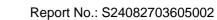


RADIO TEST REPORT FCC ID:2ANMU-C58

Product: Smart Phone Trade Mark: OUKITEL Model No.: C58 Family Model: C58 E, C58 S, C58 Pro, C58 Ultra Report No.: S24082703605002 Issue Date: Oct. 09, 2024


Prepared for

SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD A2 2F BUILDING ENET NEW INDUSTRIAL PARK,DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

Table of Contents

ACCREDITED

Certificate #4298.01

ilac-MR

1	TEST I	RESULT CERTIFICATION	3
2			
	SUMM	IARY OF TEST RESULTS	4
3	FACIL	ITIES AND ACCREDITATIONS	5
	3.1 FA	ACILITIES	5
		ABORATORY ACCREDITATIONS AND LISTINGS	
	3.3 M	EASUREMENT UNCERTAINTY	5
4	GENE	RAL DESCRIPTION OF EUT	6
5	DESCI	RIPTION OF TEST MODES	8
6	SETUR	P OF EQUIPMENT UNDER TEST	9
	6.1 BI	LOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	9
	6.3 EC	UPPORT EQUIPMENT QUIPMENTS LIST FOR ALL TEST ITEMS	11
7	TEST	REQUIREMENTS	13
	7.1 CO	ONDUCTED EMISSIONS TEST	13
		ADIATED SPURIOUS EMISSION	
	7.3 6E	OB BANDWIDTH	25
	=	UTY CYCLE	
		EAK OUTPUT POWER	
		OWER SPECTRAL DENSITY	
		ONDUCTED BAND EDGE MEASUREMENT	
		PURIOUS RF CONDUCTED EMISSIONS	
	7.9 Al	NTENNA APPLICATION	33
8	TEST I	RESULTS	34
0			
0		И	34
0	8.1 1N	M M	

NTEK 北测

TEST RESULT

Complied

1 **TEST RESULT CERTIFICATION**

Applicant's name:	SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD
Address:	A2 2F BUILDING ENET NEW INDUSTRIAL PARK,DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China
Manufacturer's Name:	SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD
Address:	A2 2F BUILDING ENET NEW INDUSTRIAL PARK,DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China
Product description	
Product name:	Smart Phone
Trade Mark:	OUKITEL
Model and/or type reference:	C58
Family Model	C58 E, C58 S, C58 Pro, C58 Ultra
Test Sample number:	S240827036006
Date of Test:	Aug. 28, 2024 ~ Oct. 09, 2024
Measurement Procedure Used:	

Measurement Procedure Used:

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURE

FCC 47 CFR Part 2, Subpart J

FCC 47 CFR Part 15, Subpart C

ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

18 Ven lin Approved : // tlex Li Prepared Allen Liu By Alex Li (Project Engineer) (Supervisor) (Manager)

NTEK 北测

2 SUMMARY OF TEST RESULTS

R

ilac-M

FCC Part15 (15.247), Subpart C						
Standard Section Test Item Verdict Rer						
15.207	Conducted Emission	PASS				
15.247 (a)(2)	6dB Bandwidth	PASS				
15.247 (b) Peak Output Power PASS						
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS				
15.247 (e)	Power Spectral Density	PASS				
15.247 (d) Band Edge Emission PASS		PASS				
15.247 (d) Spurious RF Conducted Emission PASS						
15.203	Antenna Requirement	PASS				

ACCREDITED

Certificate #4298.01

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

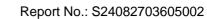
Site Description	
CNAS-Lab. :	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
-	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm :	Shenzhen NTEK Testing Technology Co., Ltd.
Site Location :	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

NTEK 北测


4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification					
Equipment	Smart Phone				
Trade Mark	OUKITEL				
FCC ID	2ANMU-C58				
Model No.	C58				
Family Model	C58 E, C58 S, C58 Pro, C58 Ultra				
Model Difference	All the model are the same circuit and RF module, except the model names.				
Operating Frequency	BLE 1M: 2402~2480 MHz BLE 2M: 2402~2480 MHz				
Modulation	GFSK				
Number of Channels	Please refer channel list				
Antenna Type	FPC Antenna				
Antenna Gain	2.58 dBi				
Adapter	Model: HJ-0502000N2-US Input: 100-240V~50/60Hz 0.3A Output: 5.0V2.0A 10.0W				
Battery	DC 3.87V, 5150mAh, 19.93Wh				
Power supply	DC 3.87V from battery or DC 5V from Adapter.				
HW Version	SC6019U_MB_V1.0.0				
SW Version	V02				

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Revision History

ACCREDITED

Certificate #4298.01

	К	Revision history							
Report No.	Version	Description	Issued Date						
S24082703605002	Rev.01	Initial issue of report	Oct. 09, 2024						

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps/2Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

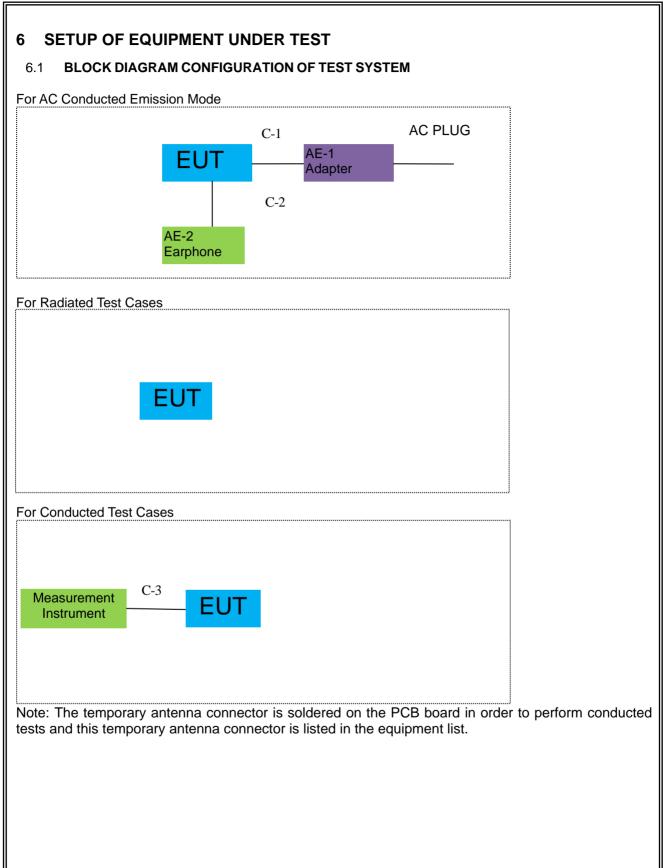
Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+kx2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Test Cases		
Test Item	Data Rate/ Modulation		
AC Conducted Emission	Mode 1: normal link mode		
	Mode 1: normal link mode		
Radiated Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps		
Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps		
	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps		
Conducted Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps		
Conducted Test	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps		
Cases	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps		


Note:

- 1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.
- 2. AC power line Conducted Emission was tested under maximum output power.
- 3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.
- 4. EUT built-in battery-powered, the battery is fully-charged.

lac.t

ACCRED

Certificate #4298.01

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ACC

Certificate #4298.01

Item	Equipment	Model/Type No.	Series No.	Note	
AE-1	Adapter	HJ-0502000N2-US	N/A	Peripherals	
AE-2	Earphone	N/A	N/A	Peripherals	

Item	Cable Type Shielded Type		Ferrite Core	Length	
C-1	Type-C Cable	NO	NO	1.0m	
C-2	Earphone Cable	NO	NO	1.2m	
C-3	RF Cable	YES	NO	0.1m	

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK 北测

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

	ond conducted	loot oquipinont					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Agilent	E4440A	MY41000130	2024.04.26	2025.04.25	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2024.04.25	2025.04.24	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2024.04.25	2025.04.24	1 year
4	Test Receiver	R&S	ESPI7	101318	2024.04.26	2025.04.25	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2024.05.12	2025.05.11	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2024.04.26	2027.04.25	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2024.05.12	2027.05.11	3 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2024.05.12	2027.05.11	3 year
9	Amplifier	EMC	EMC051835 SE	980246	2024.04.25	2025.04.24	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2024.05.17	2027.05.16	3 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2024.04.25	2025.04.24	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2023.05.06	2026.05.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2023.05.06	2026.05.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2024.04.26	2027.04.25	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2024.04.26	2025.04.25	1 year
2	LISN	R&S	ENV216	101313	2024.04.25	2025.04.24	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2024.04.25	2025.04.24	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2024.04.26	2027.04.25	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

ACCREL

Certificate #4298.01

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

Measurement Software

Item	Manufacturer	Software Name	Software Version	Description
1	MWRFtest	MTS 8310 2.4GHz/5GHz	2.0	RF Conducted Test
2	Farad	EZ-EMC_RE	AIT-03A	RadiatedTest
3	Farad	EZ-EMC_CE	AIT-03A	AC Conducted Test

NTEK 北测[®]

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

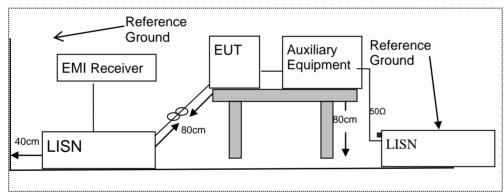
7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 **Conformance Limit**

Frequency(MHz)	Conducted Emission Limit		
Frequency(IVII IZ)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

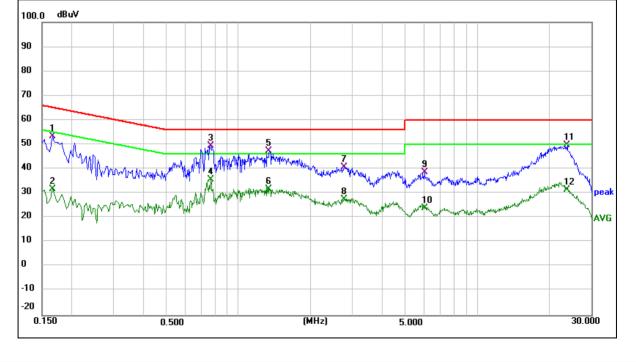
7.1.4 **Test Configuration**

7.1.5 **Test Procedure**

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

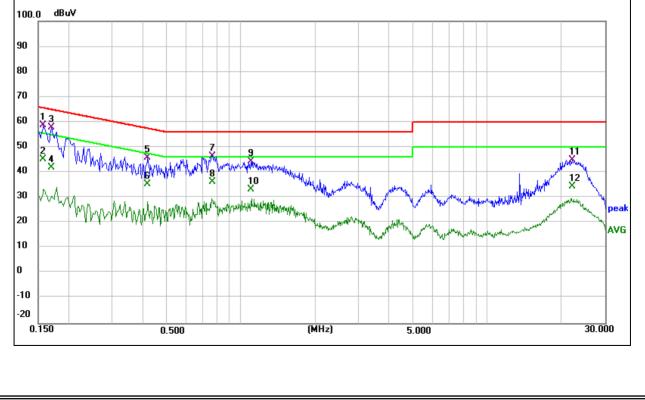
7.1.6 Test Results


EUT:	Smart Phone	Model Name :	C58
Temperature:	22 °C	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1660	43.27	9.97	53.24	65.16	-11.92	QP
0.1660	21.87	9.97	31.84	55.16	-23.32	AVG
0.7660	38.27	11.20	49.47	56.00	-6.53	QP
0.7660	24.49	11.20	35.69	46.00	-10.31	AVG
1.3420	34.88	12.34	47.22	56.00	-8.78	QP
1.3420	19.36	12.34	31.70	46.00	-14.30	AVG
2.7740	31.16	9.67	40.83	56.00	-15.17	QP
2.7740	17.88	9.67	27.55	46.00	-18.45	AVG
6.0140	29.00	9.68	38.68	60.00	-21.32	QP
6.0140	14.26	9.68	23.94	50.00	-26.06	AVG
23.7939	40.06	9.65	49.71	60.00	-10.29	QP
23.7939	21.74	9.65	31.39	50.00	-18.61	AVG

