FCC TEST REPORT

Report No: SSP24120277-1E

FCC ID: 2AKGT-66156

Report No. : SSP24120277-1E

Applicant: LEDVANCE LLC

Product Name: LED Under Cabinet Light

Model Name : UNDCABRN3A300ST8SC33INWH

Test Standard: FCC Part 15.247

Date of Issue : 2024-12-23

Shenzhen CCUT Quality Technology Co., Ltd.

1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China; (Tel.:+86-755-23406590 website: www.ccuttest.com)

This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd.

FCC Test Report Page 1 of 33

Test Report Basic Information

	Test Report Basic Information				
Applicant	LEDVANCE LLC				
Address of Applicant:	181 Ballardvale Street Suite 203, Wilmington, MA, United States, 01887				
Manufacturer:	FOSHAN ECCO LIGHTING CO., LTD No. 70, East development zone, Donglian Shichen village, Danzao town,				
Address of Manufacturer:	Nanhai district, Foshan City, Guangdong Province, 528222				
Product Name:	LED Under Cabinet Light				
Brand Name	SYLVANIA				
Main Model	UNDCABRN3A300ST8SC33INWH				
Series Models	-				
	FCC Part 15 Subpart C KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.4-2014				
Test Standard	ANSI C63.10-2013				
Date of Test	2024-12-20 to 2024-12-23				
Test Result	PASS				
Tested By	Coke Huang (Coke Huang) Quality Tech				
Reviewed By:					
Authorized Signatory	Lahn Peng (Lahm Peng) (Lieber Ouyang) (Lahm Peng)				

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd.. All test data presented in this test report is only applicable to presented test sample.

FCC Test Report Page 2 of 33

CONTENTS

1. General Information	5
1.1 Product Information	5
1.2 Test Setup Information	
1.3 Compliance Standards	
1.4 Test Facilities	
1.5 List of Measurement Instruments	
1.6 Measurement Uncertainty	
2. Summary of Test Results	
3. Antenna Requirement	11
3.1 Standard and Limit	11
3.2 Test Result	11
4. Conducted Emissions	12
4.1 Standard and Limit.	12
4.2 Test Procedure	12
4.3 Test Data and Results	13
5. Radiated Emissions	16
5.1 Standard and Limit	16
5.2 Test Procedure	16
5.3 Test Data and Results	18
6. Band-edge Emissions(Radiated)	22
6.1 Standard and Limit.	22
6.2 Test Procedure	22
6.3 Test Data and Results	22
7. Maximum Peak Conducted Output Power	24
7.1 Standard and Limit	24
7.2 Test Procedure	24
7.3 Test Data and Results	
8. Occupied Bandwidth	26
8.1 Standard and Limit	26
8.2 Test Procedure	
8.3 Test Data and Results	26
9. Maximum Power Spectral Density	28
9.1 Standard and Limit	28
9.2 Test Procedure.	
9.3 Test Data and Results	28
10. Band-edge Emission(Conducted)	30
10.1 Standard and Limit	
10.2 Test Procedure	
10.3 Test Data and Results	
11. Conducted RF Spurious Emissions	
11.1 Standard and Limit	
11.2 Test Procedure	
11.3 Test Data and Results	

Report No: SSP24120277-1E

Revision	Issue Date	Description	Revised By
V1.0	2024-12-23	Initial Release	Lahm Peng

FCC Test Report Page 4 of 33

1. General Information

1.1 Product Information

Product Name:	LED Under Cabinet Light		
Trade Name:	SYLVANIA		
Main Model:	UNDCABRN3A300ST8SC33INWH		
Series Models:	-		
Rated Voltage:	AC 120V/60Hz		
Power Adapter:	-		
Battery:	-		
Test Sample No:	SSP24120277-1		
Hardware Version:	V1.0		
Software Version:	V1.0		
Note 1: The test data is gathered from a production sample, provided by the manufacturer.			

Report No: SSP24120277-1E

Wireless Specification	
Wireless Standard:	Bluetooth BLE
Operating Frequency:	2402MHz ~ 2480MHz
RF Output Power:	0.67dBm
Number of Channel:	40
Channel Separation:	2MHz
Modulation:	GFSK
Antenna Gain:	0dBi
Type of Antenna:	PCB Antenna
Type of Device:	☐ Portable Device ☐ Modular Device

FCC Test Report Page 5 of 33

1.2 Test Setup Information

List of Test Modes							
Test Mode	Description		Remark				
TM1	BI	LE_1Mbps		2402/2440/2480MHz			
TM2							
TM3							
TM4							
List and Detai	List and Details of Auxiliary Cable						
Descri	cription Length (cm)			Shielded/Unshielded	With/Without Ferrite		
-		-		-	-		
-		-		-	-		
List and Details of Auxiliary Equipment							
Description Manufacturer		Model	Serial Number				
-		-		-	-		
-		-		-	-		

