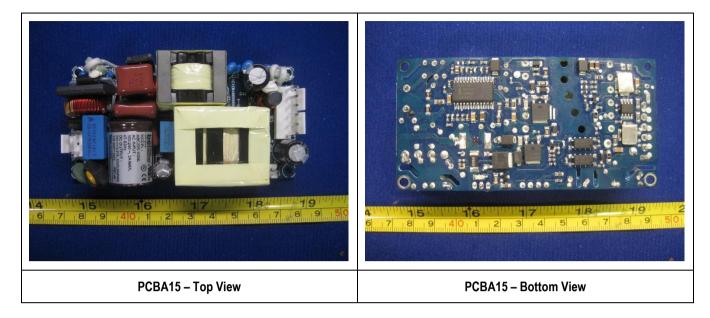
<image/>	<image/>
PCBA4 – Top View	PCBA4 – Bottom View
PCBA5 – Top View	PCBA5 – Bottom View

Test report	FCC_IC_RF_SL15120101-HID-031Ribbon
Page	11 of 35

PCBA6 – Top View	PCBA6 – Bottom View
PCBA7 – Top View	PCBA7 – Bottom View
PCBA8 – Top View	PCBA8 – Bottom View

Test report	FCC_IC_RF_SL15120101-HID-031Ribbon
Page	12 of 35

	<image/> <image/>
PCBA10 – Top View	PCBA10 – Bottom View
PCBA11 – Top View	PCBA11 – Bottom View

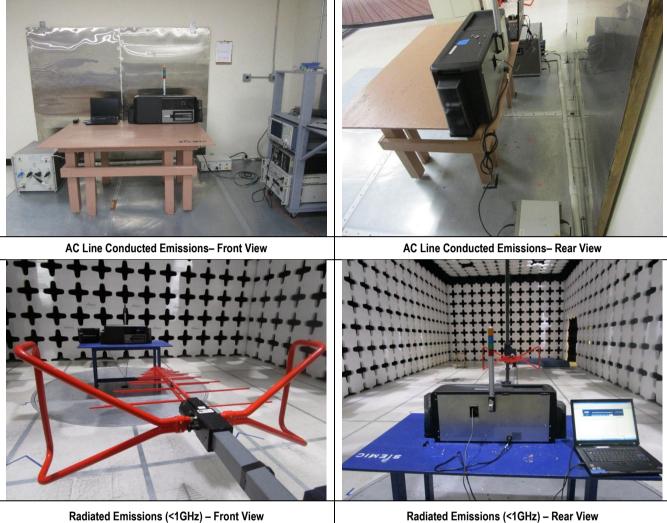


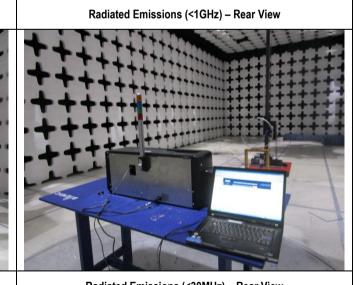
Test report	FCC_IC_RF_SL15120101-HID-031Ribbon
Page	13 of 35

PCBA12 – Top View	PCBA12 – Bottom View
PCBA12 – Top View	
PCBA13 – Top View	PCBA13 – Bottom View
PCBA14 – Top View	PCBA14 – Bottom View

Test report	FCC_IC_RF_SL15120101-HID-031Ribbon
Page	14 of 35

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088


in


÷

Test report	FCC_IC_RF_SL15120101-HID-031Ribbon
Page	15 of 35

<u>6.6</u> **EUT Test Setup Photos**

Radiated Emissions (<30MHz) - Rear View

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

Visit us at: www.siemic.com; Follow us at:

Radiated Emissions (<30MHz) - Front View

Supporting Equipment/Software and cabling Description 7

Supporting Equipment 7.1

Index	Supporting Equipment Description	Model	Serial No	Manu	Note
1	Laptop	Lenovo	R9-NP0D4 12/04	ThinkPad	-

Cabling Description 7.2

Name	Connection Start		Connection Stop		Length / shielding Info		Note
Name	From	I/O Port	То	I/O Port	Length (m)	Shielding	Note
USB	EUT	USB	Laptop	USB	2.0	Unshielded	-

Test Software Description 7.3

Test Item	Test Item Software Description	
RF Testing	HostControl_Lite	Set the EUT to transmit continuously at 13.56MHz

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 e in

Q+

Test report	FCC_IC_RF_SL15120101-HID-031Ribbon
Page	17 of 35

Test Summary 8

Test Item	Test standard		Test Method/Procedure	Pass / Fail
Antenna Requirement	FCC	15.203	ANSI C63.10 – 2013	⊠ Pass
	IC		558074 D01 DTS Meas. Guidance v03r02	🗆 N/A
	FCC 15.225(a)		⊠ Pass	
AC Conducted Emissions Voltage	IC	RSS Gen (7.2.2)	ANSI C63.10 2013 RSS Gen. 8.8	□ N/A
Remark	1. AC Line tests were performed on the support equipment's power adapter, laptop.			ptop.