Remark:

1. All readings are Quasi-Peak and Average values.


EUT:	Smart Phone	Model Name :	C58
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domorik
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1580	48.77	9.95	58.72	65.57	-6.85	QP
0.1580	35.41	9.95	45.36	55.57	-10.21	AVG
0.1700	47.86	9.97	57.83	64.96	-7.13	QP
0.1700	32.05	9.97	42.02	54.96	-12.94	AVG
0.4180	35.35	10.49	45.84	57.49	-11.65	QP
0.4180	24.81	10.49	35.30	47.49	-12.19	AVG
0.7660	35.29	11.20	46.49	56.00	-9.51	QP
0.7660	24.95	11.20	36.15	46.00	-9.85	AVG
1.1019	32.37	11.86	44.23	56.00	-11.77	QP
1.1019	21.39	11.86	33.25	46.00	-12.75	AVG
22.1380	35.29	9.69	44.98	60.00	-15.02	QP
22.1380	24.81	9.69	34.50	50.00	-15.50	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 **RADIATED SPURIOUS EMISSION**

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

Certificate #4298.01

MHz	MHz	GHz		
16.42-16.423	399.9-410	4.5-5.15		
16.69475-16.69525	608-614	5.35-5.46		
16.80425-16.80475	960-1240	7.25-7.75		
25.5-25.67	1300-1427	8.025-8.5		
37.5-38.25	1435-1626.5	9.0-9.2		
73-74.6	1645.5-1646.5	9.3-9.5		
74.8-75.2	1660-1710	10.6-12.7		
123-138	2200-2300	14.47-14.5		
149.9-150.05	2310-2390	15.35-16.2		
156.52475-156.52525	2483.5-2500	17.7-21.4		
156.7-156.9	2690-2900	22.01-23.12		
162.0125-167.17	3260-3267	23.6-24.0		
167.72-173.2	3332-3339	31.2-31.8		
240-285	3345.8-3358	36.43-36.5		
322-335.4	3600-4400	(2)		
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358		

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Eroguopov(MHz)	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

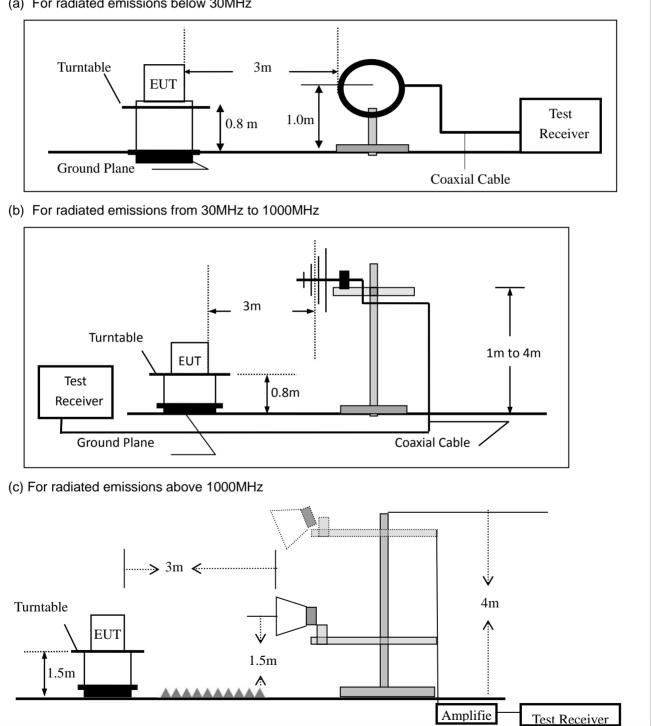
Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.


Certificate #4298.01

7.2.3 **Measuring Instruments**

The Measuring equipment is listed in the section 6.3 of this test report.

Test Configuration 7.2.4

(a) For radiated emissions below 30MHz

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

Certificate #4298.0

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

eee are renowing opeca an analyzer beamge.				
Spectrum Parameter	Setting			
Attenuation	Auto			
Start Frequency	1000 MHz			
Stop Frequency	10th carrier harmonic			
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average			

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Certificate #4298.01

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth		
30 to 1000	QP	120 kHz	300 kHz		
Above 4000	Peak	1 MHz	1 MHz		
Above 1000	Average	1 MHz	1 MHz		

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

Spurious Emission below 30MHz (9KHz to 30)
--

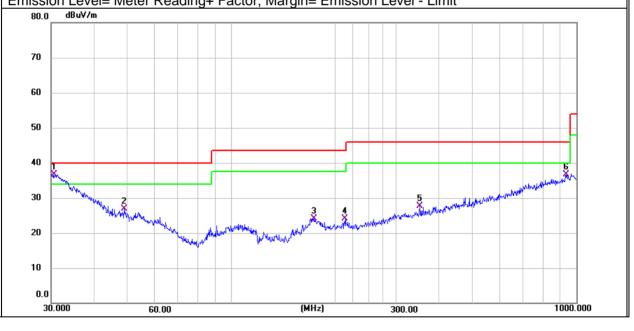
EUT:	Smart Phone	Model No.:	C58
Temperature:	20 ℃	Relative Humidity:	48%
Lest Mode.	Mode1/Mode2/Mode3/ Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK AV		PK	PK AV		AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

EUT:	Smart Phone	Model Name :	C58
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	Mode 3
Test Voltage :	DC 3.87V		


ACCREDITED

Certificate #4298.01

Polar	Frequency	Meter Reading	Factor	Factor Emission Level		Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	30.7450	20.11	16.58	36.69	40.00	-3.31	QP
V	48.8430	7.40	19.54	26.94	40.00	-13.06	QP
V	173.8140	8.57	15.53	24.10	43.50	-19.40	QP
V	213.7630	6.31	17.86	24.17	43.50	-19.33	QP
V	351.7080	6.14	21.59	27.73	46.00	-18.27	QP
V	938.8320	6.11	30.52	36.63	46.00	-9.37	QP

Remark

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	48.3320	5.63	19.54	25.17	40.00	-14.83	QP
Н	60.9170	5.31	18.52	23.83	40.00	-16.17	QP
Н	111.3470	4.86	17.38	22.24	43.50	-21.26	QP
Н	175.6520	10.22	15.69	25.91	43.50	-17.59	QP
Н	340.7820	5.28	21.37	26.65	46.00	-19.35	QP
Н	952.0940	5.58	30.66	36.24	46.00	-9.76	QP
	n Level= Meter F	Reading+ Fac	tor, Margin	= Emission Le	vel - Limit		
80.0	dBuV/m						
70 -							
50 -							
40						- utrouver	n
30 -	unignalization from the second second	2	3 	the second standard	Murth month wards	und for the second	
20 🛚	(wallout the second	and manufacture and the second	many water water	e uzwacantana			
10							
0.0							
30.	000 6	0.00	()	MHz) (300.00		1000.000

ACCREDITED

Certificate #4298.01

EUT:		Smart Pho	one		Model No.:		C58	5			
Temperatu	ure:	20 ℃			Relative Hu	midity:	48%	48%			
Test Mode	:	Mode2/Mo	ode3/Mode	94	Test By:		Allen Liu				
		_									
Frequency	Read Level	Cable loss	Antenna Factor	Pream Facto		n Limit	ts	Margin	Remark	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/r	n) (dBµV	/m)	(dB)			
		r	Low	Channel	(2402 MHz)(C	FSK)Abov	e 1G			1	
4804.338	62.37	5.21	35.59	44.30	0 58.87	74.0	0	-15.13	Pk	Vertical	
4804.338	41.20	5.21	35.59	44.30	0 37.70	54.0	0	-16.30	AV	Vertical	
7206.107	60.20	6.48	36.27	44.60	0 58.35	74.0	0	-15.65	Pk	Vertical	
7206.107	42.42	6.48	36.27	44.60	0 40.57	54.0	0	-13.43	AV	Vertical	
4804.169	64.21	5.21	35.55	44.30	0 60.67	74.0	0	-13.33	Pk	Horizontal	
4804.169	41.91	5.21	35.55	44.30	0 38.37	54.0	0	-15.63	AV	Horizontal	
7206.214	62.08	6.48	36.27	44.52	2 60.31	74.0	0	-13.69	Pk	Horizontal	
7206.214	41.17	6.48	36.27	44.52	2 39.40	54.0	0	-14.60	AV	Horizontal	
Mid Channel (2440 MHz)(GFSK)Above 1G											
4880.473	62.48	5.21	35.66	44.20	0 59.15	74.0	0	-14.85	Pk	Vertical	
4880.473	42.76	5.21	35.66	44.20	0 39.43	54.0	0	-14.57	AV	Vertical	
7320.265	65.25	7.10	36.50	44.43	3 64.42	74.0	0	-9.58	Pk	Vertical	
7320.265	42.08	7.10	36.50	44.43	3 41.25	54.0	0	-12.75	AV	Vertical	
4880.366	61.96	5.21	35.66	44.20	0 58.63	74.0	0	-15.37	Pk	Horizontal	
4880.366	41.84	5.21	35.66	44.20	0 38.51	54.0	0	-15.49	AV	Horizontal	
7320.234	61.00	7.10	36.50	44.43	3 60.17	74.0	0	-13.83	Pk	Horizontal	
7320.234	44.35	7.10	36.50	44.43	3 43.52	54.0	0	-10.48	AV	Horizontal	
			High	Channel	(2480 MHz)(G	FSK) Abov	/e 1G				
4960.482	64.39	5.21	35.52	44.2	1 60.91	74.0	0	-13.09	Pk	Vertical	
4960.482	42.27	5.21	35.52	44.2	1 38.79	54.0	0	-15.21	AV	Vertical	
7440.131	63.75	7.10	36.53	44.60	0 62.78	74.0	0	-11.22	Pk	Vertical	
7440.131	50.02	7.10	36.53	44.60	0 49.05	54.0	0	-4.95	AV	Vertical	
4960.326	63.22	5.21	35.52	44.2 ⁻	1 59.74	74.0	0	-14.26	Pk	Horizontal	
4960.326	44.26	5.21	35.52	44.2	1 40.78	54.0	0	-13.22	AV	Horizontal	
7440.199	64.33	7.10	36.53	44.60	0 63.36	74.0	0	-10.64	Pk	Horizontal	
7440.199	45.99	7.10	36.53	44.60	0 45.02	54.0	0	-8.98	AV	Horizontal	

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2)All other emissions more than 20dB below the limit.