Report No: SSP24120277-1E

List of Chanr	nels						
No. of	Frequency	No. of	Frequency	No. of	Frequency	No. of	Frequency
Channel	(MHz)	Channel	(MHz)	Channel	(MHz)	Channel	(MHz)
01	2402	11	2422	21	2442	31	2462
02	2404	12	2424	22	2444	32	2464
03	2406	13	2426	23	2446	33	2466
04	2408	14	2428	24	2448	34	2468
05	2410	15	2430	25	2450	35	2470
06	2412	16	2432	26	2452	36	2472
07	2414	17	2434	27	2454	37	2474
08	2416	18	2436	28	2456	38	2476
09	2418	19	2438	29	2458	39	2478
10	2420	20	2440	30	2460	40	2480

FCC Test Report Page 6 of 33

1.3 Compliance Standards

Compliance Standards			
ECC Point 15 Cubinout C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,		
FCC Part 15 Subpart C	Intentional Radiators		
All measurements contained in this	report were conducted with all above standards		
According to standards for test i	methodology		
ECC Dart 15 Submort C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,		
FCC Part 15 Subpart C	Intentional Radiators		
KDB 558074 D01 15.247 Meas	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION		
Guidance v05r02	SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM		
Guidance vosroz	DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES		
	American National Standard for Methods of Measurement of Radio-Noise Emissions		
ANSI C63.4-2014	from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40		
	GHz.		
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed		
ANSI 005.10-2015	Wireless Devices		
Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which			

Report No: SSP24120277-1E

1.4 Test Facilities

	Shenzhen CCUT Quality Technology Co., Ltd.				
Laboratory Name:	1F, Building 35, Changxing Technology Industrial Park, Yutang Street,				
	Guangming District, Shenzhen, Guangdong, China				
CNAS Laboratory No.:	L18863				
A2LA Certificate No.:	6893.01				
FCC Registration No:	583813				
ISED Registration No.:	CN0164				
All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing					

result is lowering the emission, should be checked to ensure compliance has been maintained.

Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China.

FCC Test Report Page 7 of 33

1.5 List of Measurement Instruments

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date		
Conducted Emissions							
AMN	ROHDE&SCHWARZ	ENV216	101097	2024-08-07	2025-08-06		
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100242	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 5	N/A	2024-08-07	2025-08-06		
EMI Test Software	FARA	EZ-EMC	EMEC-3A1+	N/A	N/A		
		Radiated Emission	s				
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100154	2024-08-07	2025-08-06		
Spectrum Analyzer	KEYSIGHT	N9020A	MY48030972	2024-08-07	2025-08-06		
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40-N	101692	2024-08-07	2025-08-06		
Amplifier	SCHWARZBECK	BBV 9743B	00251	2024-08-07	2025-08-06		
Amplifier	HUABO	YXL0518-2.5-45		2024-08-07	2025-08-06		
Amplifier	COM-MW	DLAN-18G-4G-02	10229104	2024-08-07	2025-08-06		
Loop Antenna	DAZE	ZN30900C	21104	2024-08-03	2025-08-02		
Broadband Antenna	SCHWARZBECK	VULB 9168	01320	2024-08-03	2025-08-02		
Horn Antenna	SCHWARZBECK	BBHA 9120D	02553	2024-08-03	2025-08-02		
Horn Antenna	COM-MW	ZLB7-18-40G-950	12221225	2024-08-03	2025-08-02		
Attenuator	QUANJUDA	6dB	220731	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 1	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 2	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 3	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 4	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 8	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 9	N/A	2024-08-07	2025-08-06		
EMI Test Software	FARA	EZ-EMC	FA-03A2 RE+	N/A	N/A		
Conducted RF Testing							
RF Test System	MWRFTest	MW100-RFCB	220418SQS-37	2024-08-07	2025-08-06		
Spectrum Analyzer	KEYSIGHT	N9020A	ATO-90521	2024-08-07	2025-08-06		
RF Test Software	MWRFTest	MTS 8310	N/A	N/A	N/A		
Laptop	Lenovo	ThlnkPad E15 Gen 3	SPPOZ22485	N/A	N/A		

Report No: SSP24120277-1E

FCC Test Report Page 8 of 33

1.6 Measurement Uncertainty

Test Item	Conditions	Uncertainty
Conducted Emissions	9kHz ~ 30MHz	±1.64 dB
	9kHz ~ 30MHz	±2.88 dB
Dedicted Projectors	30MHz ∼ 1GHz	±3.32 dB
Radiated Emissions	1GHz ~ 18GHz	±3.50 dB
	18GHz ~ 40GHz	±3.66 dB
Conducted Output Power	9kHz ~ 26GHz	±0.50 dB
Occupied Bandwidth	9kHz ~ 26GHz	±4.0 %
Conducted Spurious Emission	9kHz ~ 26GHz	±1.32 dB
Power Spectrum Density	9kHz ~ 26GHz	±0.62 dB

Report No: SSP24120277-1E

FCC Test Report Page 9 of 33

2. Summary of Test Results

FCC Rule	Description of Test Item	Result
FCC Part 15.203	Antenna Requirement	Passed
FCC Part 15.247(i)	RF Exposure(see the RF exposure report)	Passed
FCC Part 15.207	Conducted Emissions	Passed
FCC Part 15.209, 15.247(d)	Radiated Emissions	Passed
FCC Part 15.247(d)	Band-edge Emissions(Radiated)	Passed
FCC Part 15.247(b)(3)	Maximum Conducted Output Power	Passed
FCC Part 15.247(a)(2)	Occupied Bandwidth	Passed
FCC Part 15.247(e)	Maximum Power Spectral Density	Passed
FCC Part 15.247(d)	Band-edge Emissions(Conducted)	Passed
FCC Part 15.247(d)	Conducted RF Spurious Emissions	Passed

Report No: SSP24120277-1E

Passed: The EUT complies with the essential requirements in the standard

Failed: The EUT does not comply with the essential requirements in the standard

N/A: Not applicable

FCC Test Report Page 10 of 33

3. Antenna Requirement

3.1 Standard and Limit

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Report No: SSP24120277-1E

3.2 Test Result

This product has an PCB antenna, fulfill the requirement of this section.