Test Item		Test standard		Test Method/Procedure		
Limit in the band of 13,553 – 13,567 MHz	FCC	15.225(a)	FCC	ANSI C63.10 2013	⊠ Pass	
	IC	RSS210(A2.6)	IC	RSS Gen 6.13	□ N/A	
Limit in the band of 13.410 – 13.553 MHz	FCC	15.225(b)	FCC	ANSI C63.10 2013	⊠ Pass	
and 13.567 – 13.710 MHz	IC	RSS210(A2.6)	IC	RSS Gen 6.13	□ N/A	
Limit in the band of 13.110 – 13.410 MHz	FCC	15.225(c)	FCC	ANSI C63.10 2013	⊠ Pass	
and 13.710 – 14.010 MHz	IC	RSS210(A2.6)	IC	RSS Gen 6.13	□ N/A	
Limit outside the band of	FCC	15.225(d), 15.209	FCC	ANSI C63.10 2013	⊠ Pass	
13.110 – 14.010 MHz	IC	RSS210(A2.6)	IC	RSS Gen 6.13	□ N/A	
Receiver Spurious Emission	IC	-	IC	RSS Gen 7.1	□ Pass ⊠ N/A	
Energy on a Chakility	FCC	15.225(e)	FCC	-	⊠ Pass	
Frequency Stability	IC	RSS210(A2.6)	IC	RSS Gen 6.11	□ N/A	
	FCC	-	FCC	-	⊠ Pass	
Occupied Bandwidth	IC	RSS-210(5.9.1)	IC	RSS Gen 6.6	□ N/A	
Remark	2. 3. 4.	The applicant shall ens within the band of oper manual.	ure freque ation und	re not taken into consideration for all presenency stability by showing that an emission i er all normal operating conditions as specifi 3 / RSS – Gen Issue 4: November 2014.	s maintained	

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

Test report	FCC_IC_RF_SL15120101-HID-031Ribbon
Page	18 of 35

Measurement Uncertainty 9

Test Item	Description	Uncertainty
AC Conducted Emissions Voltage	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2	±3.5dB
Limit in the band of 13.553 – 13.567 MHz		+5.6dB/-4.5dB
Limit in the band of 13.410 – 13.553 MHz and 13.567 – 13.710 MHz	Confidence level of approximately	+5.6dB/-4.5dB
Limit in the band of 13.110 – 13.410 MHz and 13.710 – 14.010 MHz	95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+5.6dB/-4.5dB
Limit outside the band of 13.110 – 14.010 MHz		+5.6dB/-4.5dB
Radiated Spurious Emissions	1	+5.6dB/-4.5dB

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

10 Measurements, examination and derived results

10.1 Antenna Requirement

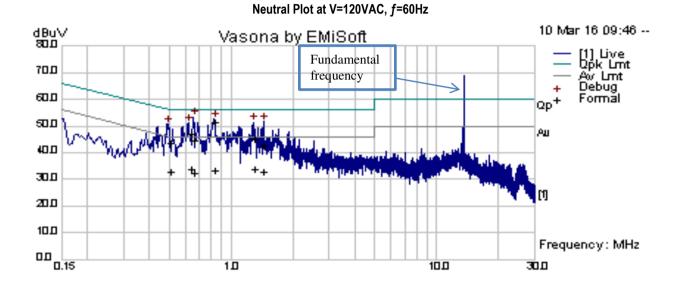
Spec	Requirement	Applicable
§15.203	 An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. Antenna requirement must meet at least one of the following: a) Antenna must be permanently attached to the device. b) The antenna must use a unique type of connector to attach to the device. c) Device must be professionally installed. The installer shall be responsible for ensuring that 	
Remark	the correct antenna is employed by the device. The RFID antenna is integral to the PCB board permanently to the device which meets the requirements integrated as another Exhibit).	uirement (See
Result		