(3)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

Spurious	Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz										
EUT:	Smart F	Phone			Model No.:		C58				
Temperature:	perature: 20 ℃					Relative Humidity:		48%			
Test Mode:	de: Mode2/ Mode4				Test E	By:		Allen	Liu		
Frequency	Meter Reading	Cable Loss	Antenna Factor		reamp Emission actor Level		Lir	nits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(0	dB)	(dBµV/m)	(dB	uV/m)	(dB)	Туре	
	1Mbps(GFSK)										
2310.00	73.56	2.97	27.80	43	3.80	60.53	-	74	-13.47	Pk	Horizontal
2310.00	52.66	2.97	27.80	43	3.80	39.63		54	-14.37	AV	Horizontal
2310.00	72.33	2.97	27.80	43	43.80 59.30		7	74	-14.70	Pk	Vertical
2310.00	52.20	2.97	27.80	43	3.80	39.17	Ę	54	-14.83	AV	Vertical
2390.00	74.28	3.14	27.21	43	3.80	60.83	7	74	-13.17	Pk	Vertical
2390.00	53.96	3.14	27.21	43	3.80	40.51	Ę	54	-13.49	AV	Vertical
2390.00	73.97	3.14	27.21	43	3.80	60.52	-	74	-13.48	Pk	Horizontal
2390.00	52.47	3.14	27.21	43	3.80	39.02	Ę	54	-14.98	AV	Horizontal
2483.50	71.46	3.58	27.70	44	4.00	58.74	7	74	-15.26	Pk	Vertical
2483.50	52.82	3.58	27.70	44	4.00	40.10	Ę	54	-13.90	AV	Vertical
2483.50	74.33	3.58	27.70	44	4.00	61.61	7	74	-12.39	Pk	Horizontal
2483.50	54.11	3.58	27.70	44	4.00	41.39	Ę	54	-12.61	AV	Horizontal

~ · · ·

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

Spurious	Spurious Emission in Restricted Band 3260MHz-18000MHz												
EUT:	S	mart	Phone		I	Model	No.:		C58	C58			
Temperature	emperature: 20 °C					Relativ	e Humidity	:	48%				
Test Mode:	est Mode: Mode2/ Mode4			-	Test B	y:		Allen I	_iu				
Frequency	Readi Leve	0	Cable Loss	Antenna Factor		eamp actor	Emission Level	Li	imits	Margin	Detector	Comment	
(MHz)	(dBµ'	V)	(dB)	dB/m	(dB)	(dBµV/m)	(dB	μV/m)	(dB)	Туре		
3260	64.5	55	4.04	29.57	4	4.70	53.46		74	-20.54	Pk	Vertical	
3260	58.1	1	4.04	29.57	4	4.70	47.02		54	-6.98	AV	Vertical	
3260	66.2	26	4.04	29.57	4	4.70	55.17		74	-18.83	Pk	Horizontal	
3260	58.2	26	4.04	29.57	4	4.70	47.17		54	-6.83	AV	Horizontal	
3332	65.4	9	4.26	29.87	4	4.40	55.22		74	-18.78	Pk	Vertical	
3332	56.6	51	4.26	29.87	4	4.40	46.34		54	-7.66	AV	Vertical	
3332	65.4	1	4.26	29.87	4	4.40	55.14		74	-18.86	Pk	Horizontal	
3332	52.1	7	4.26	29.87	4	4.40	41.90		54	-12.10	AV	Horizontal	
17797	46.0)1	10.99	43.95	4	3.50	57.45		74	-16.55	Pk	Vertical	
17797	34.6	63	10.99	43.95	4	3.50	46.07		54	-7.93	AV	Vertical	
17788	44.1	1	11.81	43.69	4	4.60	55.01		74	-18.99	Pk	Horizontal	
17788	37.1	0	11.81	43.69	4	4.60	48.00		54	-6.00	AV	Horizontal	

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

Certificate #4298.01

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 **Test Procedure**

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Smart Phone	Model No.:	C58
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 **Conformance Limit**

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 **Test Procedure**

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

Certificate #4298.01

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 **Test Results**

EUT:	Smart Phone	Model No.:	C58
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

ACCREDITED

Certificate #4298.01

7.5 PEAK OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

Certificate #4298.01

7.5.2 **Conformance Limit**

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 **Test Procedure**

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 **Test Results**

EUT:	Smart Phone	Model No.:	C58
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 **Conformance Limit**

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 **Test Procedure**

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5*DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Smart Phone	Model No.:	C58
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 **Conformance Limit**

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 **Test Procedure**

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Smart Phone	Model No.:	C58
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Allen Liu

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 **Conformance Limit**

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

Certificate #4298.01

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 **Test Procedure**

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 26.5GHz.

7.8.5 **Test Results**

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 **Result**

The EUT antenna is permanent attached FPC Antenna (Gain:2.58Bi). It comply with the standard requirement.

8 TEST RESULTS

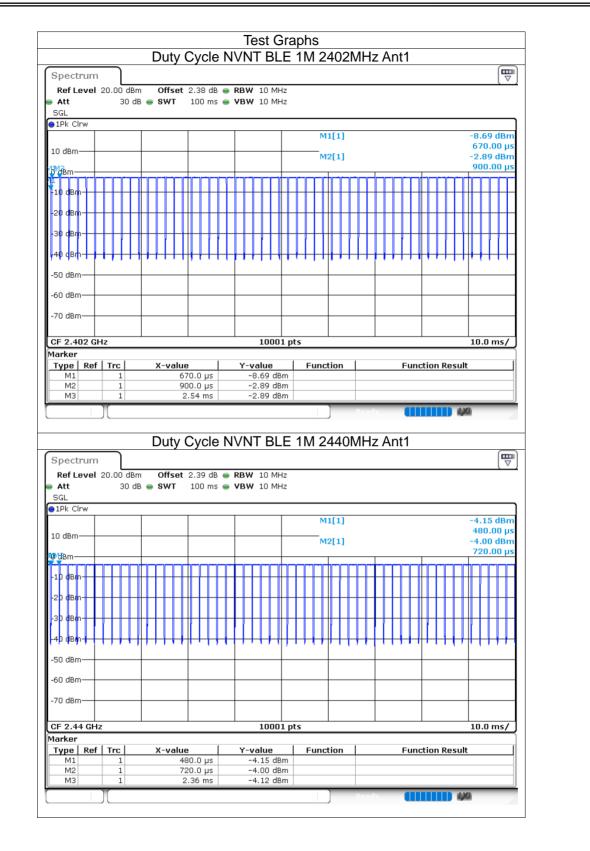
8.1 **1M**

8.1.1 **Duty Cycle**

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 1M	2402	Ant1	88.08	0.55	0.61
NVNT	BLE 1M	2440	Ant1	87.93	0.56	0.61
NVNT	BLE 1M	2480	Ant1	87.81	0.56	0.61

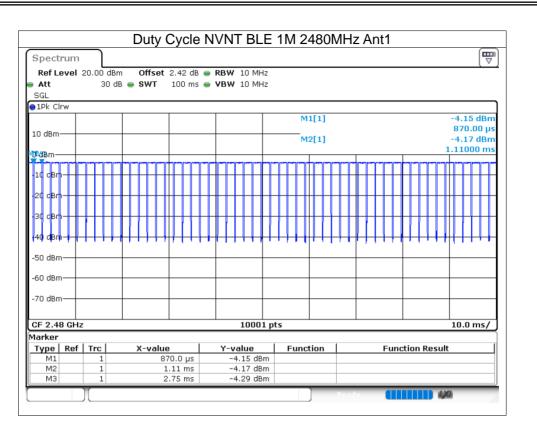
ACCREDITED

Certificate #4298.01



ilac-MR/

ACCREDITED

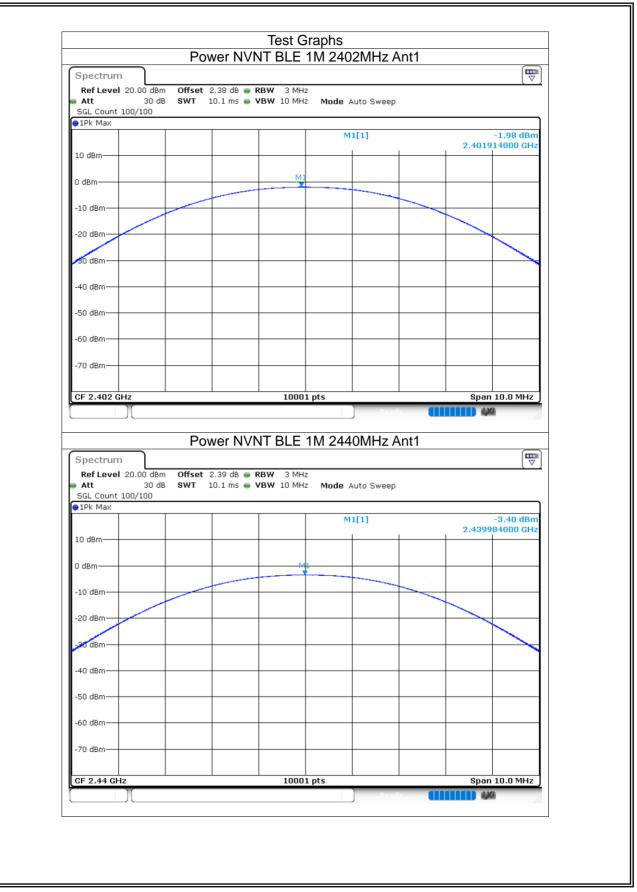

Certificate #4298.01

Report No.: S24082703605002

Report No.: S24082703605002

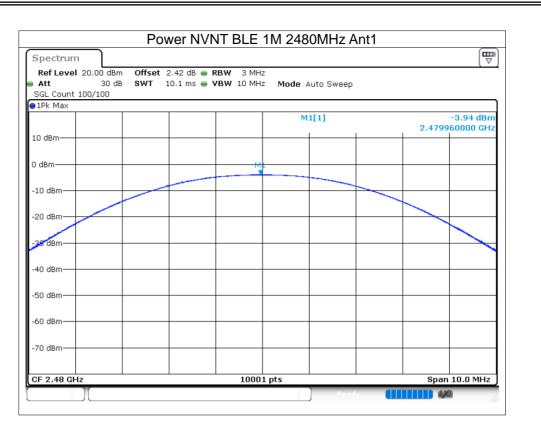
ACCREDITED

Certificate #4298.01



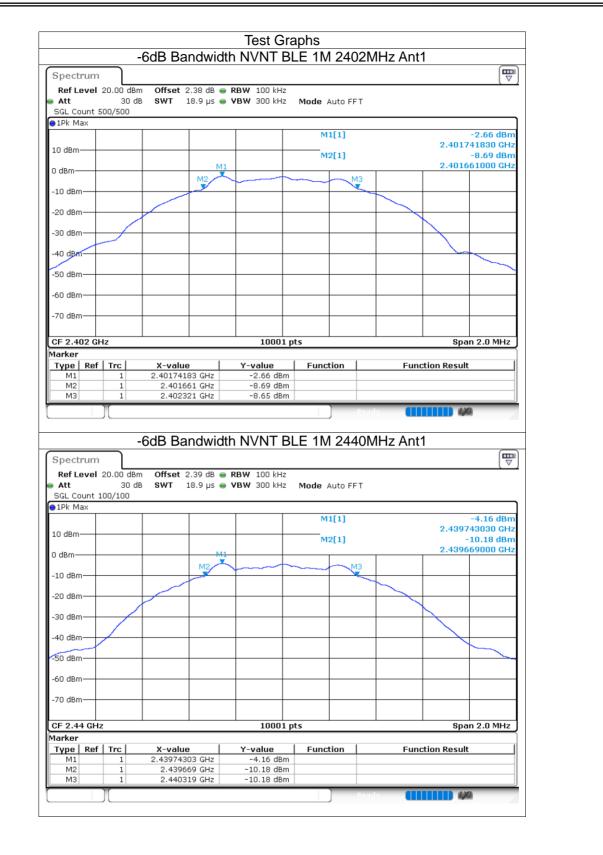
8.1.2 Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-1.98	30	Pass
NVNT	BLE 1M	2440	Ant1	-3.4	30	Pass
NVNT	BLE 1M	2480	Ant1	-3.94	30	Pass


ACCRED

ACCREDITED

ACCREDITED



8.1.3 -6dB Bandwidth

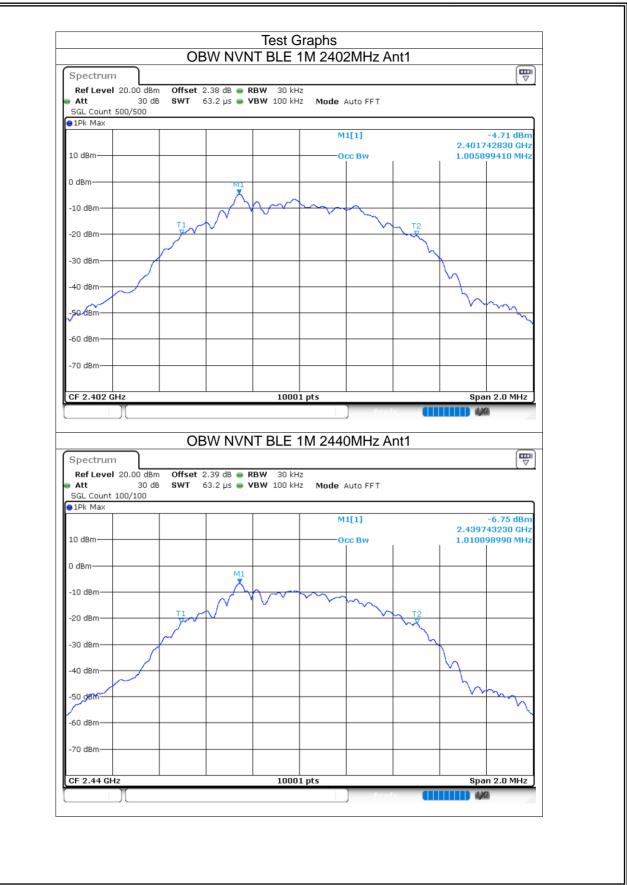
Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	0.66	0.5	Pass
NVNT	BLE 1M	2440	Ant1	0.649	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.659	0.5	Pass