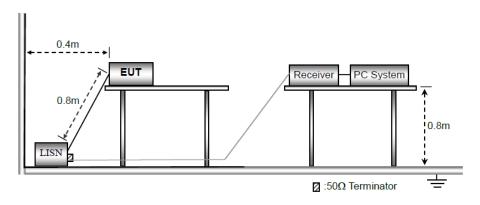
FCC Test Report Page 11 of 33

4. Conducted Emissions

4.1 Standard and Limit

According to the rule FCC Part 15.207, Conducted emissions limit, the limit for a wireless device as below:

Frequency of Emission	Conducted emi	ssions (dBuV)
(MHz)	Quasi-peak	Average
0.15-0.5	66 to 56	56 to 46
0.5-5	56	46
5-30	60	50


Report No: SSP24120277-1E

Note 1: Decreases with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz

Note 2: The lower limit applies at the band edges

4.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.2.

Test Setup Block Diagram

- a) The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.
- b) The following is the setting of the receiver

Attenuation: 10dB

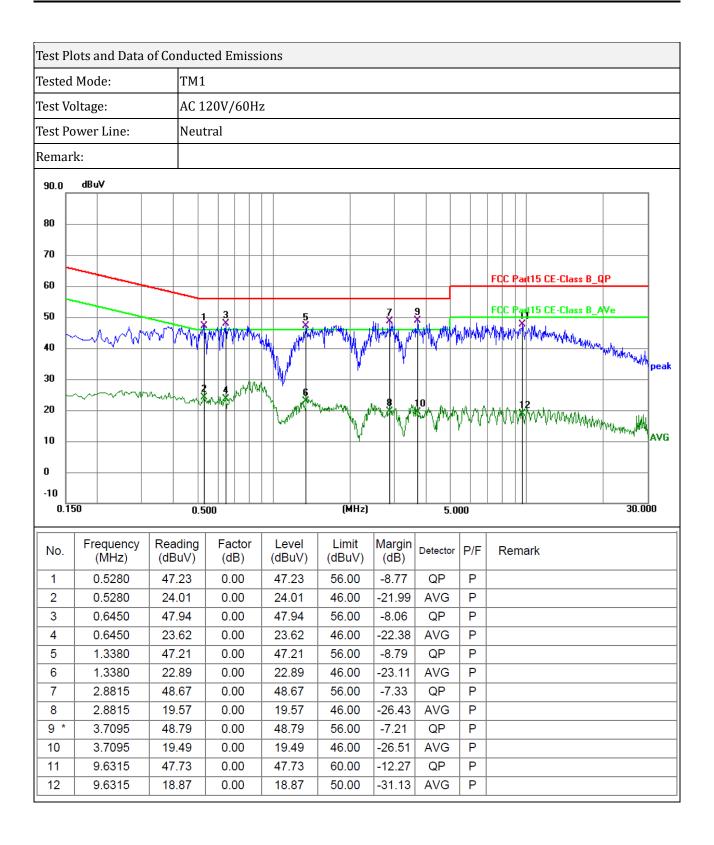
Start Frequency: 0.15MHz Stop Frequency: 30MHz IF Bandwidth: 9kHz

c) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

FCC Test Report Page 12 of 33

d) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Report No: SSP24120277-1E


- e) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- f) LISN is at least 80 cm from nearest part of EUT chassis.
- g) For the actual test configuration, please refer to the related Item photographs of the test setup.

4.3 Test Data and Results

All of the modes have been tested, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 13 of 33