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

 Test report
 FCC_IC_RF_SL15120101-HID-031Ribbon

 Page
 20 of 35

10.2 Conducted Emissions Test Result

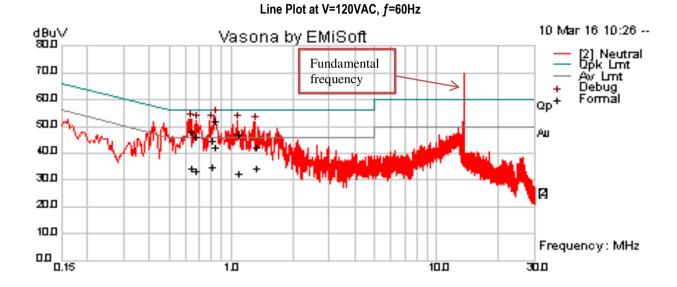

			Conal	icted Emission Limit		
	• "	Frequency	ranges	Limit	t (dBuV)]
	Sectio	m (MHz)	-	QP	Average	1
		0.15~0).5	66 – 56	56 – 46	
	Class	B 0.5~		56	46	
	device	5 ~ 30)	60	50	
Spec	Item	Requirement				Applicable
§ 15.207, RSS210(A8.1)	a)	For an intentional ra power line, the radio on any frequency o the limits set in § 15 stabilization networ	o frequency r frequencie 5.207, as me k (LISN).		back onto the AC power line to 30 MHz, shall not exceed hms line impedance	
Test Setup		2.	EUT Support units	80cm Horizontal Ground Reference were connected to second LIS (AMN) are 80 cm from EUT and tal planes	N.	
Procedure	-	top of a 1.5m x 1m The power supply The RF OUT of the	x 0.8m high for the EUT EUT LISN	n, non-metallic table, as shown was fed through a $50\Omega/50\mu$	ιΗ EUT LISN, connected to filte est receiver via a low-loss coax	red mains.
Test Date		03/10/2016	Env	ironmental conditions	Temperature Relative Humidity Atmospheric Pressure	21°C 38 % 1025 mbar
Remark	The EU	JT was tested at 120	/AC, 60Hz.			
Result	⊠ Pas	s 🗆 Fail				
Test Data 🛛 🖄	Yes	□ N/A				
Test Plot 🛛 🖄	Yes	□ N/A				
Test was done h	w Teody	Manansala at Cond	ucted Emi	ssion test site		
I EST WAS DOILE D	y reouy		UCLEU EINIS	551011 1851 5118.		
775 Mo	ontague E			USA • Phone: (+1) 408 52 m; Follow us at:	6 1188 • Facsimile (+1) 408 52	6 1088

Conducted Emission Limit

Test report	FCC_IC_RF_SL15120101-HID-031Ribbon
Page	21 of 35

Test specification:	Conducted Emissions		
Mains Power:	120VAC, 60Hz		
Tested by:	Teody Manansala	Result:	
Test Date:	03/10/2016		□ Fail
Remarks:	AC Line @ Line		

Neutral Measurements


Frequency MHz	Raw dBuV	Cable Loss	Factors dB	Level dBuV	Measurement Type	Line/ Neutral	Limit dBuV	Margin dB	Pass /Fail
0.66	34.08	10.01	0.62	44.72	Quasi Peak	Line	56.00	-11.28	Pass
0.83	40.99	10.01	0.59	51.60	Quasi Peak	Line	56.00	-4.40	Pass
1.45	31.92	10.02	0.56	42.50	Quasi Peak	Line	56.00	-13.50	Pass
1.29	34.62	10.02	0.57	45.20	Quasi Peak	Line	56.00	-10.80	Pass
0.64	36.30	10.01	0.63	46.94	Quasi Peak	Line	56.00	-9.06	Pass
0.51	32.99	10.01	0.68	43.67	Quasi Peak	Line	56.00	-12.33	Pass
0.66	21.55	10.01	0.62	32.18	Average	Line	46.00	-13.82	Pass
0.83	22.94	10.01	0.59	33.55	Average	Line	46.00	-12.45	Pass
1.45	22.40	10.02	0.56	32.99	Average	Line	46.00	-13.01	Pass
1.29	23.50	10.02	0.57	34.09	Average	Line	46.00	-11.91	Pass
0.64	23.26	10.01	0.63	33.90	Average	Line	46.00	-12.10	Pass
0.51	22.33	10.01	0.68	33.01	Average	Line	46.00	-12.99	Pass

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report	FCC_IC_RF_SL15120101-HID-031Ribbon
Page	22 of 35

Test specification:	Conducted Emissions			
Mains Power:	120VAC, 60Hz			
Tested by:	Teody Manansala		Result:	⊠ Pass □ Fail
Test Date:	03/10/2016			
Remarks:	AC Line @ Neutral	1	1	1