ACCREDITED

pectrum								
Ref Level	20.00 dB	m Offset 2	.42 dB 😑	RBW 100 kHz				(*
Att	30 c		_		Mode Auto FFT			
GGL Count 1	.00/100		-					
1Pk Max								
					M1[1]			-4.21 dBm
0 dBm								12230 GHz
					M2[1]			10.20 dBm 51000 GHz
dBm		+					2.4790	51000 GHZ
			M2		M3			
10 dBm						\checkmark		
20 dBm								
30 dBm	/							
40 dBm	/							
								~~~~~
50 dBm		+ +						
50 dBm								
70 dBm								
F 2.48 GHz	2			10001 pt	s		Spar	1 2.0 MHz
arker								
Fype   Ref	Trc	X-value		Y-value	Function	Func	tion Result	
M1	1	2.4797422		-4.21 dBm				
M2 M3	1	2.47966	1 GHz	-10.20 dBm -10.21 dBm				

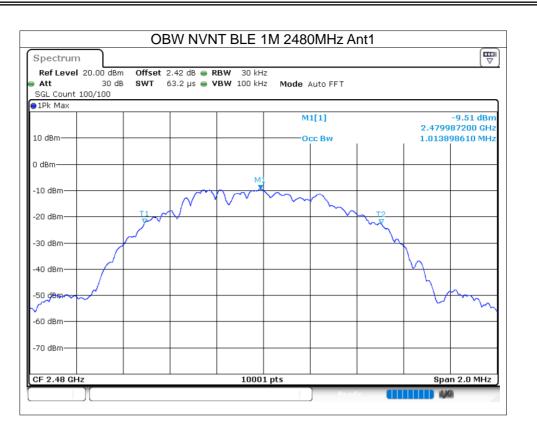
ACCREDITED






# 8.1.4 Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.006
NVNT	BLE 1M	2440	Ant1	1.01
NVNT	BLE 1M	2480	Ant1	1.014


ACCREDITED





ACCREDITED





ACCREDITED





## 8.1.5 Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-19.23	8	Pass
NVNT	BLE 1M	2440	Ant1	-20.71	8	Pass
NVNT	BLE 1M	2480	Ant1	-21.16	8	Pass

ACCREL



Spectrum Ref Level 20.0			RBW 3 kHz VBW 10 kHz		uto FFT			
SGL Count 1000/								
●1Pk Max				M1[	[1]			-19.23 dBm
10 - 10						I		835820 GHz
10 dBm								
0 dBm								
-10 dBm		_						
00.45		M1						
-20 dBm	an month	white	warnan	^w ww.www.de	lypoptang	Manufan	men all	
-30vdBr#							1 . WWW	Monter
-40 dBm								
-40 UBIII								
-50 dBm								
-60 dBm								
-00 ubiii								
-70 dBm								
CF 2.402 GHz			1001					990.0 kHz
					Read	v <b>()</b>		
			IT BLE 1	M 2440	Read MHz Ar	nt1		
Ref Level 20.00 Att SGL Count 1000/	D dBm Offset 30 dB SWT	: 2.39 dB 👄		M 2440		nt1		
Ref Level 20.00 Att SGL Count 1000/	D dBm Offset 30 dB SWT	: 2.39 dB 👄	IT BLE 1 RBW 3 kHz	M 2440	uto FFT	nt1		-20.71 dBm
Ref Level 20.00 Att SGL Count 1000/ 1Pk Max	D dBm Offset 30 dB SWT	: 2.39 dB 👄	IT BLE 1 RBW 3 kHz	M 2440N	uto FFT	nt1		
Ref Level 20.00           Att           SGL Count 1000/           1Pk Max           10 dBm	D dBm Offset 30 dB SWT	: 2.39 dB 👄	IT BLE 1 RBW 3 kHz	M 2440N	uto FFT	nt1		-20.71 dBm
Ref Level 20.00           Att           SGL Count 1000/           1Pk Max           10 dBm	D dBm Offset 30 dB SWT	: 2.39 dB 👄	IT BLE 1 RBW 3 kHz	M 2440N	uto FFT	nt1		-20.71 dBm
Ref Level         20.01           Att         SGL Count         1000/           1Pk Max         10 dBm         10 dBm	D dBm Offset 30 dB SWT	: 2.39 dB 👄	IT BLE 1 RBW 3 kHz	M 2440N	uto FFT	nt1		-20.71 dBm
Att SGL Count 1000/ 1Pk Max 10 dBm 0 dBm -10 dBm	0 dBm Offset 30 dB SWT 1000	2.39 dB 632.2 μs	JT BLE 1 RBW 3 kH2 VBW 10 kH2	M 2440M 2 Mode Au M1	uto FFT		2.439	-20.71 dBm 335640 GHz
Ref Level         20.00           Att         SGL Count         1000/           IPk Max         10 dBm         10 dBm           0 dBm         -10 dBm         -10 dBm	0 dBm Offset 30 dB SWT 1000	2.39 dB 632.2 μs	JT BLE 1 RBW 3 kH2 VBW 10 kH2	M 2440M 2 Mode Au M1	uto FFT		2.439	-20.71 dBm 335640 GHz
Ref Level         20.00           Att         SGL Count         1000/           IPk Max         10 dBm         10 dBm           0 dBm         -10 dBm         -10 dBm	0 dBm Offset 30 dB SWT 1000	: 2.39 dB 632.2 μs	JT BLE 1 RBW 3 kH2 VBW 10 kH2	M 2440M 2 Mode Au M1	uto FFT		2.439	-20.71 dBm 335640 GHz
Ref Level         20.00           Att         SGL Count         1000/           1Pk Max         10         10           10 dBm         -0         -0         0           -20 dBm         -30 dBm         -30 dBm         -30 dBm	0 dBm Offset 30 dB SWT 1000	: 2.39 dB 632.2 μs	JT BLE 1 RBW 3 kH2 VBW 10 kH2	M 2440M 2 Mode Au M1	uto FFT		2.439	-20.71 dBm 335640 GHz
Ref Level         20.00           Att         SGL Count         1000/           IPk Max         10 dBm         10 dBm           0 dBm         -10 dBm         -10 dBm	0 dBm Offset 30 dB SWT 1000	: 2.39 dB 632.2 μs	JT BLE 1 RBW 3 kH2 VBW 10 kH2	M 2440M 2 Mode Au M1	uto FFT		2.439	-20.71 dBm 335640 GHz
Ref Level         20.00           Att         SGL Count         1000/           1Pk Max         10         10           10 dBm         -0         -0         0           -20 dBm         -30 dBm         -30 dBm         -30 dBm	0 dBm Offset 30 dB SWT 1000	: 2.39 dB 632.2 μs	JT BLE 1 RBW 3 kH2 VBW 10 kH2	M 2440M 2 Mode Au M1	uto FFT		2.439	-20.71 dBm 335640 GHz
Ref Level         20.00           Att         SGL Count         1000/           SGL Count         1000/         1000/           IPk Max         0         0         0           10 dBm         -         -         -           -10 dBm         -         -         -           -20 dBm         -         -         -           -30 dBm         -         -         -           -40 dBm         -         -         -           -50 dBm         -         -         -	0 dBm Offset 30 dB SWT 1000	: 2.39 dB 632.2 μs	JT BLE 1 RBW 3 kH2 VBW 10 kH2	M 2440M 2 Mode Au M1	uto FFT		2.439	-20.71 dBm 335640 GHz
Ref Level         20.00           Att         SGL Count         1000/           1Pk Max         10         10           1D dBm         0         0         0           -10 dBm         -0         -0         0           -20 dBm         -0         -0         -0           -40 dBm         -0         -0         -0	0 dBm Offset 30 dB SWT 1000	: 2.39 dB 632.2 μs	JT BLE 1 RBW 3 kH2 VBW 10 kH2	M 2440M 2 Mode Au M1	uto FFT		2.439	-20.71 dBm 335640 GHz
Ref Level         20.00           Att         SGL Count         1000/           1Pk Max         10         10           1D dBm         -0         0         0           -10 dBm         -0         -0         -0           -20 dBm         -0         -0         -0           -30 dBm         -0         -0         -0           -40 dBm         -0         -0         -0	0 dBm Offset 30 dB SWT 1000	: 2.39 dB 632.2 μs	JT BLE 1 RBW 3 kH2 VBW 10 kH2	M 2440M 2 Mode Au M1	uto FFT		2.439	-20.71 dBm 335640 GHz
Ref Level         20.00           Att         SGL Count         1000/           SGL Count         1000/         1000/           IPk Max         10         0 dBm         10           10 dBm         -0         0 dBm         -0         -0           -20 dBm         -0         -0         -0         -0         -0           -30 dBm         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0	0 dBm Offset 30 dB SWT 1000	: 2.39 dB 632.2 μs	JT BLE 1	M 2440N 2 Mode Au M1	uto FFT		2.439	-20.71 dBm 835640 GHz
Ref Level         20.00           Att         SGL Count         1000/           SGL Count         1000/         1000/           IPk Max         10         0 dBm         10           10 dBm         -0         0 dBm         -0         0 dBm           -20 dBm         -30 dBm         -40 dBm         -50 dBm         -50 dBm         -60 dBm	0 dBm Offset 30 dB SWT 1000	: 2.39 dB 632.2 μs	JT BLE 1 RBW 3 kH2 VBW 10 kH2	M 2440N 2 Mode Au M1	uto FFT		2.439	-20.71 dBm 835640 GHz

ACCREDITED



	NT BLE 1M 2480MHz Ant	
Spectrum		
Ref Level 20.00 dBm Offset 2.42 dB	_	
•	VBW 10 kHz Mode Auto FFT	
SGL Count 1000/1000 1Pk Max		
	M1[1]	-21.16 dBm
		2.479835090 GHz
10 dBm		
) dBm		
-10 dBm		
M1		
	man and a second second	
-20 dBm- -30 dBm	a search lower a secondoral physical and	Who who many and
-30 dBm		Mar and a second
nor .		
-40 dBm		
-50 dBm		
-60 dBm		
70 dBm		
CF 2.48 GHz	1001 pts	Span 988.5 kHz