FCC Test Report Page 14 of 33

Test Voltage: AC 120V/60Hz Test Power Line: Live Remark: 90.0 dBuV 80 70 60 50 40	FCC Part15 CE-Class B_QP 11 FCC Part15 CE-Class B_AVe
Test Power Line: Remark: 90.0 dBuV 80 70 60	ECC Davide CE Class B. AVa
Remark: 90.0 dBuV 80 70 60	ECC Davide CE Class B. AVa
90.0 dBuV 80 70 60	ECC Davide CE Class B. AVa
80 70 60	ECC Davide CE Class B. AVa
70 60	ECC Davide CE Class B. AVa
60	ECC Davide CE Class B. AVa
	ECC Davide CE Class B. AVa
50 3 5 Z 9 9 40 40 40 40 40 40 40 40 40 40 40 40 40	11 FCC Part15 CE-Class B_AVe
40	Ash water the second of any to the second of
1	
30	peak 12
20	White the state of
10	AVG
0	
-10	20.000
0.150 0.500 (MHz) 5.	5.000 30.000
No. Frequency (dBuV) Factor Level Limit (dBuV) (dB) (dBuV) (dB) (dBuV) (dB)	or P/F Remark
1 0.5190 46.08 0.00 46.08 56.00 -9.92 QP	Р
2 0.5190 24.20 0.00 24.20 46.00 -21.80 AVG	
3 0.7440 46.96 0.00 46.96 56.00 -9.04 QP	P
4 0.7440 26.90 0.00 26.90 46.00 -19.10 AVG	
5 1.3920 48.40 0.00 48.40 56.00 -7.60 QP	
6 1.3920 22.23 0.00 22.23 46.00 -23.77 AVG	
7 1.8870 48.12 0.00 48.12 56.00 -7.88 QP	
8 1.8870 22.10 0.00 22.10 46.00 -23.90 AVG 9 * 4.0920 48.46 0.00 48.46 56.00 -7.54 QP	
9 * 4.0920 48.46 0.00 48.46 56.00 -7.54 QP 10 4.0920 21.62 0.00 21.62 46.00 -24.38 AVG	
10 4.0920 21.62 0.00 21.62 46.00 -24.38 AVG	
12 6.2880 21.11 0.00 21.11 50.00 -28.89 AVG	

FCC Test Report Page 15 of 33

5. Radiated Emissions

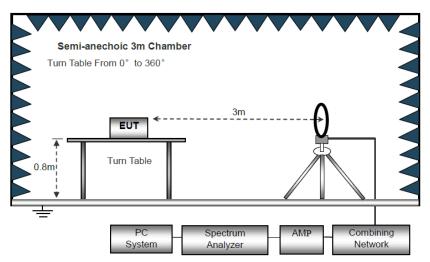
5.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

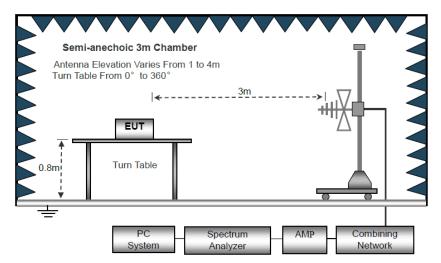
Report No: SSP24120277-1E

According to the rule FCC Part 15.209, Radiated emission limit for a wireless device as below:

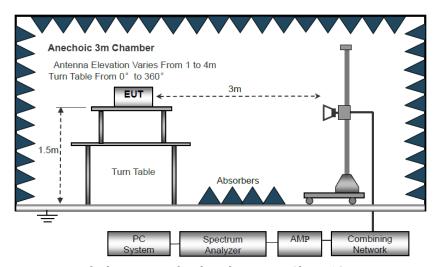
Frequency of Emission	Field Strength	Measurement Distance					
(MHz)	(micorvolts/meter)	(meters)					
0.009~0.490	2400/F(kHz)	300					
0.490~1.705	24000/F(kHz)	30					
1.705~30.0	30	30					
30~88	100	3					
88~216	150	3					
216~960	200	3					
Above 960	500	3					
Note: The more stringent limit applies	Note: The more stringent limit applies at transition frequencies.						


The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.


5.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.


FCC Test Report Page 16 of 33

Block Diagram of Radiated Emission Below 30MHz

Block Diagram of Radiated Emission From 30MHz to 1GHz

Block Diagram of Radiated Emission Above 1GHz

FCC Test Report Page 17 of 33

a) The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range blew 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.

Report No: SSP24120277-1E

- b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- c) Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 10kHz for f < 30MHz

VBW ≥ RBW, Sweep = auto

Detector function = peak

Trace = max hold

- d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- e) The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.
- f) For the actual test configuration, please refer to the related item EUT test photos.

5.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.247 standard limit for a wireless device, and with the worst case BLE_1Mbps 2402MHz as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 18 of 33

Radiat	ted Emis	ssion T	est Da	ata (30MH	z to	1GHz)								
Tested	d Mode:				TM1										
Test V	oltage:				AC 12	20V/	/60Hz								
Test A	ntenna	Polariz	zation	:	Horiz	orizontal									
Remai	rk:														
80.0	dBuV/n	n													_
70															
60						+									
_												E-Class B_	30-10	OOMHz	1
50									T	Mai	gin -6 dB				1
40															
						一								6	
30						-							5	market has the American	
		1 1					3			Ť		المهام المعالمة والع	u,wXV	AND MANAGEMENT OF THE STATE OF	
20	Marija projet	Mark Alabert	Honor Harry	IJ	Ž		اللس	phone particular selection de	u A	halle week word	dertuganten (t.)	Motor			
10			1	THY CLAPPING	. AMMAN	Maria	A Sharp with a	lima.	N. MAKMAN	Walter I.I.					
10															
0.0	.000							6411-3						1000.	
30.	.000		61).00				(MHz)		300	1.00			1000.	.000
No.	Frequ (MH	ency Iz)	Read (dBu		Fac (dB/		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark	
1	46.9	948	31.7	' 9	-8.3	31	23.48	40.00	-16.52	QP	100	275	Р		
2	71.0		30.8		-11.		19.02	40.00	-20.98	QP	100	335	Р		
3	127.2		29.8		-9.0		20.72	43.50	-22.78	QP	200	349	Р		
<u>4</u> 5	287.9		34.0 27.1		-8.6 -1.5		25.38 25.59	46.00 46.00	-20.62 -20.41	QP QP	100	360 356	P		
9	003.5	J382	21.1	0	-1.5	11	25.59	40.00	-20.41	QP	200	328	P		