Line Measurements

Frequency MHz	Raw dBµV	Cable Loss	Factors dB	Level dBµV	Measurement Type	Line/ Neutral	Limit dBµV	Margin dB	Pass /Fail
0.833206	41.37	10.01	0.59	51.98	Quasi Peak	Neutral	56	-4.02	Pass
0.642409	37.44	10.01	0.63	48.08	Quasi Peak	Neutral	56	-7.92	Pass
0.671182	35.38	10.01	0.62	46.01	Quasi Peak	Neutral	56	-9.99	Pass
1.080842	36.53	10.02	0.58	47.12	Quasi Peak	Neutral	56	-8.88	Pass
0.801246	34.16	10.01	0.6	44.77	Quasi Peak	Neutral	56	-11.23	Pass
1.319928	31.38	10.02	0.57	41.97	Quasi Peak	Neutral	56	-14.03	Pass
0.833206	31.78	10.01	0.59	42.39	Average	Neutral	46	-3.61	Pass
0.642409	23.64	10.01	0.63	34.28	Average	Neutral	46	-11.72	Pass
0.671182	22.52	10.01	0.62	33.15	Average	Neutral	46	-12.85	Pass
1.080842	21.97	10.02	0.58	32.56	Average	Neutral	46	-13.44	Pass
0.801246	24.18	10.01	0.6	34.79	Average	Neutral	46	-11.21	Pass
1.319928	23.57	10.02	0.57	34.15	Average	Neutral	46	-11.85	Pass

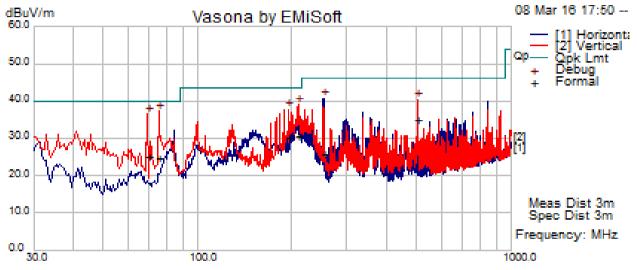
775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

10.3 Radiated Measurements

10.3.1 Radiated Measurements below 1GHz

Requirement(s):

47 CFR §15.225 RSS-210 (A2.6)	Operation within the bar (a) The field strength of any emissions we not exceed 15,848 micro (b) Within the bands 13.410–13.553 M strength of any emissions shall not exce (c) Within the bands 13.110–13.410 M strength of any emissions shall not exce (d) The field strength of any emissions MHz band shall not exceed the gene Frequency range (MHz) 30 – 88 88 – 216 216 960 Above 960	within the band 13.553 ovolts/meter at 30 met MHz and 13.567–13.7 ceed 334 microvolts/m MHz and 13.710–14.0 ceed 106 microvolts/m appearing outside of t sral radiated emission I Field Stren 1 1 2	3–13.567 MHz shall ters. 10 MHz, the field neter at 30 meters. 10 MHz the field neter at 30 meters. the 13.110–14.010	
Test Setup	30 - 88 88 - 216 216 960 Above 960	1 1 2 5	00 50 00	
Test Setup	Above 960	ai Anechoic Chamber		
Test Setup	<u> </u>	ni Anechoic Chamber		
		3m ++++++++++++++++++++++++++++++++++++	1-dm Spectrum Analyzer	
1.2.Procedure3.4.	The test was carried out at the select Maximization of the emissions, was polarization, and adjusting the anter a. Vertical or horizontal pola rotation of the EUT) was of b. The EUT was then rotated c. Finally, the antenna heigh A Quasi-peak measurement was the	cted frequency points of carried out by rotating nna height in the follow rrisation (whichever gas chosen. d to the direction that g nt was adjusted to the f en made for that freque	obtained from the EUT of the EUT, changing the ving manner: ve the higher emission l gave the maximum emis neight that gave the max ency point.	characterisation. antenna level over a full ssion. ximum emission.
Test Date	Enviro	onmental conditions	Temperature Relative Humidity Atmospheric Pressur	20.1°C 36% re 1026mbar
Remark -			• •	
Result 🖂] Pass □ Fail			
est Data 🛛 🖂 Yes (See	e below)			
est Plot 🛛 🖂 Yes (See	e below)			
est was done by Teod	y Manansala at 10 meter chamber.			


775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

Test report	FCC_IC_RF_SL15120101-HID-031Ribbon
Page	24 of 35

Test specification: Radiated Emissions					
Mains Power:	120VAC, 60Hz				
Tested by:	Teody Manansala		Result:	⊠ Pass □ Fail	
Test Date:	03/08/2016				
Remarks:	Line		1	1	