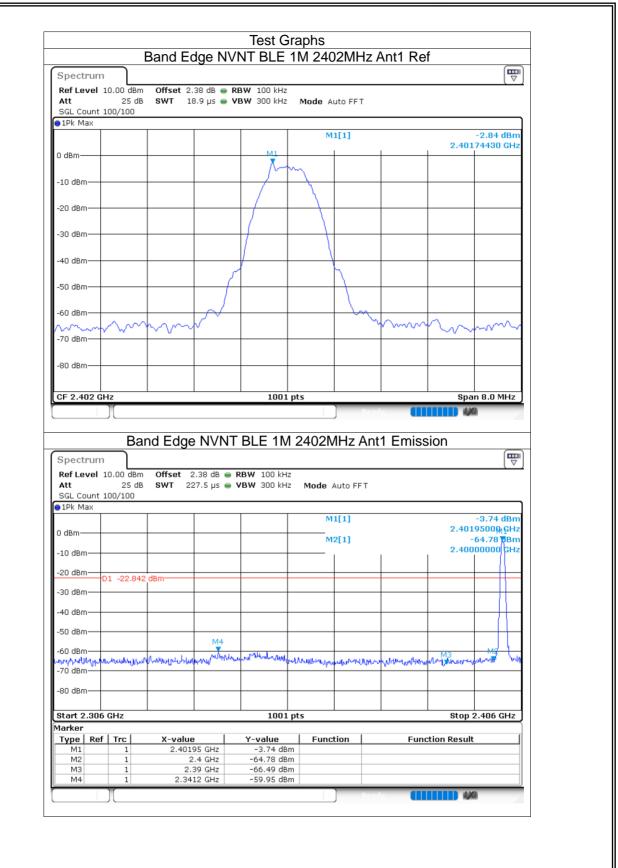
ACCREDITED





## 8.1.6 Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-57.11	-20	Pass
NVNT	BLE 1M	2480	Ant1	-57.43	-20	Pass




ilac-MR

ACCREDITED

Certificate #4298.01

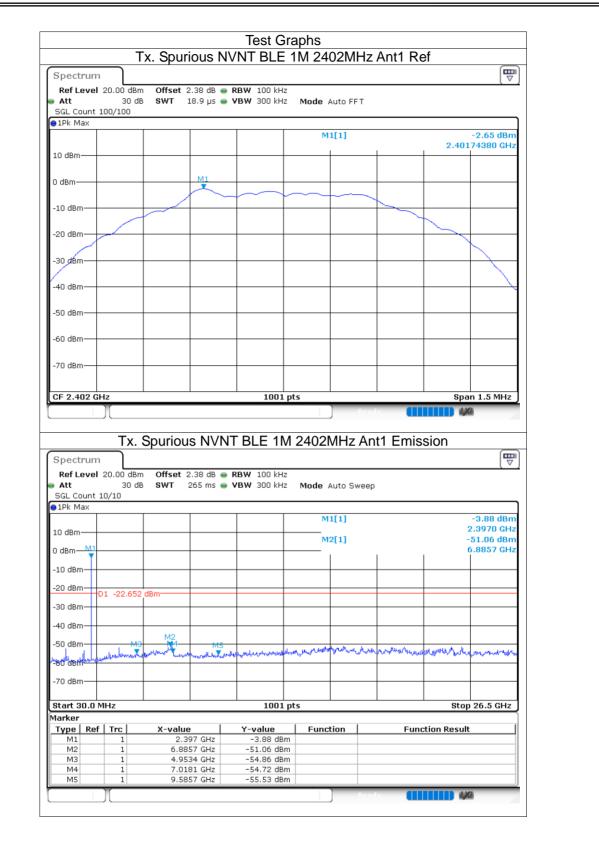
### Report No.: S24082703605002





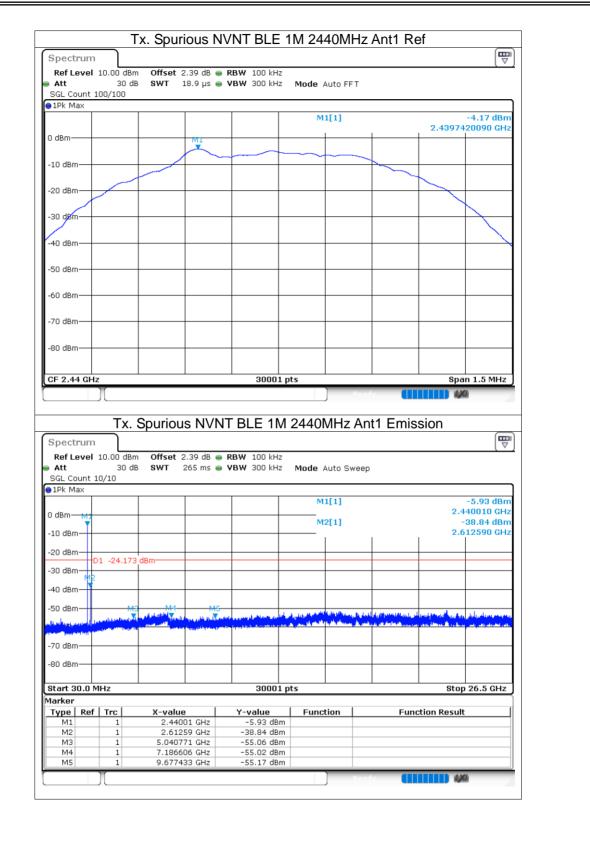
Ref Level         10.00 dBm           Att         25 dB           SGL Count         100/100		B 👄 <b>RBW</b> 100 kHz Is 👄 <b>VBW</b> 300 kHz		uto FFT			
1Pk Max	1	1 1					
			м	1[1]		2.479	-4.62 dBm 74430 GHz
0 dBm		M1					
-10 dBm		^~	m -				
-10 dBm							
-20 dBm			-				
-30 dBm		/					
-40 dBm							
			(				
-50 dBm							
-60 dBm							
	hann	M			m	m	m
-70 dBm						~ v	
-80 dBm							
CF 2.48 GHz		1001	pts			Spa	n 8.0 MHz
				R C a C			
				)			////
Ba			124801	/Uz Ant	1 Emice	ion	
	and Edge N	VNT BLE 1M	1 2480N	/Hz Ant	1 Emiss	sion	
Spectrum				/Hz Ant	1 Emiss	ion	
Spectrum RefLevel 10.00 dBm Att 25 dB	n Offset 2.42		Z		1 Emiss	sion	
Spectrum Ref Level 10.00 dBm Att 25 dE SGL Count 100/100	n Offset 2.42	dB 曼 RBW 100 kH:	Z		1 Emiss	sion	
Spectrum Ref Level 10.00 dBm Att 25 dE SGL Count 100/100	n Offset 2.42	dB 曼 RBW 100 kH:	z z <b>Mode</b> /		1 Emiss		-5.43 dBm
Spectrum Ref Level 10.00 dBn Att 25 dE SGL Count 100/100 1Pk Max	n Offset 2.42	dB 曼 RBW 100 kH:	z Mode / Mode /	Auto FFT 1[1]	1 Emiss	2.480	-5.43 dBm 25000 GHz
Spectrum Ref Level 10.00 dBm Att 25 dE SGL Count 100/100 1Pk Max 0 dBm	n Offset 2.42	dB 曼 RBW 100 kH:	z Mode / Mode /	Auto FFT	1 Emiss	2.480	-5.43 dBm
Spectrum           Ref Level 10.00 dBm           Att 25 dE           SGL Count 100/100           1Pk Max           0 dBm           -10/dBm	n Offset 2.42	dB 曼 RBW 100 kH:	z Mode / Mode /	Auto FFT 1[1]	1 Emiss	2.480	-5.43 dBm 25000 GHz 63.64 dBm
Spectrum           Ref Level 10.00 dBm           Att 25 dE           SGL Count 100/100           1Pk Max           0 dBm           -10 dBm           -20 dBm           D1 -24.61	n Offset 2.42 3 SWT 227.5	dB 曼 RBW 100 kH:	z Mode / Mode /	Auto FFT 1[1]	1 Emiss	2.480	-5.43 dBm 25000 GHz 63.64 dBm
Spectrum           Ref Level 10.00 dBm           Att 25 dE           SGL Count 100/100           IPk Max           0 dBm           -10 dBm           -20 dBm           D1 -24.61	n Offset 2.42 3 SWT 227.5	dB 曼 RBW 100 kH:	z Mode / Mode /	Auto FFT 1[1]	1 Emiss	2.480	-5.43 dBm 25000 GHz 63.64 dBm
Spectrum           Ref Level 10.00 dBn           Att         25 dE           SGL Count 100/100           IPk Max           0 dBm           -10 dBm           -20 dBm	n Offset 2.42 3 SWT 227.5	dB 曼 RBW 100 kH:	z Mode / Mode /	Auto FFT 1[1] 2[1]	1 Emiss	2.480 - 2.483	-5.43 dBm 25000 GHz 63.64 dBm
Spectrum           Ref Level 10.00 dBn           Att 25 dE           SGL Count 100/100           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm	n Offset 2.42 3 SWT 227.5	dB 曼 RBW 100 kH:	z Mode / Mode /	Auto FFT 1[1] 2[1]	1 Emiss	2.480	-5.43 dBm 25000 GHz 63.64 dBm
Spectrum           Ref Level 10.00 dBm           Att 25 dE           SGL Count 100/100           IPk Max           0 dBm           -10 dBm           -20 dBm           -30 cBm           -40 dBm           -50 dBm	n Offset 2.42 3 SWT 227.5	dB ● RBW 100 kH; µs ● VBW 300 kH;	z Mode / Mode /	Auto FFT 1[1] 2[1]	1 Emiss	2.480	-5.43 dBm 25000 GHz 63.64 dBm 50000 GHz
Spectrum           Ref Level 10.00 dBn           Att 25 dE           SGL Count 100/100           1Pk Max           0 dBm           -10 dBm           -20 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm	n Offset 2.42 3 SWT 227.5	dB 曼 RBW 100 kH:	z Mode / Mode /	Auto FFT  1[1] 2[1]	1 Emiss	2.480	-5.43 dBm 25000 GHz 63.64 dBm
Spectrum           Ref Level 10.00 dBn           SGL Count 100/100           PIPk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -50 dBm           -70 dBm           -70 dBm	n Offset 2.42 3 SWT 227.5	dB ● RBW 100 kH; µs ● VBW 300 kH;	Z Mode /	Auto FFT  1[1] 2[1]		2.480	-5.43 dBm 25000 GHz 63.64 dBm 50000 GHz
Spectrum           Ref Level 10.00 dBn           SGL Count 100/100           PIPk Max           D dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -50 dBm           -70 dBm           -70 dBm	n Offset 2.42 3 SWT 227.5	dB ● RBW 100 kH; µs ● VBW 300 kH;	Z Mode /	Auto FFT  1[1] 2[1]		2.480	-5.43 dBm 25000 GHz 63.64 dBm 50000 GHz
Spectrum           Ref Level 10.00 dBm           Att 25 df           SGL Count 100/100           IPk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm           -60 dBm           -60 dBm           -70 dBm	n Offset 2.42 3 SWT 227.5	dB • RBW 100 kH; μs • VBW 300 kH;	2 Mode /	Auto FFT  1[1] 2[1]		2.480 2.483	-5.43 dBm 25000 GHz 63.64 dBm 50000 GHz
Spectrum           Ref Level 10.00 dBm           Att 25 dE           SGL Count 100/100           1Pk Max           0 dBm           -10 dBm           -20 dBm           -20 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm           -60 dBm           -50 dBm	n Offset 2.42 3 SWT 227.5	dB ● RBW 100 kH; µs ● VBW 300 kH;	2 Mode /	Auto FFT  1[1] 2[1]		2.480 2.483	-5.43 dBm 25000 GHz 63.64 dBm 50000 GHz
Spectrum           Ref Level 10.00 dBn           Att 25 df           SGL Count 100/100           1Pk Max           0 dBm           -10 dBm           -20 dBm           -20 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm           -60 dBm/104           -60 dBm/104           -60 dBm/104           -70 dBm           -80 dBm           -80 dBm           -70 dBm<	n Offset 2.42 3 SWT 227.5 7 dBm 7 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	dB • RBW 100 kH; µs • VBW 300 kH; 	z Mode / M M M M P M M M M M M M M M M M M M M	Auto FFT  1[1] 2[1]	a varden og Varder og	2.480 2.483	-5.43 dBm 25000 GHz 63.64 dBm 50000 GHz
Spectrum           Ref Level 10.00 dBm           Att 25 dE           SGL Count 100/100           IPk Max           0 dBm           -10 dBm           -20 dBm           -20 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm           -60 dBm(2 ^{MH} )           -60 dBm(2 ^{MH} )           -60 dBm           -50 dBm           -50 dBm           -60 dBm(2 ^{MH} )           -60 dBm           -60 dBm           -70 dBm           -80 dBm           -90 Ref Trc           M1 1           1	n Offset 2.42 3 SWT 227.5	dB ● RBW 100 kH; µs ● VBW 300 kH;	2 2 Mode / M س س pts	Auto FFT  1[1] 2[1]	a varden og Varder og	2.480 2.483	-5.43 dBm 25000 GHz 63.64 dBm 50000 GHz
Spectrum           Ref Level 10.00 dBm           Att 25 dE           SGL Count 100/100           1Pk Max           0 dBm           -10 dBm           -20 dBm           -20 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm           -60 dBm           -50 dBm           -60 dBm           -50 dBm           -50 dBm           -60 dBm           -50 dBm           -50 dBm           -60 dBm           -60 dBm           -70 dBm           -80 dBm           -80 dBm           -80 dBm           -90 dBm           -10 dBm	n Offset 2.42 3 SWT 227.5	dB ● RBW 100 kH; µs ● VBW 300 kH;	z Mode / M M M M M M M M M M M	Auto FFT  1[1] 2[1]	a varden og Varder og	2.480 2.483	-5.43 dBm 25000 GHz 63.64 dBm 50000 GHz