FCC Test Report Page 19 of 33

Kadiat	ted Emission 1	icst Data (5011112 to	· ,								
Гestec	d Mode:		TM1									
Гest V	oltage:		AC 120V	C 120V/60Hz								
Гest A	ntenna Polari	zation:	Vertical	'ertical								
Remai	rk:											
80.0	dBuV/m											_
70												_
60							FPC	D-ME DI	E-Class B_	20 100	2011-	\dashv
50									E-Class b_	30-100	JUMITZ	П
30							Mar	gin -6 dB				-
40												Щ
-	Mary Hay Stranger	Mark	2	3 X	5	4						§
30	A STATE OF THE STA				l			5 *			Mund	/ k
20		Mr.a.	[" [] \ _{bo}		₩	M. I	1 1		كعاراتها لمستامها ويستعيدها	Walterplace	May was been a	
20				AND ALL	" "Rudh/Anny		white	Mary Constitution of	,			
10				,		- H21 41						
				<u>'</u>		WA 4						-
0.0	.000	60.00		'	(MHz)	190 V	300	.00			10	00.000
0.0	.000	60.00			(MHz)	824		.00			10	00.000
0.0	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	(MHz) Limit (dBuV/m)	Margin		Height (cm)	Azimuth (deg.)	P/F	Remark	00.000
0.0 30. No.	Frequency (MHz) 49.8436	Reading (dBuV)	(dB/m) -8.40	(dBuV/m) 29.45	Limit (dBuV/m) 40.00	Margin (dB)	300 Detector	Height (cm)	(deg.) 150	Р		00.000
0.0 30. No.	Frequency (MHz) 49.8436 71.3300	Reading (dBuV) 37.85 45.14	-8.40 -11.86	(dBuV/m) 29.45 33.28	Limit (dBuV/m) 40.00 40.00	Margin (dB) -10.55 -6.72	Detector QP QP	Height (cm) 100	(deg.) 150 344	P P		00.000
0.0 30. No. 1 2 *	Frequency (MHz) 49.8436 71.3300 126.3286	Reading (dBuV) 37.85 45.14 42.94	-8.40 -11.86 -9.17	(dBuV/m) 29.45 33.28 33.77	Limit (dBuV/m) 40.00 40.00 43.50	Margin (dB) -10.55 -6.72 -9.73	Detector QP QP QP	Height (cm) 100 100	(deg.) 150 344 359	P P		00.000
0.0 30. No.	Frequency (MHz) 49.8436 71.3300	Reading (dBuV) 37.85 45.14	-8.40 -11.86	(dBuV/m) 29.45 33.28	Limit (dBuV/m) 40.00 40.00	Margin (dB) -10.55 -6.72	Detector QP QP	Height (cm) 100	(deg.) 150 344	P P		00.000

FCC Test Report Page 20 of 33

Radiated Emi	ssion Test Dat	a (Above 1GH	z)				
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV
			Lowest Chann	el (2402MHz)			
4804	76.24	-14.72	61.52	74	-12.48	Н	PK
4804	62.62	-14.72	47.9	54	-6.1	Н	AV
7206	62.01	-8.41	53.6	74	-20.4	Н	PK
7206	47.63	-8.41	39.22	54	-14.78	Н	AV
4804	74.33	-14.72	59.61	74	-14.39	V	PK
4804	59.11	-14.72	44.39	54	-9.61	V	AV
7206	64.39	-8.41	55.98	74	-18.02	V	PK
7206	47.54	-8.41	39.13	54	-14.87	V	AV
			Middle Chann	el (2440MHz)			
4880	76.22	-14.64	61.58	74	-12.42	Н	PK
4880	59.46	-14.64	44.82	54	-9.18	Н	AV
7320	62.51	-8.28	54.23	74	-19.77	Н	PK
7320	47.31	-8.28	39.03	54	-14.97	Н	AV
4880	76.01	-14.64	61.37	74	-12.63	V	PK
4880	60.89	-14.64	46.25	54	-7.75	V	AV
7320	65	-8.28	56.72	74	-17.28	V	PK
7320	46.03	-8.28	37.75	54	-16.25	V	AV
			Highest Chann	nel (2480MHz)			
4960	79.86	-14.53	65.33	74	-8.67	Н	PK
4960	59.66	-14.53	45.13	54	-8.87	Н	AV
7440	65.92	-8.13	57.79	74	-16.21	Н	PK
7440	48.48	-8.13	40.35	54	-13.65	Н	AV
4960	73.28	-14.53	58.75	74	-15.25	V	PK
4960	57.17	-14.53	42.64	54	-11.36	V	AV
7440	63.25	-8.13	55.12	74	-18.88	V	PK
7440	49.46	-8.13	41.33	54	-12.67	V	AV

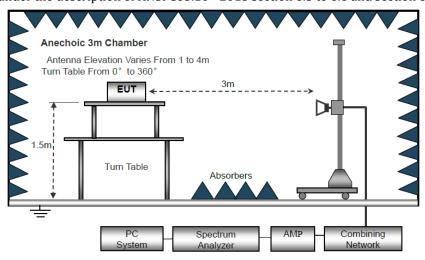
Note 1: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Note 2: Testing is carried out with frequency rang 9kHz to the tenth harmonics. The measurements greater than 20dB below the limit from 9kHz to 30MHz.