f=30MHz – 1000MHz plot at V=120VAC, f=60Hz and 3 meter distance

f=30MHz – 1000MHz Measurements

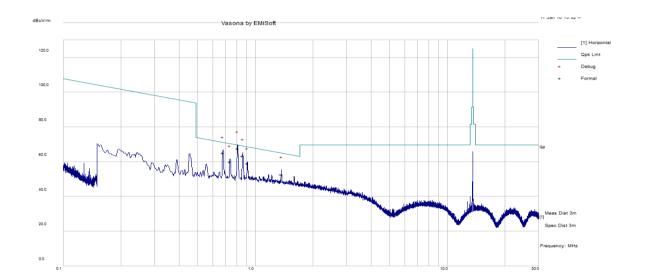
Frequency MHz	Raw dBµV/m	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
74.99	54.71	1.22	-31.10	24.83	Quasi Max	V	151.00	201.00	40.00	-15.17	Pass
69.39	54.47	1.25	-30.88	24.84	Quasi Max	V	104.00	45.00	40.00	-15.16	Pass
209.73	56.98	2.20	-28.64	30.53	Quasi Max	V	240.00	8.00	43.52	-12.99	Pass
251.89	51.21	2.37	-27.79	25.80	Quasi Max	Н	116.00	111.00	46.02	-20.22	Pass
504.04	52.92	3.53	-21.65	34.79	Quasi Max	V	229.00	356.00	46.02	-11.23	Pass
194.80	55.44	2.07	-27.22	30.29	Quasi Max	V	227.00	48.00	43.52	-13.23	Pass

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report	FCC_IC_RF_SL15120101-HID-031Ribbon
Page	25 of 35

10.3.2 Radiated Measurements below 30MHz

Requirement(s):


Spec	Requirement			Applicable			
47 CFR §15.225 RSS-210 (A2.6)	Operation within the band 13.110–14.010 MHz (a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters. (b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters. (c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters. (d) The field strength of any emissions appearing outside of the 13.110–14.010 MHz band shall not exceed the general radiated emission limits in §15.209.						
Test Setup	EUT& Support Units 80cm Turn Ta B0cm Gro	m () at 1m	antenna height				
Procedure	For < 30MHz, Radiated emissions we the highest output power. The EUT was set 3 meter away from the ground from the centre of the loo The limit is converted from microvolt	the measuring antenna. The lo p. The measuring bandwidth wa	oop antenna was positione as set to 10 kHz.				
Test Date	01/11/2016	Environmental conditions	Temperature Relative Humidity Atmospheric Pressure	22°C 40% 1026mbar			
Remark	•						
Result	🛛 Pass 🛛 Fail						
Test Plot 🛛 Yes	s (See below)	her					

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

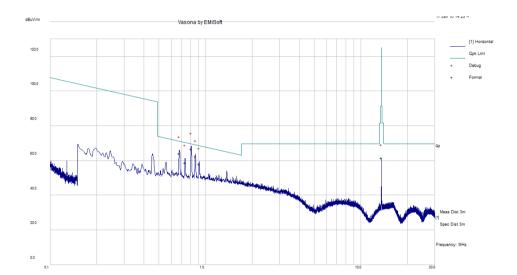
Test report	FCC_IC_RF_SL15120101-HID-031Ribbon
Page	26 of 35

Test specification:	Radiated Spurious Emissions	Radiated Spurious Emissions					
Mains Power:	110VAC, 60Hz						
Tested by:	Teody Manansala	Result:	⊠ Pass □ Fail				
Test Date:	01/11/2016						
Remarks:	f= 100kHz – 30MHz plot, and loop a	<i>f</i> = 100kHz – 30MHz plot, and loop antenna at 0 degree					

Quasi Max Measurement

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
0.68	49.21	0.14	15.72	65.08	Quasi Max	Н	100.00	15.00	70.97	-5.90	Pass
0.74	44.75	0.15	15.03	59.92	Quasi Max	Н	100.00	78.00	70.22	-10.30	Pass
0.81	53.15	0.15	14.29	67.59	Quasi Max	Н	100.00	258.00	69.44	-1.85	Pass
0.86	49.23	0.17	13.83	63.23	Quasi Max	Н	100.00	3.00	68.92	-5.69	Pass
0.91	45.53	0.18	13.38	59.08	Quasi Max	Н	100.00	156.00	68.42	-9.33	Pass
1.37	42.37	0.07	10.23	52.67	Quasi Max	Н	100.00	357.00	64.89	-12.22	Pass

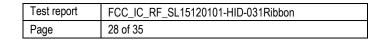
775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088