ACCREDITED






## 8.1.7 Conducted RF Spurious Emission


Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-48.4	-20	Pass
NVNT	BLE 1M	2440	Ant1	-34.67	-20	Pass
NVNT	BLE 1M	2480	Ant1	-37.36	-20	Pass

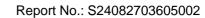




ACCREDITED






ACCREDITED



Pof Louo	n 🗋								
	1 10.00 dBr			BW 100 kHz					
Att SGL Count	30 d : 100/100	o swi 18.	. э µз 🛑 🗸	<b>BW</b> 300 kHz	mode .	AUTO FFT			
⊜1Pk Max									
					М	1[1]			-4.67 dBm
0 dBm		ļ				I		2.47974	19090 GHz
			M1						
-10 dBm		$\square$	$\sim$						
-20 dBm—									
-30 dBm	1								
-30 gbm									
-40 dBm									
-50 dBm		+							
-60 dBm									
-70 dBm									
, o ubiii-									
-80 dBm									
CF 2.48 G	l Hz			30001	pts	1		 Sna	n 1.5 MHz
	1					Pea			2
	Tx.	Spurious	NVNT	BLE 1N	1 2480	MHz Ar	nt1 Emis	sion	
	n   10.00 dBr	m Offset 2.4	2 dB 👄 R	<b>BW</b> 100 kHz				sion	
Ref Leve Att	n I 10.00 dBr 30 d	m Offset 2.4	2 dB 👄 R					sion	
Ref Leve Att SGL Count	n I 10.00 dBr 30 d	m Offset 2.4	2 dB 👄 R	<b>BW</b> 100 kHz				sion	
Ref Leve Att SGL Count 1Pk Max	n 1 10.00 dBr 30 d 10/10	m Offset 2.4	2 dB 👄 R	<b>BW</b> 100 kHz	Mode .				-5.66 dBm
Ref Leve Att SGL Count	n 1 10.00 dBr 30 d 10/10	m Offset 2.4	2 dB 👄 R	<b>BW</b> 100 kHz	Mode . M	Auto Sweer		2.4	-5.66 dBm 79720 GHz
Ref Leve Att SGL Count 1Pk Max	n 1 10.00 dBr 30 d 10/10	m Offset 2.4	2 dB 👄 R	<b>BW</b> 100 kHz	Mode . M	Auto Sweep		2.4	-5.66 dBm
Ref Leve Att SGL Count 1Pk Max 0 dBm	n 1 10.00 dBr 30 d 10/10	m Offset 2.4	2 dB 👄 R	<b>BW</b> 100 kHz	Mode . M	Auto Sweer		2.4	-5.66 dBm 79720 GHz 42.03 dBm
Ref Leve Att SGL Count 1Pk Max 0 dBm -10 dBm -20 dBm	n 1 10.00 dBr 30 d 10/10	m Offset 2.4 B SWT 263	2 dB 👄 R	<b>BW</b> 100 kHz	Mode . M	Auto Sweer		2.4	-5.66 dBm 79720 GHz 42.03 dBm
Ref Leve           Att           SGL Count           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm	n 1 10.00 dBr 30 d : 10/10	m Offset 2.4 B SWT 263	2 dB 👄 R	<b>BW</b> 100 kHz	Mode . M	Auto Sweer		2.4	-5.66 dBm 79720 GHz 42.03 dBm
Ref Leve Att SGL Count 1Pk Max 0 dBm -10 dBm -20 dBm	n 1 10.00 dBr 30 d : 10/10	m Offset 2.4 B SWT 263	2 dB 👄 R	<b>BW</b> 100 kHz	Mode . M	Auto Sweer		2.4	-5.66 dBm 79720 GHz 42.03 dBm
Ref Leve           Att           SGL Count           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	n 1 10.00 dBr 30 d : 10/10	n Offset 2.4 B SWT 263	2 dB 👄 R	<b>BW</b> 100 kHz	Mode . M M	Auto Sweep 1[1] 2[1]		2.4	-5.66 dBm 79720 GHz 42.03 dBm
Ref Leve           Att           SGL Count           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	n 30 dB 30 d 10/10	m Offset 2.4 B SWT 26:	2 dB 👄 R	<b>BW</b> 100 kHz	Mode . M M	Auto Sweep		2.4 - 2.5	-5.66 dBm 79720 GHz 42.03 dBm
Ref Leve           Att           SGL Count           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	n 30 dB 30 d 10/10	m Offset 2.4 B SWT 26:	2 dB 👄 R	<b>BW</b> 100 kHz	Mode . M M	Auto Sweep		2.4 - 2.5	-5.66 dBm 79720 GHz 42.03 dBm 55238 GHz
Ref Leve           Att           SGL Count           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm	n 30 dB 30 d 10/10	m Offset 2.4 B SWT 26:	2 dB 👄 R	<b>BW</b> 100 kHz	Mode . M M	Auto Sweep		2.4 - 2.5	-5.66 dBm 79720 GHz 42.03 dBm 55238 GHz
Ref Leve           Att           SGL Count           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	n 30 dB 30 d 10/10	m Offset 2.4 B SWT 26:	2 dB 👄 R	<b>BW</b> 100 kHz	Mode . M M	Auto Sweep		2.4 - 2.5	-5.66 dBm 79720 GHz 42.03 dBm 55238 GHz
Ref Leve           Att           SGL Count           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm           -70 dBm           -80 dBm	n 30 d : 10/10	m Offset 2.4 B SWT 26:	2 dB 👄 R	<b>BW</b> 100 kHz	Mode . M M	Auto Sweep		2.4	-5.66 dBm 79720 GHz 42.03 dBm 55238 GHz
Ref Leve           Att           SGL Count           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           -80 dBm           Start 30.0	n 1 10.00 dBr 30 dl 10/10 -D1 -24.666 2 -D1 -24.666 2 -M3 -MHz	m Offset 2.4 B SWT 26:	2 dB 👄 R	BW 100 kHz BW 300 kHz	Mode . M M	Auto Sweep		2.4 	-5.66 dBm 79720 GHz 42.03 dBm 55238 GHz
Ref Leve           Att           SGL Count           IPk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm           -80 dBm           -80 dBm           Start 30.0           Marker           Type	n 1 10.00 dBr 30 dl 10/10 -01 -24.666 2 -01 -24.666 2 -01 -24.666 2 -01 -24.666 2 -01 -24.666 2 -01 -24.666 -01 -24.666	m Offset 2.4 B SWT 26.	2 dB	BW 100 kHz BW 300 kHz	Mode . M M M M M M M M M M M M M M M M M M M	Auto Sweep		2.4	-5.66 dBm 79720 GHz 42.03 dBm 55238 GHz
Ref Leve           Att           SGL Count           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           -80 dBm           Start 30.0	n 1 10.00 dBr 30 dl 10/10 -D1 -24.666 2 -D1 -24.666 2 -M3 -MHz	m Offset 2.4 B SWT 26.	2 dB R 5 ms V	BW 100 kHz BW 300 kHz	Mode	Auto Sweep		2.4 	-5.66 dBm 79720 GHz 42.03 dBm 55238 GHz
Ref Level           Att           SGL Count           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           -80 dBm           Marker           Type         Re           M1           M2           M3	n 1 10.00 dBr 30 dl 10/10 -D1 -24.666 2 -D1 -24.666 2 -D1 -24.666 2 -D1 -1 -D1 -24.666 2 -D1 -24.666 -D1 -	m Offset 2.4 B SWT 26.	2 dB R 5 ms V	BW 100 kHz BW 300 kHz	Mode	Auto Sweep		2.4 	-5.66 dBm 79720 GHz 42.03 dBm 55238 GHz
Ref Leve           Att           SGL Count           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm           -50 dBm           -70 dBm           -80 dBm           Marker           Type           M1           M2	n 1 10.00 dBr 30 d 10/10 10/10 10/10 101 -24.666 2 MHz MHz f Trc 1 1	m Offset 2.4 B SWT 26: 6 6 dBm 6 dBm 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 dB R 5 ms V	BW 100 kHz BW 300 kHz	Mode M M M M M M M M M M M M M M M M M M	Auto Sweep		2.4 	-5.66 dBm 79720 GHz 42.03 dBm 55238 GHz

ACCREDITED



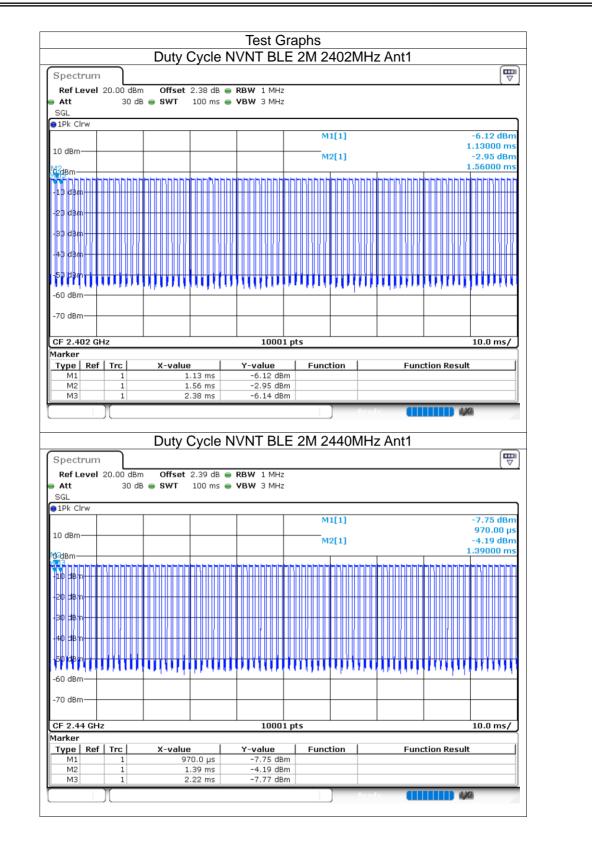


8.2 **2M** 

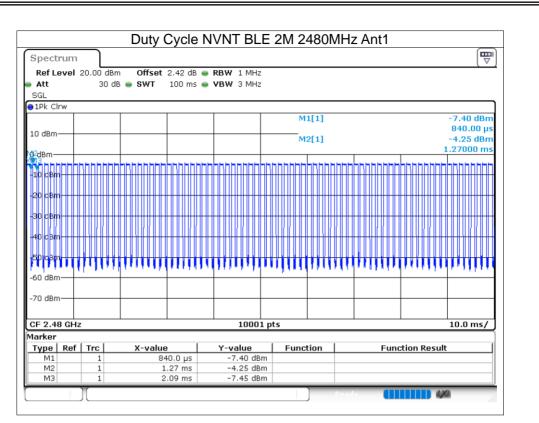
# 8.2.1 Duty Cycle

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 2M	2402	Ant1	66.39	1.78	1.22
NVNT	BLE 2M	2440	Ant1	67.19	1.73	1.2
NVNT	BLE 2M	2480	Ant1	66.39	1.78	1.22