Note 3: Other emissions are attenuated 20dB below the limits from 9kHz to 30MHz, so it does not recorded report, 18GHz-26GHz not recorded for no spurious point have a margin of less than 6 dB with respect to the limits.

FCC Test Report Page 21 of 33

6. Band-edge Emissions(Radiated)


6.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Report No: SSP24120277-1E

6.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6 and section 6.10.

Test Setup Block Diagram

As the radiated emissions testing, set the Lowest and Highest Transmitting Channel, observed the outside band of 2310MHz to 2400MHz and 2483.5MHz to 2500MHz, than mark the higher-level emission for comparing with the FCC rules.

6.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.247 standard limit, and with the worst case as below:

FCC Test Report Page 22 of 33

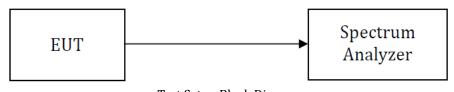
Test Mode	Frequency	Limit	Result	
rest Mode	MHz	dBuV/dBc	Result	
Lavvaat	2310.00	<54 dBuV	Pass	
Lowest	2390.00	<54 dBuV	Pass	
Highest	2483.50	<54 dBuV	Pass	
	2500.00	<54 dBuV	Pass	

Radiated Em	ission Test Dat	ta (Band edge	emissions)							
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector			
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV			
	Lowest Channel (2402MHz)									
2310	69.79	-21.34	48.45	74	-25.55	Н	PK			
2310	50.09	-21.34	28.75	54	-25.25	Н	AV			
2390	68.75	-20.96	47.79	74	-26.21	Н	PK			
2390	52.54	-20.96	31.58	54	-22.42	Н	AV			
2400	72.4	-20.91	51.49	74	-22.51	Н	PK			
2400	55.11	-20.91	34.2	54	-19.8	Н	AV			
2310	69.25	-21.34	47.91	74	-26.09	V	PK			
2310	49.81	-21.34	28.47	54	-25.53	V	AV			
2390	66.26	-20.96	45.3	74	-28.7	V	PK			
2390	49.42	-20.96	28.46	54	-25.54	V	AV			
2400	67.56	-20.91	46.65	74	-27.35	V	PK			
2400	53.06	-20.91	32.15	54	-21.85	V	AV			
			Highest Chanr	nel (2480MHz)						
2483.50	71.86	-20.51	51.35	74	-22.65	Н	PK			
2483.50	55.2	-20.51	34.69	54	-19.31	Н	AV			
2500	64.88	-20.43	44.45	74	-29.55	Н	PK			
2500	51.47	-20.43	31.04	54	-22.96	Н	AV			
2483.50	68.79	-20.51	48.28	74	-25.72	V	PK			
2483.50	56.82	-20.51	36.31	54	-17.69	V	AV			
2500	65.43	-20.43	45	74	-29	V	PK			
2500	50.97	-20.43	30.54	54	-23.46	V	AV			

Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 23 of 33

7. Maximum Peak Conducted Output Power

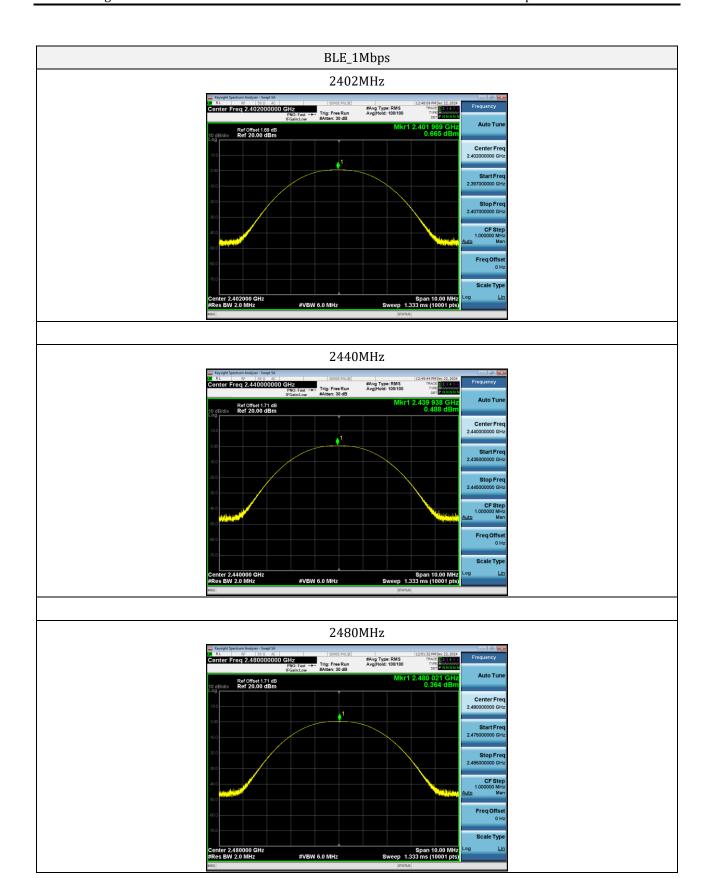

7.1 Standard and Limit

According to 15.247(b)(3). For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the *maximum conducted output power* is the highest total transmit power occurring in any mode.