Σ+

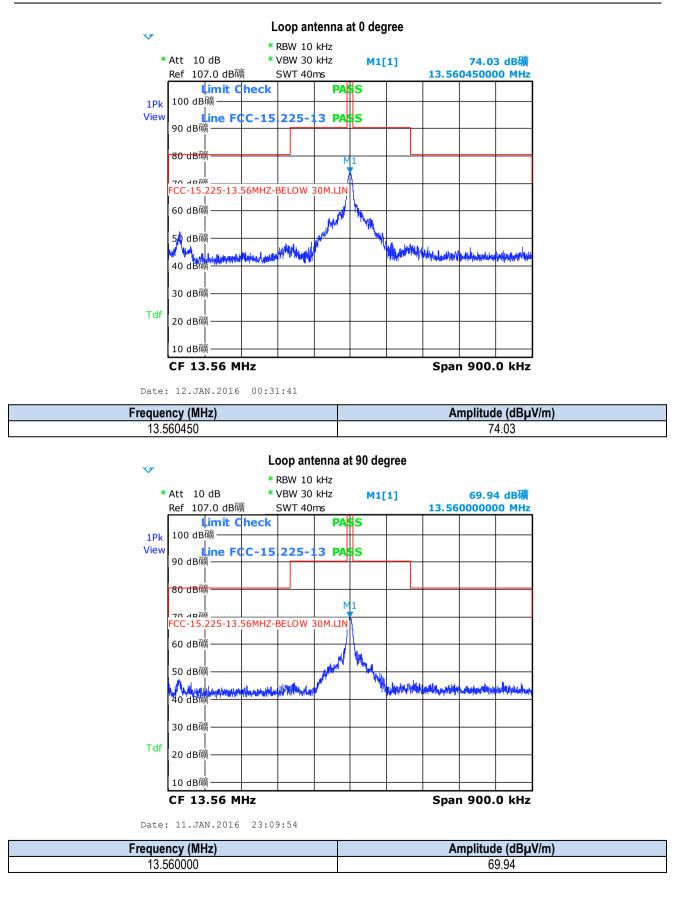
in

Test report	FCC_IC_RF_SL15120101-HID-031Ribbon
Page	27 of 35

Test specification:	Radiated Spurious Emissions	Radiated Spurious Emissions					
Mains Power:	110VAC, 60Hz						
Tested by:	Teody Manansala	Result:	⊠ Pass □ Fail				
Test Date:	01/12/2016						
Remarks:	emarks: f= 100kHz – 30MHz plot, and loop antenna at 90 degree						



Quasi Max Measurement


Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
0.68	48.21	0.14	15.71	64.06	Quasi Max	Н	100.00	184.00	70.96	-6.90	Pass
0.74	43.59	0.15	15.04	58.77	Quasi Max	Н	100.00	31.00	70.24	-11.47	Pass
0.81	52.26	0.15	14.28	66.70	Quasi Max	Н	100.00	251.00	69.43	-2.74	Pass
0.86	48.33	0.17	13.82	62.31	Quasi Max	Н	100.00	144.00	68.91	-6.59	Pass
0.91	44.51	0.18	13.37	58.06	Quasi Max	Н	100.00	348.00	68.41	-10.35	Pass
13.56	61.18	0.48	-0.16	61.50	Quasi Max	Н	100.00	358.00	124.92	-63.41	Pass

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 **5**+

in

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com; Follow us at:

s at: 🔟 🔚 🛄

Test report	FCC_IC_RF_SL15120101-HID-031Ribbon
Page	29 of 35

10.3.3 Frequency Stability

Requirement(s):

Spec	Requirement Applicable				
47 CFR §15.225 e) RSS-210 (A2.6)	Limit: ±0.01% of 13.56 MHz = 1356 Hz				
Test Setup	EUT Fast Power Meter Environmental Chamber 1. 1. The EUT was set up inside an environmental chamber. 2. The EUT was placed in the centre of the environmental.				
Procedure	Frequency Stability was measured according to 47 CFR §2.1055. Measurement was taken with spectrum analyzer. The spectrum analyzer bandwidth and span was set to read in hertz. A voltmeter was used to monitor when varying the voltage.				
	monitor when varying the voltage.			was used to	
Test Date	03/04/2016	Environmental conditions	Temperature Relative Humidity Atmospheric Pressure	20°C 41% 1026mbar	
Test Date Remark		Environmental conditions	Relative Humidity	20°C 41%	

Test Plot \Box Yes (See below) \boxtimes N/A

Test was done by Teody Manansala at RF test site.

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

U

Test Result for 13.56MHz Radio

Frequency Stability versus Temperature: The Frequency tolerance of the carrier signal shall be maintained within \pm 0.01% of the operating frequency over a temperature variation of -20°C to +50°C at normal supply voltage.

Reference Frequency: 13.560000 MHz at 20°C at 120VAC Temperature Measured Freq. Freq. Drift Freq. Deviation Pass/Fail (°C) (MHz) (Hz) (Limit: 0.01%) Pass 50 13.560000 0.00 < 0.01 40 13.560000 0.00 < 0.01 Pass 0.00 30 13.560000 < 0.01 Pass 20 Reference (13.560000 MHz) 10 13.560000 0.00 < 0.01 Pass 0 0.00 < 0.01 Pass 13.560000 -10 13.560000 0.00 < 0.01 Pass -20 0.00 < 0.01 13.560000 Pass

Frequency Stability versus Input Voltage: The Frequency tolerance of the carrier signal shall be maintained within ± 0.01%, the frequency of the transmitter was measured at 85% and at 115% of the rated power supply voltage at a 20°C environmental temperature.