ACCREDITED




ilac-MR


ACCREDITED

Certificate #4298.01

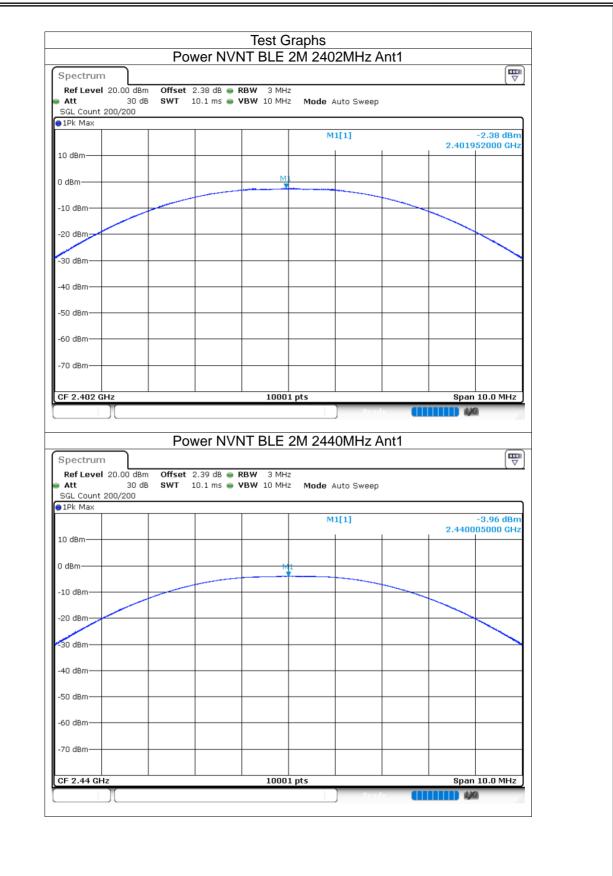
### Report No.: S24082703605002





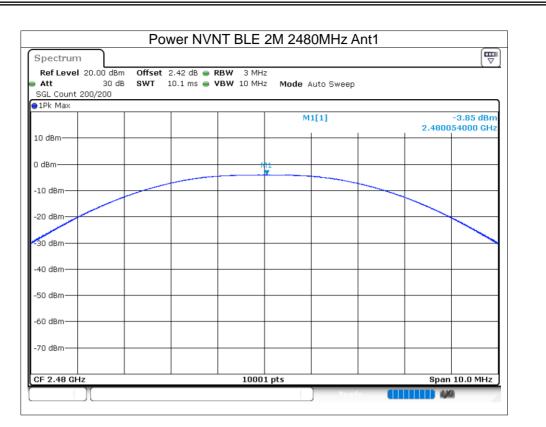


ACCREDITED




## 8.2.2 Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	-2.38	30	Pass
NVNT	BLE 2M	2440	Ant1	-3.96	30	Pass
NVNT	BLE 2M	2480	Ant1	-3.85	30	Pass


ACCRED



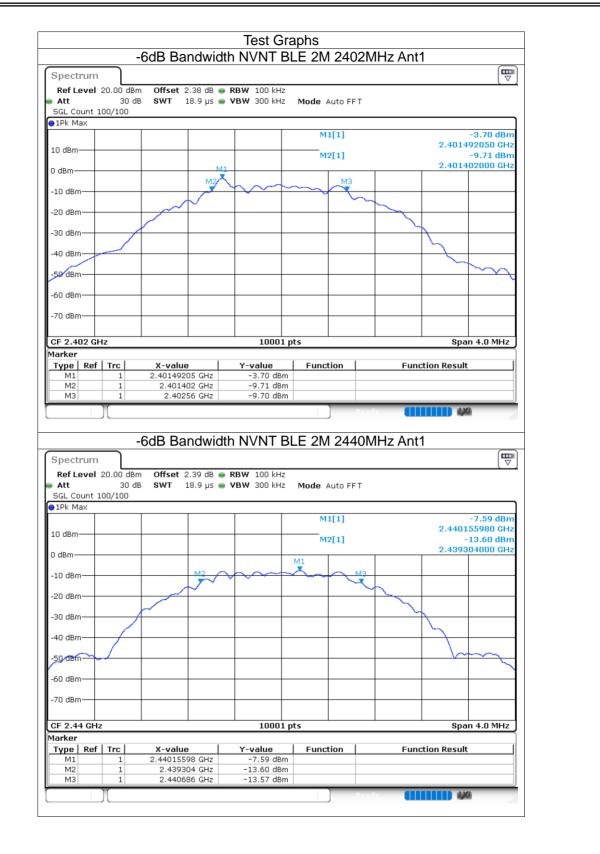


ACCREDITED



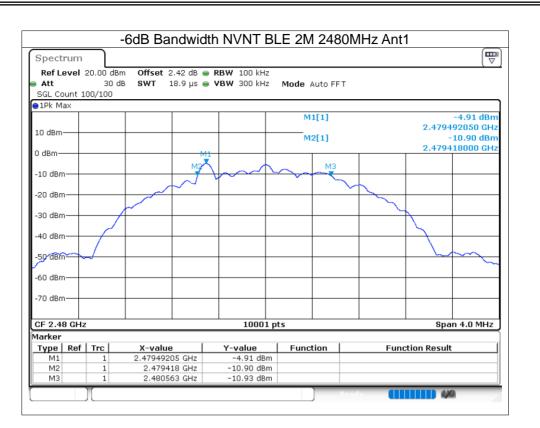


ACCREDITED






### 8.2.3 -6dB Bandwidth


Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 2M	2402	Ant1	1.158	0.5	Pass
NVNT	BLE 2M	2440	Ant1	1.382	0.5	Pass
NVNT	BLE 2M	2480	Ant1	1.145	0.5	Pass





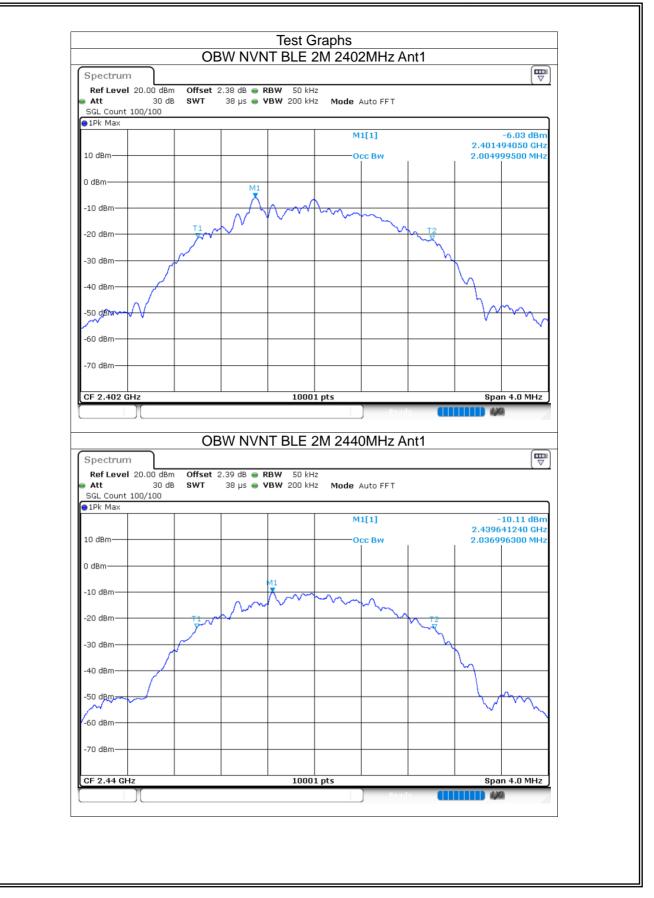
ACCREDITED





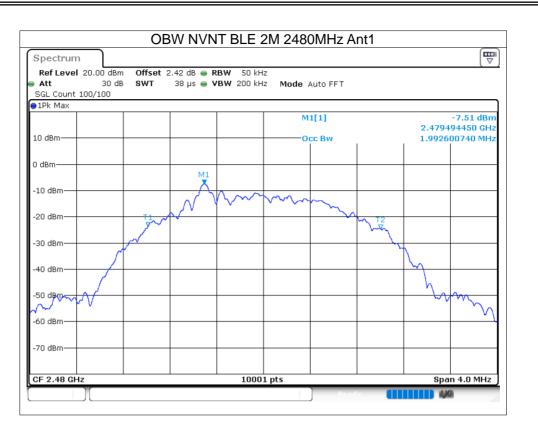
ACCREDITED






# 8.2.4 Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 2M	2402	Ant1	2.005
NVNT	BLE 2M	2440	Ant1	2.037
NVNT	BLE 2M	2480	Ant1	1.993


ACCREDITED





ACCREDITED





ACCREDITED

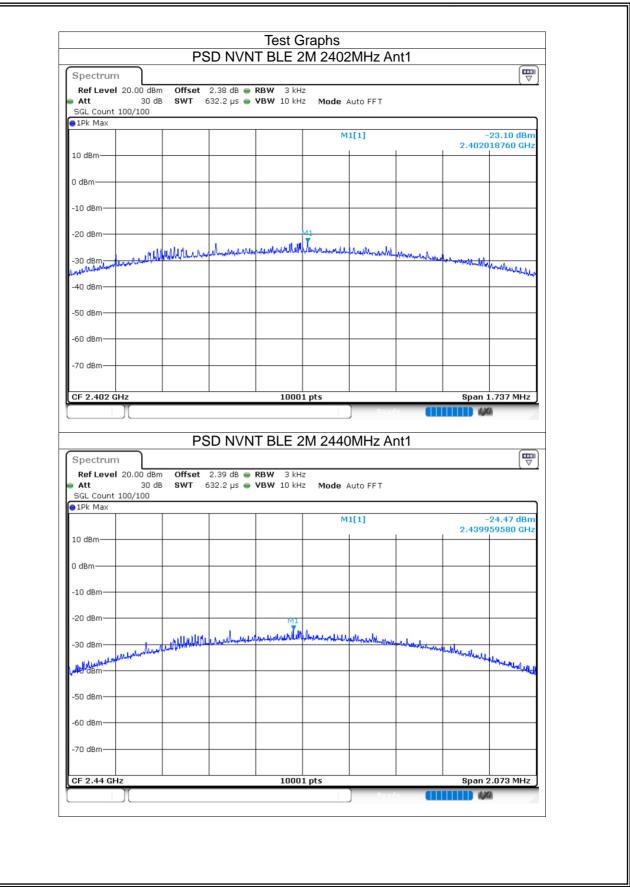




## 8.2.5 Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	-23.1	8	Pass
NVNT	BLE 2M	2440	Ant1	-24.47	8	Pass
NVNT	BLE 2M	2480	Ant1	-24.6	8	Pass

ACCREL




ilac-MR

ACCREDITED

Certificate #4298.01

### Report No.: S24082703605002





Spectrum	/NT BLE 2M 2480MHz Ant	
Ref Level 20.00 dBm Offset 2.42 dB	RBW 3 kHz	( v
Att 30 dB SWT 631.9 μs	VBW 10 kHz Mode Auto FFT	
SGL Count 100/100 1Pk Max		
	M1[1]	-24.60 dBm 2.479959300 GHz
10 dBm		2.479909000 0112
) dBm		
-10 dBm		
-20 dBm	MI	
20 dam , all Mallane and land	Men de marchelle Martine man and a replan motor of	loon at the second s
30 dBm		and the weather the souther the second of a
-40 dBm		
-50 dBm		
-60 dBm		
-70 dBm		
CF 2.48 GHz	10001 pts	Span 1.7175 MHz
I T	Peady	

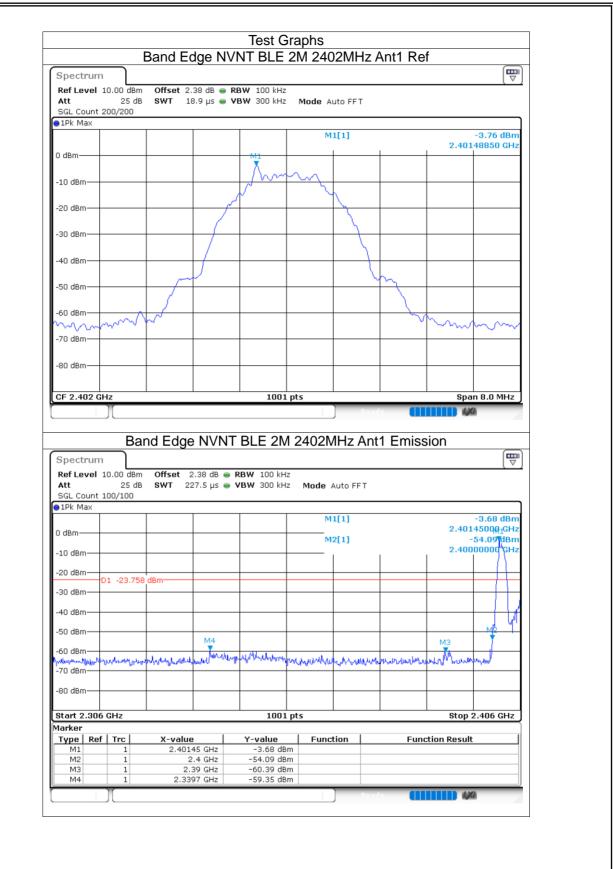
ACCREDITED



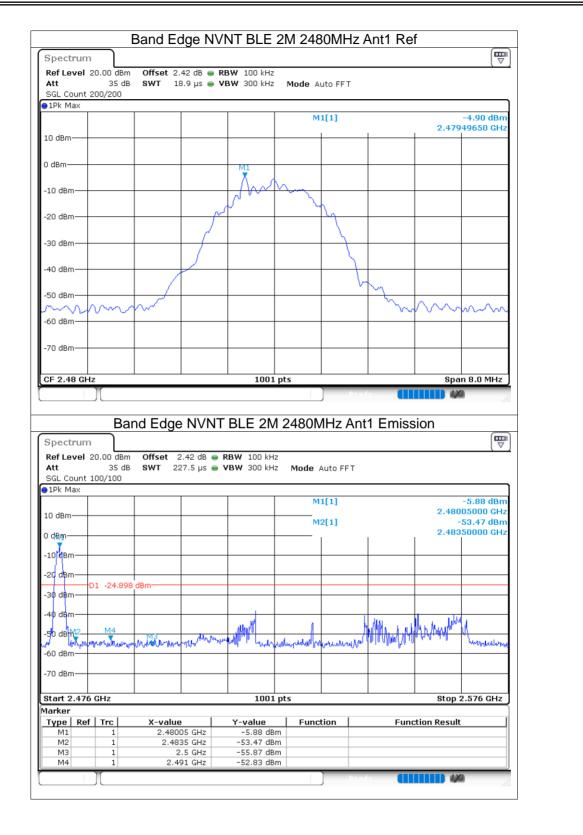


## 8.2.6 Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 2M	2402	Ant1	-55.59	-20	Pass
NVNT	BLE 2M	2480	Ant1	-47.93	-20	Pass




ilac-MR


ACCREDITED

Certificate #4298.01

### Report No.: S24082703605002







ACCREDITED





## 8.2.7 Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 2M	2402	Ant1	-33.13	-20	Pass
NVNT	BLE 2M	2440	Ant1	-35.46	-20	Pass
NVNT	BLE 2M	2480	Ant1	-45.6	-20	Pass

ACCRED

Certificate #4298.01

TED

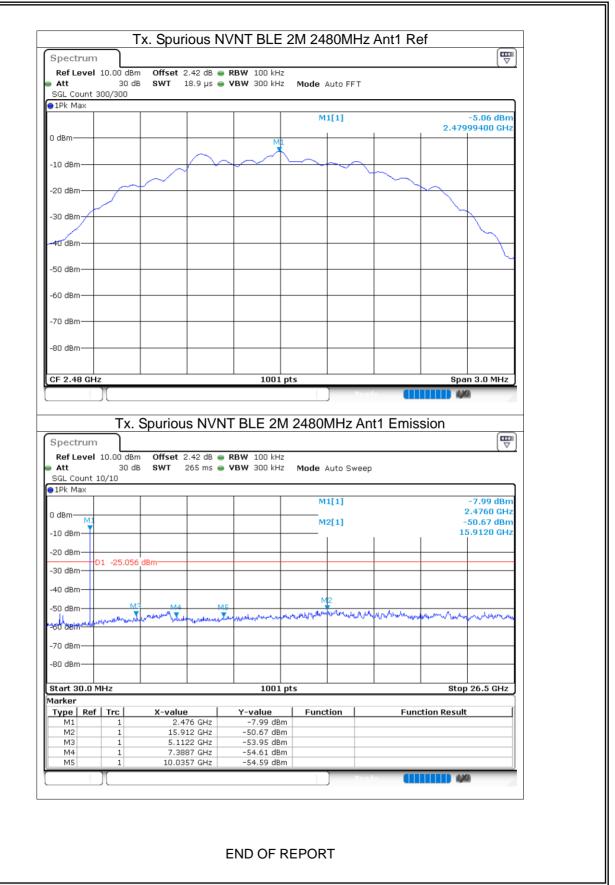


ILAC-MR

ACCREDITED

Certificate #4298.01

### Report No.: S24082703605002






Ref Leve	n ]						
	10.00 dBn						
Att SGL Count	30 d£ 300/300	B SWT 18.9 µs 🖷	• <b>VBW</b> 300 kHz	Mode Auto FFT			
SGL COURT 1Pk Max	300/300						
				M1[1]			-4.97 dBm
o 10					1	2.439	49350 GHz
0 dBm		M1					
-10 dBm					<		
-10 UBIII-							
-20 dBm							
-30 dBm 🖌	~					└-	<u></u>
							$\sim$
-40 dBm							
/							
-50 dBm							ĭ
IV							
-60 dBm							
-70 dBm							
-70 ubiii-							
-80 dBm							
CF 2.44 GF	L						
UF 2.44 GF	12		1001 pt:	, ,			n 3.0 MHz
					eady		111
							<b></b>
	n I 10.00 dBn 30 dB		RBW 100 kHz VBW 300 kHz	Mode Auto Swe	зер		
Ref Level Att SGL Count	l 10.00 dBn 30 dB			Mode Auto Swe	эер		
Ref Level Att SGL Count	l 10.00 dBn 30 dB				еер		
Ref Level Att SGL Count 1Pk Max	l 10.00 dBn 30 dB			Mode Auto Swe	эер		-7.63 dBm 2.4500 GHz
Ref Level Att SGL Count 1Pk Max 0 dBm	l 10.00 dBn 30 dB				эер	2	-7.63 dBm 2.4500 GHz 40.44 dBm
Ref Level Att SGL Count 1Pk Max	l 10.00 dBn 30 dB			M1[1]	eep	2	-7.63 dBm 2.4500 GHz
Ref Level Att SGL Count 1Pk Max 0 dBm -10 dBm -20 dBm	1 10.00 dBn 30 dł 10/10	B SWT 265 ms .		M1[1]	эер	2	-7.63 dBm 2.4500 GHz 40.44 dBm
Ref Level Att SGL Count 1Pk Max 0 dBm -10 dBm -20 dBm	l 10.00 dBn 30 dB	B SWT 265 ms .		M1[1]	эер	2	-7.63 dBm 2.4500 GHz 40.44 dBm
Ref Level           Att           SGL Count           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm	1 10.00 dBn 30 dł 10/10	B SWT 265 ms .		M1[1]	эер	2	-7.63 dBm 2.4500 GHz 40.44 dBm
Ref Level Att SGL Count 1Pk Max 0 dBm -10 dBm -20 dBm	1 10.00 dBn 30 dł 10/10	B SWT 265 ms .		M1[1]	eep	2	-7.63 dBm 2.4500 GHz 40.44 dBm
Ref Level           Att           SGL Count           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	D1 -24.973	B SWT 265 ms	• VBW 300 kHz	M1[1] M2[1]		2	-7.63 dBm 2.4500 GHz 40.44 dBm
Ref Level           Att           SGL Count           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	D1 -24.973	B SWT 265 ms	• VBW 300 kHz	M1[1] M2[1]		2	-7.63 dBm 2.4500 GHz 40.44 dBm
Ref Level           Att           SGL Count           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm	D1 -24.973	B SWT 265 ms	• VBW 300 kHz	M1[1] M2[1]		2	-7.63 dBm 2.4500 GHz 40.44 dBm
Ref Level           Att           SGL Count           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	D1 -24.973	B SWT 265 ms	• VBW 300 kHz	M1[1] M2[1]		2	-7.63 dBm 2.4500 GHz 40.44 dBm
Ref Level           Att           SGL Count           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm	D1 -24.973	B SWT 265 ms	• VBW 300 kHz	M1[1] M2[1]		2	-7.63 dBm 2.4500 GHz 40.44 dBm
Ref Level           Att           SGL Count           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm           -60 dBm           -70 dBm           -80 dBm	D1 -24.973	B SWT 265 ms	• VBW 300 kHz	M1[1] M2[1] 		2 	-7.63 dBm 2.4500 GHz 40.44 dBm 2.5711 GHz
Ref Level           Att           SGL Count           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -50 dBm           -70 dBm           -80 dBm           -80 dBm	D1 -24.973	B SWT 265 ms	• VBW 300 kHz	M1[1] M2[1] 		2 	-7.63 dBm 2.4500 GHz 40.44 dBm
Ref Level           Att           SGL Count           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -30 dBm           -30 dBm           -30 dBm           -70 dBm           -80 dBm           -80 dBm           Start 30.0	1 10.00 dBn 30 df 10/10 D1 -24.973 2 MHz	B SWT 265 ms	• VBW 300 kHz	M1[1] M2[1] 	And a free and a free and	2 	-7.63 dBm 2.4500 GHz 40.44 dBm 5711 GHz
Ref Level           Att           SGL Count           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm           -80 dBm           -80 dBm           Btart 30.0           Marker           Type         Re           M1	1 10.00 dBn 30 df 10/10 D1 -24.973	B SWT 265 ms	• VBW 300 kHz	M1[1] M2[1] 	And a free and a free and	2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-7.63 dBm 2.4500 GHz 40.44 dBm 5711 GHz
Ref Level           Att           SGL Count           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -50 dBm           -70 dBm           -80 dBm           Start 30.0           Marker           Type           M1           M2	1 10.00 dBn 30 df 10/10 D1 -24.973 2 MHz MHz f Trc 1	B SWT 265 ms	VBW 300 kHz	M1[1] M2[1] 	And a free and a free and	2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-7.63 dBm 2.4500 GHz 40.44 dBm 5711 GHz
Ref Level           Att           SGL Count           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm           -80 dBm           -80 dBm           Btart 30.0           Marker           Type         Re           M1	1 10.00 dBn 30 df 10/10 D1 -24.973	B SWT 265 ms	• VBW 300 kHz	M1[1] M2[1] 	And a free and a free and	2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-7.63 dBm 2.4500 GHz 40.44 dBm 5711 GHz
Ref Level           Att           SGL Count           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -50 dBm           -50 dBm           -70 dBm           -80 dBm           Start 30.0           Marker           Type           M1           M2           M3	I 10.00 dBn 30 df 10/10 D1 -24.973 P MHz MHz f Trc 1 1 1	B SWT 265 ms	VBW 300 kHz	M1[1] M2[1] 	And a free and a free and	2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-7.63 dBm 2.4500 GHz 40.44 dBm 5711 GHz

ACCREDITED





ACCREDITED