Report No: SSP24120277-1E

7.2 Test Procedure

- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 2MHz, VBW = 6MHz, Sweep = Auto, Detector = Peak.
- 4) Measure the highest amplitude appearing on spectral display and mark the value.
- 5) Repeat the above procedures until all frequencies measured were complete.



Test Setup Block Diagram

7.3 Test Data and Results

Test Mode	Test Channel MHz	Conducted Output Power (dBm)	Limit (dBm)	Test Result
BLE_1Mbps	2402	0.67	30	Pass
	2440	0.49	30	Pass
	2480	0.36	30	Pass

FCC Test Report Page 24 of 33

FCC Test Report Page 25 of 33

8. Occupied Bandwidth

8.1 Standard and Limit

According to 15.247(a)(2), Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No: SSP24120277-1E

8.2 Test Procedure

According to the ANSI 63.10-2013, section 6.9, the emission bandwidth test method as follows.

- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto.
- 4) Set a reference level on the measuring instrument equal to the highest peak value.
- 5) Measure the frequency difference of two frequencies that were attenuated 6dB from the reference level. Record the frequency difference as the emission bandwidth.
- 6) Repeat the above procedures until all frequencies measured were complete.

Test Setup Block Diagram

8.3 Test Data and Results

Tost Mode	Test Channel	6dB Bandwidth	99% Bandwidth	6 dB Bandwidth Limit	Toot Dogult
Test Mode	(MHz)	(MHz)	(MHz)	(MHz)	Test Result
	2402	0.65	1.027	0.5	Pass
BLE_1Mbps	2440	0.655	1.03	0.5	Pass
	2480	0.649	1.031	0.5	Pass

FCC Test Report Page 26 of 33

FCC Test Report Page 27 of 33

9. Maximum Power Spectral Density

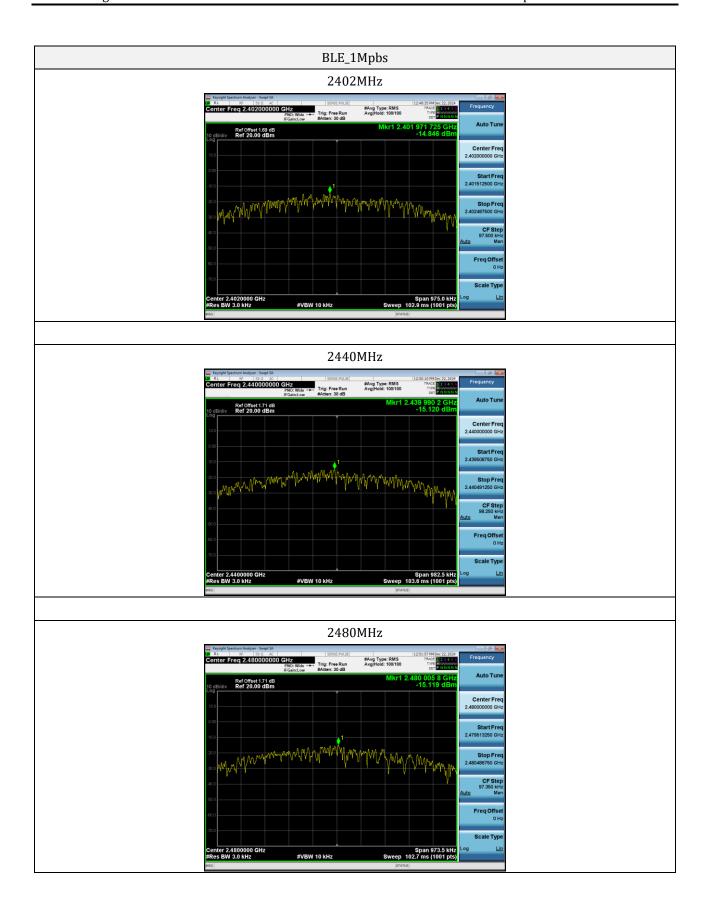
9.1 Standard and Limit

According to FCC 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No: SSP24120277-1E

9.2 Test Procedure

- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 3kHz, VBW = 10kHz, Sweep = Auto, Detector = Peak.
- 4) Measure the highest amplitude appearing on spectral display and mark the value.
- 5) Repeat above procedures until all frequencies measured were complete.



Test Setup Block Diagram

9.3 Test Data and Results

Test Mode	Test Channel	Power Spectral Density	Limit	Test Result	
rest Mode	MHz	(dBm/3kHz)	(dBm/3kHz)	rest nesure	
	2402	-14.85	8	Pass	
BLE_1Mbps	2440	-15.12	8	Pass	
	2480	-15.12	8	Pass	

FCC Test Report Page 28 of 33

FCC Test Report Page 29 of 33

10. Band-edge Emission(Conducted)

10.1 Standard and Limit

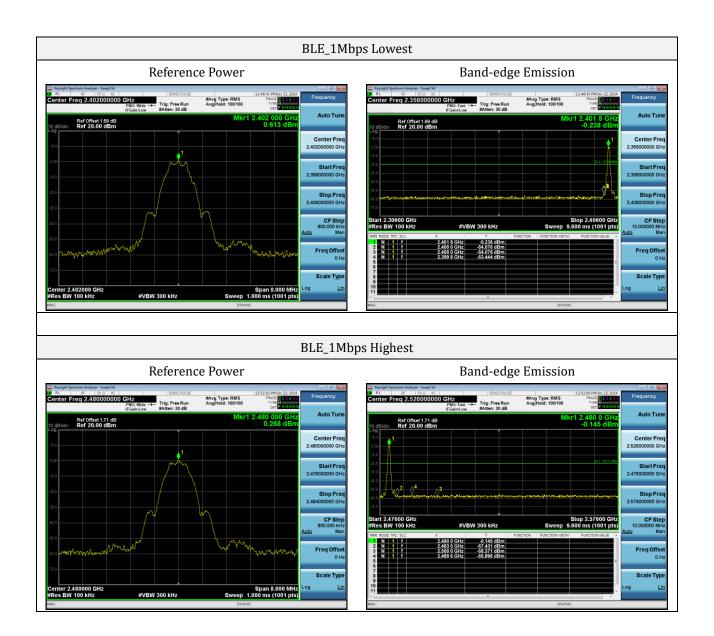
According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Report No: SSP24120277-1E

10.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.10.

- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = Peak.
- 4) Measure the highest amplitude appearing on spectral display and set it as a reference level.
- 5) Set a convenient frequency span including 100 kHz bandwidth from band edge.
- 6) Measure the emission and marking the edge frequency.
- 7) Repeat above procedures until all frequencies measured were complete.



Test Setup Block Diagram

10.3 Test Data and Results

Test Mode	Band-edge	Test Channel (MHz)	Max. Value (dBc)	Limit (dBc)	Test Result
DIE 4141	Lowest	2402	-54.05	-20	Pass
BLE_1Mbps	Highest	2480	-56.16	-20	Pass

FCC Test Report Page 30 of 33

FCC Test Report Page 31 of 33

11. Conducted RF Spurious Emissions

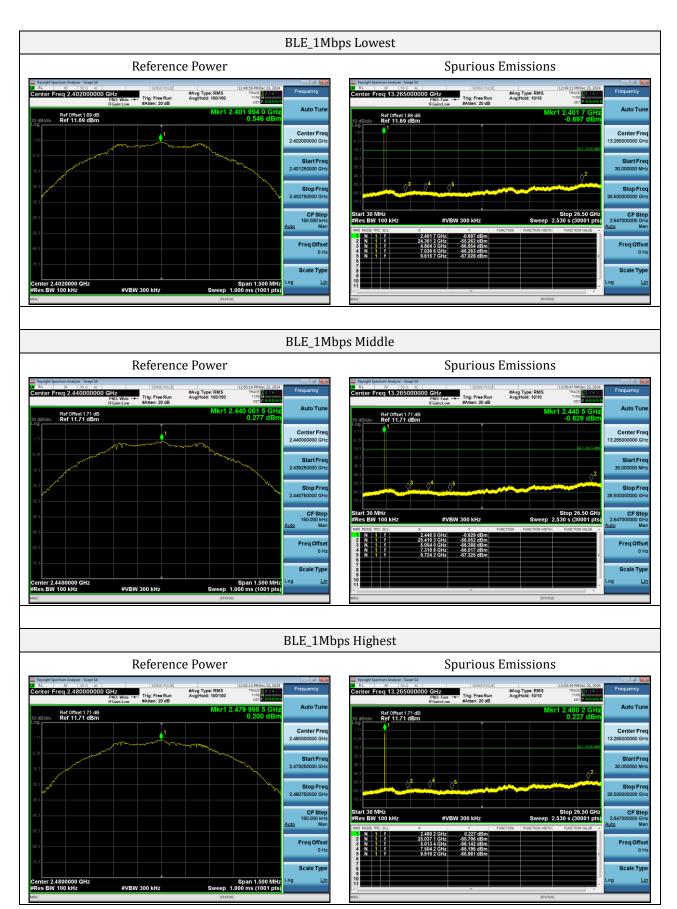
11.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Report No: SSP24120277-1E

11.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.7.


- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = Peak.
- 4) Measure the highest amplitude appearing on spectral display and set it as a reference level.
- 5) Measure the spurious emissions with frequency range from 9kHz to 26.5GHz.
- 6) Repeat above procedures until all measured frequencies were complete.

11.3 Test Data and Results

Note: The measurement frequency range is from 9kHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions measurement data.

FCC Test Report Page 32 of 33

***** END OF REPORT *****

FCC Test Report Page 33 of 33