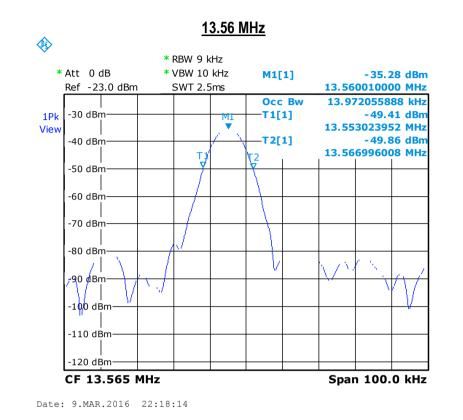
Carrier Frequency: 13.560000MHz at 20°C at 120VAC

Measured Voltage ±15% of nominal (AC)	Measured Freq. (MHz)	Freq. Drift (Hz)	Freq. Deviation (Limit: 0.01%)	Pass/Fail	
138	13.560000	0.00	<0.01	Pass	
102	13.560000	0.00	<0.01	Pass	

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

 Test report
 FCC_IC_RF_SL15120101-HID-031Ribbon

 Page
 31 of 35


10.3.4 Occupied bandwidth

Requirement(s):

conditions. The span of the analyzer s process, including the emission skirts of the selected span as is possible wit	shall be set to capture all produc	ts of the modulation		
The transmitter shall be operated at its maximum carrier power measured under normal test conditions. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used given that a peak or peak hold may produce a wider bandwidth than actual. The trace data points are recovered and directly summed in linear terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached and that frequency recorded. The span between the two recorded frequencies is the occupied bandwidth.				
Support Units Support Units Ground Plane Test Receiver				
2. To measure conducted, a san external antenna was u	SMA cable was used to replace sed to detect EUT transmission	e the EUT antenna. To mea n signal.		
03/09/2015 Environmental conditions Relative Humidity 3 Atmospheric Pressure 1				
-				
🛛 Pass 🛛 🗆 Fail				
s (See below)	ber.			
ngue Expressway, Milpitas, CA 95035,	USA • Phone: (+1) 408 526 11	88 • Facsimile (+1) 408 52	26 1088	
T	repeated for the highest frequency date two recorded frequencies is the original strength of the highest frequencies is th	repeated for the highest frequency data points. This frequency is received the two recorded frequencies is the occupied bandwidth.	repeated for the highest frequency data points. This frequency is recorded. The span between the two recorded frequencies is the occupied bandwidth. Image: the transmission signal and make the two recorded frequencies is the occupied bandwidth. Image: transmission signal and make the two recorded frequencies is the occupied bandwidth of EUT transmission signal and make an external antenna was used to detect EUT transmission signal and make the optimized for the 99% Occupied Bandwidth of EUT transmission signal and make the optimized for the 99% Occupied Bandwidth of EUT transmission signal and make the optimized for the the optimized for the the optimized for the the transmission signal and make the optimized for the the optimized for the the optimized for the transmission signal and make the optimized for the the optimized for the transmission signal and make the optimized for the optimized for the optimized for the transmission signal and make the optimized for the opt	

Test results:

Frequency (MHz)	Occupied Bandwidth (KHz)	
13.56	13.9720558888	

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

)+

Test report	FCC_IC_RF_SL15120101-HID-031Ribbon
Page	33 of 35

Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Cycle	Cal Due	In use
Conducted Emissions		L		I	I	
R & S Receiver	ESIB 40	100179	05/23/2015	1 Year	05/23/2016	◄
CHASE LISN	MN2050B	1018	08/07/2015	1 Year	08/07/2016	•
Radiated Emissions						
R & S Receiver	ESL6	100178	05/27/2015	1 Year	05/27/2016	
R & S Receiver	ESIB 40	100179	05/23/2015	1 Year	05/23/2016	N
Pre-Amplifier (1-26.5GHz)	8449B	3008A00715	03/04/2016	1 Year	03/04/2017	
Preamplifier (100KHz-7GHz)	LPA-6-30	11140711	02/19/2016	1 Year	02/19/2017	1
ETS-Lingren Loop Antenna	6512	00049120	05/12/2015	1 Year	05/12/2016	1
Bi-Log antenna (30MHz~2GHz)	JB1	A030702	08/12/2015	1 Year	08/12/2016	1
Horn Antenna (1-26.5GHz)	3115	10SL0059	08/25/2015	1 Year	08/25/2016	
Tuned Dipole Antenna 30 - 1000 MHz (4pcs set)	AD-100	40133	10/02/2015	1 Year	10/02/2016	
3 Meters SAC	3M	N/A	08/08/2015	1 Year	08/08/2016	•
10 Meters SAC	10M	N/A	09/05/2015	1 Year	09/05/2016	
RF Conducted Measurement						
Spectrum Analyzer	N9010A	10SL0219	08/20/2015	1 Year	08/20/2016	
Agilent Signal Generator	MXG N5182A	MY47071065	04/06/2015	1 Year	04/06/2016	
R & S Receiver	ESIB 40	100179	05/23/2015	1 Year	05/23/2016	
Test Equity Environment Chamber	1007H	61201	07/31/2015	1 Year	07/31/2016	>
USB RF Power Sensor	7002-006	10SL0190	09/03/2015	1 Year	09/03/2016	

Test Software Version

Test Item	Vendor	Software	Version
Radiated Emission	EMISoft	EMISoft Vasona	V5.0
Conducted Emission	EMISoft	EMISoft Vasona	V5.0

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

Test report FCC_IC_RF_SL15120101-HID-031Ribbon 34 of 35 Page

Annex B. SIEMIC Accreditation

Accreditations	Document	Scope / Remark
ISO 17025 (A2LA)	A	Please see the documents for the detailed scope
ISO Guide 65 (A2LA)		Please see the documents for the detailed scope
TCB Designation		A1, A2, A3, A4, B1, B2, B3, B4, C
FCC DoC Accreditation		FCC Declaration of Conformity Accreditation
FCC Site Registration		3 meter site
FCC Site Registration	A	10 meter site
IC Site Registration	A	3 meter site
IC Site Registration	A	10 meter site
	Z	Radio & Telecommunications Terminal Equipment: EN45001 – EN ISO/IEC 17025
EU NB	Z	Electromagnetic Compatibility: EN45001 – EN ISO/IEC 17025
Singapore iDA CB(Certification Body)		Phase I, Phase II
Vietnam MIC CAB Accreditation	Z	Please see the document for the detailed scope
	L.	(Phase II) OFCA Foreign Certification Body for Radio and Telecom
Hong Kong OFCA	R.	(Phase I) Conformity Assessment Body for Radio and Telecom
	Ā	Radio: Scope A – All Radio Standard Specification in Category I
Industry Canada CAB	Ā	Telecom: CS-03 Part I, II, V, VI, VII, VIII

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

Test report FCC_IC_RF_SL15120101-HID-031Ribbon Page 35 of 35

Japan Recognized Certification Body Designation	۵D	Radio: A1. Terminal equipment for purpose of calling Telecom: B1. Specified radio equipment specified in Article 38-2, Paragraph 1, Item 1 of the Radio Law
		EMI: KCC Notice 2008-39, RRL Notice 2008-3: CA Procedures for EMI KN22: Test Method for EMI EMS: KCC Notice 2008-38, RRL Notice 2008-4: CA Procedures for EMS KN24, KN61000-4-2, -4-3, -4-4, -4-5, -4-6, -4-8, -4-11: Test Method for EMS
Korea CAB Accreditation		Radio: RRL Notice 2008-26, RRL Notice 2008-2, RRL Notice 2008-10, RRL Notice 2007-49, RRL Notice 2007-20, RRL Notice 2007-21, RRL Notice 2007-80, RRL Notice 2004-68
		Telecom: President Notice 20664, RRL Notice 2007-30, RRL Notice 2008-7 with attachments 1, 3, 5, 6; President Notice 20664, RRL Notice 2008-7 with attachment 4
Taiwan NCC CAB Recognition	A	LP0002, PSTN01, ADSL01, ID0002, IS6100, CNS14336, PLMN07, PLMN01, PLMN08
Taiwan BSMI CAB Recognition	A	CNS 13438
Japan VCCI	R	R-3083: Radiation 3 meter site C-3421: Main Ports Conducted Interference Measurement T-1597: Telecommunication Ports Conducted Interference Measurements
	R	EMC: AS/NZS CISPR 11, AS/NZS CISPR 14.1, AS/NZS CISPR22, AS/NZS 61000.6.3, AS/NZS 61000.6.4
Australia CAB Recognition		Radio communications: AS/NZS 4281, AS/NZS 4268, AS/NZS 4280.1, AS/NZS 4280.2, AS/NZS 4295, AS/NZS 4582, AS/NZS 4583, AS/NZS 4769.1, AS/NZS 4769.2, AS/NZS 4770, AS/NZS 4771
		Telecommunications: AS/ACIF S002:05, AS/ACIF S003:06, AS/ACIF S004:06 AS/ACIF S006:01, AS/ACIF S016:01, AS/ACIF S031:01, AS/ACIF S038:01, AS/ACIF S040:01, AS/ACIF S041:05, AS/ACIF S043.2:06, AS/ACIF S60950.1
Australia NATA Recognition	A	AS/ACIF S002, AS/ACIF S003, AS/ACIF S004, AS/ACIF S006, AS/ACIF S016,AS/ACIF S031, AS/ACIF S038, AS/ACIF S040, AS/ACIF S041, AS/ACIF S043.2

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at: